1
|
Briend M, Mathieu P. RNA epigenetic modifications: a new field of research in calcific aortic valve disease. Cardiovasc Res 2025; 121:8-9. [PMID: 39775749 DOI: 10.1093/cvr/cvae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Affiliation(s)
- Mewen Briend
- Laboratory Pathobiology of Cardiovascular Diseases, Quebec Heart and Lung Institute, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
| | - Patrick Mathieu
- Laboratory Pathobiology of Cardiovascular Diseases, Quebec Heart and Lung Institute, Laval University, 2725 Chemin Ste-Foy, Quebec, Canada G1V-4G5
- Department of Surgery, Laval University, 2325 Rue Université, Quebec, Canada G1V 0A6
| |
Collapse
|
2
|
Xu X, Zhu H, Hugh-White R, Livingstone J, Eng S, Zeltser N, Wang Y, Pajdzik K, Chen S, Houlahan KE, Luo W, Liu S, Xu X, Sheng M, Guo WY, Arbet J, Song Y, Wang M, Zeng Y, Wang S, Zhu G, Gao T, Chen W, Ci X, Xu W, Xu K, Orain M, Picard V, Hovington H, Bergeron A, Lacombe L, Têtu B, Fradet Y, Lupien M, Wei GH, Koritzinsky M, Bristow RG, Fleshner NE, Wu X, Shao Y, He C, Berlin A, van der Kwast T, Leong H, Boutros PC, He HH. The landscape of N 6-methyladenosine in localized primary prostate cancer. Nat Genet 2025; 57:934-948. [PMID: 40128621 PMCID: PMC11985349 DOI: 10.1038/s41588-025-02128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/13/2025] [Indexed: 03/26/2025]
Abstract
N6-methyladenosine (m6A), the most abundant internal RNA modification in humans, regulates most aspects of RNA processing. Prostate cancer is characterized by widespread transcriptomic dysregulation; therefore, we characterized the m6A landscape of 162 localized prostate tumors with matched DNA, RNA and protein profiling. m6A abundance varied dramatically across tumors, with global patterns emerging via complex germline-somatic cooperative regulation. Individual germline polymorphisms regulated m6A abundance, cooperating with somatic mutation of cancer driver genes and m6A regulators. The resulting complex patterns were associated with prognostic clinical features and established the biomarker potential of global and locus-specific m6A patterns. Tumor hypoxia dysregulates m6A profiles, bridging prior genomic and proteomic observations. Specific m6A sites, such as those in VCAN, drive disease aggression, associating with poor outcomes, tumor growth and metastasis. m6A dysregulation is thus associated with key events in the natural history of prostate cancer: germline risk, microenvironmental dysregulation, somatic mutation and metastasis.
Collapse
Affiliation(s)
- Xin Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Helen Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
| | - Rupert Hugh-White
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Julie Livingstone
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Stefan Eng
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicole Zeltser
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yujuan Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Kinga Pajdzik
- Department of Chemistry, the University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Sujun Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- West China School of Public Health, West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Vector Institute, Toronto, Ontario, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wenqin Luo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shun Liu
- Department of Chemistry, the University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Xi Xu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Minzhi Sheng
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Wang Yuan Guo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Jaron Arbet
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuxi Song
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Shiyan Wang
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Precision Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zhu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- West China School of Public Health, West China Fourth Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Tingxiao Gao
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Respiratory and Critical Care Medicine, the Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Xinpei Ci
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Wenjie Xu
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michele Orain
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Valerie Picard
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Helene Hovington
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Alain Bergeron
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Louis Lacombe
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Bernard Têtu
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Yves Fradet
- Research Centre of CHU de Québec-Université Laval, Québec City, Quebec, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gong-Hong Wei
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai, China
- State Key Laboratory of Common Mechanism Research for Major Disease, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, China
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Robert G Bristow
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Christie NHS Trust and CRUK Manchester Institute and Cancer Centre, Manchester, UK
| | - Neil E Fleshner
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Xue Wu
- Geneseeq Research Institute, Geneseeq Technology lnc., Toronto, Ontario, Canada
| | - Yang Shao
- Geneseeq Research Institute, Geneseeq Technology lnc., Toronto, Ontario, Canada
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Chemistry, the University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, the University of Chicago, Chicago, IL, USA
| | - Alejandro Berlin
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | | | - Hon Leong
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Vector Institute, Toronto, Ontario, Canada.
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Housheng Hansen He
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Hu B, Shi Y, Xiong F, Chen YT, Zhu X, Carrillo E, Wen X, Drolet N, Rajpurohit C, Xu X, Lee DF, Soto C, Zhong S, Jayaraman V, Zheng H, Li W. Rewired m6A methylation of promoter antisense RNAs in Alzheimer's disease regulates global gene transcription in the 3D nucleome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.22.644756. [PMID: 40196645 PMCID: PMC11974732 DOI: 10.1101/2025.03.22.644756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent internal RNA modification that can impact mRNA expression post-transcriptionally. Recent progress indicates that m6A also acts on nuclear or chromatin-associated RNAs to impact transcriptional and epigenetic processes. However, the landscapes and functional roles of m6A in human brains and neurodegenerative diseases, including Alzheimer's disease (AD), have been under-explored. Here, we examined RNA m6A methylome using total RNA-seq and meRIP-seq in middle frontal cortex tissues of post-mortem human brains from individuals with AD and age-matched counterparts. Our results revealed AD-associated alteration of m6A methylation on both mRNAs and various noncoding RNAs. Notably, a series of promoter antisense RNAs (paRNAs) displayed cell-type-specific expression and changes in AD, including one produced adjacent to the MAPT locus that encodes the Tau protein. We found that MAPT-paRNA is enriched in neurons, and m6A positively controls its expression. In iPSC-derived human excitatory neurons, MAPT-paRNA promotes expression of hundreds of genes related to neuronal and synaptic functions, including a key AD resilience gene MEF2C, and plays a neuroprotective role against excitotoxicity. By examining RNA-DNA interactome in the three-dimensional (3D) nuclei of human brains, we demonstrated that brain paRNAs can interact with both cis- and trans-chromosomal target genes to impact their transcription. These data together reveal previously unexplored landscapes and functions of noncoding RNAs and m6A methylome in brain gene regulation, neuronal survival and AD pathogenesis.
Collapse
Affiliation(s)
- Benxia Hu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yuqiang Shi
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Yi-Ting Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xiaoyu Zhu
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Elisa Carrillo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xingzhao Wen
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Drolet
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chetan Rajpurohit
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, USA
| | - Dung-Fang Lee
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Soto
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Sheng Zhong
- Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center and UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
4
|
Zhao R, Shi H, Wang Y, Jiang T, Xu Y. Allele-specific methylation of SSTR4 associated with aging and cognitive functions in patients with schizophrenia. PLoS One 2025; 20:e0303038. [PMID: 39908289 PMCID: PMC11798447 DOI: 10.1371/journal.pone.0303038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/18/2024] [Indexed: 02/07/2025] Open
Abstract
The co-occurrence of alcohol use disorder (AUD) and schizophrenia is prevalent, with a rate of 33.7%. Previous research has suggested a genetic and epigenetic overlap between these two disorders. SSTR4, a member of the somatostatin receptor family, is implicated in various neurological and psychiatric conditions, including cognitive function, AUD, and schizophrenia. However, the role of genetic-epigenetic interactions involving SSTR4 in patients with schizophrenia remains unexplored. In this study, we conducted an integration of publicly available datasets and identified allele-specific methylation patterns in SSTR4. Additionally, we pinpointed several genetic variants (rs17691954, rs11464356, rs3109190, and rs145879288) that influence the pace of aging and cognitive functions (rs705935) through their quantitative trait loci effects on CpG sites within SSTR4.
Collapse
Affiliation(s)
- Rongrong Zhao
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huihui Shi
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanqiu Wang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yahui Xu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
5
|
Zhang H, Lu W, Tang H, Chen A, Gao X, Zhu C, Zhang J. Novel Insight of N6-Methyladenosine in Cardiovascular System. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:222. [PMID: 40005339 PMCID: PMC11857502 DOI: 10.3390/medicina61020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
N6-methyladenosine (m6A) is the most common and abundant internal co-transcriptional modification in eukaryotic RNAs. This modification is catalyzed by m6A methyltransferases, known as "writers", including METTL3/14 and WTAP, and removed by demethylases, or "erasers", such as FTO and ALKBH5. It is recognized by m6A-binding proteins, or "readers", such as YTHDF1/2/3, YTHDC1/2, IGF2BP1/2/3, and HNRNPA2B1. Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Recent studies indicate that m6A RNA modification plays a critical role in both the physiological and pathological processes involved in the initiation and progression of CVDs. In this review, we will explore how m6A RNA methylation impacts both the normal and disease states of the cardiovascular system. Our focus will be on recent advancements in understanding the biological functions, molecular mechanisms, and regulatory factors of m6A RNA methylation, along with its downstream target genes in various CVDs, such as atherosclerosis, ischemic diseases, metabolic disorders, and heart failure. We propose that the m6A RNA methylation pathway holds promise as a potential therapeutic target in cardiovascular disease.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Wei Lu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Haoyue Tang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Aiqun Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Xiaofei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| | - Congfei Zhu
- Department of Cardiology, Lianshui County People’s Hospital, Affiliated Hospital of Kangda College, Nanjing Medical University, Huaian 223400, China
| | - Junjie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; (H.Z.); (W.L.); (H.T.); (A.C.); (X.G.)
| |
Collapse
|
6
|
Qiu Y, Xu Q, Xie P, He C, Li Q, Yao X, Mao Y, Wu X, Zhang T. Epigenetic modifications and emerging therapeutic targets in cardiovascular aging and diseases. Pharmacol Res 2025; 211:107546. [PMID: 39674563 DOI: 10.1016/j.phrs.2024.107546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
The complex mechanisms underlying the development of cardiovascular diseases remain not fully elucidated. Epigenetics, which modulates gene expression without DNA sequence changes, is shedding light on these mechanisms and their heritable effects. This review focus on epigenetic regulation in cardiovascular aging and diseases, detailing specific epigenetic enzymes such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), and histone deacetylases (HDACs), which serve as writers or erasers that modify the epigenetic landscape. We also discuss the readers of these modifications, such as the 5-methylcytosine binding domain proteins, and the erasers ten-eleven translocation (TET) proteins. The emerging role of RNA methylation, particularly N6-methyladenosine (m6A), in cardiovascular pathogenesis is also discussed. We summarize potential therapeutic targets, such as key enzymes and their inhibitors, including DNMT inhibitors like 5-azacytidine and decitabine, HDAC inhibitors like belinostat and givinotide, some of which have been approved by the FDA for various malignancies, suggesting their potential in treating cardiovascular diseases. Furthermore, we highlight the role of novel histone modifications and their associated enzymes, which are emerging as potential therapeutic targets in cardiovascular diseases. Thus, by incorporating the recent studies involving patients with cardiovascular aging and diseases, we aim to provide a more detailed and updated review that reflects the advancements in the field of epigenetic modification in cardiovascular diseases.
