1
|
Grossi E, Nguyen CB, Carcamo S, Kirigin Callaú V, Moran S, Filipescu D, Tagore S, Firestone TM, Keogh MC, Sun L, Izar B, Hasson D, Bernstein E. The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin. Mol Cell 2025; 85:1714-1729.e7. [PMID: 40252649 PMCID: PMC12048221 DOI: 10.1016/j.molcel.2025.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/30/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
SWI/SNF (switch/sucrose non-fermentable) chromatin remodelers possess unique functionalities difficult to dissect. Distinct cancers harbor mutations in specific subunits, such as the polybromo-associated BAF (PBAF)-specific component ARID2 in melanoma. Here, we perform epigenomic profiling of SWI/SNF complexes and their associated chromatin states in melanocytes and melanoma. Time-resolved approaches reveal that PBAF regions are generally less sensitive to ATPase inhibition than BAF sites. We further uncover a subset of PBAF-exclusive regions within Polycomb-repressed chromatin that are enriched for REST (RE1 silencing transcription factor), a transcription factor that represses neuronal genes. In turn, PBAF complex disruption via ARID2 loss hinders REST's ability to bind and inactivate its targets, leading to upregulation of synaptic transcripts. Remarkably, this gene signature is conserved in melanoma patients with ARID2 mutations and correlates with an expression program enriched in melanoma brain metastases. Overall, we demonstrate a unique role for PBAF in generating accessibility for a silencing transcription factor at repressed chromatin, with important implications for disease.
Collapse
Affiliation(s)
- Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Christie B Nguyen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentina Kirigin Callaú
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shannon Moran
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Somnath Tagore
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | | | - Lu Sun
- EpiCypher Inc., Durham, NC 27709, USA
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Justice JL, Greco TM, Hutton JE, Reed TJ, Mair ML, Botas J, Cristea IM. Multi-epitope immunocapture of huntingtin reveals striatum-selective molecular signatures. Mol Syst Biol 2025; 21:492-522. [PMID: 40169779 PMCID: PMC12048488 DOI: 10.1038/s44320-025-00096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative disorder affecting an individual's cognitive and motor abilities. HD is caused by a mutation in the huntingtin gene producing a toxic polyglutamine-expanded protein (mHTT) and leading to degeneration in the striatum and cortex. Yet, the molecular signatures that underlie tissue-specific vulnerabilities remain unclear. Here, we investigate this aspect by leveraging multi-epitope protein interaction assays, subcellular fractionation, thermal proteome profiling, and genetic modifier assays. The use of human cell, mouse, and fly models afforded capture of distinct subcellular pools of epitope-enriched and tissue-dependent interactions linked to dysregulated cellular pathways and disease relevance. We established an HTT association with nearly all subunits of the transcriptional regulatory Mediator complex (20/26), with preferential enrichment of MED15 in the tail domain. Using HD and KO models, we find HTT modulates the subcellular localization and assembly of the Mediator. We demonstrated striatal enriched and functional interactions with regulators of calcium homeostasis and chromatin remodeling, whose disease relevance was supported by HD fly genetic modifiers assays. Altogether, we offer insights into tissue- and localization-dependent (m)HTT functions and pathobiology.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA
| | - Megan L Mair
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Juan Botas
- Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ, 08544, USA.
