1
|
Worf K, Matosin N, Gerstner N, Fröhlich AS, Koller AC, Degenhardt F, Thiele H, Rietschel M, Udawela M, Scarr E, Dean B, Theis FJ, Mueller NS, Knauer-Arloth J. Exon-variant interplay and multi-modal evidence identify endocrine dysregulation in severe psychiatric disorders impacting excitatory neurons. Transl Psychiatry 2025; 15:153. [PMID: 40253403 PMCID: PMC12009313 DOI: 10.1038/s41398-025-03366-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/17/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025] Open
Abstract
Bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia share genetic architecture, yet their molecular mechanisms remain elusive. Both common and rare genetic variants contribute to neural dysfunction, impacting cognition and behavior. This study investigates the molecular effects of genetic variants on human cortical single-cell types using a single-exon analysis approach. Integrating exon-level eQTLs (common variants influencing exon expression) and joint exon eQT-Scores (combining polygenic risk scores with exon-level gene expression) from a postmortem psychiatric cohort (BD = 15, MDD = 24, schizophrenia = 68, controls = 62) with schizophrenia-focused rare variant data from the SCHEMA consortium, we identified 110 core genes enriched in pathways including circadian entrainment (FDR = 0.02), cortisol synthesis and secretion (FDR = 0.026), and dopaminergic synapse (FDR = 0.038). Additional enriched pathways included hormone signaling (FDRs < 0.0298, including insulin, GnRH, aldosterone, and growth hormone pathways) and, notably, adrenergic signaling in cardiomyocytes (FDR = 0.0028). These pathways highlight shared molecular mechanisms in the three disorders. Single-nuclei RNA sequencing data from three cortical regions revealed that these core set genes are predominantly expressed in excitatory neuron layers 2-6 of the dorsolateral prefrontal cortex, linking molecular changes to cell types involved in cognitive dysfunction. Our results demonstrate the power of integrating multimodal genetic and transcriptomic data at the exon level. This approach moves beyond symptom-based diagnoses toward molecular classifications, identifying potential therapeutic targets for psychiatric disorders.
Collapse
Affiliation(s)
- Karolina Worf
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Natalie Matosin
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Nathalie Gerstner
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna S Fröhlich
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Anna C Koller
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University Medical Center Mannheim/University of Heidelberg, Mannheim, Germany
| | - Madhara Udawela
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Elizabeth Scarr
- The Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- The Department of Florey, The University of Melbourne, Parkville, VIC, Australia
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Nikola S Mueller
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
| | - Janine Knauer-Arloth
- Institute of Computational Biology, Helmholtz Center, Munich, Germany.
- Department of Gene and Environment, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
2
|
Weber RZ, Achón Buil B, Rentsch NH, Bosworth A, Zhang M, Kisler K, Tackenberg C, Rust R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. J Neuroinflammation 2025; 22:112. [PMID: 40251566 PMCID: PMC12008922 DOI: 10.1186/s12974-025-03437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Allison Bosworth
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA.
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
3
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. Genome Res 2025; 35:712-724. [PMID: 39952678 DOI: 10.1101/gr.279203.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We find frequent splicing order differences between alleles and uncover significant single-nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This includes SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also have a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, show the most allele-specific splicing orders, which frequently co-occur with allele-specific AS, APA, or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada;
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke J1E 4K8, Canada
- Research Centre on Aging, CIUSSS de l'Estrie-CHUS, Sherbrooke J1H 2J7, Canada
| | | | - L Stirling Churchman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Zheng M, Bao N, Wang Z, Song C, Jin Y. Alternative splicing in autism spectrum disorder: Recent insights from mechanisms to therapy. Asian J Psychiatr 2025; 108:104501. [PMID: 40273800 DOI: 10.1016/j.ajp.2025.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Alternative splicing (AS) is a vital and highly dynamic RNA regulatory mechanism that allows a single gene to generate multiple mRNA and protein isoforms. Dysregulation of AS has been identified as a key contributor to the pathogenesis of autism spectrum disorders (ASD). A comprehensive understanding of aberrant splicing mechanisms and their functional consequences in ASD can help uncover the molecular basis of the disorder and facilitate the development of therapeutic strategies. This review focuses on the major aberrant splicing events and key splicing regulators associated with ASD, highlighting their roles in linking defective splicing to ASD pathogenesis. In addition, a discussion of how emerging technologies, such as long-read sequencing, single-cell sequencing, spatial transcriptomics and CRISPR-Cas systems are offering novel insights into the role and mechanisms of AS in ASD is presented. Finally, the RNA splicing-based therapeutic strategies are evaluated, emphasizing their potential to address unmet clinical needs in ASD treatment.
Collapse
Affiliation(s)
- Mixue Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.
| | - Nengcheng Bao
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhechao Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Chao Song
- Department of Developmental and Behavioral Pediatrics, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Centre for Child Health, Hangzhou 310052, China.
| | - Yongfeng Jin
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wu X, Xiong D, Liu R, Lai X, Tian Y, Xie Z, Chen L, Hu L, Duan J, Gao X, Zeng X, Dong W, Xu T, Fu F, Yang X, Cheng X, Plewczynski D, Kim M, Xin W, Wang T, Xiang AP, Tang Z. Evolutionary divergence in CTCF-mediated chromatin topology drives transcriptional innovation in humans. Nat Commun 2025; 16:2941. [PMID: 40140405 PMCID: PMC11947266 DOI: 10.1038/s41467-025-58275-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Chromatin topology can impact gene regulation, but how evolutionary divergence in chromatin topology has shaped gene regulatory landscapes for distinctive human traits remains poorly understood. CTCF sites determine chromatin topology by forming domains and loops. Here, we show evolutionary divergence in CTCF-mediated chromatin topology at the domain and loop scales during primate evolution, elucidating distinct mechanisms for shaping regulatory landscapes. Human-specific divergent domains lead to a broad rewiring of transcriptional landscapes. Divergent CTCF loops concord with species-specific enhancer activity, influencing enhancer connectivity to target genes in a concordant yet constrained manner. Under this concordant mechanism, we establish the role of human-specific CTCF loops in shaping transcriptional isoform diversity, with functional implications for disease susceptibility. Furthermore, we validate the function of these human-specific CTCF loops using human forebrain organoids. This study advances our understanding of genetic evolution from the perspective of genome architecture.
Collapse
Affiliation(s)
- Xia Wu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Dan Xiong
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Xingqiang Lai
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangdong, China
| | - Yuhan Tian
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Ziying Xie
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Li Chen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Jingjing Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Xinyu Gao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Xian Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Wei Dong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Ting Xu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Fang Fu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xin Yang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xinlai Cheng
- Buchmann Institute for Molecular Life Sciences, Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dariusz Plewczynski
- Laboratory of Bioinformatics and Computational Genomics, Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Laboratory of Functional and Structural Genomics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Minji Kim
- Department of Computational Medicine and Bioinformatics, University of Michigan, Michigan, MI, USA
| | - Wenjun Xin
- Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
- Neuroscience Research Institute, Peking University, Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing, China
- Autism Research Center, Peking University Health Science Center, Beijing, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangdong, China
| | - Zhonghui Tang
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong, China.
| |
Collapse
|
6
|
Neil CR, Schaening-Burgos C, Alexis MS, Reynolds DJ, Smith PG, Seiler MW, Vaillancourt FH, Agrawal AA. Poison exons: tuning RNA splicing for targeted gene regulation. Trends Pharmacol Sci 2025; 46:264-278. [PMID: 39915130 DOI: 10.1016/j.tips.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 03/09/2025]
Abstract
Poison exons (PEs) are a class of alternatively spliced exons whose inclusion targets mRNA transcripts for degradation via the nonsense-mediated decay (NMD) pathway. Although a role for NMD as an essential mRNA quality control pathway has long been appreciated, recent advances in RNA sequencing (RNA-seq) strategies and analyses have revealed that its coupling to RNA splicing is broadly used to regulate mRNA stability and abundance. Regulation of PE splicing affects patterns of targeted degradation across the transcriptome and influences gene expression in both healthy and disease states. Importantly, PEs represent a novel therapeutic opportunity to modulate the expression of disease-relevant genes with sequence-specific resolution. We review the emergence of PE splicing in endogenous gene regulation, its misregulation in disease, and the ways in which it can be leveraged for therapeutic benefit.
Collapse
|
7
|
O'Dea MR, Hasel P. Are we there yet? Exploring astrocyte heterogeneity one cell at a time. Glia 2025; 73:619-631. [PMID: 39308429 PMCID: PMC11784854 DOI: 10.1002/glia.24621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 02/01/2025]
Abstract
Astrocytes are a highly abundant cell type in the brain and spinal cord. Like neurons, astrocytes can be molecularly and functionally distinct to fulfill specialized roles. Recent technical advances in sequencing-based single cell assays have driven an explosion of omics data characterizing astrocytes in the healthy, aged, injured, and diseased central nervous system. In this review, we will discuss recent studies which have furthered our understanding of astrocyte biology and heterogeneity, as well as discuss the limitations and challenges of sequencing-based single cell and spatial genomics methods and their potential future utility.
Collapse
Affiliation(s)
- Michael R. O'Dea
- Neuroscience InstituteNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Philip Hasel
- UK Dementia Research Institute at the University of EdinburghEdinburghScotlandUK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghScotlandUK
| |
Collapse
|
8
|
Capitanchik C, Wilkins OG, Wagner N, Gagneur J, Ule J. From computational models of the splicing code to regulatory mechanisms and therapeutic implications. Nat Rev Genet 2025; 26:171-190. [PMID: 39358547 DOI: 10.1038/s41576-024-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Since the discovery of RNA splicing and its role in gene expression, researchers have sought a set of rules, an algorithm or a computational model that could predict the splice isoforms, and their frequencies, produced from any transcribed gene in a specific cellular context. Over the past 30 years, these models have evolved from simple position weight matrices to deep-learning models capable of integrating sequence data across vast genomic distances. Most recently, new model architectures are moving the field closer to context-specific alternative splicing predictions, and advances in sequencing technologies are expanding the type of data that can be used to inform and interpret such models. Together, these developments are driving improved understanding of splicing regulatory mechanisms and emerging applications of the splicing code to the rational design of RNA- and splicing-based therapeutics.