Collapse
Affiliation(s)
- Yurou Qiu
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qing Xu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Peichen Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Chenshuang He
- School of Bioscience and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, PR China
| | - Qiuchan Li
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xin Yao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Yang Mao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Xiaoqian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Tiejun Zhang
- GMU-GIBH Joint School of Life Sciences, Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, The Sixth School of Clinical Medicine, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Mitsuhashi H, Lin R, Chawla A, Mechawar N, Nagy C, Turecki G. Altered m6A RNA methylation profiles in depression implicate the dysregulation of discrete cellular functions in males and females. iScience 2024; 27:111316. [PMID: 39650737 PMCID: PMC11625292 DOI: 10.1016/j.isci.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/03/2024] [Accepted: 10/30/2024] [Indexed: 12/11/2024] Open
Abstract
Adverse environmental stress represents a significant risk factor for major depressive disorder (MDD), often resulting in disrupted synaptic connectivity which is known to be partly regulated by epigenetic mechanisms. N6-methyladenosine (m6A), an epitranscriptomic modification, has emerged as a crucial regulator of activity-dependent gene regulation. In this study, we characterized m6A profiles in the ventromedial prefrontal cortex (vmPFC) of individuals with MDD. Using m6A sequencing, we identified a total of 30,279 high-confidence m6A peaks, exhibiting significant enrichment in genes related to neuronal and synaptic function. The m6A peaks between males and females with MDD that passed the significance threshold showed opposite m6A patterns, while the threshold-free m6A patterns were concordant. Distinct m6A profiles were found in MDD for each sex, with dysregulation associated with microtubule movement in males and neuronal projection in females. Our results suggest the potential roles of m6A as part of the dysregulated molecular network in MDD.
Collapse
Affiliation(s)
- Haruka Mitsuhashi
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Rixing Lin
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544 USA, USA
| | - Anjali Chawla
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
8
|
Zhang M, Cai R, Liu J, Wang Y, He S, Wang Q, Song X, Wu J, Zhao J. Multi-omics integration analysis reveals the role of N6-methyladenosine in lncRNA translation during glioma stem cell differentiation. Brief Funct Genomics 2024; 23:806-815. [PMID: 39377261 DOI: 10.1093/bfgp/elae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Glioblastoma is one of the most lethal brain diseases in humans. Although recent studies have shown reciprocal interactions between N6-methyladenosine (m6A) modifications and long noncoding RNAs (lncRNAs) in gliomagenesis and malignant progression, the mechanism of m6A-mediated lncRNA translational regulation in glioblastoma remains unclear. Herein, we profiled the transcriptomes, translatomes, and epitranscriptomics of glioma stem cells and differentiated glioma cells to investigate the role of m6A in lncRNA translation comprehensively. We found that lncRNAs with numerous m6A peaks exhibit reduced translation efficiency. Transcript-level expression analysis demonstrates an enrichment of m6A around short open reading frames (sORFs) of translatable lncRNA transcripts. Further comparison analysis of m6A modifications in different RNA regions indicates that m6A peaks downstream of sORFs inhibit lncRNA translation more than those upstream. Observations in glioma-associated lncRNAs H19, LINC00467, and GAS5 further confirm the negative effect of m6A methylation on lncRNA translation. Overall, these findings elucidate the dynamic profiles of the m6A methylome and enhance the understanding of the complexity of lncRNA translational regulation.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| | - Runqiu Cai
- Equipment Department, Affiliated Hospital of Nanjing University of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing 210029, Jiangsu Province, China
| | - Jingjing Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| | - Yulan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| | - Shan He
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| | - Quan Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| | - Jing Wu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, No. 101 Longmian Avenue, Jiangning District, Nanjing 211166, Jiangsu Province, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29 Jiangjun Avenue, Jiangning District, Nanjing 211106, Jiangsu Province, China
| |
Collapse
|
9
|
Liu B, Tian X, Li L, Zhang R, Wu J, Jiang N, Yuan M, Chen D, Su A, Xu S, Wu Z. Severe fever with thrombocytopenia syndrome virus induces lactylation of m6A reader protein YTHDF1 to facilitate viral replication. EMBO Rep 2024; 25:5599-5619. [PMID: 39496835 PMCID: PMC11624280 DOI: 10.1038/s44319-024-00310-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an emerging infectious pathogen with a high fatality rate, is an enveloped tripartite segmented single-stranded negative-sense RNA virus. SFTSV infection is characterized by suppressed host innate immunity, proinflammatory cytokine storm, failure of B-cell immunity, and robust viral replication. m6A modification has been shown to play a role in viral infections. However, interactions between m6A modification and SFTSV infection remain poorly understood. Through MeRIP-seq, we identify m6A modifications on SFTSV RNA. We show that YTHDF1 can bind to m6A modification sites on SFTSV, decreasing the stability of SFTSV RNA and reducing the translation efficiency of SFTSV proteins. The SFTSV virulence factor NSs increases lactylation of YTHDF1 and YTHDF1 degradation, thus facilitating SFTSV replication. Our findings indicate that the SFTSV protein NSs induce lactylation to inhibit YTHDF1 as a countermeasure to host's YTHDF1-mediated degradation of m6A-marked viral mRNAs.
Collapse
Affiliation(s)
- Bingxin Liu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiaoyan Tian
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Linrun Li
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Rui Zhang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, People's Republic of China
| | - Jing Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Na Jiang
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Meng Yuan
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Deyan Chen
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Airong Su
- Clinical Molecular Diagnostic Laboratory, The 2nd Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shijie Xu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Zhiwei Wu
- Center for Public Health Research, Medical School of Nanjing University, Nanjing, People's Republic of China.
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, People's Republic of China.
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, People's Republic of China.
| |
Collapse
|
10
|
Zhang H, Fan K, Zhang Z, Guo Y, Mo X. Genome-wide identification of cell type-specific susceptibility genes for Juvenile dermatomyositis through the analysis of N 6-methyladenosine-associated SNPs. Autoimmunity 2024; 57:2419117. [PMID: 39447013 DOI: 10.1080/08916934.2024.2419117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Genome-wide association studies (GWASs) have pinpointed genetic loci associated with juvenile dermatomyositis (JDM). Functional genes within the GWAS loci may be cell type-specific, but their identity remains largely unknown. N6-methyladenosine (m6A) plays a pivotal role in regulating various cellular processes and is linked to autoimmune diseases. This study aimed to underscore the potential functional genes within the GWAS loci through the analysis of m6A-associated SNPs (m6A-SNPs), specifically within relevant cell types. JDM-associated m6A-SNPs were identified from the GWAS summary dataset. The correlation between m6A-SNPs and gene expression was assessed through bulk tissue and single-cell eQTL analyses. To further investigate the relationship between gene expression and JDM, Mendelian randomization analysis was employed. Additionally, differential expression analyses were conducted on bulk tissues, as well as single-cell transcriptomic data comprising 6 JDM patients and 11 juvenile controls (99,396 cells). Seven m6A-SNPs associated with JDM were identified. Bulk tissue analysis revealed differential expression of HLA-DPA1, HLA-DPB1, MICB, HLA-A, HLA-F, HLA-DQB2, HLA-DRB5, TAP2, PSMB9, MICA, AIF1, and DDX39B influenced by m6A-SNPs, all showing associations with JDM in both differential expression and Mendelian randomization analyses. In single-cell analysis, the six m6A-SNPs within the HLA locus acted as cell-type-specific eQTLs, correlating with the expression of HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQA1, HLA-DQB1 and HLA-DRB1 in myeloid, T or B cells. Notably, these genes displayed abnormal expression in T, B, and myeloid cells of JDM patients. The present study identified m6A-SNPs within JDM susceptibility genes, shedding light on the intricate interplay between m6A-SNPs, gene expression, and JDM.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Kedi Fan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Zhentao Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| | - Yufan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Suzhou Medical College of Soochow University, China
| |
Collapse
|
11
|
Chen Z, Zhang J, Wang J, Tong H, Pan W, Ma F, Wu Q, Dai J. N6-methyladenosine RNA modification promotes Severe Fever with Thrombocytopenia Syndrome Virus infection. PLoS Pathog 2024; 20:e1012725. [PMID: 39585899 PMCID: PMC11627400 DOI: 10.1371/journal.ppat.1012725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/09/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV), a novel bunyavirus primarily transmitted by Haemaphysalis longicornis, induces severe disease with a high mortality rate. N6-methyladenosine (m6A) is a prevalent internal chemical modification in eukaryotic mRNA that has been reported to regulate viral infection. However, the role of m6A modification during SFTSV infection remains elusive. We here reported that SFTSV RNAs bear m6A modification during infection. Manipulating the expressions or activities of host m6A regulators significantly impacted SFTSV infection. Mechanistically, SFTSV recruited m6A regulators through the nucleoprotein to modulate the m6A modification of viral RNA, eventually resulting in enhanced infection by promoting viral mRNA translation efficiency and/or genome RNA stability. m6A mutations in the S genome diminished virus particle production, while m6A mutations in the G transcript impaired the replication of recombinant vesicular stomatitis virus (rVSV) expressing G protein in vitro and in vivo. Interestingly, m6A modification was evolutionarily conserved and facilitated SFTSV infection in primary tick cells. These findings may open an avenue for the development of m6A-targeted anti-SFTSV vaccines, drugs, and innovative strategies for the prevention and control of tick-borne disease.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinyu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun Wang
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hao Tong
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Wen Pan
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Feng Ma
- CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Laboratory of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Zhang H, Fan K, Chen Y, Xu P, Zhang Z, Mo X, Guo Y. Genome-Wide Identification of Cell Type-Specific Susceptibility Genes for SLE Through the Analysis of RNA Modification-Associated SNPs. Immunol Invest 2024; 53:1264-1278. [PMID: 39230170 DOI: 10.1080/08820139.2024.2399577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
INTRODUCTION This study aimed to elucidate the functional genes associated with systemic lupus erythematosus (SLE) in various cell types through the utilization of RNAm-SNPs. METHODS Utilizing large-scale genetic data, we identified associations between RNAm-SNPs and SLE. The association between RNAm-SNPs and bulk and single-cell mRNA expression (eQTL) and protein levels (pQTL) were examined. Mendelian randomization and differential expression analyses were conducted to explore the links between gene expression, protein levels, and SLE. RESULTS We identified 41 RNAm-SNPs that were significantly associated with SLE. The GWAS signals exhibited notable enrichment in m6A-SNPs and m7G-SNPs. These RNAm-SNPs showed both eQTL and pQTL effects. In our single-cell analysis, 16 RNAm-SNPs exhibited associations with gene expression levels across 13 distinct cell types, including HLA-A, HLA-B, HLA-C, HLA-DQA1, HLA-DQB1, HLA-DRB1 and IRF7. We identified 58 noteworthy associations between the expression levels of 20 genes and SLE across 12 distinct immune cell types. Notably, HLA-DQB1, HLA-DRB1 and IRF7 exhibited abnormalities in CD8+ T cells, IRF7 displayed abnormal expression in CD4+ T cells, while HLA-DRB1 and IRF7 were also distinctly perturbed in natural killer cells. DISCUSSION This study advances our understanding of the genetic basis of SLE by highlighting the significance of RNAm-SNPs and immune cell gene expression in SLE.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Kedi Fan
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuxi Chen
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Peng Xu
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhentao Zhang
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Department of Epidemiology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, MOE Key Laboratory of Geriatric Diseases and Immunology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yufan Guo
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Yuan J, Tong Y, Wang L, Yang X, Liu X, Shu M, Li Z, Jin W, Guan C, Wang Y, Zhang Q, Yang Y. A compendium of genetic variations associated with promoter usage across 49 human tissues. Nat Commun 2024; 15:8758. [PMID: 39384785 PMCID: PMC11464533 DOI: 10.1038/s41467-024-53131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Promoters play a crucial role in regulating gene transcription. However, our understanding of how genetic variants influence alternative promoter selection is still incomplete. In this study, we implement a framework to identify genetic variants that affect the relative usage of alternative promoters, known as promoter usage quantitative trait loci (puQTLs). By constructing an atlas of human puQTLs across 49 different tissues from 838 individuals, we have identified approximately 76,856 independent loci associated with promoter usage, encompassing 602,009 genetic variants. Our study demonstrates that puQTLs represent a distinct type of molecular quantitative trait loci, effectively uncovering regulatory targets and patterns. Furthermore, puQTLs are regulating in a tissue-specific manner and are enriched with binding sites of epigenetic marks and transcription factors, especially those involved in chromatin architecture formation. Notably, we have also found that puQTLs colocalize with complex traits or diseases and contribute to their heritability. Collectively, our findings underscore the significant role of puQTLs in elucidating the molecular mechanisms underlying tissue development and complex diseases.
