1
|
Li C, Lu B, Deng B. New Insights into the Diagnosis and Treatment of Hepatocellular Carcinoma. Biomedicines 2025; 13:1244. [PMID: 40427070 DOI: 10.3390/biomedicines13051244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/22/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Hepatocellular carcinoma remains one of the leading contributors to global cancer mortality, frequently stemming from chronic liver conditions, such as viral hepatitis, non-alcoholic fatty liver disease, and alcohol-induced cirrhosis. While antiviral treatments have made significant strides, the rising prevalence of hepatocellular carcinoma linked to non-infectious causes underscores the pressing demand for more effective diagnostic tools and therapeutic interventions. Advances in imaging and liquid biopsy technologies have facilitated early detection and diagnosis, and treatment strategies are diversifying to include immune checkpoint inhibitors, tyrosine kinase inhibitors, and interventional therapies. Translational therapies for advanced hepatocellular carcinoma have improved surgical opportunities and patient survival. Artificial intelligence has played a transformative role in the diagnosis and treatment of hepatocellular carcinoma, in terms of image analysis, histopathologic classification, drug development, and targeted therapy. The future of hepatocellular carcinoma treatment lies in precision oncology and the collaboration of multidisciplinary teams, as well as in early detection. The ultimate goal is to keep patients alive longer and reduce the global burden of this complex malignancy.
Collapse
Affiliation(s)
- Chengbo Li
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Bingjiu Lu
- Department of Hepatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Baocheng Deng
- Department of Infectious Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
2
|
Sun H, Cao Z, Zhao B, Zhou D, Chen Z, Zhang B. An elevated percentage of CD4⁺CD25⁺CD127 low regulatory T cells in peripheral blood indicates a poorer prognosis in hepatocellular carcinoma after curative hepatectomy. BMC Gastroenterol 2025; 25:340. [PMID: 40335903 PMCID: PMC12060481 DOI: 10.1186/s12876-025-03940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Previous studies suggest the percentage of CD4⁺CD25⁺CD127low regulatory T cells (Tregs) in peripheral blood of patients with hepatocellular carcinoma (HCC) was significantly higher than that in healthy, which may be a significant predictor of HCC clinical outcome, and we examined the utility of Tregs in predicting prognosis in HCC after curative hepatectomy. METHODS 77 diagnosed HCC patients from August 2018 to March 2023 were selected as research objects, we retrospectively analyzed whether the preoperative percentage of CD4⁺CD25⁺CD127low Tregs in peripheral blood predicts prognosis after curative hepatectomy in HCC patients. The percentage of CD4⁺CD25⁺CD127low Tregs was detected by flow cytometry. RESULTS The percentage of CD4⁺CD25⁺CD127low Tregs was significantly elevated in patients who developed recurrence and death (p < 0.050). X-tile software was used to calculate optimal cut-off value of Treg percentage (5.85%), and patients were divided into two groups with high and low Treg percentage. Patients with higher preoperative Treg percentage had a significantly poorer prognosis (p < 0.050). Cox regression demonstrated the percentage of CD4⁺CD25⁺CD127low Tregs was an independent indicator for poor prognosis after hepatectomy. The Recurrence-free survival (RFS) (the log-rank test, p < 0.001) and Overall survival (OS) (the log-rank test, p = 0.008) in patients with higher Treg percentage were significantly lower than that in patients with lower Treg percentage. The results were confirmed by the subgroup analysis. CONCLUSION The percentage of CD4⁺CD25⁺ CD127low Tregs in peripheral blood is associated with poor prognosis in HCC patients. It can be suggested as a potential prognostic indicator for HCC patients after hepatectomy and complement existing risk stratification tools. Measuring the percentage of CD4⁺CD25⁺ CD127low Tregs may contribute to the formulation of treatment strategies and the improvement of the prognosis for HCC patients.
Collapse
Affiliation(s)
- Haoran Sun
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Zepeng Cao
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Baochen Zhao
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Dachen Zhou
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Zhongbiao Chen
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China
| | - Bin Zhang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, No. 678 Furong Road, Hefei, 230601, Anhui Province, People's Republic of China.
| |
Collapse
|
3
|
Chen J, Yang Z, Cui Y, Zhao Z, Deng D, Fu Z, Zhang X. Increased expression of DNAJC7 promotes the progression of hepatocellular carcinoma by influencing the cell cycle and immune microenvironment. J Cancer Res Clin Oncol 2025; 151:154. [PMID: 40312488 PMCID: PMC12045834 DOI: 10.1007/s00432-025-06202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 04/12/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of cancer-related mortality worldwide owing to the lack of effective and early diagnostic tools and therapeutic approaches. DNAJC7, a member of the DnaJ heat shock family, is crucial in protein folding and stability; however, its specific functions and mechanisms in HCC remain unclear. OBJECTIVE This study aimed to explore the role of DNAJC7 in HCC progression and evaluate its potential clinical significance as a prognostic marker. METHODS Public databases (TCGA, ICGC, GEO, and TIMER) were used to assess DNAJC7 expression, correlations with clinical parameters, and related signaling pathways. Proliferation, migration, invasion, and cell cycle assays were performed to evaluate the function of DNAJC7 in HCC. Immune infiltration and associations with checkpoint proteins were analyzed using TIMER, and a Gene Set Enrichment Analysis (GSEA) was used to explore enriched pathways. RESULTS DNAJC7 expression was higher in HCC tissues than in adjacent normal tissues and was associated with advanced malignancy and poor prognosis, including a lower overall survival, progression-free survival, and disease-free survival. DNAJC7 knockdown resulted in reduced malignant behavior of HCC cells, leading to S-phase cell cycle arrest. Increased DNAJC7 expression was associated with immune cell infiltration and the presence of immunological checkpoint molecules, including CTLA4 and PD-1. GSEA highlighted the activation of key pathways, including WNT signaling and cell cycle regulation. CONCLUSION DNAJC7 regulates tumor cell proliferation, migration, invasion, and immune evasion by acting as an oncogene in HCC. It can serve as a diagnostic and prognostic biomarker and potential treatment target for HCC.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Zhizhao Yang
- Hepatobiliary Pancreatic Surgery Department of Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Yongqiang Cui
- Hepatobiliary Pancreatic Surgery Department of Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Zhilei Zhao
- Hepatobiliary Pancreatic Surgery Department of Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Dongfeng Deng
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Zhihao Fu
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou City, 450003, Henan Province, China
| | - Xiao Zhang
- Department of Hepatobiliary Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital and Henan University People's Hospital, No. 7 Weiwu Road, Jinshui District, Zhengzhou City, 450003, Henan Province, China.
| |
Collapse
|
4
|
Xu Y, Zhang S, Meng F, Liang W, Peng Y, Zhu B, Niu L, Wang C, Li C, Lu S. Genome-Wide Identification and Functional Analysis of the Norcoclaurine Synthase Gene Family in Aristolochia contorta. Int J Mol Sci 2025; 26:4314. [PMID: 40362550 PMCID: PMC12072525 DOI: 10.3390/ijms26094314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Aristolochia contorta Bunge has been widely used as traditional Chinese medicine materials. However, its utility faces a great challenge due to the presence of aristolochic acids (AAs), a class of benzylisoquinoline alkaloid (BIA) derivatives. The first step in BIA skeleton formation is catalysis by norcoclaurine synthase (NCS). To gain knowledge of BIA and AA biosynthesis in A. contorta, genome-wide characterizations of NCS genes were carried out. This resulted in the identification of 15 A. contorta NCSs, namely, AcNCS1-AcNCS15. The AcNCS1-AcNCS8 proteins contained one catalytic domain, whereas the AcNCS9-AcNCS15 proteins had two. Phylogenetic analysis shows that AcNCS proteins can be classified into two clades. Gene expression analysis shows that five AcNCSs, including AcNCS2, AcNCS4, AcNCS5, AcNCS14, and AcNCS15, exhibited relatively high expression in roots and flowers, where norcoclaurine accumulated. An enzyme catalytic activity assay shows that all five of the AcNCSs can catalyze norcoclaurine formation with AcNCS14 and AcNCS15, exhibiting higher catalytic efficiency. Precolumn derivatization analysis shows that the formed norcoclaurine included (S)- and (R)-norcoclaurine, with more (S)-configuration. The results provide useful information for further understanding BIA and AA biosynthesis in A. contorta and for AA elimination and bioactive compound improvement in AA-containing medicinal materials.