Collapse
Affiliation(s)
- Charlotte Capitanchik
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Nils Wagner
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
- Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany
| | - Julien Gagneur
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
- Computational Health Center, Helmholtz Center Munich, Neuherberg, Germany.
| | - Jernej Ule
- The Francis Crick Institute, London, UK.
- UK Dementia Research Institute at King's College London, London, UK.
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, UK.
- National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Grandke F, Fehlmann T, Kern F, Gate DM, Wolff TW, Leventhal O, Channappa D, Hirsch P, Wilson EN, Meese E, Liu C, Shi Q, Flotho M, Li Y, Chen C, Yu Y, Xu J, Junkin M, Wang Z, Wu T, Liu L, Hou Y, Andreasson KI, Gansen JS, Mass E, Poston K, Wyss-Coray T, Keller A. A single-cell atlas to map sex-specific gene-expression changes in blood upon neurodegeneration. Nat Commun 2025; 16:1965. [PMID: 40000636 PMCID: PMC11862118 DOI: 10.1038/s41467-025-56833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The clinical course and treatment of neurodegenerative disease are complicated by immune-system interference and chronic inflammatory processes, which remain incompletely understood. Mapping immune signatures in larger human cohorts through single-cell gene expression profiling supports our understanding of observed peripheral changes in neurodegeneration. Here, we employ single-cell gene expression profiling of over 909k peripheral blood mononuclear cells (PBMCs) from 121 healthy individuals, 48 patients with mild cognitive impairment (MCI), 46 with Parkinson's disease (PD), 27 with Alzheimer's disease (AD), and 15 with both PD and MCI. The dataset is interactively accessible through a freely available website ( https://www.ccb.uni-saarland.de/adrcsc ). In this work, we identify disease-associated changes in blood cell type composition and the gene expression in a sex-specific manner, offering insights into peripheral and solid tissue signatures in AD and PD.
Collapse
Affiliation(s)
- Friederike Grandke
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Tobias Fehlmann
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Fabian Kern
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Re- search (HZI), Saarland University Campus, Saarbrücken, Germany
| | - David M Gate
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA
| | | | - Olivia Leventhal
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Pascal Hirsch
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Edward N Wilson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421, Homburg/Saar, Germany
| | | | | | - Matthias Flotho
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Yongping Li
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- MGI Group, San Jose, CA, USA
| | | | - Yeya Yu
- MGI Group, San Jose, CA, USA
| | | | | | | | - Tao Wu
- MGI Group, San Jose, CA, USA
| | | | | | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Jenny S Gansen
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune System, University of Bonn, Bonn, Germany
| | - Kathleen Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- Veterans Administration Palo Alto Healthcare System, Palo Alto, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering, and Medicine for Human Health, Stanford University, Stanford, CA, USA.
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA.
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Re- search (HZI), Saarland University Campus, Saarbrücken, Germany.
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA.
- PharmaScienceHub, Saarland University Campus, Saarbrücken, Germany.
| |
Collapse
|
10
|
Mick S, Carroll C, Uriostegui-Arcos M, Fiszbein A. Hybrid exons evolved by coupling transcription initiation and splicing at the nucleotide level. Nucleic Acids Res 2025; 53:gkae1251. [PMID: 39739742 PMCID: PMC11797052 DOI: 10.1093/nar/gkae1251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/02/2025] Open
Abstract
Exons within transcripts are traditionally classified as first, internal or last exons, each governed by different regulatory mechanisms. We recently described the widespread usage of 'hybrid' exons that serve as terminal or internal exons in different transcripts. Here, we employ an interpretable deep learning pipeline to dissect the sequence features governing the co-regulation of transcription initiation and splicing in hybrid exons. Using ENCODE data from human tissues, we identified 80 000 hybrid first-internal exons. These exons often possess a relaxed chromatin state, allowing transcription initiation within the gene body. Interestingly, transcription start sites of hybrid exons are typically centered at the 3' splice site, suggesting tight coupling between splicing and transcription initiation. We identified two subcategories of hybrid exons: the majority resemble internal exons, maintaining strong 3' splice sites, while a minority show enrichment in promoter elements, resembling first exons. Diving into the evolution of their sequences, we found that human hybrid exons with orthologous first exons in other species usually gained 3' splice sites or whole exons upstream, while those with orthologous internal exons often gained promoter elements. Overall, our findings unveil the intricate regulatory landscape of hybrid exons and reveal stronger connections between transcription initiation and RNA splicing than previously acknowledged.
Collapse
Affiliation(s)
- Steven T Mick
- Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA
| | - Christine L Carroll
- Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA
| | | | - Ana Fiszbein
- Biology Department, Boston University, 24 Cummington Ave., Boston, 02215, USA
- Computing & Data Sciences, Boston University, 665 Commonwealth Ave., Boston, 02215, USA
| |
Collapse
|
11
|
Sehgal P, Naqvi AS, Higgins M, Liu J, Harvey K, Jarroux J, Kim T, Mankaliye B, Mishra P, Watterson G, Fine J, Davis J, Hayer KE, Castro A, Mogbo A, Drummer C, Martinez D, Koptyra MP, Ang Z, Wang K, Farrel A, Quesnel-Vallieres M, Barash Y, Spangler JB, Rokita JL, Resnick AC, Tilgner HU, DeRaedt T, Powell DJ, Thomas-Tikhonenko A. Neuronal cell adhesion molecule (NRCAM) variant defined by microexon skipping is an essential, antigenically distinct, and targetable proteoform in high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631916. [PMID: 39868324 PMCID: PMC11761023 DOI: 10.1101/2025.01.09.631916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as NRCAM . Bulk and single-nuclei short- and long-read RNA-seq revealed uniform skipping of NRCAM microexons 5 and 19 in virtually every pHGG sample. Importantly, the Δex5Δex19 (but not the full-length) NRCAM proteoform was essential for pHGG cell migration and invasion in vitro and tumor growth in vivo. We developed a monoclonal antibody selective for Δex5Δex19 NRCAM and demonstrated that "painting" of pHGG cells with this antibody enables killing by T cells armed with an FcRI-based universal immune receptor. Thus, pHGG-specific NRCAM and possibly other L1-IgCAM proteoforms are promising and highly selective targets for adoptive immunotherapies. Statement of significance Existing targets for chimeric antigen receptors (CAR)-armed T cells are often shared by CNS tumors and normal tissues, creating the potential for on-target/off-tumor toxicities. Here we demonstrate that in CNS tumors of glial origin, cell adhesion molecules have alternatively spliced proteoforms, which could be targeted by highly selective therapeutic antibodies.
Collapse
|
12
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
13
|
Liu CS, Park C, Ngo T, Saikumar J, Palmer CR, Shahnaee A, Romanow WJ, Chun J. RNA Isoform Diversity in Human Neurodegenerative Diseases. eNeuro 2024; 11:ENEURO.0296-24.2024. [PMID: 39658200 PMCID: PMC11693435 DOI: 10.1523/eneuro.0296-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/12/2024] Open
Abstract
Single-nucleus RNA-sequencing (snRNA-seq) has revealed new levels of cellular organization and diversity within the human brain. However, full-length mRNA isoforms are not resolved in typical snRNA-seq analyses using short-read sequencing that cannot capture full-length transcripts. Here we combine standard 10x Genomics short-read snRNA-seq with targeted PacBio long-read snRNA-seq to examine isoforms of genes associated with neurological diseases at the single-cell level from prefrontal cortex samples of diseased and nondiseased human brain, assessing over 165,000 cells. Samples from 25 postmortem donors with Alzheimer's disease (AD), dementia with Lewy bodies (DLB), or Parkinson's disease (PD), along with age-matched controls, were compared. Analysis of the short-read libraries identified shared and distinct gene expression changes across the diseases. The same libraries were then assayed using enrichment probes to target 50 disease-related genes followed by long-read PacBio sequencing, enabling linkage between cell type and isoform expression. Vast mRNA isoform diversity was observed in all 50 targeted genes, even those that were not differentially expressed in the short-read data. We also developed an informatics method for detection of isoform structural differences in novel isoforms versus the reference annotation. These data expand available single-cell datasets of the human prefrontal cortical transcriptome with combined short- and long-read sequencing across AD, DLB, and PD, revealing increased mRNA isoform diversity that may contribute to disease features and could potentially represent therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Christine S Liu
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Chris Park
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Tony Ngo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Janani Saikumar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Carter R Palmer
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
- Biomedical Sciences Program, School of Medicine, University of California San Diego, La Jolla, California 92093
| | - Anis Shahnaee
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - William J Romanow
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| |
Collapse
|
14
|
Alfonso-Gonzalez C, Hilgers V. (Alternative) transcription start sites as regulators of RNA processing. Trends Cell Biol 2024; 34:1018-1028. [PMID: 38531762 DOI: 10.1016/j.tcb.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Abstract
Alternative transcription start site usage (ATSS) is a widespread regulatory strategy that enables genes to choose between multiple genomic loci for initiating transcription. This mechanism is tightly controlled during development and is often altered in disease states. In this review, we examine the growing evidence highlighting a role for transcription start sites (TSSs) in the regulation of mRNA isoform selection during and after transcription. We discuss how the choice of transcription initiation sites influences RNA processing and the importance of this crosstalk for cell identity and organism function. We also speculate on possible mechanisms underlying the integration of transcriptional and post-transcriptional processes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwigs University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
15
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Belchikov N, Hsu J, Li XJ, Jarroux J, Hu W, Joglekar A, Tilgner HU. Understanding isoform expression by pairing long-read sequencing with single-cell and spatial transcriptomics. Genome Res 2024; 34:1735-1746. [PMID: 39567235 DOI: 10.1101/gr.279640.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
RNA isoform diversity, produced via alternative splicing, and alternative usage of transcription start and poly(A) sites, results in varied transcripts being derived from the same gene. Distinct isoforms can play important biological roles, including by changing the sequences or expression levels of protein products. The first single-cell approaches to RNA sequencing-and later, spatial approaches-which are now widely used for the identification of differentially expressed genes, rely on short reads and offer the ability to transcriptomically compare different cell types but are limited in their ability to measure differential isoform expression. More recently, long-read sequencing methods have been combined with single-cell and spatial technologies in order to characterize isoform expression. In this review, we provide an overview of the emergence of single-cell and spatial long-read sequencing and discuss the challenges associated with the implementation of these technologies and interpretation of these data. We discuss the opportunities they offer for understanding the relationships between the distinct variable elements of transcript molecules and highlight some of the ways in which they have been used to characterize isoforms' roles in development and pathology. Single-nucleus long-read sequencing, a special case of the single-cell approach, is also discussed. We attempt to cover both the limitations of these technologies and their significant potential for expanding our still-limited understanding of the biological roles of RNA isoforms.