Collapse
Affiliation(s)
- Jiapei Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yang Tong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Geriatrics Institute, Tianjin Key Laboratory of Elderly Health, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Le Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoxiao Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaochuan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Meng Shu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zekun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wen Jin
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chenchen Guan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuting Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qiang Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Key Laboratory of Elderly Health, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yang Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Institutes of Health Science, Department of Geriatrics, Tianjin Medical University General Hospital, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Geriatrics Institute, Tianjin Key Laboratory of Elderly Health, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Inflammatory Biology, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
14
|
Carnes MU, Quach BC, Zhou L, Han S, Tao R, Mandal M, Deep-Soboslay A, Marks JA, Page GP, Maher BS, Jaffe AE, Won H, Bierut LJ, Hyde TM, Kleinman JE, Johnson EO, Hancock DB. Smoking-informed methylation and expression QTLs in human brain and colocalization with smoking-associated genetic loci. Neuropsychopharmacology 2024; 49:1749-1757. [PMID: 38830989 PMCID: PMC11399277 DOI: 10.1038/s41386-024-01885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/19/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.
Collapse
Affiliation(s)
- Megan Ulmer Carnes
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Bryan C Quach
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Linran Zhou
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Shizhong Han
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Ran Tao
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Meisha Mandal
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | | | - Jesse A Marks
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Grier P Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Brion S Maher
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew E Jaffe
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development (LIBD), Baltimore, MD, USA
| | - Eric O Johnson
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Dana B Hancock
- Genomics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
15
|
Guan J, Yin L, Huang Q, Chen J, Liu H, Li J. m 6A methyltransferase ZC3H13 improves pulmonary fibrosis in mice through regulating Bax expression. Exp Cell Res 2024; 442:114255. [PMID: 39307407 DOI: 10.1016/j.yexcr.2024.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease. N6-methyladenosine (m6A) is a reversible RNA modification that was shown to be associated with IPF development. The present study aimed to explore the function and potential mechanism of the m6A methylation enzyme zinc finger CCCH-type containing 13 (ZC3H13) in IPF. In the study, bioinformatic screening yielded a differentially expressed m6A gene, ZC3H13, which was down-regulated in GEO microarrays, BLM-induced mouse models, and cellular models. Overexpression of ZC3H13 reduced histopathological damage of lung tissues in mice, mitigated fibrosis (including reduced α-SMA, collagen Ⅰ, and Vimentin levels, and elevated E-cadherin levels), decreased lung/body weight ratio and lung hydroxyproline levels, reduced oxidative stress (increased SOD activity and GSH-Px activity and decreased MDA levels), suppressed apoptosis within lung tissues and MLE-12 cells, promoted Bcl-2 expression, and inhibited Bax expression. Bax expression was found to be negatively correlated with ZC3H13 expression by correlation analysis. ZC3H13 could bind Bax mRNA and promote its m6A methylation through reading protein YTHDC1, thereby inhibiting its stability. Bax inhibition ameliorated BLM-induced MLE-12 cell dysfunction and partially abrogated the inhibition of MLE-12 cell function by ZC3H13 downregulation. In conclusion, m6A methyltransferase ZC3H13 impedes lung epithelial cell apoptosis and thus improves pulmonary fibrosis by promoting Bax mRNA m6A methylation and down-regulating Bax expression through reading protein YTHDC1.
Collapse
Affiliation(s)
- Jing Guan
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410005, Hunan, China
| | - Lengyun Yin
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Qi Huang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jiamei Chen
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Hui Liu
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China.
| |
Collapse
|
16
|
Liufu C, Luo L, Pang T, Zheng H, Yang L, Lu L, Chang S. Integration of multi-omics summary data reveals the role of N6-methyladenosine in neuropsychiatric disorders. Mol Psychiatry 2024; 29:3141-3150. [PMID: 38684796 DOI: 10.1038/s41380-024-02574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
N6-methyladenosine (m6A) methylation regulates gene expression/protein by influencing numerous aspects of mRNA metabolism and contributes to neuropsychiatric diseases. Here, we integrated multi-omics data and genome-wide association study summary data of schizophrenia (SCZ), bipolar disorder (BP), attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder (MDD), Alzheimer's disease (AD), and Parkinson's disease (PD) to reveal the role of m6A in neuropsychiatric disorders by using transcriptome-wide association study (TWAS) tool and Summary-data-based Mendelian randomization (SMR). Our investigation identified 86 m6A sites associated with seven neuropsychiatric diseases and then revealed 7881 associations between m6A sites and gene expressions. Based on these results, we discovered 916 significant m6A-gene associations involving 82 disease-related m6A sites and 606 genes. Further integrating the 58 disease-related genes from TWAS and SMR analysis, we obtained 61, 8, 7, 3, and 2 associations linking m6A-disease, m6A-gene, and gene-disease for SCZ, BP, AD, MDD, and PD separately. Functional analysis showed the m6A mapped genes were enriched in "response to stimulus" pathway. In addition, we also analyzed the effect of gene expression on m6A and the post-transcription effect of m6A on protein. Our study provided new insights into the genetic component of m6A in neuropsychiatric disorders and unveiled potential pathogenic mechanisms where m6A exerts influences on disease through gene expression/protein regulation.
Collapse
Affiliation(s)
- Chao Liufu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lingxue Luo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Tao Pang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Haohao Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Li Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
- Research Units of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- Research Units of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
17
|
He WM, Zhang XY, Xie WG, Lv DP, Shen QD. Expression level of myocardial enzymes in patients with schizophrenia: Predictive value in the occurrence of violence. World J Psychiatry 2024; 14:1346-1353. [PMID: 39319237 PMCID: PMC11417649 DOI: 10.5498/wjp.v14.i9.1346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Schizophrenic patients are prone to violence, frequent recurrence, and difficult to predict. Emotional and behavioral abnormalities during the onset of the disease, resulting in active myocardial enzyme spectrum. AIM To explored the expression level of myocardial enzymes in patients with schizophrenia and its predictive value in the occurrence of violence. METHODS A total of 288 patients with schizophrenia in our hospital from February 2023 to January 2024 were selected as the research object, and 100 healthy people were selected as the control group. Participants' information, clinical data, and laboratory examination data were collected. According to Modified Overt Aggression Scale score, patients were further divided into the violent (123 cases) and non-violent group (165 cases). RESULTS The comparative analysis revealed significant differences in serum myocardial enzyme levels between patients with schizophrenia and healthy individuals. In the schizophrenia group, the violent and non-violent groups also exhibited different levels of serum myocardial enzymes. The levels of myocardial enzymes in the non-violent group were lower than those in the violent group, and the patients in the latter also displayed aggressive behavior in the past. CONCLUSION Previous aggressive behavior and the level of myocardial enzymes are of great significance for the diagnosis and prognosis analysis of violent behavior in patients with schizophrenia. By detecting changes in these indicators, we can gain a more comprehensive understanding of a patient's condition and treatment.
