1
|
Park YJ, Jankowski W, Hurst NC, Fry JW, Schwabe NF, Tan LCC, Sauna ZE. Functional Activity and Binding Specificity of Small Ankyrin Repeat Proteins Called Ankyrons Against SARS-CoV-2 Variants. AAPS J 2025; 27:58. [PMID: 40069439 DOI: 10.1208/s12248-025-01043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/15/2025] [Indexed: 03/25/2025] Open
Abstract
Effective management of COVID-19 requires clinical tools to treat the disease in addition to preventive vaccines. Several recombinant mAbs and their cocktails have been developed to treat COVID-19 but these have limitations. Here, we evaluate small ankyrin repeat proteins called Ankyrons that were generated to bind with high affinity to the SARS-CoV-2 virus. Ankyrons are ankyrin repeat proteins comprised of repetitions a structural module. Each module consists of a β-turn followed by two antiparallel α-helices. The Ankyrons™ are directly selected in vitro from a highly diverse library of around a trillion clones in ribosome display and like antibodies can bind with high affinity to almost any target. We assessed Ankyrons that were generated against the wild-type SARS-CoV-2 and the Delta (B.1.617.2) and Omicron (BA.1) variants in a binding assay. We determined that all Ankyrons were specific in that they did not bind to MERS. While all Ankyrons bound with high affinity to the variant they were generated against, some also showed cross-reactivity to all three SARS-CoV-2 variants. Binding assays are useful for screening analytes but do not provide information about clinical effectiveness. Therefore, we used a pseudovirus-based neutralization assay to show that five of the Ankyrons evaluated neutralized all three strains of SARS-CoV-2. We have provided a workflow for the evaluation of novel Ankyrons against a viral target. This suggests that Ankyrons could be useful for rapidly developing new research tools for studying other emerging infectious diseases rapidly with the optional further potential for developing Ankyrons into diagnostic and even therapeutic applications.
Collapse
Affiliation(s)
- Yun-Jong Park
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Wojciech Jankowski
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Nicholas C Hurst
- ProImmune Limited, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Jeremy W Fry
- ProImmune Limited, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Nikolai F Schwabe
- ProImmune Limited, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Linda C C Tan
- ProImmune Limited, Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Zuben E Sauna
- Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| |
Collapse
|
2
|
Wang S, Faucher FF, Bertolini M, Kim H, Yu B, Cao L, Roeltgen K, Lovell S, Shanker V, Boyd SD, Wang L, Bartenschlager R, Bogyo M. Identification of Covalent Cyclic Peptide Inhibitors Targeting Protein-Protein Interactions Using Phage Display. J Am Chem Soc 2025; 147:7461-7475. [PMID: 39993812 DOI: 10.1021/jacs.4c15843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Peptide macrocycles are promising therapeutics for a variety of disease indications due to their overall metabolic stability and potential to make highly selective binding interactions with targets. Recent advances in covalent macrocycle peptide discovery, driven by phage and mRNA display methods, have enabled the rapid identification of highly potent and selective molecules from large libraires of diverse macrocycles. However, there are currently limited examples of macrocycles that can be used to disrupt protein-protein interactions and even fewer examples that function by formation of a covalent bond to a target protein. In this work, we describe a directed counter-selection method that enables identification of covalent macrocyclic ligands targeting a protein-protein interaction using a phage display screening platform. This method utilizes binary and ternary screenings of a chemically modified phage display library, employing the stable and weakly reactive aryl fluorosulfate electrophile. We demonstrate the utility of this approach using the SARS-CoV-2 spike-ACE2 protein-protein interaction and identify multiple covalent macrocyclic inhibitors that disrupt this interaction. The resulting compounds displayed antiviral activity against live virus that was irreversible after washout due to the covalent binding mechanism. These results highlight the potential of this screening platform for developing covalent macrocyclic drugs that disrupt protein-protein interactions with long lasting effects.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Franco F Faucher
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, California 94305, United States
| | - Matilde Bertolini
- Department of Genetics, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg 69210, Germany
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Katharina Roeltgen
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Scott Lovell
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Varun Shanker
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Scott D Boyd
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg 69210, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
- German Center for Infection Research, Heidelberg Partner Site, Heidelberg 69120, Germany
| | - Matthew Bogyo
- Department of Pathology, School of Medicine, Stanford University, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Chaves EJF, Coêlho DF, Cruz CHB, Moreira EG, Simões JCM, Nascimento‐Filho MJ, Lins RD. Structure-based computational design of antibody mimetics: challenges and perspectives. FEBS Open Bio 2025; 15:223-235. [PMID: 38925955 PMCID: PMC11788748 DOI: 10.1002/2211-5463.13855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
The design of antibody mimetics holds great promise for revolutionizing therapeutic interventions by offering alternatives to conventional antibody therapies. Structure-based computational approaches have emerged as indispensable tools in the rational design of those molecules, enabling the precise manipulation of their structural and functional properties. This review covers the main classes of designed antigen-binding motifs, as well as alternative strategies to develop tailored ones. We discuss the intricacies of different computational protein-protein interaction design strategies, showcased by selected successful cases in the literature. Subsequently, we explore the latest advancements in the computational techniques including the integration of machine and deep learning methodologies into the design framework, which has led to an augmented design pipeline. Finally, we verse onto the current challenges that stand in the way between high-throughput computer design of antibody mimetics and experimental realization, offering a forward-looking perspective into the field and the promises it holds to biotechnology.
Collapse
Affiliation(s)
| | - Danilo F. Coêlho
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
| | - Carlos H. B. Cruz
- Institute of Structural and Molecular BiologyUniversity College LondonUK
| | | | - Júlio C. M. Simões
- Aggeu Magalhães InstituteOswaldo Cruz FoundationRecifeBrazil
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
| | - Manassés J. Nascimento‐Filho
- Aggeu Magalhães InstituteOswaldo Cruz FoundationRecifeBrazil
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
| | - Roberto D. Lins
- Aggeu Magalhães InstituteOswaldo Cruz FoundationRecifeBrazil
- Department of Fundamental ChemistryFederal University of PernambucoRecifeBrazil
- Fiocruz Genomics NetworkBrazil
| |
Collapse
|
4
|
Wang S, Faucher FF, Bertolini M, Kim H, Yu B, Cao L, Roeltgen K, Lovell S, Shanker V, Boyd SD, Wang L, Bartenschlager R, Bogyo M. Identification of Covalent Cyclic Peptide Inhibitors Targeting Protein-Protein Interactions Using Phage Display. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622749. [PMID: 39574763 PMCID: PMC11580984 DOI: 10.1101/2024.11.08.622749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Peptide macrocycles are promising therapeutics for a variety of disease indications due to their overall metabolic stability and potential to make highly selective binding interactions with targets. Recent advances in covalent macrocycle peptide discovery, driven by phage and mRNA display methods, have enabled the rapid identification of highly potent and selective molecules from large libraires of diverse macrocycles. However, there are currently limited examples of macrocycles that can be used to disrupt protein-protein interactions and even fewer examples that function by formation of a covalent bond to a target protein. In this work, we describe a directed counter-selection method that enables identification of covalent macrocyclic ligands targeting a protein-protein interaction using a phage display screening platform. This method utilizes binary and ternary screenings of a chemically modified phage display library, employing the stable and weakly reactive aryl fluorosulfate electrophile. We demonstrate the utility of this approach using the SARS-CoV-2 Spike-ACE2 protein-protein interaction and identify multiple covalent macrocyclic inhibitors that disrupt this interaction. The resulting compounds displayed antiviral activity against live virus that was irreversible after washout due to the covalent binding mechanism. These results highlight the potential of this screening platform for developing covalent macrocyclic drugs that disrupt protein-protein interactions with long lasting effects.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Franco F. Faucher
- Department of Chemistry, School of Humanities and Sciences, Stanford University, California 94305, United States
| | - Matilde Bertolini
- Department of Genetics, School of Medicine, Stanford University, California 94305, United States
| | - Heeyoung Kim
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Li Cao
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Katharina Roeltgen
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Scott Lovell
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Varun Shanker
- Department of Biochemistry, School of Medicine, Stanford University, California 94305, United States
| | - Scott D. Boyd
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California 94158, United States
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Center for Integrative Infectious Diseases Research, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research, Heidelberg Partner Site
| | - Matthew Bogyo
- Department of Pathology, School of Medicine, Stanford University, California 94305, United States
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
5
|
Arrías PN, Osmanli Z, Peralta E, Chinestrad PM, Monzon AM, Tosatto SCE. Diversity and structural-functional insights of alpha-solenoid proteins. Protein Sci 2024; 33:e5189. [PMID: 39465903 PMCID: PMC11514114 DOI: 10.1002/pro.5189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
Alpha-solenoids are a significant and diverse subset of structured tandem repeat proteins (STRPs) that are important in various domains of life. This review examines their structural and functional diversity and highlights their role in critical cellular processes such as signaling, apoptosis, and transcriptional regulation. Alpha-solenoids can be classified into three geometric folds: low curvature, high curvature, and corkscrew, as well as eight subfolds: ankyrin repeats; Huntingtin, elongation factor 3, protein phosphatase 2A, and target of rapamycin; armadillo repeats; tetratricopeptide repeats; pentatricopeptide repeats; Pumilio repeats; transcription activator-like; and Sel-1 and Sel-1-like repeats. These subfolds represent distinct protein families with unique structural properties and functions, highlighting the versatility of alpha-solenoids. The review also discusses their association with disease, highlighting their potential as therapeutic targets and their role in protein design. Advances in state-of-the-art structure prediction methods provide new opportunities and challenges in the functional characterization and classification of this kind of fold, emphasizing the need for continued development of methods for their identification and proper data curation and deposition in the main databases.