Collapse
Affiliation(s)
- Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiang Jennie Li
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Computational Biology Master's Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Anoushka Joglekar
- New York Genome Center, New York, New York 10013, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA;
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
17
|
Le Grand Q, Tsuchida A, Koch A, Imtiaz MA, Aziz NA, Vigneron C, Zago L, Lathrop M, Dubrac A, Couffinhal T, Crivello F, Matthews PM, Mishra A, Breteler MMB, Tzourio C, Debette S. Diffusion imaging genomics provides novel insight into early mechanisms of cerebral small vessel disease. Mol Psychiatry 2024; 29:3567-3579. [PMID: 38811690 PMCID: PMC11541005 DOI: 10.1038/s41380-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ami Tsuchida
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Chloé Vigneron
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, H3A 0G1, Canada
| | - Alexandre Dubrac
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
- Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600, Pessac, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Medical Informatics, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France.
| |
Collapse
|
18
|
Shen X, Guan Z, Zhang C, Yan Z, Sun C. The multicellular compartmentation of plant specialized metabolism. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102616. [PMID: 39142253 DOI: 10.1016/j.pbi.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024]
Abstract
The phenomenon of multicellular compartmentation in biosynthetic pathways has been documented for only a limited subset of specialized metabolites, despite its hypothesized significance in facilitating plant survival and adaptation to environmental stress. Transporters that shuttle metabolic intermediates between cells are hypothesized to be integral components enabling compartmentalized biosynthesis. Nevertheless, our understanding of the multicellular compartmentation of plant specialized metabolism and the associated intermediate transporters remains incomplete. The emergence of single-cell and spatial multiomics techniques holds promise for shedding light on unresolved questions in this field, such as the prevalence of multicellular compartmentation across the plant kingdom and the specific types of specialized metabolites whose biosynthetic pathways are prone to compartmentation. Advancing our understanding of the mechanisms underlying multicellular compartmentation will contribute to improving the production of specialized target metabolites through metabolic engineering or synthetic biology.
Collapse
Affiliation(s)
- Xiaofeng Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China
| | - Zhijing Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chuyi Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Zhaojiu Yan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| | - Chao Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, China.
| |
Collapse
|
19
|
Kim S, Lee J, Koh IG, Ji J, Kim HJ, Kim E, Park J, Park JE, An JY. An integrative single-cell atlas for exploring the cellular and temporal specificity of genes related to neurological disorders during human brain development. Exp Mol Med 2024; 56:2271-2282. [PMID: 39363111 PMCID: PMC11541755 DOI: 10.1038/s12276-024-01328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/05/2024] Open
Abstract
Single-cell technologies have enhanced comprehensive knowledge regarding the human brain by facilitating an extensive transcriptomic census across diverse brain regions. Nevertheless, understanding the cellular and temporal specificity of neurological disorders remains ambiguous due to developmental variations. To address this gap, we illustrated the dynamics of disorder risk gene expression under development by integrating multiple single-cell RNA sequencing datasets. We constructed a comprehensive single-cell atlas of the developing human brain, encompassing 393,060 single cells across diverse developmental stages. Temporal analysis revealed the distinct expression patterns of disorder risk genes, including those associated with autism, highlighting their temporal regulation in different neuronal and glial lineages. We identified distinct neuronal lineages that diverged across developmental stages, each exhibiting temporal-specific expression patterns of disorder-related genes. Lineages of nonneuronal cells determined by molecular profiles also showed temporal-specific expression, indicating a link between cellular maturation and the risk of disorder. Furthermore, we explored the regulatory mechanisms involved in early brain development, revealing enriched patterns of fetal cell types associated with neuronal disorders indicative of the prenatal stage's influence on disease determination. Our findings facilitate unbiased comparisons of cell type‒disorder associations and provide insight into dynamic alterations in risk genes during development, paving the way for a deeper understanding of neurological disorders.
Collapse
Affiliation(s)
- Seoyeon Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jihae Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Jungeun Ji
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea
| | - Hyun Jung Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Eunha Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jihwan Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea.
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea.
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Aucouturier C, Soirat N, Castéra L, Bertrand D, Atkinson A, Lavolé T, Goardon N, Quesnelle C, Levilly J, Barbachou S, Legros A, Caron O, Crivelli L, Denizeau P, Berthet P, Ricou A, Boulouard F, Vaur D, Krieger S, Leman R. Fine mapping of RNA isoform diversity using an innovative targeted long-read RNA sequencing protocol with novel dedicated bioinformatics pipeline. BMC Genomics 2024; 25:909. [PMID: 39350015 PMCID: PMC11440762 DOI: 10.1186/s12864-024-10741-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Solving the structure of mRNA transcripts is a major challenge for both research and molecular diagnostic purposes. Current approaches based on short-read RNA sequencing and RT-PCR techniques cannot fully explore the complexity of transcript structure. The emergence of third-generation long-read sequencing addresses this problem by solving this sequence directly. However, genes with low expression levels are difficult to study with the whole transcriptome sequencing approach. To fix this technical limitation, we propose a novel method to capture transcripts of a gene panel using a targeted enrichment approach suitable for Pacific Biosciences and Oxford Nanopore Technologies platforms. RESULTS We designed a set of probes to capture transcripts of a panel of genes involved in hereditary breast and ovarian cancer syndrome. We present SOSTAR (iSofOrmS annoTAtoR), a versatile pipeline to assemble, quantify and annotate isoforms from long read sequencing using a new tool specially designed for this application. The significant enrichment of transcripts by our capture protocol, together with the SOSTAR annotation, allowed the identification of 1,231 unique transcripts within the gene panel from the eight patients sequenced. The structure of these transcripts was annotated with a resolution of one base relative to a reference transcript. All major alternative splicing events of the BRCA1 and BRCA2 genes described in the literature were found. Complex splicing events such as pseudoexons were correctly annotated. SOSTAR enabled the identification of abnormal transcripts in the positive controls. In addition, a case of unexplained inheritance in a family with a history of breast and ovarian cancer was solved by identifying an SVA retrotransposon in intron 13 of the BRCA1 gene. CONCLUSIONS We have validated a new protocol for the enrichment of transcripts of interest using probes adapted to the ONT and PacBio platforms. This protocol allows a complete description of the alternative structures of transcripts, the estimation of their expression and the identification of aberrant transcripts in a single experiment. This proof-of-concept opens new possibilities for RNA structure exploration in both research and molecular diagnostics.
Collapse
Affiliation(s)
- Camille Aucouturier
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
- Normandie Univ, UNICAEN, Caen, 14000, France
| | - Nicolas Soirat
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
- SeqOne Genomics, Montpellier, 34000, France
| | - Laurent Castéra
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
| | | | - Alexandre Atkinson
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Thibaut Lavolé
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Nicolas Goardon
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
| | - Céline Quesnelle
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Julien Levilly
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Sosthène Barbachou
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Angelina Legros
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Olivier Caron
- Département Médecine Oncologique, Institut Gustave Roussy, Villejuif, France
| | - Louise Crivelli
- Service d'Oncogénétique, Centre Eugène Marquis, Rennes, France
| | - Philippe Denizeau
- Service de génétique clinique, Centre Hospitalier Universitaire Rennes, Rennes, France
| | - Pascaline Berthet
- Service d'Oncogénétique, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
| | - Agathe Ricou
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
| | - Flavie Boulouard
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
| | - Dominique Vaur
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
| | - Sophie Krieger
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France
- Normandie Univ, UNICAEN, Caen, 14000, France
| | - Raphael Leman
- Laboratoire de biologie et de génétique du cancer, Département de Biopathologie, Centre François Baclesse, Caen, 14000, France.