Collapse
Affiliation(s)
- Wei-Min He
- Department of Rehabilitation Ward, Shaoxing Seventh People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Xin-Yuan Zhang
- Department of Laboratory, Shaoxing Seventh People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Wei-Gen Xie
- Department of Medical, Shaoxing Seventh People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Dan-Ping Lv
- Department of Laboratory, Shaoxing Seventh People's Hospital, Shaoxing 312000, Zhejiang Province, China
| | - Qun-Di Shen
- Department of General Affairs, Shaoxing Seventh People's Hospital, Shaoxing 312000, Zhejiang Province, China
| |
Collapse
|
18
|
Shore CJ, Villicaña S, El-Sayed Moustafa JS, Roberts AL, Gunn DA, Bataille V, Deloukas P, Spector TD, Small KS, Bell JT. Genetic effects on the skin methylome in healthy older twins. Am J Hum Genet 2024; 111:1932-1952. [PMID: 39137780 PMCID: PMC11393713 DOI: 10.1016/j.ajhg.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Whole-skin DNA methylation variation has been implicated in several diseases, including melanoma, but its genetic basis has not yet been fully characterized. Using bulk skin tissue samples from 414 healthy female UK twins, we performed twin-based heritability and methylation quantitative trait loci (meQTL) analyses for >400,000 DNA methylation sites. We find that the human skin DNA methylome is on average less heritable than previously estimated in blood and other tissues (mean heritability: 10.02%). meQTL analysis identified local genetic effects influencing DNA methylation at 18.8% (76,442) of tested CpG sites, as well as 1,775 CpG sites associated with at least one distal genetic variant. As a functional follow-up, we performed skin expression QTL (eQTL) analyses in a partially overlapping sample of 604 female twins. Colocalization analysis identified over 3,500 shared genetic effects affecting thousands of CpG sites (10,067) and genes (4,475). Mediation analysis of putative colocalized gene-CpG pairs identified 114 genes with evidence for eQTL effects being mediated by DNA methylation in skin, including in genes implicating skin disease such as ALOX12 and CSPG4. We further explored the relevance of skin meQTLs to skin disease and found that skin meQTLs and CpGs under genetic influence were enriched for multiple skin-related genome-wide and epigenome-wide association signals, including for melanoma and psoriasis. Our findings give insights into the regulatory landscape of epigenomic variation in skin.
Collapse
Affiliation(s)
- Christopher J Shore
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Amy L Roberts
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | | | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
19
|
Li R, Cao Y, Wu W, Liu H, Xu S. Inhibitor of FTO, Rhein, Restrains the Differentiation of Myoblasts and Delays Skeletal Muscle Regeneration. Animals (Basel) 2024; 14:2434. [PMID: 39199967 PMCID: PMC11350746 DOI: 10.3390/ani14162434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
N6-methyladenosine (m6A) is a crucial RNA modification affecting skeletal muscle development. Rhein, an anti-inflammatory extract, inhibits FTO, a key demethylase in m6A metabolism. Our study showed that during muscle fiber formation, FTO and ALKBH5 expression increased while m6A levels decreased. After muscle injury, FTO and ALKBH5 expression initially rose but later fell, while m6A levels initially dropped and then recovered. Inhibition of FTO by Rhein reduced MyHC and MyoG expression, indicating myoblast differentiation suppression. In a mouse model, Rhein decreased MyHC expression and muscle fiber cross-sectional area, delaying muscle regeneration. Rhein's ability to increase RNA m6A modification delays skeletal muscle remodeling post-injury, suggesting a new medicinal application for this plant extract.
Collapse
Affiliation(s)
- Rongyang Li
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, China;
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Wangjun Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Y.C.); (W.W.); (H.L.)
| | - Shiyong Xu
- College of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing 210095, China;
| |
Collapse
|
20
|
Li C, Chen K, Fang Q, Shi S, Nan J, He J, Yin Y, Li X, Li J, Hou L, Hu X, Kellis M, Han X, Xiong X. Crosstalk between epitranscriptomic and epigenomic modifications and its implication in human diseases. CELL GENOMICS 2024; 4:100605. [PMID: 38981476 PMCID: PMC11406187 DOI: 10.1016/j.xgen.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/17/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.
Collapse
Affiliation(s)
- Chengyu Li
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Qianchen Fang
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Shaohui Shi
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Jialin He
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China
| | - Yafei Yin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoyu Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jingyun Li
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Lei Hou
- Department of Medicine, Biomedical Genetics Section, Boston University, Boston, MA 02118, USA
| | - Xinyang Hu
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xikun Han
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311121, China; State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311121, China.
| |
Collapse
|
21
|
Chen K, Nan J, Xiong X. Genetic regulation of m 6A RNA methylation and its contribution in human complex diseases. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1591-1600. [PMID: 38764000 DOI: 10.1007/s11427-024-2609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024]
Abstract
N6-methyladenosine (m6A) has been established as the most prevalent chemical modification in message RNA (mRNA), playing an essential role in determining the fate of RNA molecules. Dysregulation of m6A has been revealed to lead to abnormal physiological conditions and cause various types of human diseases. Recent studies have delineated the genetic regulatory maps for m6A methylation by mapping the quantitative trait loci of m6A (m6A-QTLs), thereby building up the regulatory circuits linking genetic variants, m6A, and human complex traits. Here, we review the recent discoveries concerning the genetic regulatory maps of m6A, describing the methodological and technical details of m6A-QTL identification, and introducing the key findings of the cis- and trans-acting drivers of m6A. We further delve into the tissue- and ethnicity-specificity of m6A-QTL, the association with other molecular phenotypes in light of genetic regulation, the regulators underlying m6A genetics, and importantly, the functional roles of m6A in mediating human complex diseases. Lastly, we discuss potential research avenues that can accelerate the translation of m6A genetics studies toward the development of therapies for human genetic diseases.
Collapse
Affiliation(s)
- Kexuan Chen
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jiuhong Nan
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Xushen Xiong
- The Second Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China.
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| |
Collapse
|
22
|
Gao G, Hao YQ, Wang C, Gao P. Role and regulators of N 6-methyladenosine (m 6A) RNA methylation in inflammatory subtypes of asthma: a comprehensive review. Front Pharmacol 2024; 15:1360607. [PMID: 39108751 PMCID: PMC11300364 DOI: 10.3389/fphar.2024.1360607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/03/2024] [Indexed: 01/05/2025] Open
Abstract
Asthma is a common chronic inflammatory disease of the lungs and airway, yet its inflammatory subtypes and potential pathogenesis have not been completely elucidated and require further study. With advances in epigenetic development, methylation has emerged as a new direction for identifying and decoding the occurrence and subtype manifestations of asthma. N6-methyladenosine (m6A), an RNA methylation modification occurring in the N6-position of adenosine, is a prevalent epigenetic modification observed in eukaryotes. It exerts significant control over mRNA metabolism by regulating alternative splicing, stability, export, and translation. The dynamic process of m6A methylation plays a crucial role in the pathogenesis of asthma and is tightly regulated by three types of regulators: writers, readers, and erasers. This article provides a comprehensive review of the association between m6A regulators and the pathogenesis of inflammatory subtypes of asthma, such as involvement of inflammatory cells and related inflammatory response. Furthermore, the findings presented herein provide new insights and a solid foundation for further research on m6A mRNA methylation as biomarkers for the diagnosis and development of personalized treatment for different subtypes of asthma, particularly neutrophilic asthma and eosinophilic asthma.
Collapse
Affiliation(s)
- Ge Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Yu Qiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Chen Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Angelin M, Gopinath P, Raghavan V, Thara R, Ahmad F, Munirajan AK, Sudesh R. Global DNA and RNA Methylation Signature in Response to Antipsychotic Treatment in First-Episode Schizophrenia Patients. Neuropsychiatr Dis Treat 2024; 20:1435-1444. [PMID: 39049939 PMCID: PMC11268744 DOI: 10.2147/ndt.s466502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Background Schizophrenia is a heterogeneous chronic psychiatric disorder influenced by genetic and environmental factors. Environmental factors can alter epigenetic marks, which regulate gene expression and cause an array of systemic changes. Several studies have demonstrated the association of epigenetic modulations in schizophrenia, which can influence clinical course, symptoms, and even treatment. Based on this, we have examined the global DNA methylation patterns, namely the 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC); and the global RNA modification N6-methyladenosine (m6A) RNA methylation status in peripheral blood cells. First-Episode Psychosis (FEP) patients who were diagnosed with Schizophrenia (SCZ) and undergoing treatment were stratified as Treatment-Responsive (TR) and Treatment-Non-Responsive (TNR). Age- and sex-matched healthy subjects served as controls. Results The methylation pattern of 5mC and 5hmC showed significant increases in patients in comparison to controls. Further, when patients were classified based on their response to treatment, there was a statistically significant increase in methylation patterns in the treatment non-responder group. 5fC and m6A levels did not show any statistical significance across the groups. Further, gender-based stratification did not yield any significant difference for the markers. Conclusion The study highlights the increased global methylation pattern in SCZ patients and a significant difference between the TR versus TNR groups. Global 5mC and 5hmC epigenetic marks suggest their potential roles in schizophrenia pathology, and also in the treatment response to antipsychotics. Since not many studies were available on the treatment response, further validation and the use of more sensitive techniques to study methylation status could unravel the potential of these epigenetic modifications as biomarkers for SCZ as well as distinguishing the antipsychotic treatment response in patients.
Collapse
Affiliation(s)
- Mary Angelin
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Padmavathi Gopinath
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Vijaya Raghavan
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
- Schizophrenia Research Foundation, Chennai, Tamil Nadu, 600 101, India
| | - Rangaswamy Thara
- Schizophrenia Research Foundation, Chennai, Tamil Nadu, 600 101, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arasamabattu Kannan Munirajan
- Department of Genetics, University of Madras, Dr ALM PG Institute of Basic Medical Sciences, Taramani Campus, Chennai, Tamil Nadu, 600 113, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
24
|
Wang Y, Wu Z, He Y, Zeng X, Gu Z, Zhou X, Si W, Chen D. Fat mass and obesity-associated protein regulates RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion. Neuropeptides 2024; 105:102428. [PMID: 38583362 DOI: 10.1016/j.npep.2024.102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
RNA methylation can epigenetically regulate learning and memory. However, it is unclear whether RNA methylation plays a critical role in the pathophysiology of Vascular dementia (VD). Here, we report that expression of the fat mass and obesity associated gene (FTO), an RNA demethylase, is downregulated in the hippocampus in models of VD. Through prediction and dual-luciferase reporters validation studies, we observed that miRNA-711 was upregulated after VD and could bind to the 3'-untranslated region of FTO mRNA and regulate its expression in vitro. Methylated RNA immunoprecipitation (MeRIP)-qPCR assay and functional study confirmed that Syn1 was an important target gene of FTO. This suggests that FTO is an important regulator of Syn1. FTO upregulation by inhibition of miR-711 in the hippocampus relieves synaptic association protein and synapse deterioration in vivo, whereas FTO downregulation by miR-711 agomir in the hippocampus leads to aggravate the synapse deterioration. FTO upregulation by inhibition of miR-711 relieves cognitive impairment of rats VD model, whereas FTO downregulation by miR-711 deteriorate cognitive impairment. Our findings suggest that FTO is a regulator of a mechanism underlying RNA methylation associated with spatial cognitive dysfunction after chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Yanqing Wang
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zimei Wu
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yuyang He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiaoying Zeng
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zijuan Gu
- Shenzhen BaoAn District Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xianxi Zhou
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Si
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
| | - Dongfeng Chen
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
25
|
Li Y, Miao P, Li F, Huang J, Fan L, Chen Q, Zhang Y, Yan F, Gao Y. An association study of m6A methylation with major depressive disorder. BMC Psychiatry 2024; 24:342. [PMID: 38714976 PMCID: PMC11075325 DOI: 10.1186/s12888-024-05760-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE To find the relationship between N6-methyladenosine (m6A) genes and Major Depressive Disorder (MDD). METHODS Differential expression of m6A associated genes between normal and MDD samples was initially identified. Subsequent analysis was conducted on the functions of these genes and the pathways they may affect. A diagnostic model was constructed using the expression matrix of these differential genes, and visualized using a nomogram. Simultaneously, an unsupervised classification method was employed to classify all patients based on the expression of these m6A associated genes. Following this, common differential genes among different clusters were computed. By analyzing the functions of the common differential expressed genes among clusters, the role of m6A-related genes in the pathogenesis of MDD patients was elucidated. RESULTS Differential expression was observed in ELAVL1 and YTHDC2 between the MDD group and the control group. ELAVL1 was associated with comorbid anxiety in MDD patients. A linear regression model based on these two genes could accurately predict whether patients in the GSE98793 dataset had MDD and could provide a net benefit for clinical decision-making. Based on the expression matrix of ELAVL1 and YTHDC2, MDD patients were classified into three clusters. Among these clusters, there were 937 common differential genes. Enrichment analysis was also performed on these genes. The ssGSEA method was applied to predict the content of 23 immune cells in the GSE98793 dataset samples. The relationship between these immune cells and ELAVL1, YTHDC2, and different clusters was analyzed. CONCLUSION Among all the m6A genes, ELAVL1 and YTHDC2 are closely associated with MDD, ELAVL1 is related to comorbid anxiety in MDD. ELAVL1 and YTHDC2 have opposite associations with immune cells in MDD.