Collapse
Affiliation(s)
- Paula Nazarena Arrías
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Department of Protein ScienceKTH Royal Institute of TechnologyStockholmSweden
| | - Zarifa Osmanli
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
| | - Estefanía Peralta
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataBuenos AiresArgentina
| | | | | | - Silvio C. E. Tosatto
- Department of Biomedical SciencesUniversity of PadovaPadovaItaly
- Institute of Biomembranes, Bioenergetics and Molecular BiotechnologiesNational Research Council (CNR‐IBIOM)BariItaly
| |
Collapse
|
6
|
Claas AM, Lee M, Huang PH, Knutson CG, Bullara D, Schoeberl B, Gaudet S. Viral Kinetics Model of SARS-CoV-2 Infection Informs Drug Discovery, Clinical Dose, and Regimen Selection. Clin Pharmacol Ther 2024; 116:757-769. [PMID: 38676291 DOI: 10.1002/cpt.3267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
Quantitative systems pharmacology (QSP) has been an important tool to project safety and efficacy of novel or repurposed therapies for the SARS-CoV-2 virus. Here, we present a QSP modeling framework to predict response to antiviral therapeutics with three mechanisms of action (MoA): cell entry inhibitors, anti-replicatives, and neutralizing biologics. We parameterized three distinct model structures describing virus-host interaction by fitting to published viral kinetics data of untreated COVID-19 patients. The models were used to test theoretical behaviors and map therapeutic design criteria of the different MoAs, identifying the most rapid and robust antiviral activity from neutralizing biologic and anti-replicative MoAs. We found good agreement between model predictions and clinical viral load reduction observed with anti-replicative nirmatrelvir/ritonavir (Paxlovid®) and neutralizing biologics bamlanivimab and casirivimab/imdevimab (REGEN-COV®), building confidence in the modeling framework to inform a dose selection. Finally, the model was applied to predict antiviral response with ensovibep, a novel DARPin therapeutic designed as a neutralizing biologic. We developed a new in silico measure of antiviral activity, area under the curve (AUC) of free spike protein concentration, as a metric with larger dynamic range than viral load reduction. By benchmarking to bamlanivimab predictions, we justified dose levels of 75, 225, and 600 mg ensovibep to be administered intravenously in a Phase 2 clinical investigation. Upon trial completion, we found model predictions to be in good agreement with the observed patient data. These results demonstrate the utility of this modeling framework to guide the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Allison M Claas
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - Meelim Lee
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| | - Pai-Hsi Huang
- Biomedical Research, Novartis, East Hanover, New Jersey, USA
| | | | | | | | - Suzanne Gaudet
- Biomedical Research, Novartis, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Bolinger AA, Li J, Xie X, Li H, Zhou J. Lessons learnt from broad-spectrum coronavirus antiviral drug discovery. Expert Opin Drug Discov 2024; 19:1023-1041. [PMID: 39078037 PMCID: PMC11390334 DOI: 10.1080/17460441.2024.2385598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Highly pathogenic coronaviruses (CoVs), such as severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and the most recent SARS-CoV-2 responsible for the COVID-19 pandemic, pose significant threats to human populations over the past two decades. These CoVs have caused a broad spectrum of clinical manifestations ranging from asymptomatic to severe distress syndromes (ARDS), resulting in high morbidity and mortality. AREAS COVERED The accelerated advancements in antiviral drug discovery, spurred by the COVID-19 pandemic, have shed new light on the imperative to develop treatments effective against a broad spectrum of CoVs. This perspective discusses strategies and lessons learnt in targeting viral non-structural proteins, structural proteins, drug repurposing, and combinational approaches for the development of antivirals against CoVs. EXPERT OPINION Drawing lessons from the pandemic, it becomes evident that the absence of efficient broad-spectrum antiviral drugs increases the vulnerability of public health systems to the potential onslaught by highly pathogenic CoVs. The rapid and sustained spread of novel CoVs can have devastating consequences without effective and specifically targeted treatments. Prioritizing the effective development of broad-spectrum antivirals is imperative for bolstering the resilience of public health systems and mitigating the potential impact of future highly pathogenic CoVs.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Debski-Antoniak O, Flynn A, Klebl DP, Rojas Rechy MH, Tiede C, Wilson IA, Muench SP, Tomlinson D, Fontana J. Exploiting the Affimer platform against influenza A virus. mBio 2024; 15:e0180424. [PMID: 39037231 PMCID: PMC11323568 DOI: 10.1128/mbio.01804-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Influenza A virus (IAV) is well known for its pandemic potential. While current surveillance and vaccination strategies are highly effective, therapeutic approaches are often short-lived due to the high mutation rates of IAV. Recently, monoclonal antibodies (mAbs) have emerged as a promising therapeutic approach, both against current strains and future IAV pandemics. In addition to mAbs, several antibody-like alternatives exist, which aim to improve upon mAbs. Among these, Affimers stand out for their short development time, high expression levels in Escherichia coli, and animal-free production. In this study, we utilized the Affimer platform to isolate and produce specific and potent inhibitors of IAV. Using a monomeric version of the IAV trimeric hemagglutinin (HA) fusion protein, we isolated 12 Affimers that inhibit IAV infection in vitro. Two of these Affimers were characterized in detail and exhibited nanomolar-binding affinities to the target H3 HA protein, specifically binding to the HA1 head domain. Cryo-electron microscopy (cryo-EM), employing a novel spray approach to prepare cryo-grids, allowed us to image HA-Affimer complexes. Combined with functional assays, we determined that these Affimers inhibit IAV by blocking the interaction of HA with the host-cell receptor, sialic acid. Furthermore, these Affimers inhibited IAV strains closely related to the one used for their isolation. Overall, our results support the use of Affimers as a viable alternative to existing targeted therapies for IAV and highlight their potential as diagnostic reagents. IMPORTANCE Influenza A virus is one of the few viruses that can cause devastating pandemics. Due to the high mutation rates of this virus, annual vaccination is required, and antivirals are short-lived. Monoclonal antibodies present a promising approach to tackle influenza virus infections but are associated with some limitations. To improve on this strategy, we explored the Affimer platform, which are antibody-like proteins made in bacteria. By performing phage-display against a monomeric version of influenza virus fusion protein, an established viral target, we were able to isolate Affimers that inhibit influenza virus infection in vitro. We characterized the mechanism of inhibition of the Affimers by using assays targeting different stages of the viral replication cycle. We additionally characterized HA-Affimer complex structure, using a novel approach to prepare samples for cryo-electron microscopy. Overall, these results show that Affimers are a promising tool against influenza virus infection.
Collapse
Affiliation(s)
- Oliver Debski-Antoniak
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex Flynn
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David P. Klebl
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Moisés H. Rojas Rechy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christian Tiede
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Stephen P. Muench
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
9
|
Kohnehrouz BB, Ehsasatvatan M. Redesigning amino/carboxyl ends of DARPin G3 for high thermostability and production in tobacco transplastomic plants. PLANT CELL REPORTS 2024; 43:210. [PMID: 39126530 DOI: 10.1007/s00299-024-03307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
KEY MESSAGE Redesigning the N- and C-capping repeats of the native DARPin G3 significantly improved its stability, and may facilitate its purification from the total soluble proteins of high-temperature dried leaf materials of transplastomic plants. Designed ankyrin repeat proteins (DARPins) constitute a promising class of binding molecules that can overcome the limitations of monoclonal antibodies and enable the development of novel therapeutic approaches. Despite their inherent stability, detailed studies have revealed that the original capping repeats derived from natural ankyrin repeat proteins impair the stability of the initial DARPin design. Consequently, the development of thermodynamically stabilized antibody mimetics may facilitate the development of innovative drugs in the future. In this study, we replaced the original N- and C-capping repeats with improved caps to enhance the thermostability of native DARPin G3. Computational analyses suggested that the redesigned thermostable DARPin G3 structure possessed optimal quality and stability. Molecular dynamics simulations verified the stability of the redesigned thermostable DARPin G3 at high temperatures. The redesigned thermostable DARPin G3 was expressed at high levels in tobacco transplastomic plants and subsequently purified from high-temperature dried leaf materials. Thermal denaturation results revealed that the redesigned thermostable DARPin G3 had a higher Tm value than the native DARPin G3, with a Tm of 35.51 °C greater than that of native DARPin G3. The results of the in vitro bioassays confirmed that the purified thermostable DARPin G3 from high-temperature dried leaf materials maintained its binding activity without any loss of affinity and specifically bound to the HER2 receptor on the cell surface. These findings demonstrate the successful improvement in the thermostability of DARPin G3 without compromising its biological activity.