Collapse
Affiliation(s)
- Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Sixuan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fanqi Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Wenjing Liang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunliang Peng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Butuo Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lili Niu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chunling Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
5
|
Wei B, Zheng Y, Li L, Luo L, Guo Y. Establishment of sex-specific reference intervals for PIVKA-II in Southwest China: A real-world data analysis. Ann Clin Biochem 2025; 62:202-207. [PMID: 39641483 DOI: 10.1177/00045632241306074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
ObjectiveWe aim to establish the sex-related reference intervals (RIs) of PIVKA-II in southwest China by indirect method with the real-world data.MethodsBetween 29 July 2016 and 5 February 2024, PIVKA-II test data were collected from 120,780 healthy adult participants (aged 18 to 97 years) in the Laboratory Information System (LIS) of West China Hospital to establish reference intervals. Additionally, a validation group comprised of 2068 healthy adults was evaluated using the same detection algorithm and platform. Following the CLSI EP28-A3 guideline, Box-Cox transformation was applied for normal transformation, and outliers were identified using the Tukey method. Furthermore, we employed the standard normal deviate test (z-test) recommended by Harris and Boyd to determine whether to stratify reference intervals by age and sex subclasses.ResultsWe successfully established population-specific RI for PIVKA-II in southwest China using an indirect method. By utilizing a robust dataset and conducting rigorous statistical analyses, we delineated sex-specific RIs, with values of 0-35 mAU/mL for males and 0-29 mAU/mL for females according to the normal distribution method, and 0-32 mAU/mL for males and 0-28 mAU/mL for females using the non-parametric method. These intervals are more suitable for the local population than those derived from manual methods.ConclusionThese RIs provide valuable guidance for the accurate interpretation of PIVKA-II levels in the local population.
Collapse
Affiliation(s)
- Bin Wei
- Department of Laboratory Medicine/Clinical Research Center of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yalin Zheng
- Department of Laboratory Medicine/Clinical Research Center of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lixin Li
- Department of Laboratory Medicine/Clinical Research Center of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Limei Luo
- Department of Laboratory Medicine/Clinical Research Center of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Guo
- West China Second University Hospital/ West China Women's and Children's Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Zhou L, Liu CH, Lv D, Sample KM, Rojas Á, Zhang Y, Qiu H, He L, Zheng L, Chen L, Cai B, Hu Y, Romero-Gómez M. Halting hepatocellular carcinoma: Identifying intercellular crosstalk in HBV-driven disease. Cell Rep 2025; 44:115457. [PMID: 40163359 DOI: 10.1016/j.celrep.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/14/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
Hepatitis B infection can lead to liver fibrosis and hepatocellular carcinoma (HCC). Despite antiviral therapies, some patients still develop HCC. This study investigates hepatitis B virus (HBV)-induced hepatocyte-hepatic stellate cell (HSC) crosstalk and its role in liver fibrosis and HCC. Using MYC-driven liver cancer stem cell organoids, HCC-patient-derived xenograft (PDX) models, and HBV replication models, this study reveals that HBV transcription affected hepatocyte development, activated the DNA repair pathway, and promoted glycolysis. HBV activated nicotinamide phosphoribosyltransferase (NAMPT) through DNA damage receptor ATR. NAMPT-insulin receptor (INSR)-mediated hepatocyte-HSC crosstalk caused HSCs to develop a myofibroblast phenotype and activated telomere maintenance mechanisms via PARP1 multisite lactylation. Inhibition of the ATR-NAMPT-INSR-PARP1 pathway effectively blocks HBV-induced liver fibrosis and HCC progression. Targeting this pathway could be a promising strategy for chronic HBV infection management.
Collapse
Affiliation(s)
- Lingyun Zhou
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
| | - Chang-Hai Liu
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Duoduo Lv
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Klarke Michael Sample
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ángela Rojas
- SeLiver Group, Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain
| | - Yugu Zhang
- Thoracic Oncology Ward, Cancer Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huandi Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Linye He
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liyu Chen
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Binru Cai
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, China; Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Manuel Romero-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; UCM Digestive Diseases, Virgen del Rocío University Hospital, Seville, Spain.
| |
Collapse
|
7
|
Pellestor F, Ganne B, Gaillard JB, Gatinois V. Chromoplexy: A Pathway to Genomic Complexity and Cancer Development. Int J Mol Sci 2025; 26:3826. [PMID: 40332527 PMCID: PMC12027847 DOI: 10.3390/ijms26083826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Chromoplexy is a phenomenon of complex genome rearrangement, occurring during a single cell event and characterized by the formation of chain rearrangements affecting multiple chromosomes. Unlike other genomic rearrangements such as chromothripsis, which involves a single chromosome, chromoplexy affects several chromosomes at once, creating patterns of complex, balanced translocations, and leading to the formation of fusion genes and the simultaneous disruption of several genes. Chromoplexy was first identified in prostate cancers, but it is now observed in various cancers where gene fusions take place. The precise mechanisms behind chromoplexy remain under investigation. The occurrence of these rearrangements follows multiple double-stranded breaks that appear to occur in certain regions or during particular genome configurations (open chromatin, active transcription area), and which lead to an intricate series of inter- and intra-chromosomal translocations and deletions without significant alterations in the number of copies. Although chromoplexy is considered a very early event in oncogenesis, the phenomenon can be repeated and can constitute a mechanism of clonal tumor progression. The occurrence of chromoplexy supports the equilibrium model punctuated by tumor evolution, characterized by periods of relative stability punctuated by sudden and rapid periods of radical genomic changes.
Collapse
Affiliation(s)
- Franck Pellestor
- Chromosomal Genetics Unit and Chromostem Research Platform, Department of Molecular Genetics and Cytogenomics, Unique Site of Biology (SUB), University Hospital of Montpellier, 371 Avenue du Doyen Gaston Giraud, 34295 Montpellier Cedex 5, France; (B.G.); (J.B.G.); (V.G.)
| | | | | | | |
Collapse
|
8
|
Redler J, Nelson AE, Heske CM. Mechanisms of resistance to NAMPT inhibitors in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:18. [PMID: 40342733 PMCID: PMC12059476 DOI: 10.20517/cdr.2024.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
A common barrier to the development of effective anticancer agents is the development of drug resistance. This obstacle remains a challenge to successful clinical translation, particularly for targeted agents. Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors represent a clinically applicable drug class that exploits the increased dependence of cancer cells on nicotinamide adenine dinucleotide (NAD+), a coenzyme essential to metabolism and other cellular functions. NAMPT catalyzes the rate-limiting step in the NAD+ salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. Preclinical research has demonstrated that pharmacological targeting of NAMPT may be an effective strategy against certain cancers, and while several early-phase clinical trials testing NAMPT inhibitors in refractory cancers have been completed, drug resistance is a concern. Preclinical work in a variety of cancer models has demonstrated the emergence of resistance to multiple NAMPT inhibitors through several recurrent mechanisms. This review represents the first article summarizing the current state of knowledge regarding the mechanisms of acquired drug resistance to NAMPT inhibitors with a particular focus on upregulation of the compensatory NAD+ production enzymes nicotinate phosphoribosyltransferase (NAPRT) and quinolinate phosphoribosyltransferase (QPRT), acquired mutations in NAMPT, metabolic reprogramming, and altered expression of the ATP-binding cassette (ABC) efflux transporter ABCB1. An understanding of how these mechanisms interact with the biology of each given cancer cell type to predispose to the acquisition of NAMPT inhibitor resistance will be necessary to develop strategies to optimize the use of these agents moving forward.
Collapse
Affiliation(s)
| | | | - Christine M. Heske
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Zeng T, Liao H, Xia L, You S, Huang Y, Zhang J, Liu Y, Liu X, Xie D. Multisite long-read sequencing reveals the early contributions of somatic structural variations to HBV-related hepatocellular carcinoma tumorigenesis. Genome Res 2025; 35:671-685. [PMID: 40037842 PMCID: PMC12047258 DOI: 10.1101/gr.279617.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/30/2025] [Indexed: 03/06/2025]
Abstract
Somatic structural variations (SVs) represent a critical category of genomic mutations in hepatocellular carcinoma (HCC). However, the accurate identification of somatic SVs using short-read high-throughput sequencing is challenging. Here, we applied long-read nanopore sequencing and multisite sampling in a cohort of 42 samples from five patients. We found that adjacent nontumor tissue is not entirely normal, as significant somatic SV alterations were detected in these nontumor genomes. The adjacent nontumor tissue is highly similar to tumor tissue in terms of somatic SVs but differs in somatic single-nucleotide variants and copy number variations. The types of SVs in adjacent nontumor and tumor tissue are markedly different, with somatic insertions and deletions identified as early genomic events associated with HCC. Notably, hepatitis B virus (HBV) DNA integration frequently results in the generation of somatic SVs, particularly inducing interchromosomal translocations (TRAs). Although HBV DNA integration into the liver genome occurs randomly, multisite shared HBV-induced SVs are early driving events in the pathogenesis of HCC. Long-read RNA sequencing reveals that some HBV-induced SVs impact cancer-associated genes, with TRAs being capable of inducing the formation of fusion genes. These findings enhance our understanding of somatic SVs in HCC and their role in early tumorigenesis.