- Cancer and Brain Genomics, FHU G4 Genomics, Inserm U1245, Normandie University, Rouen, 76183, France.
| |
Collapse
|
21
|
Choquet K, Chaumont LP, Bache S, Baxter-Koenigs AR, Churchman LS. Genetic regulation of nascent RNA maturation revealed by direct RNA nanopore sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610338. [PMID: 39257732 PMCID: PMC11383983 DOI: 10.1101/2024.08.29.610338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Quantitative trait loci analyses have revealed an important role for genetic variants in regulating alternative splicing (AS) and alternative cleavage and polyadenylation (APA) in humans. Yet, these studies are generally performed with mature mRNA, so they report on the outcome rather than the processes of RNA maturation and thus may overlook how variants directly modulate pre-mRNA processing. The order in which the many introns of a human gene are removed can substantially influence AS, while nascent RNA polyadenylation can affect RNA stability and decay. However, how splicing order and poly(A) tail length are regulated by genetic variation has never been explored. Here, we used direct RNA nanopore sequencing to investigate allele-specific pre-mRNA maturation in 12 human lymphoblastoid cell lines. We found frequent splicing order differences between alleles and uncovered significant single nucleotide polymorphism (SNP)-splicing order associations in 17 genes. This included SNPs located in or near splice sites as well as more distal intronic and exonic SNPs. Moreover, several genes showed allele-specific poly(A) tail lengths, many of which also had a skewed allelic abundance ratio. HLA class I transcripts, which encode proteins that play an essential role in antigen presentation, showed the most allele-specific splicing orders, which frequently co-occurred with allele-specific AS, APA or poly(A) tail length differences. Together, our results expose new layers of genetic regulation of pre-mRNA maturation and highlight the power of long-read RNA sequencing for allele-specific analyses.
Collapse
Affiliation(s)
- Karine Choquet
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Louis-Philippe Chaumont
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | - Simon Bache
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, Canada
- Research Centre on Aging, CIUSSS de l’Estrie-CHUS, Sherbrooke, Canada
| | | | | |
Collapse
|
22
|
Weber RZ, Buil BA, Rentsch NH, Bosworth A, Zhang M, Kisler K, Tackenberg C, Zlokovic BV, Rust R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608971. [PMID: 39229128 PMCID: PMC11370539 DOI: 10.1101/2024.08.21.608971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Allison Bosworth
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
23
|
Salz R, Vorsteveld EE, van der Made CI, Kersten S, Stemerdink M, Riepe TV, Hsieh TH, Mhlanga M, Netea MG, Volders PJ, Hoischen A, ’t Hoen PA. Multi-omic profiling of pathogen-stimulated primary immune cells. iScience 2024; 27:110471. [PMID: 39091463 PMCID: PMC11293528 DOI: 10.1016/j.isci.2024.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/23/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
We performed long-read transcriptome and proteome profiling of pathogen-stimulated peripheral blood mononuclear cells (PBMCs) from healthy donors to discover new transcript and protein isoforms expressed during immune responses to diverse pathogens. Long-read transcriptome profiling reveals novel sequences and isoform switching induced upon pathogen stimulation, including transcripts that are difficult to detect using traditional short-read sequencing. Widespread loss of intron retention occurs as a common result of all pathogen stimulations. We highlight novel transcripts of NFKB1 and CASP1 that may indicate novel immunological mechanisms. RNA expression differences did not result in differences in the amounts of secreted proteins. Clustering analysis of secreted proteins revealed a correlation between chemokine (receptor) expression on the RNA and protein levels in C. albicans- and poly(I:C)-stimulated PBMCs. Isoform aware long-read sequencing of pathogen-stimulated immune cells highlights the potential of these methods to identify novel transcripts, revealing a more complex transcriptome landscape than previously appreciated.
Collapse
Affiliation(s)
- Renee Salz
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Emil E. Vorsteveld
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Caspar I. van der Made
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Simone Kersten
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Merel Stemerdink
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tabea V. Riepe
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Tsung-han Hsieh
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Musa Mhlanga
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Cell Biology, Radboud University, 6500 HB Nijmegen, the Netherlands
| | - Mihai G. Netea
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Pieter-Jan Volders
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Laboratory of Molecular Diagnostics, Department of Clinical Biology, Jessa Hospital, 3500 Hasselt, Belgium
| | - Alexander Hoischen
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- Department of Internal Medicine and Radboud Centre for Infectious Diseases (RCI), Radboud University Medical Centre, 6525 GA Nijmegen, the Netherlands
| | - Peter A.C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
- RadboudUMC Research Institute for Medical Innovation, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
24
|
Gong B, Li D, Łabaj PP, Pan B, Novoradovskaya N, Thierry-Mieg D, Thierry-Mieg J, Chen G, Bergstrom Lucas A, LoCoco JS, Richmond TA, Tseng E, Kusko R, Happe S, Mercer TR, Pabón-Peña C, Salmans M, Tilgner HU, Xiao W, Johann DJ, Jones W, Tong W, Mason CE, Kreil DP, Xu J. Targeted DNA-seq and RNA-seq of Reference Samples with Short-read and Long-read Sequencing. Sci Data 2024; 11:892. [PMID: 39152166 PMCID: PMC11329654 DOI: 10.1038/s41597-024-03741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
Next-generation sequencing (NGS) has revolutionized genomic research by enabling high-throughput, cost-effective genome and transcriptome sequencing accelerating personalized medicine for complex diseases, including cancer. Whole genome/transcriptome sequencing (WGS/WTS) provides comprehensive insights, while targeted sequencing is more cost-effective and sensitive. In comparison to short-read sequencing, which still dominates the field due to high speed and cost-effectiveness, long-read sequencing can overcome alignment limitations and better discriminate similar sequences from alternative transcripts or repetitive regions. Hybrid sequencing combines the best strengths of different technologies for a more comprehensive view of genomic/transcriptomic variations. Understanding each technology's strengths and limitations is critical for translating cutting-edge technologies into clinical applications. In this study, we sequenced DNA and RNA libraries of reference samples using various targeted DNA and RNA panels and the whole transcriptome on both short-read and long-read platforms. This study design enables a comprehensive analysis of sequencing technologies, targeting protocols, and library preparation methods. Our expanded profiling landscape establishes a reference point for assessing current sequencing technologies, facilitating informed decision-making in genomic research and precision medicine.
Collapse
Affiliation(s)
- Binsheng Gong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Dan Li
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Paweł P Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
- Bioinformatics Research, Institute of Molecular Biotechnology, Boku University Vienna, Vienna, Austria
| | - Bohu Pan
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | | | - Danielle Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Jean Thierry-Mieg
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Guangchun Chen
- Department of Immunology, Genomics and Microarray Core Facility, University of Texas Southwestern Medical Center, 5323 Harry Hine Blvd., Dallas, TX, 75390, USA
| | - Anne Bergstrom Lucas
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, CA, 95051, USA
| | | | - Todd A Richmond
- Market & Application Development Bioinformatics, Roche Sequencing Solutions Inc., 4300 Hacienda Dr., Pleasanton, CA, 94588, USA
| | | | - Rebecca Kusko
- Cellino Bio, 750 Main Street, Cambridge, MA, 02143, USA
| | - Scott Happe
- Agilent Technologies, Inc., 1834 State Hwy 71 West, Cedar Creek, TX, 78612, USA
| | - Timothy R Mercer
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Carlos Pabón-Peña
- Agilent Technologies, Inc., 5301 Stevens Creek Blvd., Santa Clara, CA, 95051, USA
| | | | - Hagen U Tilgner
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Wenzhong Xiao
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald J Johann
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301W Markham St., Little Rock, AR, 72205, USA
| | - Wendell Jones
- Q squared Solutions Genomics, 2400 Elis Road, Durham, NC, 27703, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA.
| | - David P Kreil
- Bioinformatics Research, Institute of Molecular Biotechnology, Boku University Vienna, Vienna, Austria.
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
25
|
Byrne A, Le D, Sereti K, Menon H, Vaidya S, Patel N, Lund J, Xavier-Magalhães A, Shi M, Liang Y, Sterne-Weiler T, Modrusan Z, Stephenson W. Single-cell long-read targeted sequencing reveals transcriptional variation in ovarian cancer. Nat Commun 2024; 15:6916. [PMID: 39134520 PMCID: PMC11319652 DOI: 10.1038/s41467-024-51252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Single-cell RNA sequencing predominantly employs short-read sequencing to characterize cell types, states and dynamics; however, it is inadequate for comprehensive characterization of RNA isoforms. Long-read sequencing technologies enable single-cell RNA isoform detection but are hampered by lower throughput and unintended sequencing of artifacts. Here we develop Single-cell Targeted Isoform Long-Read Sequencing (scTaILoR-seq), a hybridization capture method which targets over a thousand genes of interest, improving the median number of on-target transcripts per cell by 29-fold. We use scTaILoR-seq to identify and quantify RNA isoforms from ovarian cancer cell lines and primary tumors, yielding 10,796 single-cell transcriptomes. Using long-read variant calling we reveal associations of expressed single nucleotide variants (SNVs) with alternative transcript structures. Phasing of SNVs across transcripts enables the measurement of allelic imbalance within distinct cell populations. Overall, scTaILoR-seq is a long-read targeted RNA sequencing method and analytical framework for exploring transcriptional variation at single-cell resolution.
Collapse
Affiliation(s)
- Ashley Byrne
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Daniel Le
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Kostianna Sereti
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
| | - Hari Menon
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Samir Vaidya
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Neha Patel
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Jessica Lund
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Ana Xavier-Magalhães
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Minyi Shi
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Yuxin Liang
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA
| | - Timothy Sterne-Weiler
- Department of Discovery Oncology, Genentech, South San Francisco, CA, USA
- Department of Oncology Bioinformatics, Genentech, South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| | - William Stephenson
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
26
|
Ozbulut HC, Hilgers V. Neuronal RNA processing: cross-talk between transcriptional regulation and RNA-binding proteins. Front Mol Neurosci 2024; 17:1426410. [PMID: 39149613 PMCID: PMC11324583 DOI: 10.3389/fnmol.2024.1426410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
In the nervous system, alternative RNA processing is particularly prevalent, which results in the expression of thousands of transcript variants found in no other tissue. Neuron-specific RNA-binding proteins co-transcriptionally regulate alternative splicing, alternative polyadenylation, and RNA editing, thereby shaping the RNA identity of nervous system cells. Recent evidence suggests that interactions between RNA-binding proteins and cis-regulatory elements such as promoters and enhancers play a role in the determination of neuron-specific expression profiles. Here, we discuss possible mechanisms through which transcription and RNA processing cross-talk to generate the uniquely complex neuronal transcriptome, with a focus on alternative 3'-end formation.