Collapse
Affiliation(s)
- Bahram Baghban Kohnehrouz
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran.
| | - Maryam Ehsasatvatan
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, 51666, Iran
| |
Collapse
|
10
|
Zhang W, Xiao L, Li D, Hu Y, Yu W. New Strategies for Responding to SARS-CoV-2: The Present and Future of Dual-Target Drugs. J Med Chem 2024; 67:11522-11542. [PMID: 38967785 DOI: 10.1021/acs.jmedchem.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The 2019 coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of deaths, posing a serious threat to public health and safety. Rapid mutations of SARS-CoV-2 and complex interactions among multiple targets during infection pose a risk of expiry for small molecule inhibitors. This suggests that the traditional concept of "one bug, one drug" could be ineffective in dealing with the coronavirus. The dual-target drug strategy is expected to be the key to ending coronavirus infections. However, the lack of design method and improper combination of dual-targets poses obstacle to the discovery of new dual-target drugs. In this Perspective, we summarized the profiles concerning drug design methods, structure-activity relationships, and pharmacological parameters of dual-target drugs for the treatment of COVID-19. Importantly, we underscored how target combination and rational drug design illuminate the development of dual-target drugs for SARS-CoV-2.
Collapse
Affiliation(s)
- Wenyi Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lecheng Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Dianyang Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wenying Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Bianchi M, Reichen C, Croset A, Fischer S, Eggenschwiler A, Grübler Y, Marpakwar R, Looser T, Spitzli P, Herzog C, Villemagne D, Schiegg D, Abduli L, Iss C, Neculcea A, Franchini M, Lekishvili T, Ragusa S, Zitt C, Kaufmann Y, Auge A, Hänggi M, Ali W, Frasconi TM, Wullschleger S, Schlegel I, Matzner M, Lüthi U, Schlereth B, Dawson KM, Kirkin V, Ochsenbein AF, Grimm S, Reschke N, Riether C, Steiner D, Leupin N, Goubier A. The CD33xCD123xCD70 Multispecific CD3-Engaging DARPin MP0533 Induces Selective T Cell-Mediated Killing of AML Leukemic Stem Cells. Cancer Immunol Res 2024; 12:921-943. [PMID: 38683145 PMCID: PMC11217734 DOI: 10.1158/2326-6066.cir-23-0692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The prognosis of patients with acute myeloid leukemia (AML) is limited, especially for elderly or unfit patients not eligible for hematopoietic stem cell (HSC) transplantation. The disease is driven by leukemic stem cells (LSCs), which are characterized by clonal heterogeneity and resistance to conventional therapy. These cells are therefore believed to be a major cause of progression and relapse. We designed MP0533, a multispecific CD3-engaging designed ankyrin repeat protein (DARPin) that can simultaneously bind to three antigens on AML cells (CD33, CD123, and CD70), aiming to enable avidity-driven T cell-mediated killing of AML cells coexpressing at least two of the antigens. In vitro, MP0533 induced selective T cell-mediated killing of AML cell lines, as well as patient-derived AML blasts and LSCs, expressing two or more target antigens, while sparing healthy HSCs, blood, and endothelial cells. The higher selectivity also resulted in markedly lower levels of cytokine release in normal human blood compared to single antigen-targeting T-cell engagers. In xenograft AML mice models, MP0533 induced tumor-localized T-cell activation and cytokine release, leading to complete eradication of the tumors while having no systemic adverse effects. These studies show that the multispecific-targeting strategy used with MP0533 holds promise for improved selectivity toward LSCs and efficacy against clonal heterogeneity, potentially bringing a new therapeutic option to this group of patients with a high unmet need. MP0533 is currently being evaluated in a dose-escalation phase 1 study in patients with relapsed or refractory AML (NCT05673057).
Collapse
Affiliation(s)
| | | | - Amelie Croset
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | | | | | - Thamar Looser
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | | | | | | | - Chloé Iss
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | | | - Simone Ragusa
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Christof Zitt
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | - Alienor Auge
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Martin Hänggi
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Waleed Ali
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | | | - Iris Schlegel
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | | | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | | | | | - Adrian F. Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | - Nina Reschke
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | | | - Anne Goubier
- Molecular Partners AG, Zurich-Schlieren, Switzerland.
| |
Collapse
|
12
|
Chan JFW, Yuan S, Chu H, Sridhar S, Yuen KY. COVID-19 drug discovery and treatment options. Nat Rev Microbiol 2024; 22:391-407. [PMID: 38622352 DOI: 10.1038/s41579-024-01036-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 04/17/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Infectious Diseases and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Shatin, Hong Kong Special Administrative Region, China.
| |
Collapse
|
13
|
Kingsley J, Kumarasamy N, Abrishamian L, Bonten M, Igbinadolor A, Mekebeb-Reuter M, Rosa J, Solai Elango D, Lopez P, Fustier P, Goncalves S, Knutson CG, Kukkaro P, Legenne P, Ramanathan K, Rao S, Reshetnyak E, Stavropoulou V, Stojcheva N, Stumpp MT, Tietz A, Soergel M, Chandra R. The Designed Ankyrin Repeat Protein Antiviral Ensovibep for Nonhospitalized Patients With Coronavirus Disease 2019: Results From EMPATHY, a Randomized, Placebo-Controlled Phase 2 Study. Open Forum Infect Dis 2024; 11:ofae233. [PMID: 38854392 PMCID: PMC11160321 DOI: 10.1093/ofid/ofae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic was characterized by rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, affecting viral transmissibility, virulence, and response to vaccines/therapeutics. EMPATHY (NCT04828161), a phase 2 study, investigated the safety/efficacy of ensovibep, a multispecific designed ankyrin repeat protein (DARPin) with multivariant in vitro activity, in ambulatory patients with mild to moderate COVID-19. Methods Nonhospitalized, symptomatic patients (N = 407) with COVID-19 were randomized to receive single-dose intravenous ensovibep (75, 225, or 600 mg) or placebo and followed until day 91. The primary endpoint was time-weighted change from baseline in log10 SARS-CoV-2 viral load through day 8. Secondary endpoints included proportion of patients with COVID-19-related hospitalizations, emergency room (ER) visits, and/or all-cause mortality to day 29; time to sustained clinical recovery to day 29; and safety to day 91. Results Ensovibep showed superiority versus placebo in reducing log10 SARS-CoV-2 viral load; treatment differences versus placebo in time-weighted change from baseline were -0.42 (P = .002), -0.33 (P = .014), and -0.59 (P < .001) for 75, 225, and 600 mg, respectively. Ensovibep-treated patients had fewer COVID-19-related hospitalizations, ER visits, and all-cause mortality (relative risk reduction: 78% [95% confidence interval, 16%-95%]) and a shorter median time to sustained clinical recovery than placebo. Treatment-emergent adverse events occurred in 44.3% versus 54.0% of patients in the ensovibep and placebo arms; grade 3 events were consistent with COVID-19 morbidity. Two deaths were reported with placebo and none with ensovibep. Conclusions All 3 doses of ensovibep showed antiviral efficacy and clinical benefits versus placebo and an acceptable safety profile in nonhospitalized patients with COVID-19.
Collapse
Affiliation(s)
- Jeff Kingsley
- Centricity Research (formerly IACT Health), Columbus, Georgia, USA
| | - Nagalingeswaran Kumarasamy
- VHS Infectious Diseases Medical Centre, Chennai Antiviral Research and Treatment Clinical Research Site, Chennai, India
| | - Luis Abrishamian
- South Bay Clinical Research Institute, Redondo Beach, California, USA
| | - Marc Bonten
- Department of Epidemiology & Health Economics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | - Patricia Lopez
- Novartis Global Health, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Charles G Knutson
- Novartis Global Health, Biomedical Research, Cambridge, Massachusetts, USA
| | - Petra Kukkaro
- Novartis Global Health, Novartis Pharma AG, Basel, Switzerland
| | | | | | - Shantha Rao
- Novartis Global Health, Global Drug Development, East Hanover, New Jersey, USA
| | - Evgeniya Reshetnyak
- Novartis Global Health, Global Drug Development, East Hanover, New Jersey, USA
| | | | | | | | - Andreas Tietz
- Novartis Global Health, Novartis Pharma AG, Basel, Switzerland
| | | | - Richa Chandra
- Novartis Global Health, Global Drug Development, East Hanover, New Jersey, USA
| |
Collapse
|
14
|
Kim D, Kim M, Kim J, Baek K, Park H, Park S, Kang BM, Kim S, Kim MJ, Mostafa MN, Maharjan S, Shin HE, Lee MH, Il Kim J, Park MS, Kim YS, Choi EK, Lee Y, Kwon HJ. A mouse xenograft long-term replication yields a SARS-CoV-2 Delta mutant with increased lethality. J Med Virol 2024; 96:e29459. [PMID: 38345153 DOI: 10.1002/jmv.29459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024]
Abstract
We recently established a long-term SARS-CoV-2 infection model using lung-cancer xenograft mice and identified mutations that arose in the SARS-CoV-2 genome during long-term propagation. Here, we applied our model to the SARS-CoV-2 Delta variant, which has increased transmissibility and immune escape compared with ancestral SARS-CoV-2. We observed limited mutations in SARS-CoV-2 Delta during long-term propagation, including two predominant mutations: R682W in the spike protein and L330W in the nucleocapsid protein. We analyzed two representative isolates, Delta-10 and Delta-12, with both predominant mutations and some additional mutations. Delta-10 and Delta-12 showed lower replication capacity compared with SARS-CoV-2 Delta in cultured cells; however, Delta-12 was more lethal in K18-hACE2 mice compared with SARS-CoV-2 Delta and Delta-10. Mice infected with Delta-12 had higher viral titers, more severe histopathology in the lungs, higher chemokine expression, increased astrocyte and microglia activation, and extensive neutrophil infiltration in the brain. Brain tissue hemorrhage and mild vacuolation were also observed, suggesting that the high lethality of Delta-12 was associated with lung and brain pathology. Our long-term infection model can provide mutant viruses derived from SARS-CoV-2 Delta and knowledge about the possible contributions of emergent mutations to the properties of new variants.