Collapse
Affiliation(s)
- Tianfu Zeng
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haotian Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Xia
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyao You
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanqun Huang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaxun Zhang
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yahui Liu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuyan Liu
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dan Xie
- Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China;
| |
Collapse
|
10
|
Dzama-Karels M, Kuhlers P, Sokolowski M, Brinkman JA, Morris JP, Raab JR. Menin-MLL1 complex cooperates with NF-Y to promote HCC survival. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.05.647381. [PMID: 40291722 PMCID: PMC12026816 DOI: 10.1101/2025.04.05.647381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Identification of new therapeutic targets in hepatocellular carcinoma (HCC) remains critical. Chromatin regulating complexes are frequently mutated or aberrantly expressed in HCC, suggesting dysregulation of chromatin environments is a key feature driving liver cancer. To investigate whether the altered chromatin state in HCC cells could be targeted, we designed and utilized an epigenome-focused CRISPR library that targets genes involved in chromatin regulation. This focused approach allowed us to test multiple HCC cell lines in both 2D and 3D growth conditions, which revealed striking differences in the essentiality of genes involved in ubiquitination and multiple chromatin regulators vital for HCC cell survival in 2D but whose loss promoted growth in 3D. We found the core subunits of the menin-MLL1 complex among the strongest essential genes for HCC survival in all screens and thoroughly characterized the mechanism through which the menin-MLL1 complex promotes HCC cell growth. Inhibition of the menin-MLL1 interaction led to global changes in occupancy of the complex with concomitant decreases in H3K4me3 and expression of genes involved in PI3K/AKT/mTOR signaling pathway. Menin inhibition affected chromatin accessibility in HCC cells, revealing that increased chromatin accessibility at sites not bound by menin-MLL1 was associated with the recruitment of the pioneer transcription factor complex NF-Y. A CRISPR/Cas9 screen of chromatin regulators in the presence of menin inhibitor SNDX-5613 revealed a significantly increased cell death when combined with NFYB knockout. Together these data show that menin-MLL1 is necessary for HCC cell survival and cooperates with NF-Y to regulate oncogenic gene transcription.
Collapse
|
11
|
Wang X, Liu Y, Zhang S, Zhang J, Lin X, Liang Y, Zong M, Hanley KL, Lee J, Karin M, Feng GS. Genomic and transcriptomic analyses of chemical hepatocarcinogenesis aggravated by oncoprotein loss. Hepatology 2025; 81:1181-1196. [PMID: 39397357 DOI: 10.1097/hep.0000000000001037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS We generated mutant mouse lines with hepatocyte-specific deletions of Met , Ptpn11 / Shp2 , Ikkβ , or Ctnnb1/β-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Shuo Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jiemeng Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Xiaoxue Lin
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yan Liang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Min Zong
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Kaisa L Hanley
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California at San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Wan Q, Yu X, Huang J, Yang L, Wang D, Zhou H, Zhang G, Mao S, Chen Y, Zhang Z, Wei J. An Investigative Study of LGALSL and HLA-DRB1 as Prognostic Biomarkers and Therapeutic Targets in Chronic Hepatitis B Patients With Persistent HBV DNA Viremia Under Entecavir Treatment. J Med Virol 2025; 97:e70329. [PMID: 40167905 DOI: 10.1002/jmv.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/09/2025] [Indexed: 04/02/2025]
Abstract
Despite significant advances in chronic hepatitis B (CHB) treatment, some patients receiving entecavir (ETV) still experience poor clinical outcomes. Identifying host factors contributing to ETV anti-HBV failure in CHB patients with persistent HBV DNA positivity is crucial for developing targeted therapies. We conducted a comprehensive study using univariate and reverse Mendelian randomization (MR), incorporating sequencing data and publicly available genetic data, followed by gene set variation analysis (GSVA), gene set enrichment analysis (GSEA) and immune cell infiltration analysis to systematically explore causal associations between host factors and CHB. Univariate MR analyses revealed a significant inverse association between increased HLA-DRB1 levels and CHB risk (odds ratio [OR] 0.607, 95% confidence interval [CI] 0.478-0.771, p = 0.00004), while increased LGALSL levels were significantly associated with a heightened risk of poor CHB prognosis (OR 1.110, 95% CI: 1.017-1.212, p = 0.01885), as estimated using the inverse variance weighting (IVW) method. Analysis of immune cell infiltration showed significantly higher HLA and mast cell levels in the poor prognosis group. HLA-DRB1 showed a significant positive correlation with HLA, whereas LGALSL showed a significant negative correlation. Compared to patients with favorable prognoses, those with poor prognoses exhibited significantly higher serum LGALSL levels (ELISA), lower HLA-DRB1 expression in peripheral blood mononuclear cells (PBMCs) (qPCR), and significantly increased LGALSL expression in liver tissue (IHC). Therefore, LGALSL and HLA-DRB1 may serve as potential prognostic biomarkers for CHB patients receiving ETV, providing novel avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Qun Wan
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaolin Yu
- Department of Laboratory Medicine, Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Sichuan, China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Sichuan, China
| | - Jinyu Huang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Liting Yang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Deqiang Wang
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Hua Zhou
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Gongming Zhang
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Shenglan Mao
- Department of Clinical Laboratory, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yanmeng Chen
- College of Laboratory Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Zhenlin Zhang
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jie Wei
- Department of Clinical Laboratory, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
13
|
Ramirez CFA, Akkari L. Myeloid cell path to malignancy: insights into liver cancer. Trends Cancer 2025:S2405-8033(25)00054-8. [PMID: 40140328 DOI: 10.1016/j.trecan.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
Clinically approved treatments for advanced liver cancer often lack potency because of the heterogeneous characteristics of hepatocellular carcinoma (HCC). This complexity is largely driven by context-dependent inflammatory responses brought on by diverse etiologies, such as metabolic dysfunction-associated steatohepatitis (MASH), the genetic makeup of cancer cells, and the versatile adaptability of immune cells, such as myeloid cells. In this review, we discuss the evolutionary dynamics of the immune landscape, particularly that of liver-resident Kupffer cells (KCs), TREM2+, and SPP1+ macrophages with an active role during liver disease progression, which eventually fuels hepatocarcinogenesis. We highlight exploitable immunomodulatory avenues amenable to mitigate both the inherent pathological characteristics of liver cancers and the associated external factors that favor malignancy, paving a roadmap toward improving the management and therapeutic outcome for patients with HCC.
Collapse
Affiliation(s)
- Christel F A Ramirez
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Wang X, Feng JK, Mao FF, Hou YC, Zhang YQ, Liu LH, Wei Q, Sun JX, Liu C, Shi J, Cheng SQ. Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis. Mol Biotechnol 2025; 67:1240-1255. [PMID: 38683442 DOI: 10.1007/s12033-024-01125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Fei-Fei Mao
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yu-Chao Hou
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Yu-Qing Zhang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Li-Heng Liu
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Qian Wei
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ju-Xian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
| | - Shu-Qun Cheng
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
15
|
Cheng Q, Han X, Xie H, Liao YL, Wang F, Cui XY, Jiang , Zhang CW. PAXIP1 is regulated by NRF1 and is a prognosis‑related biomarker in hepatocellular carcinoma. Biomed Rep 2025; 22:38. [PMID: 39781045 PMCID: PMC11704871 DOI: 10.3892/br.2024.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a poor prognosis globally. PAX-interacting protein 1 (PAXIP1) serves a key role in the development of numerous human cancer types. Nevertheless, its specific involvement in HCC remains poorly understood. Public repository systems (Integrative Molecular Database of HCC, Gene Expression Omnibus, The Cancer Genome Atlas, University of Alabama at Birmingham Cancer Data Analysis Portal, Tumor Immune Estimation Resource and Human Protein Atlas) were utilized to explore PAXIP1 expression in HCC and evaluate the prognostic value of PAXIP1 in patients with HCC. PAXIP1 expression was investigated, and a notable relationship between PAXIP1 expression and various cancer types was found through analysis of The Cancer Genome Atlas data. More specifically, patients with HCC and lower PAXIP1 levels had improved survival rates. Furthermore, using LinkedOmics, the co-expression network of PAXIP1 in HCC was determined. Colocalization analysis of PAXIP1 using chromatin immunoprecipitation-sequencing data suggested that PAXIP1 might act as a cofactor for MYB proto-oncogene like 2 or FOXO1 in HCC. In addition, by predicting and analyzing the potential transcription factors related to PAXIP1, nuclear respiratory factor 1 was identified as a factor upstream of PAXIP1 in HCC. Notably, PAXIP1 expression exhibited a positive association with the infiltration of CD4+ and CD8+ T cells, macrophages, neutrophils and myeloid dendritic cells. Furthermore, PAXIP1 expression was associated with a range of immune markers such as programmed cell death protein 1, programmed death-ligand 1 and cytotoxic T-lymphocyte associated protein 4 in HCC. The findings of the present study highlighted the prognostic relevance of PAXIP1 and its function in modulating immune cell recruitment in HCC.