Collapse
Affiliation(s)
- Hasan Can Ozbulut
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Faculty of Biology, Albert Ludwig University, Freiburg, Germany
- International Max Planck Research School for Immunobiology, Epigenetics, and Metabolism (IMPRS-IEM), Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
27
|
Wang YZ, Perez-Rosello T, Smukowski SN, Surmeier DJ, Savas JN. Neuron type-specific proteomics reveals distinct Shank3 proteoforms in iSPNs and dSPNs lead to striatal synaptopathy in Shank3B -/- mice. Mol Psychiatry 2024; 29:2372-2388. [PMID: 38486049 PMCID: PMC11412912 DOI: 10.1038/s41380-024-02493-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 09/21/2024]
Abstract
Combinatorial expression of postsynaptic proteins underlies synapse diversity within and between neuron types. Thus, characterization of neuron-type-specific postsynaptic proteomes is key to obtaining a deeper understanding of discrete synaptic properties and how selective dysfunction manifests in synaptopathies. To overcome the limitations associated with bulk measures of synaptic protein abundance, we developed a biotin proximity protein tagging probe to characterize neuron-type-specific postsynaptic proteomes in vivo. We found Shank3 protein isoforms are differentially expressed by direct and indirect pathway spiny projection neurons (dSPNs and iSPNs). Investigation of Shank3B-/- mice lacking exons 13-16 within the Shank3 gene, reveal distinct Shank3 protein isoform expression in iSPNs and dSPNs. In Shank3B-/- striatum, Shank3E and Shank3NT are expressed by dSPNs but are undetectable in iSPNs. Proteomic analysis indicates significant and selective alterations in the postsynaptic proteome of Shank3B-/- iSPNs. Correspondingly, the deletion of exons 13-16 diminishes dendritic spine density, reduces spine head diameter, and hampers corticostriatal synaptic transmission in iSPNs. Remarkably, reintroducing Shank3E in adult Shank3B-/- iSPNs significantly rectifies the observed dendritic spine morphological and corticostriatal synaptic transmission deficits. We report unexpected cell-type specific synaptic protein isoform expression which could play a key causal role in specifying synapse diversity and selective synapse dysfunction in synaptopathies.
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Tamara Perez-Rosello
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Samuel N Smukowski
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
28
|
Moakley DF, Campbell M, Anglada-Girotto M, Feng H, Califano A, Au E, Zhang C. Reverse engineering neuron type-specific and type-orthogonal splicing-regulatory networks using single-cell transcriptomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.597128. [PMID: 38915499 PMCID: PMC11195221 DOI: 10.1101/2024.06.13.597128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cell type-specific alternative splicing (AS) enables differential gene isoform expression between diverse neuron types with distinct identities and functions. Current studies linking individual RNA-binding proteins (RBPs) to AS in a few neuron types underscore the need for holistic modeling. Here, we use network reverse engineering to derive a map of the neuron type-specific AS regulatory landscape from 133 mouse neocortical cell types defined by single-cell transcriptomes. This approach reliably inferred the regulons of 350 RBPs and their cell type-specific activities. Our analysis revealed driving factors delineating neuronal identities, among which we validated Elavl2 as a key RBP for MGE-specific splicing in GABAergic interneurons using an in vitro ESC differentiation system. We also identified a module of exons and candidate regulators specific for long- and short-projection neurons across multiple neuronal classes. This study provides a resource for elucidating splicing regulatory programs that drive neuronal molecular diversity, including those that do not align with gene expression-based classifications.
Collapse
Affiliation(s)
- Daniel F Moakley
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | - Melissa Campbell
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Neurosciences, University of California, San Diego, USA
| | - Miquel Anglada-Girotto
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Present address: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Huijuan Feng
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Present address: Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Edmund Au
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
- Columbia Translational Neuroscience Initiative Scholar, New York, NY 10032, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| |
Collapse
|
29
|
Widespread changes in alternative splicing in developing and adult mouse brain. Nat Neurosci 2024; 27:1040-1041. [PMID: 38594597 DOI: 10.1038/s41593-024-01617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
|
30
|
Gupta P, O’Neill H, Wolvetang E, Chatterjee A, Gupta I. Advances in single-cell long-read sequencing technologies. NAR Genom Bioinform 2024; 6:lqae047. [PMID: 38774511 PMCID: PMC11106032 DOI: 10.1093/nargab/lqae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
With an increase in accuracy and throughput of long-read sequencing technologies, they are rapidly being assimilated into the single-cell sequencing pipelines. For transcriptome sequencing, these techniques provide RNA isoform-level information in addition to the gene expression profiles. Long-read sequencing technologies not only help in uncovering complex patterns of cell-type specific splicing, but also offer unprecedented insights into the origin of cellular complexity and thus potentially new avenues for drug development. Additionally, single-cell long-read DNA sequencing enables high-quality assemblies, structural variant detection, haplotype phasing, resolving high-complexity regions, and characterization of epigenetic modifications. Given that significant progress has primarily occurred in single-cell RNA isoform sequencing (scRiso-seq), this review will delve into these advancements in depth and highlight the practical considerations and operational challenges, particularly pertaining to downstream analysis. We also aim to offer a concise introduction to complementary technologies for single-cell sequencing of the genome, epigenome and epitranscriptome. We conclude by identifying certain key areas of innovation that may drive these technologies further and foster more widespread application in biomedical science.
Collapse
Affiliation(s)
- Pallavi Gupta
- University of Queensland – IIT Delhi Research Academy, Hauz Khas, New Delhi 110016, India
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hannah O’Neill
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ernst J Wolvetang
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, 58 Hanover Street, Dunedin 9054, New Zealand
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
31
|
Joglekar A, Hu W, Zhang B, Narykov O, Diekhans M, Marrocco J, Balacco J, Ndhlovu LC, Milner TA, Fedrigo O, Jarvis ED, Sheynkman G, Korkin D, Ross ME, Tilgner HU. Single-cell long-read sequencing-based mapping reveals specialized splicing patterns in developing and adult mouse and human brain. Nat Neurosci 2024; 27:1051-1063. [PMID: 38594596 PMCID: PMC11156538 DOI: 10.1038/s41593-024-01616-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 03/07/2024] [Indexed: 04/11/2024]
Abstract
RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species. For 72% of genes, full-length isoform expression varies along one or more axes. Splicing, transcription start and polyadenylation sites vary strongly between cell types, influence protein architecture and associate with disease-linked variation. Additionally, neurotransmitter transport and synapse turnover genes harbor cell-type variability across anatomical regions. Regulation of cell-type-specific splicing is pronounced in the postnatal day 21-to-postnatal day 28 adolescent transition. Developmental isoform regulation is stronger than regional regulation for the same cell type. Cell-type-specific isoform regulation in mice is mostly maintained in the human hippocampus, allowing extrapolation to the human brain. Conversely, the human brain harbors additional cell-type specificity, suggesting gain-of-function isoforms. Together, this detailed single-cell atlas of full-length isoform regulation across development, anatomical regions and species reveals an unappreciated degree of isoform variability across multiple axes.
Collapse
Affiliation(s)
- Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Bei Zhang
- Spatial Genomics, Inc., Pasadena, CA, USA
| | - Oleksandr Narykov
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Mark Diekhans
- UC Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jordan Marrocco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Biology, Touro University, New York, NY, USA
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
- Data Science Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - M Elizabeth Ross
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
32
|
Patowary A, Zhang P, Jops C, Vuong CK, Ge X, Hou K, Kim M, Gong N, Margolis M, Vo D, Wang X, Liu C, Pasaniuc B, Li JJ, Gandal MJ, de la Torre-Ubieta L. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms. Science 2024; 384:eadh7688. [PMID: 38781356 PMCID: PMC11960787 DOI: 10.1126/science.adh7688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders; yet, the role of cell type-specific splicing and transcript-isoform diversity during human brain development has not been systematically investigated. In this work, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone and cortical plate regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 distinct isoforms, of which 72.6% were novel (not previously annotated in Gencode version 33), and uncovered a substantial contribution of transcript-isoform diversity-regulated by RNA binding proteins-in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to reprioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ashok Patowary
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Connor Jops
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Celine K. Vuong
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Xinzhou Ge
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kangcheng Hou
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Minsoo Kim
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Naihua Gong
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Margolis
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Vo
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Chunyu Liu
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Bogdan Pasaniuc
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jingyi Jessica Li
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Michael J. Gandal
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute at Penn Med and the Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Luis de la Torre-Ubieta
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Agoston DV. Of artificial intelligence, machine learning, and the human brain. Celebrating Miklos Palkovits' 90th birthday. Front Neuroanat 2024; 18:1374864. [PMID: 38764486 PMCID: PMC11099251 DOI: 10.3389/fnana.2024.1374864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Denes V. Agoston
- Department of Anatomy, Physiology and Genetics, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
34
|
de Reus AJEM, Basak O, Dykstra W, van Asperen JV, van Bodegraven EJ, Hol EM. GFAP-isoforms in the nervous system: Understanding the need for diversity. Curr Opin Cell Biol 2024; 87:102340. [PMID: 38401182 DOI: 10.1016/j.ceb.2024.102340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein expressed in specific types of glial cells in the nervous system. The expression of GFAP is highly regulated during brain development and in neurological diseases. The presence of distinct GFAP-isoforms in various cell types, developmental stages, and diseases indicates that GFAP (post-)transcriptional regulation has a role in glial cell physiology and pathology. GFAP-isoforms differ in sub-cellular localisation, IF-network assembly properties, and IF-dynamics which results in distinct molecular interactions and mechanical properties of the IF-network. Therefore, GFAP (post-)transcriptional regulation is likely a mechanism by which radial glia, astrocytes, and glioma cells can modulate cellular function.