| |
Collapse
|
3
|
Zhou X, Zhou X, Li J, He Y, Qiu S, Xu Y, Liu Z, Yao Y, Liu J, Wen Y, Xie S, Chen J, Liu L, Ou Z, Cai C, Lin J, Lei B, Zou F. Bclaf1 mediates super-enhancer-driven activation of POLR2A to enhance chromatin accessibility in nitrosamine-induced esophageal carcinogenesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138218. [PMID: 40220379 DOI: 10.1016/j.jhazmat.2025.138218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Gene-environment interactions are pivotal contributors to nitrosamine-induced esophageal carcinogenesis. While genetic mechanisms in esophageal carcinoma (ESCA) are well-defined, epigenetic drivers remain elusive. This study identifies a novel mechanism of epigenetic regulation centered on B-cell lymphoma-2-associated transcription factor 1 (Bclaf1) in nitrosamine-induced (Methylnitronitrosoguanidine, MNNG) esophageal carcinogenesis. In nitrosamine-induced malignant transformation cells (MNNG-M), Bclaf1 expression is progressively increased with malignancy, and elevated Bclaf1 levels are correlated with poor prognosis in ESCA patients. Functionally, Bclaf1 significantly promotes the abnormal proliferation of MNNG-M and ESCA cells in vitro and in vivo. Mechanistically, transposase-accessible chromatin sequencing (ATAC-seq) results suggest that Bclaf1 silencing markedly reduces chromatin accessibility, thereby impairing the synthesis of newly transcribed RNA. Bclaf1 activates RNA polymerase II subunit POLR2A to promote chromatin accessibility through distinct transcriptional and splicing mechanisms. More specifically, cleavage under targets and tagmentation (CUT&Tag) assays revealed Bclaf1/P300/H3K27ac co-recruitment at the POLR2A promoter, driving transcription via the E2/E3 elements of the POLR2A super-enhancer. Additionally, RNA-binding protein immunoprecipitation (RIP) assays demonstrated that the Bclaf1 cofactor, small nuclear ribonucleoprotein polypeptide A (SNRPA), interacts with pre-POLR2A to regulate its splicing. Collectively, our study reveals that Bclaf1 facilitates nitrosamine-induced ESCA by controlling POLR2A transcriptional and splicing activities, providing novel insight for early detection and intervention.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Xueqiong Zhou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| | - Jun Li
- Department of thoracic surgery, The third affiliated hospital of Southern Medical University, Guangzhou, Guangdong 510630, China
| | - Yingzheng He
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Shizhen Qiu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Ye Xu
- Department of Immunology and Microbiology, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Zeyu Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Yina Yao
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Ying Wen
- Guangzhou Women and Children's Medical Centre, Guangzhou Medical University Institute of Pediatrics, 9 Jinsui Road, Guangzhou 510623, China
| | - Sitong Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Jialong Chen
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Linhua Liu
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Zejin Ou
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Chunqing Cai
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Junyuan Lin
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, 1838 Guangzhou Road North, Guangzhou 510515, China.
| |
Collapse
|
4
|
Ahn JH, Guo Y, Lyons H, Mackintosh SG, Lau BK, Edmondson RD, Byrum SD, Storey AJ, Tackett AJ, Cai L, Sabari BR, Wang GG. The phenylalanine-and-glycine repeats of NUP98 oncofusions form condensates that selectively partition transcriptional coactivators. Mol Cell 2025; 85:708-725.e9. [PMID: 39922194 DOI: 10.1016/j.molcel.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Recurrent cancer-causing fusions of NUP98 produce higher-order assemblies known as condensates. How NUP98 oncofusion-driven condensates activate oncogenes remains poorly understood. Here, we investigate NUP98-PHF23, a leukemogenic chimera of the disordered phenylalanine-and-glycine (FG)-repeat-rich region of NUP98 and the H3K4me3/2-binding plant homeodomain (PHD) finger domain of PHF23. Our integrated analyses using mutagenesis, proteomics, genomics, and condensate reconstitution demonstrate that the PHD domain targets condensate to the H3K4me3/2-demarcated developmental genes, while FG repeats determine the condensate composition and gene activation. FG repeats are necessary to form condensates that partition a specific set of transcriptional regulators, notably the KMT2/MLL H3K4 methyltransferases, histone acetyltransferases, and BRD4. FG repeats are sufficient to partition transcriptional regulators and activate a reporter when tethered to a genomic locus. NUP98-PHF23 assembles the chromatin-bound condensates that partition multiple positive regulators, initiating a feedforward loop of reading-and-writing the active histone modifications. This network of interactions enforces an open chromatin landscape at proto-oncogenes, thereby driving cancerous transcriptional programs.
Collapse
Affiliation(s)
- Jeong Hyun Ahn
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Benjamin K Lau
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ricky D Edmondson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Ling Cai
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Gang Greg Wang
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
6
|
Chmykhalo VK, Deev RV, Tokarev AT, Polunina YA, Xue L, Shidlovskii YV. SWI/SNF Complex Connects Signaling and Epigenetic State in Cells of Nervous System. Mol Neurobiol 2025; 62:1536-1557. [PMID: 39002058 DOI: 10.1007/s12035-024-04355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome. On the other hand, the complexes mediate the action of multiple signaling pathways that control most aspects of neural tissue development and function. The issues are discussed to provide insight into the molecular basis of the multifaceted role of SWI/SNFs in cell cycle regulation, DNA repair, activation of immediate-early genes, neurogenesis, and brain and connectome formation. An overview is additionally provided for the molecular basis of nervous system pathologies associated with the SWI/SNF complexes and their contribution to neuroinflammation and neurodegeneration. Finally, we discuss the idea that SWI/SNFs act as an integration platform to connect multiple signaling and genetic programs.