Collapse
Affiliation(s)
- Dongbum Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Minyoung Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Jinsoo Kim
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Kyeongbin Baek
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Heedo Park
- Department of Microbiology, Vaccine Innovation Center College of Medicine, Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Bo Min Kang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Suyeon Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Mo-Jong Kim
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Mohd Najib Mostafa
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
| | - Sony Maharjan
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ha-Eun Shin
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Myeong-Heon Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Vaccine Innovation Center College of Medicine, Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Vaccine Innovation Center College of Medicine, Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Yong-Sun Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
| | - Eun-Kyoung Choi
- Ilsong Institute of Life Science, Hallym University, Seoul, Republic of Korea
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyung-Joo Kwon
- Institute of Medical Science, College of Medicine, Hallym University, Chuncheon, Republic of Korea
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
15
|
Jin H, Gong Y, Cheng L, Zhu Y, Zhang Z, He Y. Susceptibility and Resistance of SARS-CoV-2 Variants to LCB1 and Its Multivalent Derivatives. Viruses 2023; 16:36. [PMID: 38257736 PMCID: PMC10819472 DOI: 10.3390/v16010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
LCB1 is a computationally designed three-helix miniprotein that precisely targets the spike (S) receptor-binding motif (RBM) of SARS-CoV-2, exhibiting remarkable antiviral efficacy; however, emerging SARS-CoV-2 variants could substantially compromise its neutralization effectiveness. In this study, we constructed two multivalent LCB1 fusion proteins termed LCB1T and LCB1T-Fc, and characterized their potency in inhibiting SARS-CoV-2 pseudovirus and authentic virus in vitro. In the inhibition of various SARS-CoV-2 variants, the two LCB1 fusion proteins exhibited markedly improved inhibitory activities compared to LCB1 as anticipated; however, it was observed that relative to the D614G mutation hosting variant, the variants Delta, Lambda, and Omicron BQ.1.1, XBB, XBB.1.5, and EG.5.1 caused various degrees of resistance to the two fusion proteins' inhibition, with XBB, XBB.1.5, and EG.5.1 variants showing high-level resistance. Moreover, we demonstrated that bat coronavirus RaTG13 and pangolin coronavirus PCoV-GD/PCoV-GX were highly sensitive to two LCB1 fusion proteins, but not LCB1, inhibition. Importantly, our findings revealed a notable decrease in the blocking capacity of the multivalent LCB1 inhibitor on the interaction between the virus's RBD/S and the cell receptor ACE2 when confronted with the XBB variant compared to WT and the Omicron BA.1 variant. In conclusion, our studies provide valuable insights into the antiviral profiling of multivalent LCB1 inhibitors and offer a promising avenue for the development of novel broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Yani Gong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Lin Cheng
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China;
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| | - Zheng Zhang
- Institute of Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518112, China;
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 102600, China; (H.J.); (Y.G.); (Y.Z.)
| |
Collapse
|
16
|
Kang JJ, Ohoka A, Sarkar CA. Designing Multivalent and Multispecific Biologics. Annu Rev Chem Biomol Eng 2023; 15:293-314. [PMID: 38064501 DOI: 10.1146/annurev-chembioeng-100722-112440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the era of precision medicine, multivalent and multispecific therapeutics present a promising approach for targeted disease intervention. These therapeutics are designed to interact with multiple targets simultaneously, promising enhanced efficacy, reduced side effects, and resilience against drug resistance. We dissect the principles guiding the design of multivalent biologics, highlighting challenges and strategies that must be considered to maximize therapeutic effect. Engineerable elements in multivalent and multispecific biologic design-domain affinities, valency, and spatial presentation-must be considered in the context of the molecular targets as well as the balance of important properties such as target avidity and specificity. We illuminate recent applications of these principles in designing protein and cell therapies and identify exciting future directions in this field, underscored by advances in biomolecular and cellular engineering and computational approaches. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer J Kang
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| | - Ayako Ohoka
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
- Present affiliation: AbbVie Inc., North Chicago, Illinois, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA; , ,
| |
Collapse
|
17
|
Lan Q, Yan Y, Zhang G, Xia S, Zhou J, Lu L, Jiang S. Clinical development of antivirals against SARS-CoV-2 and its variants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 6:100208. [PMID: 38149085 PMCID: PMC10750039 DOI: 10.1016/j.crmicr.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The unceasing global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) calls for the development of novel therapeutics. Although many newly developed antivirals and repurposed antivirals have been applied to the treatment of coronavirus disease 2019 (COVID-19), antivirals showing satisfactory clinical efficacy are few in number. In addition, the loss of sensitivity to variants of concern (VOCs) and lack of oral bioavailability have also limited the clinical application of some antivirals. These facts remind us to develop more potent and broad-spectrum antivirals with better pharmacokinetic/pharmacodynamic properties to fight against infections from SARS-CoV-2, its variants, and other human coronaviruses (HCoVs). In this review, we summarize the latest advancements in the clinical development of antivirals against infections by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Guangxu Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jie Zhou
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong, China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Frontiers Science Center of Pathogenic Microbes and Infection, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Theuerkauf SA, Herrera-Carrillo E, John F, Zinser LJ, Molina MA, Riechert V, Thalheimer FB, Börner K, Grimm D, Chlanda P, Berkhout B, Buchholz CJ. AAV vectors displaying bispecific DARPins enable dual-control targeted gene delivery. Biomaterials 2023; 303:122399. [PMID: 37992599 PMCID: PMC10721713 DOI: 10.1016/j.biomaterials.2023.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Precise delivery of genes to therapy-relevant cells is crucial for in vivo gene therapy. Receptor-targeting as prime strategy for this purpose is limited to cell types defined by a single cell-surface marker. Many target cells are characterized by combinations of more than one marker, such as the HIV reservoir cells. Here, we explored the tropism of adeno-associated viral vectors (AAV2) displaying designed ankyrin repeat proteins (DARPins) mono- and bispecific for CD4 and CD32a. Cryo-electron tomography revealed an unaltered capsid structure in the presence of DARPins. Surprisingly, bispecific AAVs transduced CD4/CD32a double-positive cells at much higher efficiencies than single-positive cells, even if present in low amounts in cell mixtures or human blood. This preference was confirmed when vector particles were systemically administered into mice. Cell trafficking studies revealed an increased cell entry rate for bispecific over monospecific AAVs. When equipped with an HIV genome-targeting CRISPR/Cas cassette, the vectors prevented HIV replication in T cell cultures. The data provide proof-of-concept for high-precision gene delivery through tandem-binding regions on AAV. Reminiscent of biological products following Boolean logic AND gating, the data suggest a new option for receptor-targeted vectors to improve the specificity and safety of in vivo gene therapy.
Collapse
Affiliation(s)
- Samuel A Theuerkauf
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Fabian John
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Luca J Zinser
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Vanessa Riechert
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Frederic B Thalheimer
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Kathleen Börner
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Dirk Grimm
- BioQuant, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), Heidelberg, Germany; Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University Hospital, Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Heidelberg, Germany
| | - Petr Chlanda
- Department of Infectious Diseases/Virology, Heidelberg University Hospital, Heidelberg, Germany; BioQuant, Heidelberg University, Heidelberg, Germany; Schaller Research Groups, Heidelberg University, Heidelberg, Germany
| | | | - Christian J Buchholz
- Gene Therapy and Molecular Biotechnology, Paul-Ehrlich-Institut, Langen, Germany; Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany.
| |
Collapse
|
19
|
Benjakul S, Anthi AK, Kolderup A, Vaysburd M, Lode HE, Mallery D, Fossum E, Vikse EL, Albecka A, Ianevski A, Kainov D, Karlsen KF, Sakya SA, Nyquist-Andersen M, Gjølberg TT, Moe MC, Bjørås M, Sandlie I, James LC, Andersen JT. A pan-SARS-CoV-2-specific soluble angiotensin-converting enzyme 2-albumin fusion engineered for enhanced plasma half-life and needle-free mucosal delivery. PNAS NEXUS 2023; 2:pgad403. [PMID: 38077689 PMCID: PMC10703496 DOI: 10.1093/pnasnexus/pgad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 02/29/2024]
Abstract
Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.