Collapse
Affiliation(s)
- Alexandra J E M de Reus
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Werner Dykstra
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jessy V van Asperen
- Institut NeuroMyoGène (INMG), Unité Physiopathologie et Génétique du Neurone et du Muscle, Unversité Claude Bernard Lyon 1 CNRS UMR 5261, INSERM U1315, Lyon, France
| | - Emma J van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Yuan CU, Quah FX, Hemberg M. Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing. Mol Aspects Med 2024; 96:101255. [PMID: 38368637 DOI: 10.1016/j.mam.2024.101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Single-cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single-cell, spatial transcriptomics, and long-read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
Collapse
Affiliation(s)
- Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Gene Lay Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Childs JE, Morabito S, Das S, Santelli C, Pham V, Kusche K, Vera VA, Reese F, Campbell RR, Matheos DP, Swarup V, Wood MA. Relapse to cocaine seeking is regulated by medial habenula NR4A2/NURR1 in mice. Cell Rep 2024; 43:113956. [PMID: 38489267 PMCID: PMC11100346 DOI: 10.1016/j.celrep.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 09/11/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Drugs of abuse can persistently change the reward circuit in ways that contribute to relapse behavior, partly via mechanisms that regulate chromatin structure and function. Nuclear orphan receptor subfamily4 groupA member2 (NR4A2, also known as NURR1) is an important effector of histone deacetylase 3 (HDAC3)-dependent mechanisms in persistent memory processes and is highly expressed in the medial habenula (MHb), a region that regulates nicotine-associated behaviors. Here, expressing the Nr4a2 dominant negative (Nurr2c) in the MHb blocks reinstatement of cocaine seeking in mice. We use single-nucleus transcriptomics to characterize the molecular cascade following Nr4a2 manipulation, revealing changes in transcriptional networks related to addiction, neuroplasticity, and GABAergic and glutamatergic signaling. The network controlled by NR4A2 is characterized using a transcription factor regulatory network inference algorithm. These results identify the MHb as a pivotal regulator of relapse behavior and demonstrate the importance of NR4A2 as a key mechanism driving the MHb component of relapse.
Collapse
Affiliation(s)
- Jessica E Childs
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA; Mathematical, Computational, and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Caterina Santelli
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Victoria Pham
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Kelly Kusche
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Fairlie Reese
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Rianne R Campbell
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA.
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; UC Irvine Center for Addiction Neuroscience, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Center for the Neurobiology of Learning and Memory, School of Biological Sciences, University of California, Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders (MIND), University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
37
|
Jones EF, Haldar A, Oza VH, Lasseigne BN. Quantifying transcriptome diversity: a review. Brief Funct Genomics 2024; 23:83-94. [PMID: 37225889 PMCID: PMC11484519 DOI: 10.1093/bfgp/elad019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023] Open
Abstract
Following the central dogma of molecular biology, gene expression heterogeneity can aid in predicting and explaining the wide variety of protein products, functions and, ultimately, heterogeneity in phenotypes. There is currently overlapping terminology used to describe the types of diversity in gene expression profiles, and overlooking these nuances can misrepresent important biological information. Here, we describe transcriptome diversity as a measure of the heterogeneity in (1) the expression of all genes within a sample or a single gene across samples in a population (gene-level diversity) or (2) the isoform-specific expression of a given gene (isoform-level diversity). We first overview modulators and quantification of transcriptome diversity at the gene level. Then, we discuss the role alternative splicing plays in driving transcript isoform-level diversity and how it can be quantified. Additionally, we overview computational resources for calculating gene-level and isoform-level diversity for high-throughput sequencing data. Finally, we discuss future applications of transcriptome diversity. This review provides a comprehensive overview of how gene expression diversity arises, and how measuring it determines a more complete picture of heterogeneity across proteins, cells, tissues, organisms and species.
Collapse
Affiliation(s)
- Emma F Jones
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anisha Haldar
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vishal H Oza
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brittany N Lasseigne
- The Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
38
|
Lim J, Park C, Kim M, Kim H, Kim J, Lee DS. Advances in single-cell omics and multiomics for high-resolution molecular profiling. Exp Mol Med 2024; 56:515-526. [PMID: 38443594 PMCID: PMC10984936 DOI: 10.1038/s12276-024-01186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 03/07/2024] Open
Abstract
Single-cell omics technologies have revolutionized molecular profiling by providing high-resolution insights into cellular heterogeneity and complexity. Traditional bulk omics approaches average signals from heterogeneous cell populations, thereby obscuring important cellular nuances. Single-cell omics studies enable the analysis of individual cells and reveal diverse cell types, dynamic cellular states, and rare cell populations. These techniques offer unprecedented resolution and sensitivity, enabling researchers to unravel the molecular landscape of individual cells. Furthermore, the integration of multimodal omics data within a single cell provides a comprehensive and holistic view of cellular processes. By combining multiple omics dimensions, multimodal omics approaches can facilitate the elucidation of complex cellular interactions, regulatory networks, and molecular mechanisms. This integrative approach enhances our understanding of cellular systems, from development to disease. This review provides an overview of the recent advances in single-cell and multimodal omics for high-resolution molecular profiling. We discuss the principles and methodologies for representatives of each omics method, highlighting the strengths and limitations of the different techniques. In addition, we present case studies demonstrating the applications of single-cell and multimodal omics in various fields, including developmental biology, neurobiology, cancer research, immunology, and precision medicine.
Collapse
Affiliation(s)
- Jongsu Lim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chanho Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Minjae Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyukhee Kim
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Junil Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Dong-Sung Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
39
|
Hu W, Foord C, Hsu J, Fan L, Corley MJ, Bhatia TN, Xu S, Belchikov N, He Y, Pang AP, Lanjewar SN, Jarroux J, Joglekar A, Milner TA, Ndhlovu LC, Zhang J, Butelman E, Sloan SA, Lee VM, Gan L, Tilgner HU. ScISOr-ATAC reveals convergent and divergent splicing and chromatin specificities between matched cell types across cortical regions, evolution, and in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581897. [PMID: 38464236 PMCID: PMC10925193 DOI: 10.1101/2024.02.24.581897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Multimodal measurements have become widespread in genomics, however measuring open chromatin accessibility and splicing simultaneously in frozen brain tissues remains unconquered. Hence, we devised Single-Cell-ISOform-RNA sequencing coupled with the Assay-for-Transposase-Accessible-Chromatin (ScISOr-ATAC). We utilized ScISOr-ATAC to assess whether chromatin and splicing alterations in the brain convergently affect the same cell types or divergently different ones. We applied ScISOr-ATAC to three major conditions: comparing (i) the Rhesus macaque (Macaca mulatta) prefrontal cortex (PFC) and visual cortex (VIS), (ii) cross species divergence of Rhesus macaque versus human PFC, as well as (iii) dysregulation in Alzheimer's disease in human PFC. We found that among cortical-layer biased excitatory neuron subtypes, splicing is highly brain-region specific for L3-5/L6 IT_RORB neurons, moderately specific in L2-3 IT_CUX2.RORB neurons and unspecific in L2-3 IT_CUX2 neurons. In contrast, at the chromatin level, L2-3 IT_CUX2.RORB neurons show the highest brain-region specificity compared to other subtypes. Likewise, when comparing human and macaque PFC, strong evolutionary divergence on one molecular modality does not necessarily imply strong such divergence on another molecular level in the same cell type. Finally, in Alzheimer's disease, oligodendrocytes show convergently high dysregulation in both chromatin and splicing. However, chromatin and splicing dysregulation most strongly affect distinct oligodendrocyte subtypes. Overall, these results indicate that chromatin and splicing can show convergent or divergent results depending on the performed comparison, justifying the need for their concurrent measurement to investigate complex systems. Taken together, ScISOr-ATAC allows for the characterization of single-cell splicing and chromatin patterns and the comparison of sample groups in frozen brain samples.
Collapse
Affiliation(s)
- Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Li Fan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute
| | - Michael J Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics & Systems Biology Program, Weill Cornell Medicine, New York, NY, USA
| | - Yi He
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Alina Ps Pang
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Samantha N Lanjewar
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Anoushka Joglekar
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Lishomwa C Ndhlovu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, USA
| | - Eduardo Butelman
- Neuropsychoimaging of Addiction and Related Conditions Research Program, Dept. of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Virginia My Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Li Gan
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Helen and Robert Appel Alzheimer's Disease Research Institute
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
40
|
Hodonsky CJ, Turner AW, Khan MD, Barrientos NB, Methorst R, Ma L, Lopez NG, Mosquera JV, Auguste G, Farber E, Ma WF, Wong D, Onengut-Gumuscu S, Kavousi M, Peyser PA, van der Laan SW, Leeper NJ, Kovacic JC, Björkegren JLM, Miller CL. Multi-ancestry genetic analysis of gene regulation in coronary arteries prioritizes disease risk loci. CELL GENOMICS 2024; 4:100465. [PMID: 38190101 PMCID: PMC10794848 DOI: 10.1016/j.xgen.2023.100465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/07/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
Genome-wide association studies (GWASs) have identified hundreds of risk loci for coronary artery disease (CAD). However, non-European populations are underrepresented in GWASs, and the causal gene-regulatory mechanisms of these risk loci during atherosclerosis remain unclear. We incorporated local ancestry and haplotypes to identify quantitative trait loci for expression (eQTLs) and splicing (sQTLs) in coronary arteries from 138 ancestrally diverse Americans. Of 2,132 eQTL-associated genes (eGenes), 47% were previously unreported in coronary artery; 19% exhibited cell-type-specific expression. Colocalization revealed subgroups of eGenes unique to CAD and blood pressure GWAS. Fine-mapping highlighted additional eGenes, including TBX20 and IL5. We also identified sQTLs for 1,690 genes, among which TOR1AIP1 and ULK3 sQTLs demonstrated the importance of evaluating splicing to accurately identify disease-relevant isoform expression. Our work provides a patient-derived coronary artery eQTL resource and exemplifies the need for diverse study populations and multifaceted approaches to characterize gene regulation in disease processes.