Collapse
Affiliation(s)
- Ying Li
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China.
| | - Peidong Miao
- Dalian No. 3 People's Hospital, Department of Interventional Radiology, Dalian, PR China
| | - Fang Li
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| | - Jinsong Huang
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| | - Lijun Fan
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| | - Qiaoling Chen
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| | - Yunan Zhang
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| | - Feng Yan
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| | - Yan Gao
- Dalian Seventh People's Hospital, No. 179 Lingshui Road, Ganjingzi District, Dalian City, Liaoning Province, PR China
| |
Collapse
|
26
|
Tang Y, Zhang J, Li W, Liu X, Chen S, Mi S, Yang J, Teng J, Fang L, Yu Y. Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle. BMC Genomics 2024; 25:445. [PMID: 38711039 DOI: 10.1186/s12864-024-10346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.
Collapse
Affiliation(s)
- Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyan Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinyan Teng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, 8000, Denmark.
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
27
|
Du ZY, Zhu HL, Chang W, Zhang YF, Ling Q, Wang KW, Zhang J, Zhang QB, Kan XL, Wang QN, Wang H, Zhou Y. Maternal prednisone exposure during pregnancy elevates susceptibility to osteoporosis in female offspring: The role of mitophagy/FNDC5 alteration in skeletal muscle. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133997. [PMID: 38508115 DOI: 10.1016/j.jhazmat.2024.133997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.
Collapse
Affiliation(s)
- Zun-Yu Du
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Wei Chang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Feng Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Qing Ling
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Kai-Wen Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiu-Li Kan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qu-Nan Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Luo L, Pang T, Zheng H, Liufu C, Chang S. xWAS analysis in neuropsychiatric disorders by integrating multi-molecular phenotype quantitative trait loci and GWAS summary data. J Transl Med 2024; 22:387. [PMID: 38664746 PMCID: PMC11044291 DOI: 10.1186/s12967-024-05065-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/05/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Integrating quantitative trait loci (QTL) data related to molecular phenotypes with genome-wide association study (GWAS) data is an important post-GWAS strategic approach employed to identify disease-associated molecular features. Various types of molecular phenotypes have been investigated in neuropsychiatric disorders. However, these findings pertaining to distinct molecular features are often independent of each other, posing challenges for having an overview of the mapped genes. METHODS In this study, we comprehensively summarized published analyses focusing on four types of risk-related molecular features (gene expression, splicing transcriptome, protein abundance, and DNA methylation) across five common neuropsychiatric disorders. Subsequently, we conducted supplementary analyses with the latest GWAS dataset and corresponding deficient molecular phenotypes using Functional Summary-based Imputation (FUSION) and summary data-based Mendelian randomization (SMR). Based on the curated and supplemented results, novel reliable genes and their functions were explored. RESULTS Our findings revealed that eQTL exhibited superior ability in prioritizing risk genes compared to the other QTL, followed by sQTL. Approximately half of the genes associated with splicing transcriptome, protein abundance, and DNA methylation were successfully replicated by eQTL-associated genes across all five disorders. Furthermore, we identified 436 novel reliable genes, which enriched in pathways related with neurotransmitter transportation such as synaptic, dendrite, vesicles, axon along with correlations with other neuropsychiatric disorders. Finally, we identified ten multiple molecular involved regulation patterns (MMRP), which may provide valuable insights into understanding the contribution of molecular regulation network targeting these disease-associated genes. CONCLUSIONS The analyses prioritized novel and reliable gene sets related with five molecular features based on published and supplementary results for five common neuropsychiatric disorders, which were missed in the original GWAS analysis. Besides, the involved MMRP behind these genes could be given priority for further investigation to elucidate the pathogenic molecular mechanisms underlying neuropsychiatric disorders in future studies.
Collapse
Affiliation(s)
- Lingxue Luo
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Tao Pang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Haohao Zheng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Chao Liufu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Bei Road, Beijing, 100191, China
| | - Suhua Chang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 51 Huayuan Bei Road, Beijing, 100191, China.
- Research Units of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences, Beijing, 100191, China.
| |
Collapse
|
29
|
Chen HS, Wang F, Chen JG. Epigenetic mechanisms in depression: Implications for pathogenesis and treatment. Curr Opin Neurobiol 2024; 85:102854. [PMID: 38401316 DOI: 10.1016/j.conb.2024.102854] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/26/2024]
Abstract
The risk of depression is influenced by both genetic and environmental factors. It has been suggested that epigenetic mechanisms may mediate the risk of depression following exposure to adverse life events. Epigenetics encompasses stable alterations in gene expression that are controlled through transcriptional, post-transcriptional, translational, or post-translational processes, including DNA modifications, chromatin remodeling, histone modifications, RNA modifications, and non-coding RNA (ncRNA) regulation, without any changes in the DNA sequence. In this review, we explore recent research advancements in the realm of epigenetics concerning depression. Furthermore, we evaluate the potential of epigenetic changes as diagnostic and therapeutic biomarkers for depression.
Collapse
Affiliation(s)
- Hong-Sheng Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan 430030, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China; The Research Center for Depression, Tongji Medical College, Huazhong University of Science, Wuhan 430030, China; The Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan 430030, China.
| |
Collapse
|
30
|
He D, Yang X, Liu L, Shen D, Liu Q, Liu M, Zhang X, Cui L. Dysregulated N 6-methyladenosine modification in peripheral immune cells contributes to the pathogenesis of amyotrophic lateral sclerosis. Front Med 2024; 18:285-302. [PMID: 38491210 DOI: 10.1007/s11684-023-1035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/15/2023] [Indexed: 03/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurogenerative disorder with uncertain origins. Emerging evidence implicates N6-methyladenosine (m6A) modification in ALS pathogenesis. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and liquid chromatography-mass spectrometry were utilized for m6A profiling in peripheral immune cells and serum proteome analysis, respectively, in patients with ALS (n = 16) and controls (n = 6). The single-cell transcriptomic dataset (GSE174332) of primary motor cortex was further analyzed to illuminate the biological implications of differentially methylated genes and cell communication changes. Analysis of peripheral immune cells revealed extensive RNA hypermethylation, highlighting candidate genes with differential m6A modification and expression, including C-X3-C motif chemokine receptor 1 (CX3CR1). In RAW264.7 macrophages, disrupted CX3CR1 signaling affected chemotaxis, potentially influencing immune cell migration in ALS. Serum proteome analysis demonstrated the role of dysregulated immune cell migration in ALS. Cell type-specific expression variations of these genes in the central nervous system (CNS), particularly microglia, were observed. Intercellular communication between neurons and glial cells was selectively altered in ALS CNS. This integrated approach underscores m6A dysregulation in immune cells as a potential ALS contributor.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Liyang Liu
- Medical Doctor Program, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qing Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
31
|
Yao Y, Liu P, Li Y, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. Regulatory role of m 6A epitranscriptomic modifications in normal development and congenital malformations during embryogenesis. Biomed Pharmacother 2024; 173:116171. [PMID: 38394844 DOI: 10.1016/j.biopha.2024.116171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
The discovery of N6-methyladenosine (m6A) methylation and its role in translation has led to the emergence of a new field of research. Despite accumulating evidence suggesting that m6A methylation is essential for the pathogenesis of cancers and aging diseases by influencing RNA stability, localization, transformation, and translation efficiency, its role in normal and abnormal embryonic development remains unclear. An increasing number of studies are addressing the development of the nervous and gonadal systems during embryonic development, but only few are assessing that of the immune, hematopoietic, urinary, and respiratory systems. Additionally, these studies are limited by the requirement for reliable embryonic animal models and the difficulty in collecting tissue samples of fetuses during development. Multiple studies on the function of m6A methylation have used suitable cell lines to mimic the complex biological processes of fetal development or the early postnatal phase; hence, the research is still in the primary stage. Herein, we discuss current advances in the extensive biological functions of m6A methylation in the development and maldevelopment of embryos/fetuses and conclude that m6A modification occurs extensively during fetal development. Aberrant expression of m6A regulators is probably correlated with single or multiple defects in organogenesis during the intrauterine life. This comprehensive review will enhance our understanding of the pivotal role of m6A modifications involved in fetal development and examine future research directions in embryogenesis.