Collapse
Affiliation(s)
- Sopisa Benjakul
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Aina Karen Anthi
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Anette Kolderup
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Heidrun Elisabeth Lode
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Donna Mallery
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Even Fossum
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Elisabeth Lea Vikse
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Anna Albecka
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Karine Flem Karlsen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Siri Aastedatter Sakya
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Mari Nyquist-Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Magnar Bjørås
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| |
Collapse
|
20
|
Yang J, Lin S, Chen Z, Yang F, Guo L, Wang L, Duan Y, Zhang X, Dai Y, Yin K, Yu C, Yuan X, Sun H, He B, Cao Y, Ye H, Dong H, Liu X, Chen B, Li J, Zhao Q, Lu G. Development of a bispecific nanobody conjugate broadly neutralizes diverse SARS-CoV-2 variants and structural basis for its broad neutralization. PLoS Pathog 2023; 19:e1011804. [PMID: 38033141 PMCID: PMC10688893 DOI: 10.1371/journal.ppat.1011804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
The continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increased transmissibility and profound immune-escape capacity makes it an urgent need to develop broad-spectrum therapeutics. Nanobodies have recently attracted extensive attentions due to their excellent biochemical and binding properties. Here, we report two high-affinity nanobodies (Nb-015 and Nb-021) that target non-overlapping epitopes in SARS-CoV-2 S-RBD. Both nanobodies could efficiently neutralize diverse viruses of SARS-CoV-2. The neutralizing mechanisms for the two nanobodies are further delineated by high-resolution nanobody/S-RBD complex structures. In addition, an Fc-based tetravalent nanobody format is constructed by combining Nb-015 and Nb-021. The resultant nanobody conjugate, designated as Nb-X2-Fc, exhibits significantly enhanced breadth and potency against all-tested SARS-CoV-2 variants, including Omicron sub-lineages. These data demonstrate that Nb-X2-Fc could serve as an effective drug candidate for the treatment of SARS-CoV-2 infection, deserving further in-vivo evaluations in the future.
Collapse
Affiliation(s)
- Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Honglu Sun
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haoyu Ye
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianbo Liu
- CHENGDU NB BIOLAB CO., LTD, Chengdu, Sichuan, China
| | - Bo Chen
- CHENGDU NB BIOLAB CO., LTD, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Viollet S, Enouf E, Picot J, Noël L, Huet S, Le Pennec D, Sécher T, Heuzé-Vourc'h N, Kitten O, Cinier M. Inhalable Nanofitin demonstrates high neutralization of SARS-CoV-2 virus via direct application in respiratory tract. Mol Ther 2023; 31:2861-2871. [PMID: 37652011 PMCID: PMC10556219 DOI: 10.1016/j.ymthe.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023] Open
Abstract
Nanofitins are small and hyperthermostable alternative protein scaffolds that display physicochemical properties making them suitable for the development of topical therapeutics, notably for the treatment of pulmonary infectious diseases. Local administration of biologics to the lungs involves a particularly stressful step of nebulization that is poorly tolerated by most antibodies, which limits their application by this delivery route. During the COVID-19 pandemic, we generated anti-SARS-CoV-2 monomeric Nanofitins of high specificity for the spike protein. Hit Nanofitin candidates were identified based on their binding properties with punctual spike mutants and assembled into a linear multimeric construction constituting of four different Nanofitins, allowing the generation of a highly potent anti-SARS-CoV-2 molecule. The therapeutic efficacy of the multimeric assembly was demonstrated both in in vitro and in vivo models. Interestingly, the neutralization mechanism of the multimeric construction seems to involve a particular conformation switch of the spike trimer. In addition, we reported the stability and the conserved activity of the tetrameric construction after nebulization. This advantageous developability feature for pulmonary administration associated with the ease of assembly, as well as the fast generation process position the Nanofitin technology as a potential therapeutic solution for emerging infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Déborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Thomas Sécher
- INSERM, Research Center for Respiratory Diseases, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Research Center for Respiratory Diseases, U1100, F-37032 Tours, France; University of Tours, F-37032 Tours, France
| | | | | |
Collapse
|
22
|
Castells-Graells R, Meador K, Arbing MA, Sawaya MR, Gee M, Cascio D, Gleave E, Debreczeni JÉ, Breed J, Leopold K, Patel A, Jahagirdar D, Lyons B, Subramaniam S, Phillips C, Yeates TO. Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold. Proc Natl Acad Sci U S A 2023; 120:e2305494120. [PMID: 37669364 PMCID: PMC10500258 DOI: 10.1073/pnas.2305494120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/14/2023] [Indexed: 09/07/2023] Open
Abstract
Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.
Collapse
Affiliation(s)
- Roger Castells-Graells
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Kyle Meador
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Mark A. Arbing
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Michael R. Sawaya
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Morgan Gee
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Duilio Cascio
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
| | - Emma Gleave
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | | | - Jason Breed
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | - Karoline Leopold
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | - Ankoor Patel
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | | | - Bronwyn Lyons
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
| | - Sriram Subramaniam
- Gandeeva Therapeutics, Inc., Burnaby, British ColumbiaV5C 6N5, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Chris Phillips
- Discovery Sciences, R&D, AstraZeneca, CambridgeCB2 0AA, United Kingdom
| | - Todd O. Yeates
- Department of Energy, Institute for Genomics and Proteomics, University of California, Los Angeles, CA90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| |
Collapse
|
23
|
Gaudreault F, Baardsnes J, Martynova Y, Dachon A, Hogues H, Corbeil CR, Purisima EO, Arbour M, Sulea T. Exploring rigid-backbone protein docking in biologics discovery: a test using the DARPin scaffold. Front Mol Biosci 2023; 10:1253689. [PMID: 37692063 PMCID: PMC10484509 DOI: 10.3389/fmolb.2023.1253689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Accurate protein-protein docking remains challenging, especially for artificial biologics not coevolved naturally against their protein targets, like antibodies and other engineered scaffolds. We previously developed ProPOSE, an exhaustive docker with full atomistic details, which delivers cutting-edge performance by allowing side-chain rearrangements upon docking. However, extensive protein backbone flexibility limits its practical applicability as indicated by unbound docking tests. To explore the usefulness of ProPOSE on systems with limited backbone flexibility, here we tested the engineered scaffold DARPin, which is characterized by its relatively rigid protein backbone. A prospective screening campaign was undertaken, in which sequence-diversified DARPins were docked and ranked against a directed epitope on the target protein BCL-W. In this proof-of-concept study, only a relatively small set of 2,213 diverse DARPin interfaces were selected for docking from the huge theoretical library from mutating 18 amino-acid positions. A computational selection protocol was then applied for enrichment of binders based on normalized computed binding scores and frequency of binding modes against the predefined epitope. The top-ranked 18 designed DARPin interfaces were selected for experimental validation. Three designs exhibited binding affinities to BCL-W in the nanomolar range comparable to control interfaces adopted from known DARPin binders. This result is encouraging for future screening and engineering campaigns of DARPins and possibly other similarly rigid scaffolds against targeted protein epitopes. Method limitations are discussed and directions for future refinements are proposed.
Collapse
Affiliation(s)
- Francis Gaudreault
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Yuliya Martynova
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Aurore Dachon
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Hervé Hogues
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Christopher R. Corbeil
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Enrico O. Purisima
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mélanie Arbour
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| |
Collapse
|
24
|
Mitsui Y, Suzuki T, Kuniyoshi K, Inamo J, Yamaguchi K, Komuro M, Watanabe J, Edamoto M, Li S, Kouno T, Oba S, Hosoya T, Masuhiro K, Naito Y, Koyama S, Sakaguchi N, Standley DM, Shin JW, Akira S, Yasuda S, Miyazaki Y, Kochi Y, Kumanogoh A, Okamoto T, Satoh T. Expression of the readthrough transcript CiDRE in alveolar macrophages boosts SARS-CoV-2 susceptibility and promotes COVID-19 severity. Immunity 2023; 56:1939-1954.e12. [PMID: 37442134 DOI: 10.1016/j.immuni.2023.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/25/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.
Collapse
Affiliation(s)
- Yuichi Mitsui
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kanako Kuniyoshi
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Jun Inamo
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mariko Komuro
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Junya Watanabe
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mio Edamoto
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Songling Li
- Laboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Tsukasa Kouno
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Seiya Oba
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tadashi Hosoya
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Kentaro Masuhiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | | | - Daron M Standley
- Laboratory of Systems Immunology, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Jay W Shin
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Shizuo Akira
- Innate Cell Therapy Inc., Osaka 530-0017, Japan; Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center, WPI-IFReC, Osaka University, Osaka 565-0871, Japan
| | - Shinsuke Yasuda
- Department of Rheumatology, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan; Department of Microbiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takashi Satoh
- Department of Immunology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Innate Cell Therapy Inc., Osaka 530-0017, Japan.
| |
Collapse
|
25
|
Thijssen V, Hurdiss DL, Debski-Antoniak OJ, Spence MA, Franck C, Norman A, Aggarwal A, Mokiem NJ, van Dongen DAA, Vermeir SW, Liu M, Li W, Chatziandreou M, Donselaar T, Du W, Drulyte I, Bosch BJ, Snijder J, Turville SG, Payne RJ, Jackson CJ, van Kuppeveld FJM, Jongkees SAK. A broad-spectrum macrocyclic peptide inhibitor of the SARS-CoV-2 spike protein. Proc Natl Acad Sci U S A 2023; 120:e2303292120. [PMID: 37339194 PMCID: PMC10293842 DOI: 10.1073/pnas.2303292120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
The ongoing COVID-19 pandemic has had great societal and health consequences. Despite the availability of vaccines, infection rates remain high due to immune evasive Omicron sublineages. Broad-spectrum antivirals are needed to safeguard against emerging variants and future pandemics. We used messenger RNA (mRNA) display under a reprogrammed genetic code to find a spike-targeting macrocyclic peptide that inhibits SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Wuhan strain infection and pseudoviruses containing spike proteins of SARS-CoV-2 variants or related sarbecoviruses. Structural and bioinformatic analyses reveal a conserved binding pocket between the receptor-binding domain, N-terminal domain, and S2 region, distal to the angiotensin-converting enzyme 2 receptor-interaction site. Our data reveal a hitherto unexplored site of vulnerability in sarbecoviruses that peptides and potentially other drug-like molecules can target.