Collapse
Affiliation(s)
- Qian Cheng
- Department of Pathogen Biology, Microbiology Division, Key Laboratory of Pathogen of Jiangsu Province Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Xiao Han
- Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hao Xie
- School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210018, P.R. China
| | - Yan-Lin Liao
- MEDx (Suzhou) Translation Medicine Co., Ltd., Suzhou, Jiangsu 215000, P.R. China
| | - Fei Wang
- Wuxi Mental Health Center/Wuxi Central Rehabilitation Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiao-Ying Cui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Chao Jiang
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Cheng-Wan Zhang
- Department of Central Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
16
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
17
|
Yang Y, Zhang X, Chen T, Wu F, Huang YS, Qu Y, Xu M, Ma L, Liu M, Zhai W. An Expanding Universe of Mutational Signatures and Its Rapid Evolution in Single-Stranded RNA Viruses. Mol Biol Evol 2025; 42:msaf009. [PMID: 39823310 PMCID: PMC11796089 DOI: 10.1093/molbev/msaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/19/2025] Open
Abstract
The study of mutational processes in somatic genomes has gained recent momentum, uncovering a wide array of endogenous and exogenous factors associated with somatic changes. However, the overall landscape of mutational processes in germline mutations across the tree of life and associated evolutionary driving forces are rather unclear. In this study, we analyzed mutational processes in single-stranded RNA (ssRNA) viruses which are known to jump between different hosts with divergent exogenous environments. We found that mutational spectra in different ssRNA viruses differ significantly and are mainly associated with their genetic divergence. Surprisingly, host environments contribute much less significantly to the mutational spectrum, challenging the prevailing view that the exogenous cellular environment is a major determinant of the mutational spectrum in viruses. To dissect the evolutionary forces shaping viral spectra, we selected two important scenarios, namely the inter-host evolution between different viral strains as well as the intra-host evolution. In both scenarios, we found mutational spectra change significantly through space and time, strongly correlating with levels of natural selection. Combining the mutations across all ssRNA viruses, we identified a suite of mutational signatures with varying degrees of similarity to somatic signatures in humans, indicating universal and divergent mutational processes across the tree of life. Taken together, we unraveled an unprecedented dynamic landscape of mutational processes in ssRNA viruses, pinpointing important evolutionary forces shaping fast evolution of mutational spectra in different species.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyuan Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu S Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Genecast Biotechnology Co., Ltd., Wuxi 214105, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liang Ma
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo Liu
- School of Basic Medical Sciences, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou 511436, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
18
|
Hassanain H, Connor AA, Brombosz EW, Patel K, Elaileh A, Basra T, Kodali S, Victor DW, Simon CJ, Cheah YL, Hobeika MJ, Mobley CM, Saharia A, Dhingra S, Schwartz M, Maqsood A, Heyne K, Kaseb AO, Vauthey JN, Gaber AO, Abdelrahim M, Ghobrial RM. Sorafenib as Adjuvant Therapy Post-Liver Transplant: A Single-center Experience. Transplant Direct 2025; 11:e1746. [PMID: 39866680 PMCID: PMC11759322 DOI: 10.1097/txd.0000000000001746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/31/2024] [Indexed: 01/28/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a rising incidence and mortality in North America. Liver transplantation (LT) with adjunctive therapies offers excellent outcomes. However, HCC recurrences are associated with high mortality. We investigate whether adjuvant systemic therapy can reduce recurrence, as shown with other malignancies. Methods Medical records of patients undergoing LT for HCC at a single center between January 2016 and December 2022 were retrospectively reviewed. Patients were stratified into 3 groups: (1) recipients of adjuvant sorafenib, (2) nonrecipients at high recurrence risk, and (3) nonrecipients at low risk by explant pathology features. The outcomes were overall survival (OS) and recurrence-free survival (RFS). Adjuvant sorafenib recipients were also propensity score matched 1:2 to nonadjuvant recipients based on recurrence risk features. Results During the study period, 273 patients with HCC underwent LT and 16 (5.9%) received adjuvant sorafenib therapy. Adjuvant sorafenib recipients were demographically similar to nonrecipients and, on explant pathology, had greater tumor burden, lymphovascular invasion, and poorer differentiation (all P < 0.001). Adverse events were observed in 12 adjuvant sorafenib recipients (75%). OS was similar among the 3 groups (P = 0.2), and adjuvant sorafenib was not associated with OS in multivariable analysis (hazard ratio, 1.31; 95% confidence interval, 0.45-3.78; P = 0.62). RFS was significantly lower in sorafenib patients (hazard ratio, 6.99; 95% confidence interval, 2.12-23.05; P = 0.001). Following propensity matching, adjuvant sorafenib use was not associated with either OS (P = 0.24) or RFS rates (P = 0.65). Conclusions In this single-center analysis, adjuvant sorafenib was not associated with OS. Recipients were observed to have shorter RFS, likely due to the increased prevalence of high-risk features, and sorafenib use was associated with high frequencies of adverse events.
Collapse
Affiliation(s)
- Hala Hassanain
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ashton A. Connor
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | | - Khush Patel
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Ahmed Elaileh
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Tamneet Basra
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Sudha Kodali
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David W. Victor
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | | | - Yee Lee Cheah
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Mark J. Hobeika
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | | | - Ashish Saharia
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Sadhna Dhingra
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Mary Schwartz
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Anaum Maqsood
- Dr. Mary and Ron Neal Cancer Center, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Kirk Heyne
- Dr. Mary and Ron Neal Cancer Center, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jean-Nicolas Vauthey
- Department of Surgical Oncology, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX
| | - A. Osama Gaber
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Maen Abdelrahim
- Dr. Mary and Ron Neal Cancer Center, Department of Medicine, Houston Methodist Hospital, Houston, TX
| | - R. Mark Ghobrial
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
19
|
Lv J, Wang Y, Lv J, Zheng C, Zhang X, Wan L, Zhang J, Liu F, Zhang H. Pifithrin-μ sensitizes mTOR-activated liver cancer to sorafenib treatment. Cell Death Dis 2025; 16:42. [PMID: 39863613 PMCID: PMC11762308 DOI: 10.1038/s41419-025-07332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
TSC2, a suppressor of mTOR, is inactivated in up to 20% of HBV-associated liver cancer. This subtype of liver cancer is associated with aggressive behavior and early recurrence after hepatectomy. Being the first targeted regimen for advanced liver cancer, sorafenib has limited efficacy in HBV-positive patients. In this study, we observed that mTOR-activated cells, due to the loss of either TSC2 or PTEN, were insensitive to the treatment of sorafenib. Mechanistically, HSP70 enhanced the interaction between active mTOR-potentiated CREB1 and CREBBP to boost the transcription of the antioxidant response regulator SESN3. In return, elevated SESN3 enhanced cellular antioxidant capacity and rendered cells resistant to sorafenib. Pifithrin-μ, an HSP70 inhibitor, synergized with sorafenib in the induction of ferroptosis in mTOR-activated liver cancer cells and suppression of TSC2-deficient hepatocarcinogenesis. Our findings highlight the pivotal role of the mTOR-CREB1-SESN3 axis in sorafenib resistance of liver cancer and pave the way for combining pifithrin-μ and sorafenib for the treatment of mTOR-activated liver cancer.