Collapse
Affiliation(s)
- Yifan Yao
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
32
|
Hua T, Zhang C, Fu Y, Qin N, Liu S, Chen C, Gong L, Ma H, Ding Y, Wei X, Jin C, Jin C, Zhu M, Zhang E, Dai J, Ma H. Integrative analyses of N6-methyladenosine-associated single-nucleotide polymorphisms (m6A-SNPs) identify tumor suppressor gene AK9 in lung cancer. Mol Carcinog 2024; 63:538-548. [PMID: 38051288 DOI: 10.1002/mc.23669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
N6 -methyladenosine (m6 A) modification has been identified as one of the most important epigenetic regulation mechanisms in the development of human cancers. However, the association between m6 A-associated single-nucleotide polymorphisms (m6 A-SNPs) and lung cancer risk remains largely unknown. Here, we identified m6 A-SNPs and examined the association of these m6 A-SNPs with lung cancer risk in 13,793 lung cancer cases and 14,027 controls. In silico functional annotation was used to identify causal m6 A-SNPs and target genes. Furthermore, methylated RNA immunoprecipitation and quantitative real-time polymerase chain reaction (MeRIP-qPCR) assay was performed to assess the m6 A modification level of different genotypes of the causal SNP. In vitro assays were performed to validate the potential role of the target gene in lung cancer. A total of 8794 m6 A-SNPs were detected, among which 397 SNPs in nine susceptibility loci were associated with lung cancer risk, including six novel loci. Bioinformatics analyses indicated that rs1321328 in 6q21 was located around the m6 A modification site of AK9 and significantly reduced AK9 expression (β = -0.15, p = 2.78 × 10-8 ). Moreover, AK9 was significantly downregulated in lung cancer tissues than that in adjacent normal tissues of samples from the Cancer Genome Atlas and Nanjing Lung Cancer Cohort. MeRIP-qPCR assay suggested that C allele of rs1321328 could significantly decrease the m6 A modification level of AK9 compared with G allele. In vitro assays verified the tumor-suppressing role of AK9 in lung cancer. These findings shed light on the pathogenic mechanism of lung cancer susceptibility loci linked with m6 A modification.
Collapse
Affiliation(s)
- Tingting Hua
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yating Fu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Su Liu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Congcong Chen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Linnan Gong
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huimin Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yue Ding
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoxia Wei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenying Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chen Jin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Hongxia Ma
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Xu X, Wang D, Xu W, Li H, Chen N, Li N, Yao Q, Chen W, Zhong J, Mao W. NIPBL-mediated RAD21 facilitates tumorigenicity by the PI3K pathway in non-small-cell lung cancer. Commun Biol 2024; 7:206. [PMID: 38378967 PMCID: PMC10879132 DOI: 10.1038/s42003-024-05801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
It is urgent to identify novel early diagnostic markers and therapeutic targets for non-small-cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases and has a 5-year survival rate of 4-17%. Here, chromatin immunoprecipitation (ChIP) was used to identify DNA‒protein interactions, RNA methylation was determined by methylated RNA immunoprecipitation (MeRIP), RNA stability was tested by an RNA decay assay. We showed that RAD21, a member of the cohesin complex, is upregulated in NSCLC tissues and cell lines and found to be an independent prognostic factor for overall survival (OS) of NSCLC patients. Mechanistically, the cohesin loading factor Nipped-B-Like Protein (NIPBL) promoted RAD21 gene transcription by enhancing histone H3 lysine 27 (H3K27) demethylation via recruiting lysine demethylase 6B (KDM6B) to the RAD21 gene promoter. RAD21 enhanced phosphatidylinositol 3-kinase (PI3K) gene transcription, and NIPBL reversed the effect of enhancer of zeste 2; catalytic subunit of polycomb repressive complex 2 (EZH2) on RAD21-mediated PI3K gene transcription by disrupting the association between EZH2 and RAD21. Moreover, NIPBL level was increased by stabilization of its transcripts through mRNA methylation. These findings highlight the oncogenic role of RAD21 in NSCLC and suggest its use as a potential diagnostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, China
| | - Ding Wang
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
| | - Weizhen Xu
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
| | - Huihui Li
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Ning Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Na Li
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Qifeng Yao
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Wei Chen
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China.
| | - Jianxiang Zhong
- School of Life Science and Technology, Southeast University, 2 Sipailou, Nanjing, China.
| | - Weimin Mao
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China.
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1 Banshan East Road, Hangzhou, China.
| |
Collapse
|
34
|
Shachar R, Dierks D, Garcia-Campos MA, Uzonyi A, Toth U, Rossmanith W, Schwartz S. Dissecting the sequence and structural determinants guiding m6A deposition and evolution via inter- and intra-species hybrids. Genome Biol 2024; 25:48. [PMID: 38360609 PMCID: PMC10870504 DOI: 10.1186/s13059-024-03182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is the most abundant mRNA modification, and controls mRNA stability. m6A distribution varies considerably between and within species. Yet, it is unclear to what extent this variability is driven by changes in genetic sequences ('cis') or cellular environments ('trans') and via which mechanisms. RESULTS Here we dissect the determinants governing RNA methylation via interspecies and intraspecies hybrids in yeast and mammalian systems, coupled with massively parallel reporter assays and m6A-QTL reanalysis. We find that m6A evolution and variability is driven primarily in 'cis', via two mechanisms: (1) variations altering m6A consensus motifs, and (2) variation impacting mRNA secondary structure. We establish that mutations impacting RNA structure - even when distant from an m6A consensus motif - causally dictate methylation propensity. Finally, we demonstrate that allele-specific differences in m6A levels lead to allele-specific changes in gene expression. CONCLUSIONS Our findings define the determinants governing m6A evolution and diversity and characterize the consequences thereof on gene expression regulation.
Collapse
Affiliation(s)
- Ran Shachar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - David Dierks
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | | | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ursula Toth
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, 1090, Austria
| | - Walter Rossmanith
- Center for Anatomy & Cell Biology, Medical University of Vienna, Vienna, 1090, Austria
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
35
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Li Y, Liu H, He C, Ma L. Comparison of transcriptome-wide N6-methyladenosine profiles from healthy trio families reveals regulator-mediated methylation alterations. Genetics 2024; 226:iyad206. [PMID: 38001375 DOI: 10.1093/genetics/iyad206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 09/19/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The N6-methyladenosine (m6A) modification is a highly conserved RNA modification found in eukaryotic messenger RNAs (mRNAs). It plays a vital role in regulating various biological processes. Dysregulation of m6A modifications has been linked to a range of complex genetic diseases in humans. However, there has been a lack of comprehensive characterization and comparison of m6A modifications at the transcriptome-wide level within families. To address this gap, we profiled transcriptome-wide m6A methylation in 18 individuals across 6 Yoruba trio families. The m6A methylomes of these 18 individuals revealed that m6A modifications in children showed greater similarity to each other than to their parents. This suggests that m6A modifications are influenced by multiple factors rather than solely determined by genetic factors. Additionally, we found that mRNAs exhibiting m6A modifications specific to children were enriched in cell cycle control processes, while those with m6A modifications specific to parents were associated with chromatin modifications. Furthermore, our analysis on the interactions between differentially expressed m6A-related regulatory genes and age-related genes suggested that age might be one of the factors influencing m6A modifications. In summary, our study provided a valuable dataset that highlighted the differences and functional diversity of m6A modifications within and between trio families.
Collapse
Affiliation(s)
- Yini Li
- School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 201100, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310024, Zhejiang, China
| | - Hang Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310024, Zhejiang, China
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
- Medical Scientist Training Program/Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Lijia Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
37
|
He D, Xu Y, Liu M, Cui L. The Inflammatory Puzzle: Piecing together the Links between Neuroinflammation and Amyotrophic Lateral Sclerosis. Aging Dis 2024; 15:96-114. [PMID: 37307819 PMCID: PMC10796096 DOI: 10.14336/ad.2023.0519] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that has a complex genetic basis. Through advancements in genetic screening, researchers have identified more than 40 mutant genes associated with ALS, some of which impact immune function. Neuroinflammation, with abnormal activation of immune cells and excessive production of inflammatory cytokines in the central nervous system, significantly contributes to the pathophysiology of ALS. In this review, we examine recent evidence on the involvement of ALS-associated mutant genes in immune dysregulation, with a specific focus on the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway and N6-methyladenosine (m6A)-mediated immune regulation in the context of neurodegeneration. We also discuss the perturbation of immune cell homeostasis in both the central nervous system and peripheral tissues in ALS. Furthermore, we explore the advancements made in the emerging genetic and cell-based therapies for ALS. This review underscores the complex relationship between ALS and neuroinflammation, highlighting the potential to identify modifiable factors for therapeutic intervention. A deeper understanding of the connection between neuroinflammation and the risk of ALS is crucial for advancing effective treatments for this debilitating disorder.
Collapse
Affiliation(s)
- Di He
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Yan Xu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| |
Collapse
|
38
|
Zhu S, Bai L, Pan Y, Yin J, Zhang D, Hou C, Wang Y, Li R. Integrative Analysis of N6-methyladenosine RNA modifications related genes and their Influences on Immunoreaction or fibrosis in myocardial infarction. Int J Med Sci 2024; 21:219-233. [PMID: 38169719 PMCID: PMC10758152 DOI: 10.7150/ijms.86210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/17/2023] [Indexed: 01/05/2024] Open
Abstract
Increasing studies have shown that N6-methyladenosine (m6A) modification plays an important role in cardiovascular diseases. In this study, we systematically investigated the regulatory mode of m6A genes in myocardial infarction (MI) by combining bioinformatics analysis of clinical samples with animal experiments. We utilized gene expression data of clinical samples from public databases to examine the expression of m6A genes in heart tissues and found a large difference between the healthy control group and MI group. Subsequently, we established an MI diagnosis model based on the differentially expressed m6A genes using the random forest method. Next, unsupervised clustering method was used to classify all MI samples into two clusters, and the differences in immune infiltration and gene expression between different clusters were compared. We found LRPPRC to be the predominant gene in m6A clustering, and it was negatively correlated with immunoreaction. Through GO enrichment analysis, we found that most differentially expressed genes between the two clusters were profibrotic. By means of WGCNA, we inferred that GJA4 might be a core molecule in the m6A regulatory network of MI. This study demonstrates that m6A regulators probably affects the immune-inflammatory response and fibrosis to regulate the process of MI, which provides a potential therapeutic target.