Collapse
Affiliation(s)
- Vito Thijssen
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Daniel L. Hurdiss
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Oliver J. Debski-Antoniak
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Matthew A. Spence
- Research School of Chemistry, Australian National University, CanberraACT2601, Australia
| | - Charlotte Franck
- School of Chemistry, The University of Sydney, SydneyNSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, SydneyNSW2006, Australia
| | - Alexander Norman
- School of Chemistry, The University of Sydney, SydneyNSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, SydneyNSW2006, Australia
| | | | - Nadia J. Mokiem
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CH, the Netherlands
| | - David A. A. van Dongen
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Stein W. Vermeir
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Minglong Liu
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| | - Wentao Li
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Marianthi Chatziandreou
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Tim Donselaar
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Wenjuan Du
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Ieva Drulyte
- Thermo Fisher Scientific, Materials and Structural Analysis, Eindhoven5651GG, the Netherlands
| | - Berend-Jan Bosch
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CH, the Netherlands
| | | | - Richard J. Payne
- School of Chemistry, The University of Sydney, SydneyNSW2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, SydneyNSW2006, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, CanberraACT2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, CanberraACT2601, Australia
- Australian Research Council Centre of Excellence for Synthetic Biology, Australian National University, CanberraACT2601, Australia
| | - Frank J. M. van Kuppeveld
- Section Virology, Division Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht3584CL, the Netherlands
| | - Seino A. K. Jongkees
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584CG, the Netherlands
- Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam1081HV, the Netherlands
| |
Collapse
|
26
|
Gaynor KU, Vaysburd M, Harman MAJ, Albecka A, Jeffrey P, Beswick P, Papa G, Chen L, Mallery D, McGuinness B, Van Rietschoten K, Stanway S, Brear P, Lulla A, Ciazynska K, Chang VT, Sharp J, Neary M, Box H, Herriott J, Kijak E, Tatham L, Bentley EG, Sharma P, Kirby A, Han X, Stewart JP, Owen A, Briggs JAG, Hyvönen M, Skynner MJ, James LC. Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2. Nat Commun 2023; 14:3583. [PMID: 37328472 PMCID: PMC10275983 DOI: 10.1038/s41467-023-39158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.
Collapse
Affiliation(s)
- Katherine U Gaynor
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Maximilian A J Harman
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Phillip Jeffrey
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Paul Beswick
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Liuhong Chen
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Donna Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Brian McGuinness
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | | | - Steven Stanway
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Katarzyna Ciazynska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Jo Sharp
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Megan Neary
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Helen Box
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Jo Herriott
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Edyta Kijak
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Lee Tatham
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Eleanor G Bentley
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Parul Sharma
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Adam Kirby
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Ximeng Han
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - James P Stewart
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Andrew Owen
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - John A G Briggs
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
- Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Michael J Skynner
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
27
|
Toussi SS, Hammond JL, Gerstenberger BS, Anderson AS. Therapeutics for COVID-19. Nat Microbiol 2023; 8:771-786. [PMID: 37142688 DOI: 10.1038/s41564-023-01356-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
Vaccines and monoclonal antibody treatments to prevent severe coronavirus disease 2019 (COVID-19) illness were available within a year of the pandemic being declared but there remained an urgent need for therapeutics to treat patients who were not vaccinated, were immunocompromised or whose vaccine immunity had waned. Initial results for investigational therapies were mixed. AT-527, a repurposed nucleoside inhibitor for hepatitis C virus, enabled viral load reduction in a hospitalized cohort but did not reduce viral load in outpatients. The nucleoside inhibitor molnupiravir prevented death but failed to prevent hospitalization. Nirmatrelvir, an inhibitor of the main protease (Mpro), co-dosed with the pharmacokinetic booster ritonavir, reduced hospitalization and death. Nirmatrelvir-ritonavir and molnupiravir received an Emergency Use Authorization in the United States at the end of 2021. Immunomodulatory drugs such as baricitinib, tocilizumab and corticosteroid, which target host-driven COVID-19 symptoms, are also in use. We highlight the development of COVID-19 therapies and the challenges that remain for anticoronavirals.
Collapse
|
28
|
Künzi L, Ryter S, Cornelius A, Leni Z, Baumlin N, Salathe M, Walser M, Engler O, Geiser M. Transport of Designed Ankyrin Repeat Proteins through reconstituted human bronchial epithelia and protection against SARS-CoV-2. Sci Rep 2023; 13:5537. [PMID: 37016030 PMCID: PMC10072008 DOI: 10.1038/s41598-023-32269-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023] Open
Abstract
Clinical studies have proven antiviral effectiveness of treatment with a Designed Ankyrin Repeat Protein (DARPin) specific against the spike protein of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). More information on transport mechanisms and efficiency to the site of action is desirable. Transepithelial migration through air-liquid interface (ALI) cultures of reconstituted human bronchial epithelia (HBE) was assessed by Enzyme-Linked Immunosorbent Assays and Confocal Laser Scanning Microscopy for different DARPin designs in comparison to a monoclonal antibody. Antiviral efficacy against authentic SARS-CoV-2, applied apically on HBE, was investigated based on viral titers and genome equivalents, after administration of therapeutic candidates on the basal side. Transepithelial translocation of all DARPin candidates and the monoclonal antibody was efficient and dose dependent. Small DARPins and the antibody migrated more efficiently than larger molecules, indicating different transport mechanisms involved. Microscopic analyses support this, demonstrating passive paracellular transport of smaller DARPins and transcellular migration of the larger molecules. All therapeutic candidates applied to the basal side of HBE conferred effective protection against SARS-CoV-2 infection. In summary, we have shown that DARPins specific against SARS-CoV-2 translocate across intact airway epithelia and confer effective protection against infection and viral replication.
Collapse
Affiliation(s)
- Lisa Künzi
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
| | - Sarah Ryter
- Labor Spiez, Federal Office for Civil Protection, 3700, Spiez, Switzerland
| | | | - Zaira Leni
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland
| | - Nathalie Baumlin
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
| | - Marcel Walser
- Molecular Partners AG, 8952, Zürich-Schlieren, Switzerland
| | - Olivier Engler
- Labor Spiez, Federal Office for Civil Protection, 3700, Spiez, Switzerland
| | - Marianne Geiser
- Institute of Anatomy, University of Bern, 3012, Bern, Switzerland.
| |
Collapse
|
29
|
Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Bouza E. Insights for COVID-19 in 2023. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023; 36:114-124. [PMID: 36510683 PMCID: PMC10066911 DOI: 10.37201/req/122.2022] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Predictions for a near end of the pandemic by the World Health Organization should be interpreted with caution. Current evidence indicates that the efficacy of a fourth dose of classical mRNA vaccines (BT162b2 or mRNA-1273) is low and short-lived in preventing SARS-CoV-2 infection in its predominant variant (Omicron). However, its efficacy is high against severe symptomatic infection, hospitalization and death. The new vaccines being introduced are bivalent and active against the Omicron variants. Potential new vaccines to be introduced in the coming year include a vaccine based on a recombinant protein that emulates the receptor binding domain of the Spike protein under development by the Spanish company Hipra, as well as vaccines for nasal or oral administration. Available information suggests that vaccines against COVID-19 can be administered in association with influenza vaccination without particular complications. New drugs against COVID-19, both antiviral and anti-inflammatory, are under investigation, but this does not seem to be the case with monoclonal antibodies. The indication to use masks in some circumstances will be maintained next year in view of the accumulation of scientific data on their efficacy. Finally, the long COVID or Post-COVID syndrome may continue to affect a very high proportion of patients who have had the disease, requiring combined diagnostic and therapeutic resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
30
|
Martín Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo FJ, Ruiz-Galiana J, Cantón R, De Lucas Ramos P, García-Botella A, García-Lledó A, Hernández-Sampelayo T, Gómez-Pavón J, González Del Castillo J, Martín-Delgado MC, Bouza E. Insights for COVID-19 in 2023. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2023. [PMID: 36510683 DOI: 10.3701/req/059.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Predictions for a near end of the pandemic by the World Health Organization should be interpreted with caution. Current evidence indicates that the efficacy of a fourth dose of classical mRNA vaccines (BT162b2 or mRNA-1273) is low and short-lived in preventing SARS-CoV-2 infection in its predominant variant (Omicron). However, its efficacy is high against severe symptomatic infection, hospitalization and death. The new vaccines being introduced are bivalent and active against the Omicron variants. Potential new vaccines to be introduced in the coming year include a vaccine based on a recombinant protein that emulates the receptor binding domain of the Spike protein under development by the Spanish company Hipra, as well as vaccines for nasal or oral administration. Available information suggests that vaccines against COVID-19 can be administered in association with influenza vaccination without particular complications. New drugs against COVID-19, both antiviral and anti-inflammatory, are under investigation, but this does not seem to be the case with monoclonal antibodies. The indication to use masks in some circumstances will be maintained next year in view of the accumulation of scientific data on their efficacy. Finally, the long COVID or Post-COVID syndrome may continue to affect a very high proportion of patients who have had the disease, requiring combined diagnostic and therapeutic resources.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - E Bouza
- Servicio de Microbiología Clínica y Enfermedades Infecciosas del Hospital General Universitario Gregorio Marañón, Universidad Complutense. CIBERES. Ciber de Enfermedades Respiratorias. Madrid, Spain.