Collapse
Affiliation(s)
- Jiarui Lv
- Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanan Wang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiacheng Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Cuiting Zheng
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyu Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Radiology, State Key Laboratory of Complex, Severe and Rare Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College and Peking Union Medical College Hospital, Beijing, China
| | - Linyan Wan
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gastroenterology, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jiayang Zhang
- Department of Breast Oncology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Fangming Liu
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbing Zhang
- Department of Organ Transplantation and Hepatobiliary Surgery, Key Laboratory of Organ Transplantation of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Boysen G, Alexandrov L, Rahbari R, Nookaew I, Ussery D, Chao MR, Hu CW, Cooke M. Investigating the origins of the mutational signatures in cancer. Nucleic Acids Res 2025; 53:gkae1303. [PMID: 39778866 PMCID: PMC11707540 DOI: 10.1093/nar/gkae1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/17/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Most of the risk factors associated with chronic and complex diseases, such as cancer, stem from exogenous and endogenous exposures experienced throughout an individual's life, collectively known as the exposome. These exposures can modify DNA, which can subsequently lead to the somatic mutations found in all normal and tumor tissues. Understanding the precise origins of specific somatic mutations has been challenging due to multitude of DNA adducts (i.e. the DNA adductome) and their diverse positions within the genome. Thus far, this limitation has prevented researchers from precisely linking exposures to DNA adducts and DNA adducts to subsequent mutational outcomes. Indeed, many common mutations observed in human cancers appear to originate from error-prone endogenous processes. Consequently, it remains unclear whether these mutations result from exposure-induced DNA adducts, or arise indirectly from endogenous processes or are a combination of both. In this review, we summarize approaches that aim to bridge our understanding of the mechanism by which exposure leads to DNA damage and then to mutation and highlight some of the remaining challenges and shortcomings to fully supporting this paradigm. We emphasize the need to integrate cellular DNA adductomics, long read-based mapping, single-molecule duplex sequencing of native DNA molecules and advanced computational analysis. This proposed holistic approach aims to unveil the causal connections between key DNA modifications and the mutational landscape, whether they originate from external exposures, internal processes or a combination of both, thereby addressing key questions in cancer biology.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department of Environmental Health Science, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
- The Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Raheleh Rahbari
- Cancer, Ageing and Somatic Mutation (CASM), Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Intawat Nookaew
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Dave Ussery
- Department of BioMedical Informatics, The University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
- Department of Occupational Medicine, Chung Shan Medical University Hospital, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Jianguo N Rd, South District, Taichung 40201, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, 4202 E. Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 4202 E. Fowler Avenue, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Yang QL, Xie Y, Qiao K, Lim JYS, Wu S. Modern biology of extrachromosomal DNA: A decade-long voyage of discovery. Cell Res 2025; 35:11-22. [PMID: 39748050 PMCID: PMC11701097 DOI: 10.1038/s41422-024-01054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/07/2024] [Indexed: 01/04/2025] Open
Abstract
Genomic instability is a hallmark of cancer and is a major driving force of tumorigenesis. A key manifestation of genomic instability is the formation of extrachromosomal DNAs (ecDNAs) - acentric, circular DNA molecules ranging from 50 kb to 5 Mb in size, distinct from chromosomes. Ontological studies have revealed that ecDNA serves as a carrier of oncogenes, immunoregulatory genes, and enhancers, capable of driving elevated transcription of its cargo genes and cancer heterogeneity, leading to rapid tumor evolution and therapy resistance. Although ecDNA was documented over half a century ago, the past decade has witnessed a surge in breakthrough discoveries about its biological functions. Here, we systematically review the modern biology of ecDNA uncovered over the last ten years, focusing on how discoveries during this pioneering stage have illuminated our understanding of ecDNA-driven transcription, heterogeneity, and cancer progression. Furthermore, we discuss ongoing efforts to target ecDNA as a novel approach to cancer therapy. This burgeoning field is entering a new phase, poised to reshape our knowledge of cancer biology and therapeutic strategies.
Collapse
Affiliation(s)
- Qing-Lin Yang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yipeng Xie
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kailiang Qiao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Yi Stanley Lim
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sihan Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
22
|
Gao Y, Chen X, Zhu Y, Zhou S, Zhang L, Wu Q, Zhang H, Wang Z, Chen X, Xia X, Pu L, Wang X. Establishment of two novel organoid lines from patients with combined hepatocellular cholangiocarcinoma. Hum Cell 2024; 38:27. [PMID: 39643731 DOI: 10.1007/s13577-024-01148-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/01/2024] [Indexed: 12/09/2024]
Abstract
Combined hepatocellular cholangiocarcinoma (cHCC-CCA) is a unique subtype of primary liver cancer displaying both hepatocytic and cholangiocytic differentiation. The development of effective treatments for cHCC-CCA remains challenging because of its high heterogeneity and lack of a suitable model system. Using a three-dimensional culture system, we successfully established two novel cHCC-CCA organoid lines from patients undergoing surgical resection for primary liver cancer. cHCC-CCA organoid lines were authenticated by fingerprint analysis, and their morphology, growth kinetics, and anchorage-independent growth were also characterized. Hematoxylin and eosin staining and immunohistochemical analysis showed that the cHCC-CCA organoids preserved the growth pattern, differentiation grade, and phenotypic characteristics of their parental tumors. Whole-exome sequencing demonstrated that patient-derived cHCC-CCA organoid lines retained the genetic alterations identified in their original tumors. Subcutaneous tumors developed in immunodeficient mice after injection of cHCC-CCA organoids. Histologically, the xenografts recapitulated the features of the original cHCC-CCA tumors, harboring both HCC and intrahepatic cholangiocarcinoma components within the same tumor. The establishment of patient-derived cHCC-CCA organoid lines with high tumorigenicity provides a valuable resource for the mechanistic investigation and drug development of this disease.
Collapse
Affiliation(s)
- Yun Gao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China
| | - Xiaoyun Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yuerong Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China
| | - Long Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China
| | - Qiuyue Wu
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Hui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China
| | - Xuejiao Chen
- Department of General Surgery, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| | - Xinyi Xia
- Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, China.
- NHC Key Laboratory of Hepatobiliary Cancers, The First Affiliated Hospital of Nanjing Medical University), Nanjing, China.
| |
Collapse
|
23
|
Song G, Yu X, Shi H, Sun B, Amateau S. miRNAs in HCC, pathogenesis, and targets. Hepatology 2024:01515467-990000000-01097. [PMID: 39626210 DOI: 10.1097/hep.0000000000001177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Liver cancer is the third leading cause of cancer-related mortality worldwide. HCC, the most common type of primary liver cancer, is driven by complex genetic, epigenetic, and environmental factors. MicroRNAs, a class of naturally occurring small noncoding RNAs, play crucial roles in HCC by simultaneously modulating the expression of multiple genes in a fine-tuning manner. Significant progress has been made in understanding how miRNAs influence key oncogenic pathways, including cell proliferation, apoptosis, angiogenesis, and epithelial-mesenchymal transition (EMT), as well as their role in modulating the immune microenvironment in HCC. Due to the unexpected stability of miRNAs in the blood and fixed HCC tumors, recent advancements also highlight their potential as noninvasive diagnostic tools. Restoring or inhibiting specific miRNAs has offered promising strategies for targeted HCC treatment by suppressing malignant hepatocyte growth and enhancing antitumor immunity. In this comprehensive review, we consolidate previous research and provide the latest insights into how miRNAs regulate HCC and their therapeutic and diagnostic potential. We delve into the dysregulation of miRNA biogenesis in HCC, the roles of miRNAs in the proliferation and apoptosis of malignant hepatocytes, angiogenesis and metastasis of HCC, the immune microenvironment in HCC, and drug resistance. We also discuss the therapeutic and diagnostic potential of miRNAs and delivery approaches of miRNA drugs to overcome the limitations of current HCC treatment options. By thoroughly summarizing the roles of miRNAs in HCC, our goal is to advance the development of effective therapeutic drugs with minimal adverse effects and to establish precise tools for early diagnosis of HCC.
Collapse
Affiliation(s)
- Guisheng Song
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaofan Yu
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hongtao Shi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Department of Cardiology, the First Hospital of Shanxi Medical University, Taiyuan City, China
| | - Bo Sun
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stuart Amateau
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
24
|
Bakiri L, Wagner EF. c-Jun and Fra-2 pair up to Myc-anistically drive HCC. Cell Cycle 2024:1-9. [PMID: 39581891 DOI: 10.1080/15384101.2024.2429968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 11/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death with limited therapies, is a complex disease developing in a background of Hepatitis Virus infection or systemic conditions, such as the metabolic syndrome. Investigating HCC pathogenesis in model organisms is therefore crucial for developing novel diagnostic and therapeutic tools. Genetically engineered mouse models (GEMMs) have been instrumental in recapitulating the local and systemic features of HCC. Early studies using GEMMs and patient material implicated members of the dimeric Activator Protein-1 (AP-1) transcription factor family, such as c-Jun and c-Fos, in HCC formation. In a recent report, we described how switchable, hepatocyte-restricted expression of a single-chain c-Jun~Fra-2 protein, functionally mimicking the c-Jun/Fra-2 AP-1 dimer, results in spontaneous and largely reversible liver tumors in GEMMs. Dysregulated cell cycle, inflammation, and dyslipidemia are observed at early stages and tumors display molecular HCC signatures. We demonstrate that increased c-Myc expression is an essential molecular determinant of tumor formation that can be therapeutically targeted using the BET inhibitor JQ1. Here, we discuss these findings with additional results illustrating how AP-1 GEMMs can foster preclinical research on liver diseases with novel perspectives offered by the constantly increasing wealth of HCC-related datasets.