Collapse
Affiliation(s)
- Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Mohammad Daud Khan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Nelson B Barrientos
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ruben Methorst
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Medical Scientist Training Program, Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48019, USA
| | - Sander W van der Laan
- Central Diagnostics Laboratory, Division Laboratories, Pharmacy, and Biomedical Genetics, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Huddinge, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA; Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA 94305, USA; Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
41
|
Calvo-Roitberg E, Carroll CL, Venev SV, Kim G, Mick ST, Dekker J, Fiszbein A, Pai AA. mRNA initiation and termination are spatially coordinated. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574404. [PMID: 38260419 PMCID: PMC10802295 DOI: 10.1101/2024.01.05.574404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The expression of a precise mRNA transcriptome is crucial for establishing cell identity and function, with dozens of alternative isoforms produced for a single gene sequence. The regulation of mRNA isoform usage occurs by the coordination of co-transcriptional mRNA processing mechanisms across a gene. Decisions involved in mRNA initiation and termination underlie the largest extent of mRNA isoform diversity, but little is known about any relationships between decisions at both ends of mRNA molecules. Here, we systematically profile the joint usage of mRNA transcription start sites (TSSs) and polyadenylation sites (PASs) across tissues and species. Using both short and long read RNA-seq data, we observe that mRNAs preferentially using upstream TSSs also tend to use upstream PASs, and congruently, the usage of downstream sites is similarly paired. This observation suggests that mRNA 5' end choice may directly influence mRNA 3' ends. Our results suggest a novel "Positional Initiation-Termination Axis" (PITA), in which the usage of alternative terminal sites are coupled based on the order in which they appear in the genome. PITA isoforms are more likely to encode alternative protein domains and use conserved sites. PITA is strongly associated with the length of genomic features, such that PITA is enriched in longer genes with more area devoted to regions that regulate alternative 5' or 3' ends. Strikingly, we found that PITA genes are more likely than non-PITA genes to have multiple, overlapping chromatin structural domains related to pairing of ordinally coupled start and end sites. In turn, PITA coupling is also associated with fast RNA Polymerase II (RNAPII) trafficking across these long gene regions. Our findings indicate that a combination of spatial and kinetic mechanisms couple transcription initiation and mRNA 3' end decisions based on ordinal position to define the expression mRNA isoforms.
Collapse
Affiliation(s)
| | | | - Sergey V. Venev
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
| | - GyeungYun Kim
- Department of Biology, Boston University, Boston, MA
| | | | - Job Dekker
- Department of Systems Biology, University Massachusetts Chan Medical School, Worcester, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Ana Fiszbein
- Department of Biology, Boston University, Boston, MA
- Center for Computing & Data Sciences, Boston University, Boston, MA
| | - Athma A. Pai
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA
| |
Collapse
|
42
|
Flotho M, Amand J, Hirsch P, Grandke F, Wyss-Coray T, Keller A, Kern F. ZEBRA: a hierarchically integrated gene expression atlas of the murine and human brain at single-cell resolution. Nucleic Acids Res 2024; 52:D1089-D1096. [PMID: 37941147 PMCID: PMC10767845 DOI: 10.1093/nar/gkad990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023] Open
Abstract
The molecular causes and mechanisms of neurodegenerative diseases remain poorly understood. A growing number of single-cell studies have implicated various neural, glial, and immune cell subtypes to affect the mammalian central nervous system in many age-related disorders. Integrating this body of transcriptomic evidence into a comprehensive and reproducible framework poses several computational challenges. Here, we introduce ZEBRA, a large single-cell and single-nucleus RNA-seq database. ZEBRA integrates and normalizes gene expression and metadata from 33 studies, encompassing 4.2 million human and mouse brain cells sampled from 39 brain regions. It incorporates samples from patients with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and Multiple sclerosis, as well as samples from relevant mouse models. We employed scVI, a deep probabilistic auto-encoder model, to integrate the samples and curated both cell and sample metadata for downstream analysis. ZEBRA allows for cell-type and disease-specific markers to be explored and compared between sample conditions and brain regions, a cell composition analysis, and gene-wise feature mappings. Our comprehensive molecular database facilitates the generation of data-driven hypotheses, enhancing our understanding of mammalian brain function during aging and disease. The data sets, along with an interactive database are freely available at https://www.ccb.uni-saarland.de/zebra.
Collapse
Affiliation(s)
- Matthias Flotho
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Jérémy Amand
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Pascal Hirsch
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Friederike Grandke
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| | - Fabian Kern
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany
- Clinical Bioinformatics, Center for Bioinformatics, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
43
|
Lee S, Aubee JI, Lai EC. Regulation of alternative splicing and polyadenylation in neurons. Life Sci Alliance 2023; 6:e202302000. [PMID: 37793776 PMCID: PMC10551640 DOI: 10.26508/lsa.202302000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cell-type-specific gene expression is a fundamental feature of multicellular organisms and is achieved by combinations of regulatory strategies. Although cell-restricted transcription is perhaps the most widely studied mechanism, co-transcriptional and post-transcriptional processes are also central to the spatiotemporal control of gene functions. One general category of expression control involves the generation of multiple transcript isoforms from an individual gene, whose balance and cell specificity are frequently tightly regulated via diverse strategies. The nervous system makes particularly extensive use of cell-specific isoforms, specializing the neural function of genes that are expressed more broadly. Here, we review regulatory strategies and RNA-binding proteins that direct neural-specific isoform processing. These include various classes of alternative splicing and alternative polyadenylation events, both of which broadly diversify the neural transcriptome. Importantly, global alterations of splicing and alternative polyadenylation are characteristic of many neural pathologies, and recent genetic studies demonstrate how misregulation of individual neural isoforms can directly cause mutant phenotypes.
Collapse
Affiliation(s)
- Seungjae Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Joseph I Aubee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| |
Collapse
|
44
|
Sinitcyn P, Richards AL, Weatheritt RJ, Brademan DR, Marx H, Shishkova E, Meyer JG, Hebert AS, Westphall MS, Blencowe BJ, Cox J, Coon JJ. Global detection of human variants and isoforms by deep proteome sequencing. Nat Biotechnol 2023; 41:1776-1786. [PMID: 36959352 PMCID: PMC10713452 DOI: 10.1038/s41587-023-01714-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/15/2023] [Indexed: 03/25/2023]
Abstract
An average shotgun proteomics experiment detects approximately 10,000 human proteins from a single sample. However, individual proteins are typically identified by peptide sequences representing a small fraction of their total amino acids. Hence, an average shotgun experiment fails to distinguish different protein variants and isoforms. Deeper proteome sequencing is therefore required for the global discovery of protein isoforms. Using six different human cell lines, six proteases, deep fractionation and three tandem mass spectrometry fragmentation methods, we identify a million unique peptides from 17,717 protein groups, with a median sequence coverage of approximately 80%. Direct comparison with RNA expression data provides evidence for the translation of most nonsynonymous variants. We have also hypothesized that undetected variants likely arise from mutation-induced protein instability. We further observe comparable detection rates for exon-exon junction peptides representing constitutive and alternative splicing events. Our dataset represents a resource for proteoform discovery and provides direct evidence that most frame-preserving alternatively spliced isoforms are translated.
Collapse
Affiliation(s)
- Pavel Sinitcyn
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Morgridge Institute for Research, Madison, WI, USA
| | - Alicia L Richards
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert J Weatheritt
- EMBL Australia and Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Dain R Brademan
- Morgridge Institute for Research, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Harald Marx
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Evgenia Shishkova
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jesse G Meyer
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexander S Hebert
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Westphall
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Benjamin J Blencowe
- The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Joshua J Coon
- Morgridge Institute for Research, Madison, WI, USA.
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Yang Y, Yang R, Kang B, Qian S, He X, Zhang X. Single-cell long-read sequencing in human cerebral organoids uncovers cell-type-specific and autism-associated exons. Cell Rep 2023; 42:113335. [PMID: 37889749 PMCID: PMC10842930 DOI: 10.1016/j.celrep.2023.113335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Dysregulation of alternative splicing has been repeatedly associated with neurodevelopmental disorders, but the extent of cell-type-specific splicing in human neural development remains largely uncharted. Here, single-cell long-read sequencing in induced pluripotent stem cell (iPSC)-derived cerebral organoids identifies over 31,000 uncatalogued isoforms and 4,531 cell-type-specific splicing events. Long reads uncover coordinated splicing and cell-type-specific intron retention events, which are challenging to study with short reads. Retained neuronal introns are enriched in RNA splicing regulators, showing shorter lengths, higher GC contents, and weaker 5' splice sites. We use this dataset to explore the biological processes underlying neurological disorders, focusing on autism. In comparison with prior transcriptomic data, we find that the splicing program in autistic brains is closer to the progenitor state than differentiated neurons. Furthermore, cell-type-specific exons harbor significantly more de novo mutations in autism probands than in siblings. Overall, these results highlight the importance of cell-type-specific splicing in autism and neuronal gene regulation.