| |
Collapse
|
31
|
Juntit OA, Sornsuwan K, Wisitponchai T, Sanghiran Lee V, Sakkhachornphop S, Yasamut U, Tayapiwatana C. Dimeric Ankyrin with Inverted Module Promotes Bifunctional Property in Capturing Capsid to Impede HIV-1 Replication. Int J Mol Sci 2023; 24:ijms24065266. [PMID: 36982337 PMCID: PMC10048781 DOI: 10.3390/ijms24065266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Several anti-HIV scaffolds have been proposed as complementary treatments to highly active antiretroviral therapy. AnkGAG1D4, a designed ankyrin repeat protein, formerly demonstrated anti-HIV-1 replication by interfering with HIV-1 Gag polymerization. However, the improvement of the effectiveness was considered. Recently, the dimeric molecules of AnkGAG1D4 were accomplished in enhancing the binding activity against HIV-1 capsid (CAp24). In this study, the interaction of CAp24 against the dimer conformations was elucidated to elaborate the bifunctional property. The accessibility of the ankyrin binding domains was inspected by bio-layer interferometry. By inverting the second module of dimeric ankyrin (AnkGAG1D4NC-CN), the CAp24 interaction KD was significantly reduced. This reflects the capability of AnkGAG1D4NC-CN in simultaneously capturing CAp24. On the contrary, the binding activity of dimeric AnkGAG1D4NC-NC was indistinguishable from the monomeric AnkGAG1D4. The bifunctional property of AnkGAG1D4NC-CN was subsequently confirmed in the secondary reaction with additional p17p24. This data correlates with the MD simulation, which suggested the flexibility of the AnkGAG1D4NC-CN structure. The CAp24 capturing capacity was influenced by the distance of the AnkGAG1D4 binding domains to introduce the avidity mode of AnkGAG1D4NC-CN. Consequently, AnkGAG1D4NC-CN showed superior potency in interfering with HIV-1 NL4-3 WT and HIV-1 NL4-3 MIRCAI201V replication than AnkGAG1D4NC-NC and an affinity improved AnkGAG1D4-S45Y.
Collapse
Affiliation(s)
- On-anong Juntit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.); (T.W.); (U.Y.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokporn Sornsuwan
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.); (T.W.); (U.Y.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanchanok Wisitponchai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.); (T.W.); (U.Y.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Drug Design Development Research Group, Center of Theoretical and Computational Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.); (T.W.); (U.Y.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (O.-a.J.); (K.S.); (T.W.); (U.Y.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-8-1-8845141; Fax: +66-53-946042
| |
Collapse
|
32
|
Chonira V, Kwon YD, Gorman J, Case JB, Ku Z, Simeon R, Casner RG, Harris DR, Olia AS, Stephens T, Shapiro L, Bender MF, Boyd H, Teng IT, Tsybovsky Y, Krammer F, Zhang N, Diamond MS, Kwong PD, An Z, Chen Z. A potent and broad neutralization of SARS-CoV-2 variants of concern by DARPins. Nat Chem Biol 2023; 19:284-291. [PMID: 36411391 PMCID: PMC10294592 DOI: 10.1038/s41589-022-01193-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/30/2022] [Indexed: 11/22/2022]
Abstract
We report the engineering and selection of two synthetic proteins-FSR16m and FSR22-for the possible treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. FSR16m and FSR22 are trimeric proteins composed of DARPin SR16m or SR22 fused with a T4 foldon. Despite selection by a spike protein from a now historical SARS-CoV-2 strain, FSR16m and FSR22 exhibit broad-spectrum neutralization of SARS-CoV-2 strains, inhibiting authentic B.1.351, B.1.617.2 and BA.1.1 viruses, with respective IC50 values of 3.4, 2.2 and 7.4 ng ml-1 for FSR16m. Cryo-EM structures revealed that these DARPins recognize a region of the receptor-binding domain (residues 456, 475, 486, 487 and 489) overlapping a critical portion of the angiotensin-converting enzyme 2 (ACE2)-binding surface. K18-hACE2 transgenic mice inoculated with B.1.617.2 and receiving intranasally administered FSR16m showed less weight loss and 10-100-fold lower viral burden in upper and lower respiratory tracts. The strong and broad neutralization potency makes FSR16m and FSR22 promising candidates for the prevention and treatment of infection by SARS-CoV-2.
Collapse
Affiliation(s)
- Vikas Chonira
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Rudo Simeon
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Ryan G Casner
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Darcy R Harris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hannah Boyd
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai (ISMMS), New York City, NY, USA
- Department of Pathology, Molecular and Cell based Medicine, ISMMS, New York City, NY, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Pathology and Immunology, Department of Molecular Microbiology, and The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Zhilei Chen
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
33
|
Du W, Janssens R, Mykytyn AZ, Li W, Drabek D, van Haperen R, Chatziandreou M, Rissmann M, van der Lee J, van Dortmondt M, Martin IS, van Kuppeveld FJM, Hurdiss DL, Haagmans BL, Grosveld F, Bosch BJ. Avidity engineering of human heavy-chain-only antibodies mitigates neutralization resistance of SARS-CoV-2 variants. Front Immunol 2023; 14:1111385. [PMID: 36895554 PMCID: PMC9990171 DOI: 10.3389/fimmu.2023.1111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Emerging SARS-CoV-2 variants have accrued mutations within the spike protein rendering most therapeutic monoclonal antibodies against COVID-19 ineffective. Hence there is an unmet need for broad-spectrum mAb treatments for COVID-19 that are more resistant to antigenically drifted SARS-CoV-2 variants. Here we describe the design of a biparatopic heavy-chain-only antibody consisting of six antigen binding sites recognizing two distinct epitopes in the spike protein NTD and RBD. The hexavalent antibody showed potent neutralizing activity against SARS-CoV-2 and variants of concern, including the Omicron sub-lineages BA.1, BA.2, BA.4 and BA.5, whereas the parental components had lost Omicron neutralization potency. We demonstrate that the tethered design mitigates the substantial decrease in spike trimer affinity seen for escape mutations for the hexamer components. The hexavalent antibody protected against SARS-CoV-2 infection in a hamster model. This work provides a framework for designing therapeutic antibodies to overcome antibody neutralization escape of emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Rick Janssens
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Anna Z. Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wentao Li
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Marianthi Chatziandreou
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Melanie Rissmann
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Joline van der Lee
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Melissa van Dortmondt
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Itziar Serna Martin
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank J. M. van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniel L. Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
34
|
Lim SP. Targeting SARS-CoV-2 and host cell receptor interactions. Antiviral Res 2023; 210:105514. [PMID: 36581047 PMCID: PMC9792186 DOI: 10.1016/j.antiviral.2022.105514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Despite the availability of vaccines and therapeutics, continual genetic alterations render the severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) a persistent threat, particularly for the immunocompromised and elderly. Through interactions of its spike (S) protein with different receptors and coreceptors on host cell surfaces, the virus enters the cell either via fusion with the plasma membrane or through endocytosis. Angiotensin-converting enzyme 2 (ACE2) has been identified as a key receptor utilized by SARS-CoV-2 and related human coronaviruses to mediate cell entry in the lung airways. Auxiliary SARS-CoV-2 entry receptors such as ASGPR1, Kremen protein 1, integrins have also been reported. In this review, therapeutic approaches to block SARS-CoV-2 and host cell receptor interactions are discussed.