Collapse
Affiliation(s)
- Latifa Bakiri
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
| | - Erwin F Wagner
- Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria
- Laboratory Genes and Disease, Department of Dermatology, Medical University of Vienna (MUW), Vienna, Austria
| |
Collapse
|
25
|
Su RY, Xu CH, Guo HJ, Meng LJ, Zhuo JY, Xu N, Li HG, He CY, Zhang XY, Lian ZX, Wang S, Cao C, Zhou R, Lu D, Zheng SS, Wei XY, Xu X. Oncogenic cholesterol rewires lipid metabolism in hepatocellular carcinoma via the CSNK2A1-IGF2R Ser2484 axis. J Adv Res 2024:S2090-1232(24)00540-X. [PMID: 39547439 DOI: 10.1016/j.jare.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Alcohol consumption and hepatitis B virus (HBV) infection are common risk factors for hepatocellular carcinoma (HCC). However, few studies have focused on elucidating the mechanisms of HCC with combined alcohol and HBV etiology. OBJECTIVES We aimed to investigate the molecular features of alcohol and HBV on HCC and to seek out potential therapeutic strategies. METHODS Two independent cohorts of HCC patients (n = 539 and n = 140) were included to investigate HCC with synergetic alcohol and HBV (AB-HCC) background. Patient-derived cell lines, organoids, and xenografts were used to validate the metabolic fragile. High-throughput drug screening (1181 FDA-approved anticancer drugs) was leveraged to explore the potential therapeutic agents. RESULTS Here, we delineated AB-HCC as a distinctive metabolic subtype, hallmarked by oncogenic cholesterol, through the integration of clinical cohorts, proteomics, phosphoproteomics, and spatial transcriptome. Mechanistically, our findings revealed that cholesterol directly binds to CSNK2A1 (Casein Kinase 2 Alpha 1), augmenting its kinase activity and leading to phosphorylation of IGF2R (Insulin-Like Growth Factor 2 Receptor) at Ser2484. This cascade rewires lipid-driven mitochondrial oxidative phosphorylation, spawns reactive oxygen species measured by malondialdehyde assay, and perpetuates a positive feedback loop for cholesterol biosynthesis, ultimately culminating in tumorigenesis. Initial transcriptional activation of CSNK2A1 is driven by upregulation of RAD21 in AB-HCC. Our cholesterol profiling exposes AB-HCC's compensatory mechanism of AB-HCC, which capitalizes on both uptake and biosynthesis of cholesterol to confer survival edge. Moreover, high-throughput drug screening coupled with in vivo validation has uncovered the susceptibilities of AB-HCC, which can be effectively addressed by a combination of dietary cholesterol restriction and oral administration of Fostamatinib. The CSNK2A1-mediated cholesterol biosynthesis pathway has been implicated in various cancers characterized by cholesterol metabolism. CONCLUSION These findings not only pinpoint the oncogenic metabolite cholesterol as a hidden culprit in AB-HCC subtype, but also enlighten a novel combination strategy to rejuvenate tumor metabolism.
Collapse
Affiliation(s)
- Ren-Yi Su
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chen-Hao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hai-Jun Guo
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Li-Jun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Nan Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hui-Gang Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chi-Yu He
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xuan-Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zheng-Xin Lian
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Chenhao Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China.
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, China.
| | - Xu-Yong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
26
|
Chen JG, Zhang YH, Lu JH, Kensler TW. Liver Cancer Etiology: Old Issues and New Perspectives. Curr Oncol Rep 2024; 26:1452-1468. [PMID: 39388026 DOI: 10.1007/s11912-024-01605-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
PURPOSE OF REVIEW This review aims to synthesize the old issues and current understandings of the etiology of liver cancer, focusing on the diverse causative factors influenced by geographical, socioeconomic, and lifestyle variations across different regions. RECENT FINDINGS We highlight significant geographic disparities in liver cancer risk factors. While hepatitis B and C viruses, aflatoxin exposure, and alcohol consumption remain globally established contributors; metabolic dysfunction-associated steatotic liver disease and metabolic syndromes are increasingly prominent in the West. Chronic HBV and aflatoxin continue to dominate as risk factors in Asia and Africa. Dietary factors, metabolic diseases like diabetes and obesity, genetic predispositions, environmental risk factors and lifestyle choices such as smoking and alcohol use play substantial roles in specific populations. Protective factors like coffee and tea consumption, along with aspirin use, vegetables and fruits have shown potential in reducing HCC risk, although findings vary by population and dietary habits. Liver cancer etiology is influenced by various factors that differ by region. Established risk factors include hepatitis B and C, aflatoxin, and alcohol. Emerging risks, such as metabolic dysfunction-associated steatotic liver disease, are more prevalent in Western countries, while aflatoxin and HBV remains significant in Asia and Africa. Diet, metabolic conditions like diabetes and obesity, genetic predispositions, and lifestyle choices also play crucial roles. Coffee, tea, aspirin, vegetables, and fruits may reduce HCC risk, but effectiveness varies. Future research should integrate epidemiology, genetics, and nutrition, with global cooperation and data sharing essential for effective cancer control strategies.
Collapse
Affiliation(s)
- Jian-Guo Chen
- Qidong Liver Cancer Insititute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, People's Republic of China.
| | - Yong-Hui Zhang
- Qidong Liver Cancer Insititute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, People's Republic of China
| | - Jian-Hua Lu
- Qidong Liver Cancer Insititute, Qidong People's Hospital, Affiliated Qidong Hospital of Nantong University, Qidong, 226200, People's Republic of China
| | - Thomas W Kensler
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
| |
Collapse
|
27
|
Zhonghao J, Fan Y. New advances in the treatment of intermediate and advanced hepatocellular carcinoma. Front Oncol 2024; 14:1430991. [PMID: 39376988 PMCID: PMC11456399 DOI: 10.3389/fonc.2024.1430991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, affecting millions of people worldwide. Due to the complexity and variability of the disease, there are major challenges in the treatment of HCC in its intermediate and advanced stages; despite advances in various treatment modalities, there are still gaps in our understanding of effective therapeutic strategies. Key findings from several studies have shown that the combination of immunotherapy and targeted therapy has a synergistic anti-tumor effect, which can significantly enhance efficacy with a favorable safety profile. In addition, other studies have identified potential biomarkers of therapeutic response, such as tumor protein 53 (TP53) and CTNNB1 (encoding β-conjugated proteins), thus providing personalized treatment options for patients with intermediate and advanced hepatocellular carcinoma. The aim of this article is to review the recent advances in the treatment of intermediate and advanced HCC, especially targeted immune-combination therapy, chimeric antigen receptor T cell therapy (CAR-T cell therapy), and gene therapy for these therapeutic options that fill in the gaps in our knowledge of effective treatment strategies, providing important insights for further research and clinical practice.
Collapse
|
28
|
Li W, Wang S, Jin Y, Mu X, Guo Z, Qiao S, Jiang S, Liu Q, Cui X. The role of the hepatitis B virus genome and its integration in the hepatocellular carcinoma. Front Microbiol 2024; 15:1469016. [PMID: 39309526 PMCID: PMC11412822 DOI: 10.3389/fmicb.2024.1469016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The integration of Hepatitis B Virus (HBV) is now known to be closely associated with the occurrence of liver cancer and can impact the functionality of liver cells through multiple dimensions. However, despite the detailed understanding of the characteristics of HBV integration and the mechanisms involved, the subsequent effects on cellular function are still poorly understood in current research. This study first systematically discusses the relationship between HBV integration and the occurrence of liver cancer, and then analyzes the status of the viral genome produced by HBV replication, highlighting the close relationship and structure between double-stranded linear (DSL)-HBV DNA and the occurrence of viral integration. The integration of DSL-HBV DNA leads to a certain preference for HBV integration itself. Additionally, exploration of HBV integration hotspots reveals obvious hotspot areas of HBV integration on the human genome. Virus integration in these hotspot areas is often associated with the occurrence and development of liver cancer, and it has been determined that HBV integration can promote the occurrence of cancer by inducing genome instability and other aspects. Furthermore, a comprehensive study of viral integration explored the mechanisms of viral integration and the internal integration mode, discovering that HBV integration may form extrachromosomal DNA (ecDNA), which exists outside the chromosome and can integrate into the chromosome under certain conditions. The prospect of HBV integration as a biomarker was also probed, with the expectation that combining HBV integration research with CRISPR technology will vigorously promote the progress of HBV integration research in the future. In summary, exploring the characteristics and mechanisms in HBV integration holds significant importance for an in-depth comprehension of viral integration.