Collapse
Affiliation(s)
- Shiwei Zhu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Lan Bai
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Yitong Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Junhao Yin
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Deshuai Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Chenchen Hou
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yongli Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Ruogu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
39
|
Shan T, Liu F, Wen M, Chen Z, Li S, Wang Y, Cheng H, Zhou Y. m 6A modification negatively regulates translation by switching mRNA from polysome to P-body via IGF2BP3. Mol Cell 2023; 83:4494-4508.e6. [PMID: 38016476 DOI: 10.1016/j.molcel.2023.10.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 07/10/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023]
Abstract
In the cytoplasm, mRNAs are dynamically partitioned into translating and non-translating pools, but the mechanism for this regulation has largely remained elusive. Here, we report that m6A regulates mRNA partitioning between polysome and P-body where a pool of non-translating mRNAs resides. By quantifying the m6A level of polysomal and cytoplasmic mRNAs with m6A-LAIC-seq and m6A-LC-MS/MS in HeLa cells, we observed that polysome-associated mRNAs are hypo-m6A-methylated, whereas those enriched in P-body are hyper-m6A-methylated. Downregulation of the m6A writer METTL14 enhances translation by switching originally hyper-m6A-modified mRNAs from P-body to polysome. Conversely, by proteomic analysis, we identify a specific m6A reader IGF2BP3 enriched in P-body, and via knockdown and molecular tethering assays, we demonstrate that IGF2BP3 is both necessary and sufficient to switch target mRNAs from polysome to P-body. These findings suggest a model for the dynamic regulation of mRNA partitioning between the translating and non-translating pools in an m6A-dependent manner.
Collapse
Affiliation(s)
- Ting Shan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Feiyan Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Miaomiao Wen
- Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Zonggui Chen
- Institute of Advanced Studies, Wuhan University, Wuhan, China
| | - Shaopeng Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Yafen Wang
- School of Public Health, Wuhan University, Wuhan, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, China; Institute of Advanced Studies, Wuhan University, Wuhan, China; Frontier Science Center for Immunology and Metabolism, State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
40
|
Sun J, Zhou H, Chen Z, Zhang H, Cao Y, Yao X, Chen X, Liu B, Gao Z, Shen Y, Qi L, Sun H. Altered m6A RNA methylation governs denervation-induced muscle atrophy by regulating ubiquitin proteasome pathway. J Transl Med 2023; 21:845. [PMID: 37996930 PMCID: PMC10668433 DOI: 10.1186/s12967-023-04694-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Denervation-induced muscle atrophy is complex disease involving multiple biological processes with unknown mechanisms. N6-methyladenosine (m6A) participates in skeletal muscle physiology by regulating multiple levels of RNA metabolism, but its impact on denervation-induced muscle atrophy is still unclear. Here, we aimed to explore the changes, functions, and molecular mechanisms of m6A RNA methylation during denervation-induced muscle atrophy. METHODS During denervation-induced muscle atrophy, the m6A immunoprecipitation sequencing (MeRIP-seq) as well as enzyme-linked immunosorbent assay analysis were used to detect the changes of m6A modified RNAs and the involved biological processes. 3-deazidenosine (Daa) and R-2-hydroxyglutarate (R-2HG) were used to verify the roles of m6A RNA methylation. Through bioinformatics analysis combined with experimental verification, the regulatory roles and mechanisms of m6A RNA methylation had been explored. RESULTS There were many m6A modified RNAs with differences during denervation-induced muscle atrophy, and overall, they were mainly downregulated. After 72 h of denervation, the biological processes involved in the altered mRNA with m6A modification were mainly related to zinc ion binding, ubiquitin protein ligase activity, ATP binding and sequence-specific DNA binding and transcription coactivator activity. Daa reduced overall m6A levels in healthy skeletal muscles, which reduced skeletal muscle mass. On the contrary, the increase in m6A levels mediated by R-2HG alleviated denervation induced muscle atrophy. The m6A RNA methylation regulated skeletal muscle mass through ubiquitin-proteasome pathway. CONCLUSION This study indicated that decrease in m6A RNA methylation was a new symptom of denervation-induced muscle atrophy, and confirmed that targeting m6A alleviated denervation-induced muscle atrophy.
Collapse
Affiliation(s)
- Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hai Zhou
- Department of Neurosurgery, Binhai County People's Hospital, Yancheng, 224500, Jiangsu, People's Republic of China
| | - Zehao Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Han Zhang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, China
| | - Yanzhe Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Zhu Z, Chen X, Zhang S, Yu R, Qi C, Cheng L, Zhang X. Leveraging molecular quantitative trait loci to comprehend complex diseases/traits from the omics perspective. Hum Genet 2023; 142:1543-1560. [PMID: 37755483 DOI: 10.1007/s00439-023-02602-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Comprehending the molecular basis of quantitative genetic variation is a principal goal for complex diseases or traits. Molecular quantitative trait loci (molQTLs) have made it possible to investigate the effects of genetic variants hiding behind large-scale omics data. A deeper understanding of molQTL is urgently required in light of the multi-dimensionalization of omics data to more fully elucidate the pertinent biological mechanisms. Herein, we reviewed molQTLs with the corresponding resource from the omics perspective and further discussed the integrative strategy of GWAS-molQTL to infer their causal effects. Subsequently, we described the opportunities and challenges encountered by molQTL. The case studies showed that molQTL is essential for complex diseases and traits, whether single- or multi-omics QTLs. Overall, we highlighted the functional significance of genetic variants to employ the discovery of molQTL in complex diseases and traits.
Collapse
Affiliation(s)
- Zijun Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xinyu Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Rui Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Changlu Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China.
| | - Xue Zhang
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, 150028, Heilongjiang, China
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
42
|
Hou L, Xiong X, Park Y, Boix C, James B, Sun N, He L, Patel A, Zhang Z, Molinie B, Van Wittenberghe N, Steelman S, Nusbaum C, Aguet F, Ardlie KG, Kellis M. Multitissue H3K27ac profiling of GTEx samples links epigenomic variation to disease. Nat Genet 2023; 55:1665-1676. [PMID: 37770633 PMCID: PMC10562256 DOI: 10.1038/s41588-023-01509-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/22/2023] [Indexed: 09/30/2023]
Abstract
Genetic variants associated with complex traits are primarily noncoding, and their effects on gene-regulatory activity remain largely uncharacterized. To address this, we profile epigenomic variation of histone mark H3K27ac across 387 brain, heart, muscle and lung samples from Genotype-Tissue Expression (GTEx). We annotate 282 k active regulatory elements (AREs) with tissue-specific activity patterns. We identify 2,436 sex-biased AREs and 5,397 genetically influenced AREs associated with 130 k genetic variants (haQTLs) across tissues. We integrate genetic and epigenomic variation to provide mechanistic insights for disease-associated loci from 55 genome-wide association studies (GWAS), by revealing candidate tissues of action, driver SNPs and impacted AREs. Lastly, we build ARE-gene linking scores based on genetics (gLink scores) and demonstrate their unique ability to prioritize SNP-ARE-gene circuits. Overall, our epigenomic datasets, computational integration and mechanistic predictions provide valuable resources and important insights for understanding the molecular basis of human diseases/traits such as schizophrenia.
Collapse
Affiliation(s)
- Lei Hou
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xushen Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yongjin Park
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Carles Boix
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benjamin James
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Na Sun
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Liang He
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Aman Patel
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Zhizhuo Zhang
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Benoit Molinie
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Scott Steelman
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chad Nusbaum
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - François Aguet
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
43
|
Zhang T, Yu B, Cai Z, Jiang Q, Fu X, Zhao W, Wang H, Gu Y, Zhang J. Regulatory role of N 6-methyladenosine in intramuscular fat deposition in chicken. Poult Sci 2023; 102:102972. [PMID: 37573849 PMCID: PMC10448335 DOI: 10.1016/j.psj.2023.102972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023] Open
Abstract
Intramuscular fat (IMF) has a pivotal influence on meat quality, with its deposition being a multifaceted physiological interaction of several regulatory factors. N6-methyladenosine (m6A), the preeminent epigenetic alteration among eukaryotic RNA modifications, holds a crucial role in moderating post-transcriptional gene expression. However, there is a dearth of comprehensive understanding regarding the functional machinery of m6A modification in the context of IMF deposition in poultry. Our current study entails an analysis of the disparities in IMF within the breast and leg of 180-day-old Jingyuan chickens. We implemented methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to delve into the distribution of m6A and its putative regulatory frameworks on IMF deposition in chickens. The findings demonstrated a markedly higher IMF content in leg relative to breast (P < 0.01). Furthermore, the expression of METTL14, WTAP, FTO, and ALKBH5 was significantly diminished in comparison to that of breast (P < 0.01). The m6A peaks in the breast and leg primarily populated 3'untranslated regions (3'UTR) and coding sequence (CDS) regions. The leg, when juxtaposed with the breast, manifested 176 differentially methylated genes (DMGs), including 151 hyper-methylated DMGs and 25 hypo-methylated DMGs. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed a pronounced enrichment of DMGs in the biosynthesis of amino acids, peroxisome, Fatty acid biosynthesis, fatty acid elongation, and cell adhesion molecules (CAMs) pathways. Key DMGs, namely ECH1, BCAT1, and CYP1B1 were implicated in the regulation of muscle lipid anabolism. Our study offers substantial insight and forms a robust foundation for further exploration of the functional mechanisms of m6A modification in modulating IMF deposition. This holds profound theoretical importance for improving and leveraging meat quality in indigenous chicken breeds.
Collapse
Affiliation(s)
- Tong Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qiufei Jiang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Xi Fu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wei Zhao
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haorui Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
44
|
Xiong X, James BT, Boix CA, Park YP, Galani K, Victor MB, Sun N, Hou L, Ho LL, Mantero J, Scannail AN, Dileep V, Dong W, Mathys H, Bennett DA, Tsai LH, Kellis M. Epigenomic dissection of Alzheimer's disease pinpoints causal variants and reveals epigenome erosion. Cell 2023; 186:4422-4437.e21. [PMID: 37774680 PMCID: PMC10782612 DOI: 10.1016/j.cell.2023.08.040] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/04/2023] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Recent work has identified dozens of non-coding loci for Alzheimer's disease (AD) risk, but their mechanisms and AD transcriptional regulatory circuitry are poorly understood. Here, we profile epigenomic and transcriptomic landscapes of 850,000 nuclei from prefrontal cortexes of 92 individuals with and without AD to build a map of the brain regulome, including epigenomic profiles, transcriptional regulators, co-accessibility modules, and peak-to-gene links in a cell-type-specific manner. We develop methods for multimodal integration and detecting regulatory modules using peak-to-gene linking. We show AD risk loci are enriched in microglial enhancers and for specific TFs including SPI1, ELF2, and RUNX1. We detect 9,628 cell-type-specific ATAC-QTL loci, which we integrate alongside peak-to-gene links to prioritize AD variant regulatory circuits. We report differential accessibility of regulatory modules in late AD in glia and in early AD in neurons. Strikingly, late-stage AD brains show global epigenome dysregulation indicative of epigenome erosion and cell identity loss.