Collapse
Affiliation(s)
- Yalan Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Runwei Yang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Bowei Kang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Sheng Qian
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xin He
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| | - Xiaochang Zhang
- Department of Human Genetics, Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
46
|
Dondi A, Lischetti U, Jacob F, Singer F, Borgsmüller N, Coelho R, Heinzelmann-Schwarz V, Beisel C, Beerenwinkel N. Detection of isoforms and genomic alterations by high-throughput full-length single-cell RNA sequencing in ovarian cancer. Nat Commun 2023; 14:7780. [PMID: 38012143 PMCID: PMC10682465 DOI: 10.1038/s41467-023-43387-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Understanding the complex background of cancer requires genotype-phenotype information in single-cell resolution. Here, we perform long-read single-cell RNA sequencing (scRNA-seq) on clinical samples from three ovarian cancer patients presenting with omental metastasis and increase the PacBio sequencing depth to 12,000 reads per cell. Our approach captures 152,000 isoforms, of which over 52,000 were not previously reported. Isoform-level analysis accounting for non-coding isoforms reveals 20% overestimation of protein-coding gene expression on average. We also detect cell type-specific isoform and poly-adenylation site usage in tumor and mesothelial cells, and find that mesothelial cells transition into cancer-associated fibroblasts in the metastasis, partly through the TGF-β/miR-29/Collagen axis. Furthermore, we identify gene fusions, including an experimentally validated IGF2BP2::TESPA1 fusion, which is misclassified as high TESPA1 expression in matched short-read data, and call mutations confirmed by targeted NGS cancer gene panel results. With these findings, we envision long-read scRNA-seq to become increasingly relevant in oncology and personalized medicine.
Collapse
Affiliation(s)
- Arthur Dondi
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ulrike Lischetti
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland.
| | - Francis Jacob
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Franziska Singer
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
- ETH Zurich, NEXUS Personalized Health Technologies, Wagistrasse 18, 8952, Schlieren, Switzerland
| | - Nico Borgsmüller
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland
| | - Ricardo Coelho
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- University Hospital Basel and University of Basel, Ovarian Cancer Research, Department of Biomedicine, Hebelstrasse 20, 4031, Basel, Switzerland
- University Hospital Basel, Gynecological Cancer Center, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Christian Beisel
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
| | - Niko Beerenwinkel
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058, Basel, Switzerland.
| |
Collapse
|
47
|
Dam SH, Olsen LR, Vitting-Seerup K. Expression and splicing mediate distinct biological signals. BMC Biol 2023; 21:220. [PMID: 37858135 PMCID: PMC10588054 DOI: 10.1186/s12915-023-01724-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Through alternative splicing, most human genes produce multiple isoforms in a cell-, tissue-, and disease-specific manner. Numerous studies show that alternative splicing is essential for development, diseases, and their treatments. Despite these important examples, the extent and biological relevance of splicing are currently unknown. RESULTS To solve this problem, we developed pairedGSEA and used it to profile transcriptional changes in 100 representative RNA-seq datasets. Our systematic analysis demonstrates that changes in splicing, on average, contribute to 48.1% of the biological signal in expression analyses. Gene-set enrichment analysis furthermore indicates that expression and splicing both convey shared and distinct biological signals. CONCLUSIONS These findings establish alternative splicing as a major regulator of the human condition and suggest that most contemporary RNA-seq studies likely miss out on critical biological insights. We anticipate our results will contribute to the transition from a gene-centric to an isoform-centric research paradigm.
Collapse
Affiliation(s)
- Søren Helweg Dam
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lars Rønn Olsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristoffer Vitting-Seerup
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
48
|
Patowary A, Zhang P, Jops C, Vuong CK, Ge X, Hou K, Kim M, Gong N, Margolis M, Vo D, Wang X, Liu C, Pasaniuc B, Li JJ, Gandal MJ, de la Torre-Ubieta L. Developmental isoform diversity in the human neocortex informs neuropsychiatric risk mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534016. [PMID: 36993726 PMCID: PMC10055310 DOI: 10.1101/2023.03.25.534016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
RNA splicing is highly prevalent in the brain and has strong links to neuropsychiatric disorders, yet the role of cell-type-specific splicing or transcript-isoform diversity during human brain development has not been systematically investigated. Here, we leveraged single-molecule long-read sequencing to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution. We identified 214,516 unique isoforms, of which 72.6% are novel (unannotated in Gencode-v33), and uncovered a substantial contribution of transcript-isoform diversity, regulated by RNA binding proteins, in defining cellular identity in the developing neocortex. We leveraged this comprehensive isoform-centric gene annotation to re-prioritize thousands of rare de novo risk variants and elucidate genetic risk mechanisms for neuropsychiatric disorders. One-Sentence Summary A cell-specific atlas of gene isoform expression helps shape our understanding of brain development and disease. Structured Abstract INTRODUCTION: The development of the human brain is regulated by precise molecular and genetic mechanisms driving spatio-temporal and cell-type-specific transcript expression programs. Alternative splicing, a major mechanism increasing transcript diversity, is highly prevalent in the human brain, influences many aspects of brain development, and has strong links to neuropsychiatric disorders. Despite this, the cell-type-specific transcript-isoform diversity of the developing human brain has not been systematically investigated.RATIONALE: Understanding splicing patterns and isoform diversity across the developing neocortex has translational relevance and can elucidate genetic risk mechanisms in neurodevelopmental disorders. However, short-read sequencing, the prevalent technology for transcriptome profiling, is not well suited to capturing alternative splicing and isoform diversity. To address this, we employed third-generation long-read sequencing, which enables capture and sequencing of complete individual RNA molecules, to deeply profile the full-length transcriptome of the germinal zone (GZ) and cortical plate (CP) regions of the developing human neocortex at tissue and single-cell resolution.RESULTS: We profiled microdissected GZ and CP regions of post-conception week (PCW) 15-17 human neocortex in bulk and at single-cell resolution across six subjects using high-fidelity long-read sequencing (PacBio IsoSeq). We identified 214,516 unique isoforms, of which 72.6% were novel (unannotated in Gencode), and >7,000 novel exons, expanding the proteome by 92,422 putative proteoforms. We uncovered thousands of isoform switches during cortical neurogenesis predicted to impact RNA regulatory domains or protein structure and implicating previously uncharacterized RNA-binding proteins in cellular identity and neuropsychiatric disease. At the single-cell level, early-stage excitatory neurons exhibited the greatest isoform diversity, and isoform-centric single-cell clustering led to the identification of previously uncharacterized cell states. We systematically assessed the contribution of transcriptomic features, and localized cell and spatio-temporal transcript expression signatures across neuropsychiatric disorders, revealing predominant enrichments in dynamic isoform expression and utilization patterns and that the number and complexity of isoforms per gene is strongly predictive of disease. Leveraging this resource, we re-prioritized thousands of rare de novo risk variants associated with autism spectrum disorders (ASD), intellectual disability (ID), and neurodevelopmental disorders (NDDs), more broadly, to potentially more severe consequences and revealed a larger proportion of cryptic splice variants with the expanded transcriptome annotation provided in this study.CONCLUSION: Our study offers a comprehensive landscape of isoform diversity in the human neocortex during development. This extensive cataloging of novel isoforms and splicing events sheds light on the underlying mechanisms of neurodevelopmental disorders and presents an opportunity to explore rare genetic variants linked to these conditions. The implications of our findings extend beyond fundamental neuroscience, as they provide crucial insights into the molecular basis of developmental brain disorders and pave the way for targeted therapeutic interventions. To facilitate exploration of this dataset we developed an online portal ( https://sciso.gandallab.org/ ).
Collapse
|
49
|
Farhadieh ME, Ghaedi K. Analyzing alternative splicing in Alzheimer's disease postmortem brain: a cell-level perspective. Front Mol Neurosci 2023; 16:1237874. [PMID: 37799732 PMCID: PMC10548223 DOI: 10.3389/fnmol.2023.1237874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with no effective cure that attacks the brain's cells resulting in memory loss and changes in behavior and language skills. Alternative splicing is a highly regulated process influenced by specific cell types and has been implicated in age-related disorders such as neurodegenerative diseases. A comprehensive detection of alternative splicing events (ASEs) at the cellular level in postmortem brain tissue can provide valuable insights into AD pathology. Here, we provided cell-level ASEs in postmortem brain tissue by employing bioinformatics pipelines on a bulk RNA sequencing study sorted by cell types and two single-cell RNA sequencing studies from the prefrontal cortex. This comprehensive analysis revealed previously overlooked splicing and expression changes in AD patient brains. Among the observed alterations were changed in the splicing and expression of transcripts associated with chaperones, including CLU in astrocytes and excitatory neurons, PTGDS in astrocytes and endothelial cells, and HSP90AA1 in microglia and tauopathy-afflicted neurons, which were associated with differential expression of the splicing factor DDX5. In addition, novel, unknown transcripts were altered, and structural changes were observed in lncRNAs such as MEG3 in neurons. This work provides a novel strategy to identify the notable ASEs at the cell level in neurodegeneration, which revealed cell type-specific splicing changes in AD. This finding may contribute to interpreting associations between splicing and neurodegenerative disease outcomes.
Collapse
Affiliation(s)
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
50
|
Zhang Z, Bae B, Cuddleston WH, Miura P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat Commun 2023; 14:5506. [PMID: 37679364 PMCID: PMC10484994 DOI: 10.1038/s41467-023-41207-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Nervous system development is associated with extensive regulation of alternative splicing (AS) and alternative polyadenylation (APA). AS and APA have been extensively studied in isolation, but little is known about how these processes are coordinated. Here, the coordination of cassette exon (CE) splicing and APA in Drosophila was investigated using a targeted long-read sequencing approach we call Pull-a-Long-Seq (PL-Seq). This cost-effective method uses cDNA pulldown and Nanopore sequencing combined with an analysis pipeline to quantify inclusion of alternative exons in connection with alternative 3' ends. Using PL-Seq, we identified genes that exhibit significant differences in CE splicing depending on connectivity to short versus long 3'UTRs. Genomic long 3'UTR deletion was found to alter upstream CE splicing in short 3'UTR isoforms and ELAV loss differentially affected CE splicing depending on connectivity to alternative 3'UTRs. This work highlights the importance of considering connectivity to alternative 3'UTRs when monitoring AS events.
Collapse
Affiliation(s)
- Zhiping Zhang
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Bongmin Bae
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | | | - Pedro Miura
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
- Department of Biology, University of Nevada, Reno, Reno, NV, USA.
- Institute for System Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|