Collapse
Affiliation(s)
- Weiyang Li
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Suhao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yani Jin
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xiao Mu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenzhen Guo
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Sen Qiao
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Shulong Jiang
- Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Qingbin Liu
- Jining First People's Hospital, Shandong First Medical University, Jining, China
- Clinical Medical Laboratory Center, Jining First People's Hospital, Shandong First Medical University, Jining, China
| | - Xiaofang Cui
- Jining Medical University, Jining, China
- School of Biological Science, Jining Medical University, Rizhao, China
| |
Collapse
|
29
|
Zhang G, Xiao Y, Liu H, Wu Y, Xue M, Li J. Integrated machine learning screened glutamine metabolism-associated biomarker SLC1A5 to predict immunotherapy response in hepatocellular carcinoma. Immunobiology 2024; 229:152841. [PMID: 39096658 DOI: 10.1016/j.imbio.2024.152841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as one of the most prevalent malignancies. While PD-1 immune checkpoint inhibitors have demonstrated promising therapeutic efficacy in HCC, not all patients exhibit a favorable response to these treatments. Glutamine is a crucial immune cell regulatory factor, and tumor cells exhibit glutamine dependence. In this study, HCC patients were divided into two subtypes (C1 and C2) based on glutamine metabolism-related genes via consensus clustering. The C1 pattern, in contrast to C2, was associated with a lower survival probability among HCC patients. Additionally, the C1 pattern exhibited higher proportions of patients with advanced tumor stages. The activity of C1 in glutamine metabolism and transport is significantly enhanced, while its oxidative phosphorylation activity is reduced. And, C1 was mainly involved in the progression-related pathway of HCC. Furthermore, C1 exhibited high levels of immunosuppressive cells, cytokine-receptor interactions and immune checkpoint genes, suggesting C1 as an immunosuppressive subtype. After stepwise selection based on integrated four machine learning methods, SLC1A5 was finally identified as the pivotal gene that distinguishes the subtypes. The expression of SLC1A5 was significantly positively correlated with immunosuppressive status. SLC1A5 showed the most significant correlation with macrophage infiltration, and this correlation was confirmed through the RNA-seq data of CLCA project and our cohort. Low-SLC1A5-expression samples had better immunogenicity and responsiveness to immunotherapy. As expected, SubMap and survival analysis indicated that individuals with low SLC1A5 expression were more responsive to anti-PD1 therapy. Collectively, this study categorized HCC patients based on glutamine metabolism-related genes and proposed two subclasses with different clinical traits, biological behavior, and immune status. Machine learning was utilized to identify the hub gene SLC1A5 for HCC classification, which also could predict immunotherapy response.
Collapse
Affiliation(s)
- Guixiong Zhang
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yitai Xiao
- Department of Endoscopy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province 510060, PR China
| | - Hang Liu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Yanqin Wu
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Miao Xue
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China
| | - Jiaping Li
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province 510080, PR China.
| |
Collapse
|
30
|
Testa U. Recent developments in molecular targeted therapies for hepatocellular carcinoma in the genomic era. Expert Rev Mol Diagn 2024; 24:803-827. [PMID: 39194003 DOI: 10.1080/14737159.2024.2392278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the third cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations, and gene expression, with the definition of molecular subgroups and the identification of some molecular biomarkers and therapeutic targets. Recent therapeutic developments are also highlighted. EXPERT OPINION Deepening the understanding of the molecular complexity of HCC is progressively paving the way for the development of more personalized treatment approaches. Two important strategies involve the definition and validation of molecularly defined therapeutic targets in a subset of HCC patients and the identification of suitable biomarkers for approved systematic therapies (multikinase inhibitors and immunotherapies). The extensive molecular characterization of patients at the genomic and transcriptomic levels and the inclusion of detailed and relevant translational studies in clinical trials will represent a fundamental tool for improving the benefit of systemic therapies in HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
31
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
32
|
Alagarswamy K, Shi W, Boini A, Messaoudi N, Grasso V, Cattabiani T, Turner B, Croner R, Kahlert UD, Gumbs A. Should AI-Powered Whole-Genome Sequencing Be Used Routinely for Personalized Decision Support in Surgical Oncology—A Scoping Review. BIOMEDINFORMATICS 2024; 4:1757-1772. [DOI: 10.3390/biomedinformatics4030096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
In this scoping review, we delve into the transformative potential of artificial intelligence (AI) in addressing challenges inherent in whole-genome sequencing (WGS) analysis, with a specific focus on its implications in oncology. Unveiling the limitations of existing sequencing technologies, the review illuminates how AI-powered methods emerge as innovative solutions to surmount these obstacles. The evolution of DNA sequencing technologies, progressing from Sanger sequencing to next-generation sequencing, sets the backdrop for AI’s emergence as a potent ally in processing and analyzing the voluminous genomic data generated. Particularly, deep learning methods play a pivotal role in extracting knowledge and discerning patterns from the vast landscape of genomic information. In the context of oncology, AI-powered methods exhibit considerable potential across diverse facets of WGS analysis, including variant calling, structural variation identification, and pharmacogenomic analysis. This review underscores the significance of multimodal approaches in diagnoses and therapies, highlighting the importance of ongoing research and development in AI-powered WGS techniques. Integrating AI into the analytical framework empowers scientists and clinicians to unravel the intricate interplay of genomics within the realm of multi-omics research, paving the way for more successful personalized and targeted treatments.
Collapse
Affiliation(s)
| | - Wenjie Shi
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aishwarya Boini
- Davao Medical School Foundation, Davao City 8000, Philippines
| | - Nouredin Messaoudi
- Department of Hepatopancreatobiliary Surgery, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Europe Hospitals, 1090 Brussels, Belgium
| | - Vincent Grasso
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | - Roland Croner
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Ulf D. Kahlert
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andrew Gumbs
- Department of General-, Visceral-, Vascular and Transplantation Surgery, University of Magdeburg, Haus 60a, Leipziger Str. 44, 39120 Magdeburg, Germany
- Talos Surgical, Inc., New Castle, DE 19720, USA
- Department of Surgery, American Hospital of Tbilisi, 0102 Tbilisi, Georgia
| |
Collapse
|
33
|
Zhou J, Zhang M, Gao A, Herman JG, Guo M. Epigenetic silencing of KCTD8 promotes hepatocellular carcinoma growth by activating PI3K/AKT signaling. Epigenomics 2024; 16:929-944. [PMID: 39023358 PMCID: PMC11370965 DOI: 10.1080/17501911.2024.2370590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: The aim of current study is to explore the epigenetic changes and function of KCTD8 in human hepatocellular carcinoma (HCC). Materials & methods: HCC cell lines and tissue samples were employed. Methylation specific PCR, flow cytometry, immunoprecipitation and xenograft mouse models were used.Results: KCTD8 was methylated in 44.83% (104/232) of HCC and its methylation may act as an independent poor prognostic marker. KCTD8 expression was regulated by DNA methylation. KCTD8 suppressed HCC cell growth both in vitro and in vivo via inhibiting PI3K/AKT pathway.Conclusion: Methylation of KCTD8 is an independent poor prognostic marker, and epigenetic silencing of KCTD8 increases the malignant tendency in HCC.
Collapse
Affiliation(s)
- Jing Zhou
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Aiai Gao
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA15213, USA
| | - Mingzhou Guo
- School of Medicine, NanKai University, Tianjin, 300071, China
- Department of Gastroenterology & Hepatology, the First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- National Key Laboratory of Kidney Diseases, Beijing, 100853, China
| |
Collapse
|
34
|
Han X, Liu Z, Cui M, Lin J, Li Y, Qin H, Sheng J, Zhang X. FGA influences invasion and metastasis of hepatocellular carcinoma through the PI3K/AKT pathway. Aging (Albany NY) 2024; 16:12806-12819. [PMID: 39227068 PMCID: PMC11501378 DOI: 10.18632/aging.206011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/03/2024] [Indexed: 09/05/2024]
Abstract
Fibrinogen is an important plasma protein composed of three polypeptide chains, fibrinogen alpha (FGA), beta, and gamma. Apart from being an inflammation regulator, fibrinogen also plays a role in tumor progression. Liver cancer usually has a poor prognosis, with chronic hepatitis being the main cause of liver cirrhosis and hepatocellular carcinoma (HCC). FGA serves as a serological marker for chronic hepatitis, but its relationship with liver cancer remains unclear. Through bioinformatics analysis and agarose gel electrophoresis, we found that FGA was downregulated in HCC and correlated with tumor stage and grade. By constructing both FGA gene knockout and overexpression cell models, we demonstrated that overexpressing FGA inhibited migration and invasion of liver cancer cells through Transwell migration/invasion and wound healing assays. Western blotting experiments showed that FGA overexpression increased the expression of the epithelial-mesenchymal transition marker protein E-cadherin while decreasing N-cadherin and slug protein expression. In addition, FGA knockout activated the PI3K/AKT pathway. In a mouse model of metastatic tumors, overexpression of FGA restricted the spread of tumor cells. In conclusion, FGA exhibits an inhibitory effect on tumor metastasis, providing new insights for the treatment of advanced HCC metastatic tumors.