Collapse
Affiliation(s)
- Victor K Chmykhalo
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia.
| | - Roman V Deev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Artemiy T Tokarev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Yulia A Polunina
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
| | - Lei Xue
- School of Life Science and Technology, The First Rehabilitation Hospital of Shanghai, Tongji University, Shanghai, China
| | - Yulii V Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova St, Moscow, 119334, Russia
- Department of Biology and General Genetics, Sechenov University, Moscow, Russia
| |
Collapse
|
7
|
Oo JA, Warwick T, Pálfi K, Lam F, McNicoll F, Prieto-Garcia C, Günther S, Cao C, Zhou Y, Gavrilov AA, Razin SV, Cabrera-Orefice A, Wittig I, Pullamsetti SS, Kurian L, Gilsbach R, Schulz MH, Dikic I, Müller-McNicoll M, Brandes RP, Leisegang MS. Long non-coding RNAs direct the SWI/SNF complex to cell type-specific enhancers. Nat Commun 2025; 16:131. [PMID: 39747144 PMCID: PMC11695977 DOI: 10.1038/s41467-024-55539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state. It does so while retaining the ability to respond dynamically to cellular signals. However, the mechanisms that guide SWI/SNF to specific genomic targets have remained elusive. Here we demonstrate that trans-acting long non-coding RNAs (lncRNAs) direct the SWI/SNF complex to cell type-specific enhancers. SWI/SNF preferentially binds lncRNAs and these predominantly bind DNA targets in trans. Together they localize to enhancers, many of which are cell type-specific. Knockdown of SWI/SNF- and enhancer-bound lncRNAs causes the genome-wide redistribution of SWI/SNF away from enhancers and a concomitant differential expression of spatially connected target genes. These lncRNA-SWI/SNF-enhancer networks support an enhancer hub model of SWI/SNF genomic targeting. Our findings reveal that lncRNAs competitively recruit SWI/SNF, providing a specific and dynamic layer of control over chromatin accessibility, and reinforcing their role in mediating enhancer activity and gene expression.
Collapse
Affiliation(s)
- James A Oo
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Timothy Warwick
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Katalin Pálfi
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
| | - Frederike Lam
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Francois McNicoll
- Goethe University Frankfurt, Institute for Molecular Biosciences, Frankfurt, Germany
| | - Cristian Prieto-Garcia
- Goethe University Frankfurt, Institute of Biochemistry II, Faculty of Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Can Cao
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Yinuo Zhou
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alfredo Cabrera-Orefice
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics Center, Frankfurt, Germany
| | - Ilka Wittig
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Goethe University Frankfurt, Functional Proteomics Center, Frankfurt, Germany
| | - Soni Savai Pullamsetti
- Department of Internal Medicine, Justus Liebig University, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), University of Giessen, Giessen, Germany
| | - Leo Kurian
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Ralf Gilsbach
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Marcel H Schulz
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute for Computational Genomic Medicine, Frankfurt, Germany
| | - Ivan Dikic
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute of Biochemistry II, Faculty of Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Frankfurt, Germany
| | - Michaela Müller-McNicoll
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
- Goethe University Frankfurt, Institute for Molecular Biosciences, Frankfurt, Germany
- Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
- German Center of Cardiovascular Research (DZHK), Partner site Rhein/Main, Frankfurt, Germany.