Collapse
Affiliation(s)
- Xushen Xiong
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Benjamin T James
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Yongjin P Park
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Pathology and Laboratory Medicine, Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Matheus B Victor
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Na Sun
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Lei Hou
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Li-Lun Ho
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Aine Ni Scannail
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vishnu Dileep
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Weixiu Dong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hansruedi Mathys
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Li-Huei Tsai
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA; The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Carnes MU, Quach BC, Zhou L, Han S, Tao R, Mandal M, Deep-Soboslay A, Marks JA, Page GP, Maher BS, Jaffe AE, Won H, Bierut LJ, Hyde TM, Kleinman JE, Johnson EO, Hancock DB. Smoking-informed methylation and expression QTLs in human brain and colocalization with smoking-associated genetic loci. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.18.23295431. [PMID: 37790540 PMCID: PMC10543041 DOI: 10.1101/2023.09.18.23295431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.
Collapse
Affiliation(s)
- Megan Ulmer Carnes
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Bryan C. Quach
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Linran Zhou
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Shizhong Han
- Lieber Institute for Brain Development (LIBD), Baltimore, Maryland
| | - Ran Tao
- Lieber Institute for Brain Development (LIBD), Baltimore, Maryland
| | - Meisha Mandal
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | | | - Jesse A. Marks
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| | - Grier P. Page
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | - Brion S. Maher
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development (LIBD), Baltimore, Maryland
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura J. Bierut
- Department of Psychiatry, Washington University in St. Louis, Missouri
| | - Thomas M. Hyde
- Lieber Institute for Brain Development (LIBD), Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Joel E. Kleinman
- Lieber Institute for Brain Development (LIBD), Baltimore, Maryland
| | - Eric O. Johnson
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
- Fellow Program, RTI International, Research Triangle Park, North Carolina
| | - Dana B. Hancock
- Genomics and Translational Research Center, RTI International, Research Triangle Park, North Carolina
| |
Collapse
|
46
|
Zhao S, Cao J, Sun Y, Zhou H, Zhu Q, Dai D, Zhan S, Guo J, Zhong T, Wang L, Li L, Zhang H. METTL3 Promotes the Differentiation of Goat Skeletal Muscle Satellite Cells by Regulating MEF2C mRNA Stability in a m 6A-Dependent Manner. Int J Mol Sci 2023; 24:14115. [PMID: 37762418 PMCID: PMC10531580 DOI: 10.3390/ijms241814115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The development of mammalian skeletal muscle is a highly complex process involving multiple molecular interactions. As a prevalent RNA modification, N6-methyladenosine (m6A) regulates the expression of target genes to affect mammalian development. Nevertheless, it remains unclear how m6A participates in the development of goat muscle. In this study, methyltransferase 3 (METTL3) was significantly enriched in goat longissimus dorsi (LD) tissue. In addition, the global m6A modification level and differentiation of skeletal muscle satellite cells (MuSCs) were regulated by METTL3. By performing mRNA-seq analysis, 8050 candidate genes exhibited significant changes in expression level after the knockdown of METTL3 in MuSCs. Additionally, methylated RNA immunoprecipitation sequencing (MeRIP-seq) illustrated that myocyte enhancer factor 2c (MEF2C) mRNA contained m6A modification. Further experiments demonstrated that METTL3 enhanced the differentiation of MuSCs by upregulating m6A levels and expression of MEF2C. Moreover, the m6A reader YTH N6-methyladenosine RNA binding protein C1 (YTHDC1) was bound and stabilized to MEF2C mRNA. The present study reveals that METTL3 enhances myogenic differentiation in MuSCs by regulating MEF2C and provides evidence of a post-transcriptional mechanism in the development of goat skeletal muscle.
Collapse
Affiliation(s)
- Sen Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Yanjin Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Helin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (S.Z.); (J.C.); (Y.S.); (H.Z.); (Q.Z.); (D.D.); (S.Z.); (J.G.); (T.Z.); (L.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
47
|
Han X, Guo J, Wang M, Zhang N, Ren J, Yang Y, Chi X, Chen Y, Yao H, Zhao YL, Yang YG, Sun Y, Xu J. Dynamic DNA 5-hydroxylmethylcytosine and RNA 5-methycytosine Reprogramming During Early Human Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:805-822. [PMID: 35644351 PMCID: PMC10787118 DOI: 10.1016/j.gpb.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
After implantation, complex and highly specialized molecular events render functionally distinct organ formation, whereas how the epigenome shapes organ-specific development remains to be fully elucidated. Here, nano-hmC-Seal, RNA bisulfite sequencing (RNA-BisSeq), and RNA sequencing (RNA-Seq) were performed, and the first multilayer landscapes of DNA 5-hydroxymethylcytosine (5hmC) and RNA 5-methylcytosine (m5C) epigenomes were obtained in the heart, kidney, liver, and lung of the human foetuses at 13-28 weeks with 123 samples in total. We identified 70,091 and 503 organ- and stage-specific differentially hydroxymethylated regions (DhMRs) and m5C-modified mRNAs, respectively. The key transcription factors (TFs), T-box transcription factor 20 (TBX20), paired box 8 (PAX8), krueppel-like factor 1 (KLF1), transcription factor 21 (TCF21), and CCAAT enhancer binding protein beta (CEBPB), specifically contribute to the formation of distinct organs at different stages. Additionally, 5hmC-enriched Alu elements may participate in the regulation of expression of TF-targeted genes. Our integrated studies reveal a putative essential link between DNA modification and RNA methylation, and illustrate the epigenetic maps during human foetal organogenesis, which provide a foundation for for an in-depth understanding of the epigenetic mechanisms underlying early development and birth defects.
Collapse
Affiliation(s)
- Xiao Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jia Guo
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengke Wang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jie Ren
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ying Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Chi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Chen
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Zhao
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Gui Yang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
48
|
Song B, Huang D, Zhang Y, Wei Z, Su J, Pedro de Magalhães J, Rigden DJ, Meng J, Chen K. m6A-TSHub: Unveiling the Context-specific m 6A Methylation and m 6A-affecting Mutations in 23 Human Tissues. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:678-694. [PMID: 36096444 PMCID: PMC10787194 DOI: 10.1016/j.gpb.2022.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 08/19/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
As the most pervasive epigenetic marker present on mRNAs and long non-coding RNAs (lncRNAs), N6-methyladenosine (m6A) RNA methylation has been shown to participate in essential biological processes. Recent studies have revealed the distinct patterns of m6A methylome across human tissues, and a major challenge remains in elucidating the tissue-specific presence and circuitry of m6A methylation. We present here a comprehensive online platform, m6A-TSHub, for unveiling the context-specific m6A methylation and genetic mutations that potentially regulate m6A epigenetic mark. m6A-TSHub consists of four core components, including (1) m6A-TSDB, a comprehensive database of 184,554 functionally annotated m6A sites derived from 23 human tissues and 499,369 m6A sites from 25 tumor conditions, respectively; (2) m6A-TSFinder, a web server for high-accuracy prediction of m6A methylation sites within a specific tissue from RNA sequences, which was constructed using multi-instance deep neural networks with gated attention; (3) m6A-TSVar, a web server for assessing the impact of genetic variants on tissue-specific m6A RNA modifications; and (4) m6A-CAVar, a database of 587,983 The Cancer Genome Atlas (TCGA) cancer mutations (derived from 27 cancer types) that were predicted to affect m6A modifications in the primary tissue of cancers. The database should make a useful resource for studying the m6A methylome and the genetic factors of epitranscriptome disturbance in a specific tissue (or cancer type). m6A-TSHub is accessible at www.xjtlu.edu.cn/biologicalsciences/m6ats.
Collapse
Affiliation(s)
- Bowen Song
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China; Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daiyun Huang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Computer Science, University of Liverpool, Liverpool L69 7ZB, United Kingdom.
| | - Yuxin Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Zhen Wei
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jionglong Su
- School of AI and Advanced Computing, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - João Pedro de Magalhães
- Institute of Ageing & Chronic Disease, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Daniel J Rigden
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Jia Meng
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; AI University Research Centre, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Kunqi Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
49
|
Cao S, Zhu H, Cui J, Liu S, Li Y, Shi J, Mo J, Wang Z, Wang H, Hu J, Chen L, Li Y, Xia L, Xiao S. Allele-specific RNA N 6-methyladenosine modifications reveal functional genetic variants in human tissues. Genome Res 2023; 33:1369-1380. [PMID: 37714712 PMCID: PMC10547253 DOI: 10.1101/gr.277704.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/13/2023] [Indexed: 09/17/2023]
Abstract
An intricate network of cis- and trans-elements acts on RNA N 6-methyladenosine (m6A), which in turn may affect gene expression and, ultimately, human health. A complete understanding of this network requires new approaches to accurately measure the subtle m6A differences arising from genetic variants, many of which have been associated with common diseases. To address this gap, we developed a method to accurately and sensitively detect transcriptome-wide allele-specific m6A (ASm6A) from MeRIP-seq data and applied it to uncover 12,056 high-confidence ASm6A modifications from 25 human tissues. We also identified 1184 putative functional variants for ASm6A regulation, a subset of which we experimentally validated. Importantly, we found that many of these ASm6A-associated genetic variants were enriched for common disease-associated and complex trait-associated risk loci, and verified that two disease risk variants can change m6A modification status. Together, this work provides a tool to detangle the dynamic network of RNA modifications at the allelic level and highlights the interplay of m6A and genetics in human health and disease.
Collapse
Affiliation(s)
- Shuo Cao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haoran Zhu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinru Cui
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sun Liu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuhe Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junfang Shi
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junyuan Mo
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zihan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hailan Wang
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiaxin Hu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lizhi Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuan Li
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
| | - Shan Xiao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China;
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou 510515, China
| |
Collapse
|
50
|
Yu Y, Yan R, Tian X. The more the neuroticism, the more the susceptibility to Alzheimer's disease. What inspiration can neuroticism provide? IBRAIN 2023; 9:231-235. [PMID: 37786550 PMCID: PMC10529344 DOI: 10.1002/ibra.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 10/04/2023]
Abstract
Study of neuroticism can provide important insights. Before the inclusion of neuroticism in the study of Alzheimer's disease (AD), clinical and scientific researchers used relatively fixed models to treat AD, such as prescribing fixed doses of drugs and fixed research strategies. However, taking neuroticism into account affects drug use, the direction of scientific research, and even the mental health of the population, which translates into more immediate economic benefits.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduSichuanChina
| | - Ruitong Yan
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduSichuanChina
| | - Xiaohe Tian
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging Key Laboratory of Sichuan ProvinceWest China Hospital of Sichuan UniversityChengduChina
- West China School of MedicineSichuan UniversityChengduSichuanChina
- Institute for Bioengineering of Catalunya (IBEC)The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|