Collapse
Affiliation(s)
- Xi Han
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Zefeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Yongzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Hanjiao Qin
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, Jilin 130041, China
| |
Collapse
|
35
|
Pan B, Yan S, Yuan L, Xiang H, Ju M, Xu S, Jia W, Li J, Zhao Q, Zheng M. Multiomics sequencing and immune microenvironment characteristics define three subtypes of small cell neuroendocrine carcinoma of the cervix. J Pathol 2024; 263:372-385. [PMID: 38721894 DOI: 10.1002/path.6290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/23/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Small cell cervical carcinoma (SCCC) is the most common neuroendocrine tumor in the female genital tract, with an unfavorable prognosis and lacking an evidence-based therapeutic approach. Until now, the distinct subtypes and immune characteristics of SCCC combined with genome and transcriptome have not been described. We performed genomic (n = 18), HPV integration (n = 18), and transcriptomic sequencing (n = 19) of SCCC samples. We assessed differences in immune characteristics between SCCC and conventional cervical cancer, and other small cell neuroendocrine carcinomas, through bioinformatics analysis and immunohistochemical assays. We stratified SCCC patients through non-negative matrix factorization and described the characteristics of these distinct types. We further validated it using multiplex immunofluorescence (n = 77) and investigated its clinical prognostic effect. We confirmed a high frequency of PIK3CA and TP53 alterations and HPV18 integrations in SCCC. SCCC and other small cell carcinoma had similar expression signatures and immune cell infiltration patterns. Comparing patients with SCCC to those with conventional cervical cancer, the former presented immune excluded or 'desert' infiltration. The number of CD8+ cells in the invasion margin of SCCC patients predicted favorable clinical outcomes. We identified three transcriptome subtypes: an inflamed phenotype with high-level expression of genes related to the MHC-II complex (CD74) and IFN-α/β (SCCC-I), and two neuroendocrine subtypes with high-level expression of ASCL1 or NEUROD1, respectively. Combined with multiple technologies, we found that the neuroendocrine groups had more TP53 mutations and SCCC-I had more PIK3CA mutations. Multiplex immunofluorescence validated these subtypes and SCCC-I was an independent prognostic factor of overall survival. These results provide insights into SCCC tumor heterogeneity and potential therapies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shumei Yan
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Linjing Yuan
- Department of Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Huiling Xiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Mingxiu Ju
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Shijie Xu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Weihua Jia
- Biobank of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Jundong Li
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Qi Zhao
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| |
Collapse
|
36
|
Hayes V, Jiang J, Tapinos A, Huang R, Bornman R, Stricker P, Mutambirwa S, Wedge D, Jaratlerdsiri W. Kataegis associated mutational processes linked to adverse prostate cancer presentation in African men. RESEARCH SQUARE 2024:rs.3.rs-4597464. [PMID: 38978580 PMCID: PMC11230510 DOI: 10.21203/rs.3.rs-4597464/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Kataegis, the focal hypermutation of single base substitutions (SBS) in tumour genomes, has received little attention with respect to prostate cancer (PCa) associated molecular and clinical features. Most notably, data is lacking with regards to this tumour evolutionary phenomenon and PCa racial disparities, with African men disproportionately impacted. Here through comparison between African (n = 109) and non-African (n = 79) whole genome sequenced treatment naïve primary tumours, using a single analytical workflow we assessed for shared and unique features of kataegis. Linking kataegis to aggressive presentation, structural variant burden and copy number loss, we attributed APOBEC3 activity through higher rates of SBS2 to high-risk African tumours. While kataegis positive African patients presented with elevated prostate specific antigen levels, their tumours showed evolutionary unique trajectories marked by increased subclonal and structural variant-independent kataegis. The potential to exacerbate tumour heterogeneity emphases the significance of continued exploration of biological behaviours and environmental exposures for African patients.
Collapse
Affiliation(s)
| | - Jue Jiang
- Garvan Institute of Medical Research
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu D, Shen X, Gao P, Mao T, Chen Y, Li X, Shen W, Zhuang Y, Ding J. Multi-omic profiling reveals potential biomarkers of hepatocellular carcinoma prognosis and therapy response among mitochondria-associated cell death genes in the context of 3P medicine. EPMA J 2024; 15:321-343. [PMID: 38841626 PMCID: PMC11147991 DOI: 10.1007/s13167-024-00362-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024]
Abstract
Background Cancer cell growth, metastasis, and drug resistance are major challenges in treating liver hepatocellular carcinoma (LIHC). However, the lack of comprehensive and reliable models hamper the effectiveness of the predictive, preventive, and personalized medicine (PPPM/3PM) strategy in managing LIHC. Methods Leveraging seven distinct patterns of mitochondrial cell death (MCD), we conducted a multi-omic screening of MCD-related genes. A novel machine learning framework was developed, integrating 10 machine learning algorithms with 67 different combinations to establish a consensus mitochondrial cell death index (MCDI). This index underwent rigorous evaluation across training, validation, and in-house clinical cohorts. A comprehensive multi-omics analysis encompassing bulk, single-cell, and spatial transcriptomics was employed to achieve a deeper insight into the constructed signature. The response of risk subgroups to immunotherapy and targeted therapy was evaluated and validated. RT-qPCR, western blotting, and immunohistochemical staining were utilized for findings validation. Results Nine critical differentially expressed MCD-related genes were identified in LIHC. A consensus MCDI was constructed based on a 67-combination machine learning computational framework, demonstrating outstanding performance in predicting prognosis and clinical translation. MCDI correlated with immune infiltration, Tumor Immune Dysfunction and Exclusion (TIDE) score and sorafenib sensitivity. Findings were validated experimentally. Moreover, we identified PAK1IP1 as the most important gene for predicting LIHC prognosis and validated its potential as an indicator of prognosis and sorafenib response in our in-house clinical cohorts. Conclusion This study developed a novel predictive model for LIHC, namely MCDI. Incorporating MCDI into the PPPM framework will enhance clinical decision-making processes and optimize individualized treatment strategies for LIHC patients. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00362-8.
Collapse
Affiliation(s)
- Dingtao Hu
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Xu Shen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Peng Gao
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| | - Tiantian Mao
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Yuan Chen
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
- University of Shanghai for Science and Technology, Shanghai, 200093 China
| | - Xiaofeng Li
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Weifeng Shen
- The Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Yugang Zhuang
- Department of Emergency, Shanghai Tenth People’s Hospital, Tongji University, School of Medicine, 301 Yanchang Middle Road, Shanghai, 200072 China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, 800 Xiangyin Road, Shanghai, 200433 China
| |
Collapse
|
38
|
Wu X, Yu X, Chen C, Chen C, Wang Y, Su D, Zhu L. Fibrinogen and tumors. Front Oncol 2024; 14:1393599. [PMID: 38779081 PMCID: PMC11109443 DOI: 10.3389/fonc.2024.1393599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable prognosis in various tumor patient cohorts. Within the tumor microenvironment, aberrant deposition and expression of Fg have been consistently observed, interacting with multiple cellular receptors and thereby accentuating its role as a regulator of inflammatory processes. Specifically, Fg serves to stimulate and recruit immune cells and pro-inflammatory cytokines, thereby contributing to the promotion of tumor progression. Additionally, Fg and its fragments exhibit dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor migration through both platelet-dependent and platelet-independent mechanisms. Recent studies have illuminated several tumor-related signaling pathways influenced by Fg. This review provides a comprehensive summary of the intricate involvement of Fg in tumor biology, elucidating its multifaceted role and the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyuan Wu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenlu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongyan Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqing Zhu
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
39
|
Kotsiliti E. HCC genomic landscape in Chinese individuals. Nat Rev Gastroenterol Hepatol 2024; 21:300. [PMID: 38519790 DOI: 10.1038/s41575-024-00924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
|
40
|
Lombardo D, Franzè MS, Caminiti G, Pollicino T. Hepatitis Delta Virus and Hepatocellular Carcinoma. Pathogens 2024; 13:362. [PMID: 38787214 PMCID: PMC11124437 DOI: 10.3390/pathogens13050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/14/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The hepatitis D virus (HDV) is a compact, enveloped, circular RNA virus that relies on hepatitis B virus (HBV) envelope proteins to initiate a primary infection in hepatocytes, assemble, and secrete new virions. Globally, HDV infection affects an estimated 12 million to 72 million people, carrying a significantly elevated risk of developing cirrhosis, liver failure, and hepatocellular carcinoma (HCC) compared to an HBV mono-infection. Furthermore, HDV-associated HCC often manifests at a younger age and exhibits more aggressive characteristics. The intricate mechanisms driving the synergistic carcinogenicity of the HDV and HBV are not fully elucidated but are believed to involve chronic inflammation, immune dysregulation, and the direct oncogenic effects of the HDV. Indeed, recent data highlight that the molecular profile of HCC associated with HDV is unique and distinct from that of HBV-induced HCC. However, the question of whether the HDV is an oncogenic virus remains unanswered. In this review, we comprehensively examined several crucial aspects of the HDV, encompassing its epidemiology, molecular biology, immunology, and the associated risks of liver disease progression and HCC development.
Collapse
Affiliation(s)
| | | | | | - Teresa Pollicino
- Department of Clinical and Experimental Medicine, University Hospital of Messina, 98124 Messina, Italy; (D.L.); (M.S.F.); (G.C.)
| |
Collapse
|
41
|
Zheng S, Chan SW, Liu F, Liu J, Chow PKH, Toh HC, Hong W. Hepatocellular Carcinoma: Current Drug Therapeutic Status, Advances and Challenges. Cancers (Basel) 2024; 16:1582. [PMID: 38672664 PMCID: PMC11048862 DOI: 10.3390/cancers16081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.
Collapse
Affiliation(s)
- Shunzhen Zheng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Pierce Kah Hoe Chow
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore;
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| |
Collapse
|