- Cardio-Pulmonary Institute (CPI), Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
8
|
D'Orso I. The HIV-1 Transcriptional Program: From Initiation to Elongation Control. J Mol Biol 2025; 437:168690. [PMID: 38936695 PMCID: PMC11994015 DOI: 10.1016/j.jmb.2024.168690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
A large body of work in the last four decades has revealed the key pillars of HIV-1 transcription control at the initiation and elongation steps. Here, I provide a recount of this collective knowledge starting with the genomic elements (DNA and nascent TAR RNA stem-loop) and transcription factors (cellular and the viral transactivator Tat), and later transitioning to the assembly and regulation of transcription initiation and elongation complexes, and the role of chromatin structure. Compelling evidence support a core HIV-1 transcriptional program regulated by the sequential and concerted action of cellular transcription factors and Tat to promote initiation and sustain elongation, highlighting the efficiency of a small virus to take over its host to produce the high levels of transcription required for viral replication. I summarize new advances including the use of CRISPR-Cas9, genetic tools for acute factor depletion, and imaging to study transcriptional dynamics, bursting and the progression through the multiple phases of the transcriptional cycle. Finally, I describe current challenges to future major advances and discuss areas that deserve more attention to both bolster our basic knowledge of the core HIV-1 transcriptional program and open up new therapeutic opportunities.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Davie JR, Sattarifard H, Sudhakar SRN, Roberts CT, Beacon TH, Muker I, Shahib AK, Rastegar M. Basic Epigenetic Mechanisms. Subcell Biochem 2025; 108:1-49. [PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human genome consists of 23 chromosome pairs (22 autosomes and one pair of sex chromosomes), with 46 chromosomes in a normal cell. In the interphase nucleus, the 2 m long nuclear DNA is assembled with proteins forming chromatin. The typical mammalian cell nucleus has a diameter between 5 and 15 μm in which the DNA is packaged into an assortment of chromatin assemblies. The human brain has over 3000 cell types, including neurons, glial cells, oligodendrocytes, microglial, and many others. Epigenetic processes are involved in directing the organization and function of the genome of each one of the 3000 brain cell types. We refer to epigenetics as the study of changes in gene function that do not involve changes in DNA sequence. These epigenetic processes include histone modifications, DNA modifications, nuclear RNA, and transcription factors. In the interphase nucleus, the nuclear DNA is organized into different structures that are permissive or a hindrance to gene expression. In this chapter, we will review the epigenetic mechanisms that give rise to cell type-specific gene expression patterns.
Collapse
Affiliation(s)
- James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| | - Hedieh Sattarifard
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Sadhana R N Sudhakar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris-Tiann Roberts
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tasnim H Beacon
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ishdeep Muker
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ashraf K Shahib
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
10
|
Ratovitski T, Holland CD, O’Meally RN, Shevelkin AV, Shi T, Cole RN, Jiang M, Ross CA. Huntingtin interactome reveals huntingtin role in regulation of double strand break DNA damage response (DSB/DDR), chromatin remodeling and RNA processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630542. [PMID: 39763784 PMCID: PMC11703178 DOI: 10.1101/2024.12.27.630542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Huntington's Disease (HD), a progressive neurodegenerative disorder with no disease-modifying therapies, is caused by a CAG repeat expansion in the HD gene encoding polyglutamine-expanded huntingtin (HTT) protein. Mechanisms of HD cellular pathogenesis and cellular functions of the normal and mutant HTT proteins are still not completely understood. HTT protein has numerous interaction partners, and it likely provides a scaffold for assembly of multiprotein complexes many of which may be altered in HD. Previous studies have implicated DNA damage response in HD pathogenesis. Gene transcription and RNA processing has also emerged as molecular mechanisms associated with HD. Here we used multiple approaches to identify HTT interactors in the context of DNA damage stress. Our results indicate that HTT interacts with many proteins involved in the regulation of interconnected DNA repair/remodeling and RNA processing pathways. We present evidence for a role for HTT in double strand break repair mechanism. We demonstrate HTT functional interaction with a major DNA damage response kinase DNA-PKcs and association of both proteins with nuclear speckles. We show that S1181 phosphorylation of HTT is regulated by DSB, and can be carried out (at least in vitro) by DNA-PK. Furthermore, we show HTT interactions with RNA binding proteins associated with nuclear speckles, including two proteins encoded by genes at HD modifier loci, TCERG1 and MED15, and with chromatin remodeling complex BAF. These interactions of HTT may position it as an important scaffolding intermediary providing integrated regulation of gene expression and RNA processing in the context of DNA repair mechanisms.