Collapse
Affiliation(s)
- Siew Pheng Lim
- Experimental Drug Development Centre (EDDC), A*STAR, 10, Biopolis Road, #05-01, Chromos, 138670, Singapore.
| |
Collapse
|
35
|
Callaway HM, Hastie KM, Schendel SL, Li H, Yu X, Shek J, Buck T, Hui S, Bedinger D, Troup C, Dennison SM, Li K, Alpert MD, Bailey CC, Benzeno S, Bonnevier JL, Chen JQ, Chen C, Cho H, Crompton PD, Dussupt V, Entzminger KC, Ezzyat Y, Fleming JK, Geukens N, Gilbert AE, Guan Y, Han X, Harvey CJ, Hatler JM, Howie B, Hu C, Huang A, Imbrechts M, Jin A, Kamachi N, Keitany G, Klinger M, Kolls JK, Krebs SJ, Li T, Luo F, Maruyama T, Meehl MA, Mendez-Rivera L, Musa A, Okumura CJ, Rubin BER, Sato AK, Shen M, Singh A, Song S, Tan J, Trimarchi JM, Upadhyay DP, Wang Y, Yu L, Yuan TZ, Yusko E, Peters B, Tomaras G, Saphire EO. Bivalent intra-spike binding provides durability against emergent Omicron lineages: Results from a global consortium. Cell Rep 2023; 42:112014. [PMID: 36681898 PMCID: PMC9834171 DOI: 10.1016/j.celrep.2023.112014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
The SARS-CoV-2 Omicron variant of concern (VoC) and its sublineages contain 31-36 mutations in spike and escape neutralization by most therapeutic antibodies. In a pseudovirus neutralization assay, 66 of the nearly 400 candidate therapeutics in the Coronavirus Immunotherapeutic Consortium (CoVIC) panel neutralize Omicron and multiple Omicron sublineages. Among natural immunoglobulin Gs (IgGs), especially those in the receptor-binding domain (RBD)-2 epitope community, nearly all Omicron neutralizers recognize spike bivalently, with both antigen-binding fragments (Fabs) simultaneously engaging adjacent RBDs on the same spike. Most IgGs that do not neutralize Omicron bind either entirely monovalently or have some (22%-50%) monovalent occupancy. Cleavage of bivalent-binding IgGs to Fabs abolishes neutralization and binding affinity, with disproportionate loss of activity against Omicron pseudovirus and spike. These results suggest that VoC-resistant antibodies overcome mutagenic substitution via avidity. Hence, vaccine strategies targeting future SARS-CoV-2 variants should consider epitope display with spacing and organization identical to trimeric spike.
Collapse
Affiliation(s)
- Heather M Callaway
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xiaoying Yu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Jeremy Shek
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Tierra Buck
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Sean Hui
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Dan Bedinger
- Carterra, 825 N. 300 W. Ste. C309, Salt Lake City, UT 84103, USA
| | - Camille Troup
- Carterra, 825 N. 300 W. Ste. C309, Salt Lake City, UT 84103, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Kan Li
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | | | | | - Sharon Benzeno
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | | | - Jin-Qiu Chen
- ACRO Biosystems, 1 Innovation Way, Newark, DE 19711, USA
| | - Charm Chen
- ACRO Biosystems, 1 Innovation Way, Newark, DE 19711, USA
| | - Hyeseon Cho
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Peter D Crompton
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA; Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kevin C Entzminger
- Abwiz Bio, Inc., 9823 Pacific Heights Blvd. Suite J, San Diego, CA 92121, USA
| | - Yassine Ezzyat
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Jonathan K Fleming
- Abwiz Bio, Inc., 9823 Pacific Heights Blvd. Suite J, San Diego, CA 92121, USA
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium
| | - Amy E Gilbert
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - Yongjun Guan
- Antibody BioPharm, Inc., 401 Professional Dr Ste 241, Gaithersburg, MD 20879, USA; Shanghai Life Technology Co., Ltd., 781 Cai Lun Rd, Ste 801, Pudong, Shanghai 201203, China
| | - Xiaojian Han
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Christopher J Harvey
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA; Phenomic AI, 661 University Avenue, Suite 1300 MaRS Centre, West Tower, Toronto, ON M5G 0B7, Canada
| | - Julia M Hatler
- Bio-techne, 614 McKinley Place NE, Minneapolis, MN 55413, USA
| | - Bryan Howie
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - Chao Hu
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Maya Imbrechts
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, 3000 Leuven, Belgium
| | - Aishun Jin
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Nik Kamachi
- ACRO Biosystems, 1 Innovation Way, Newark, DE 19711, USA
| | - Gladys Keitany
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - Mark Klinger
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - Jay K Kolls
- Tulane School of Medicine, Center for Translational Research in Infection and Inflammation, New Orleans, LA 70112, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Tingting Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Feiyan Luo
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Toshiaki Maruyama
- Abwiz Bio, Inc., 9823 Pacific Heights Blvd. Suite J, San Diego, CA 92121, USA
| | - Michael A Meehl
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Letzibeth Mendez-Rivera
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Andrea Musa
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - C J Okumura
- Abwiz Bio, Inc., 9823 Pacific Heights Blvd. Suite J, San Diego, CA 92121, USA
| | - Benjamin E R Rubin
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - Aaron K Sato
- Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA
| | - Meiying Shen
- Department of Endocrine Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Anirudh Singh
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA
| | - Shuyi Song
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Joshua Tan
- Antibody Biology Unit, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jeffrey M Trimarchi
- Emmune, Inc., 14155 US Highway 1, Juno Beach, FL 33408, USA; Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Dhruvkumar P Upadhyay
- Jounce Therapeutics, Inc., 780 Memorial Drive, Cambridge, MA 02139, USA; Amgen, Inc., 360 Binney St., Cambridge, MA 02141, USA
| | - Yingming Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing 400010, China
| | - Lei Yu
- Guangzhou Eighth People's Hospital & Guangzhou Medical University, Guangzhou 510060, China
| | - Tom Z Yuan
- Twist Bioscience, 681 Gateway Blvd., South San Francisco, CA 94080, USA
| | - Erik Yusko
- Adaptive Biotechnologies, 1551 Eastlake Ave East, Seattle, WA 98102, USA
| | - Bjoern Peters
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA
| | - Georgia Tomaras
- Center for Human Systems Immunology, Departments of Surgery, Immunology, and Molecular Genetics and Microbiology and Duke Human Vaccine Institute, Duke University, Durham, NC 27701, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92039, USA.
| |
Collapse
|
36
|
Chi H, Chang L, Chao YC, Lin DS, Yang HW, Fang LC, Lin CH, Ho CS, Yang KD. Pathogenesis and Preventive Tactics of Immune-Mediated Non-Pulmonary COVID-19 in Children and Beyond. Int J Mol Sci 2022; 23:14157. [PMID: 36430629 PMCID: PMC9696849 DOI: 10.3390/ijms232214157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
The COVID-19 pandemic has evolved to immune escape and threatened small children and the elderly with a higher severity and fatality of non-pulmonary diseases. These life-threatening non-pulmonary COVID-19 diseases such as acute necrotizing encephalopathies (ANE) and multisystem inflammatory syndrome in children (MIS-C) are more prevalent in children. However, the mortality of multisystem inflammatory syndrome in adults (MIS-A) is much higher than that of MIS-C although the incidence of MIS-A is lower. Clarification of immunopathogenesis and genetic susceptibility of inflammatory non-pulmonary COVID-19 diseases would provide an appropriate guide for the crisis management and prevention of morbidity and fatality in the ongoing pandemic. This review article described three inflammatory non-pulmonary COVID-19 diseases including (1) meningoencephalitis (ME), (2) acute necrotizing encephalopathies (ANE), and (3) post-infectious multisystem inflammatory syndrome in children (MIS-C) and in adults (MIS-A). To prevent these life-threatening non-pulmonary COVID-19 diseases, hosts carrying susceptible genetic variants should receive prophylactic vaccines, avoid febrile respiratory tract infection, and institute immunomodulators and mitochondrial cocktails as early as possible.
Collapse
Affiliation(s)
- Hsin Chi
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Lung Chang
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Yen-Chun Chao
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Dar-Shong Lin
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Horng-Woei Yang
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Li-Chih Fang
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Chia-Hsueh Lin
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
| | - Che-Sheng Ho
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Department of Medicine, MacKay Medical College, Sanzhi, New Taipei City 252, Taiwan
| | - Kuender D. Yang
- MacKay Children’s Hospital, Taipei 103, Taiwan
- Departments of Pediatrics and Medical Research, MacKay Memorial Hospital, TamSui, New Taipei City 251, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
37
|
Walser M, Mayor J, Rothenberger S. Designed Ankyrin Repeat Proteins: A New Class of Viral Entry Inhibitors. Viruses 2022; 14:2242. [PMID: 36298797 PMCID: PMC9611651 DOI: 10.3390/v14102242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 08/08/2023] Open
Abstract
Designed ankyrin repeat proteins (DARPins) are engineered proteins comprising consensus designed ankyrin repeats as scaffold. Tightly packed repeats form a continuous hydrophobic core and a large groove-like solvent-accessible surface that creates a binding surface. DARPin domains recognizing a target of interest with high specificity and affinity can be generated using a synthetic combinatorial library and in vitro selection methods. They can be linked together in a single molecule to build multispecific and multifunctional proteins without affecting expression or function. The modular architecture of DARPins offers unprecedented possibilities of design and opens avenues for innovative antiviral strategies.
Collapse
Affiliation(s)
- Marcel Walser
- Molecular Partners AG, Wagistrasse 14, 8952 Zurich-Schlieren, Switzerland
| | - Jennifer Mayor
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| | - Sylvia Rothenberger
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, 3700 Spiez, Switzerland
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, 1011 Lausanne, Switzerland
| |
Collapse
|