Collapse
Affiliation(s)
- Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Chloe D. Holland
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway Street, Suite 371 BRB Baltimore, MD21287
| | - Alexey V. Shevelkin
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Tianze Shi
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, 733 N. Broadway Street, Suite 371 BRB Baltimore, MD21287
| | - Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
| | - Christopher A. Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 North Wolfe Street, CMSC 5 South, Baltimore, MD21287
- Departments of Neurology, Neuroscience and Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD21287
| |
Collapse
|
11
|
Davies M, Boyce M, Conway E. Short circuit: Transcription factor addiction as a growing vulnerability in cancer. Curr Opin Struct Biol 2024; 89:102948. [PMID: 39536500 PMCID: PMC11614577 DOI: 10.1016/j.sbi.2024.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Core regulatory circuitry refers to the network of lineage-specific transcription factors regulating expression of both their own coding genes, and that of other transcription factors. Such autoregulatory feedback loops coordinate the transcriptome and epigenome during development and cell fate decisions. This circuitry is hijacked during oncogenesis resulting in cancer cell fate being maintained by lineage-specific transcription factors. Major advances in functional genomics and chemical biology are paving the way for a new generation of cancer therapeutics aimed at disrupting this circuitry through both direct and indirect means. Here we review these critical advances in mechanistic understanding of transcription factor addiction in cancer and how the advent of proteolysis targeting chimeras and CRISPR screen assays are leading the way for a new paradigm in targeted cancer treatments.
Collapse
Affiliation(s)
- Molly Davies
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland. https://twitter.com/daviesmolly13
| | - Maeve Boyce
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Eric Conway
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
12
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Hadisurya M, Tao WA, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA polymerase II productive elongation. Cell Rep 2024; 43:114877. [PMID: 39412992 PMCID: PMC11625021 DOI: 10.1016/j.celrep.2024.114877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Signal-dependent RNA polymerase II (RNA Pol II) productive elongation is an integral component of gene transcription, including that of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating RNA Pol II overcomes nucleosomal barriers. Using RNAi, three degraders, and several small-molecule inhibitors, we show that the mammalian switch/sucrose non-fermentable (SWI/SNF) complex of neurons (neuronal BRG1/BRM-associated factor or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc. The nBAF complex facilitates promoter-proximal RNA Pol II pausing and signal-dependent RNA Pol II recruitment (loading) and, importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent RNA Pol II. Mechanistically, RNA Pol II elongation is mediated by activity-induced nBAF assembly (especially ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of RNA Pol II transcription and reveal mechanisms underlying activity-induced RNA Pol II elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
Affiliation(s)
- Karen G Cornejo
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Andie Venegas
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Morgan H Sono
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Madeline Door
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Brenda Gutierrez-Ruiz
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Lucy B Karabedian
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Supratik G Nandi
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Purdue University Institute for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Ramendra N Saha
- Molecular and Cell Biology Department, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
13
|
Tsakiroglou M, Evans A, Doce-Carracedo A, Little M, Hornby R, Roberts P, Zhang E, Miyajima F, Pirmohamed M. Gene Expression Dysregulation in Whole Blood of Patients with Clostridioides difficile Infection. Int J Mol Sci 2024; 25:12653. [PMID: 39684365 DOI: 10.3390/ijms252312653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Clostridioides difficile (C. difficile) is a global threat and has significant implications for individuals and health care systems. Little is known about host molecular mechanisms and transcriptional changes in peripheral immune cells. This is the first gene expression study in whole blood from patients with C. difficile infection. We took blood and stool samples from patients with toxigenic C. difficile infection (CDI), non-toxigenic C. difficile infection (GDH), inflammatory bowel disease (IBD), diarrhea from other causes (DC), and healthy controls (HC). We performed transcriptome-wide RNA profiling on peripheral blood to identify diarrhea common and CDI unique gene sets. Diarrhea groups upregulated innate immune responses with neutrophils at the epicenter. The common signature associated with diarrhea was non-specific and shared by various other inflammatory conditions. CDI had a unique 45 gene set reflecting the downregulation of humoral and T cell memory functions. Dysregulation of immunometabolic genes was also abundant and linked to immune cell fate during differentiation. Whole transcriptome analysis of white cells in blood from patients with toxigenic C. difficile infection showed that there is an impairment of adaptive immunity and immunometabolism.
Collapse
Affiliation(s)
- Maria Tsakiroglou
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Anthony Evans
- Computational Biology Facility, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Alejandra Doce-Carracedo
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Clinical Directorate, GCP Laboratories, University of Liverpool, Liverpool L7 8TX, UK
| | - Margaret Little
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Rachel Hornby
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Paul Roberts
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Faculty of Science and Engineering, School of Biomedical Science and Physiology, University of Wolverhampton, Wolverhampton WV1 1LZ, UK
| | - Eunice Zhang
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| | - Fabio Miyajima
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
- Oswaldo Cruz Foundation (Fiocruz), Branch Ceara, Eusebio 61773-270, Brazil
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
14
|
Hyun K, Ahn J, Kim H, Kim J, Kim YI, Park HS, Roeder RG, Lee JE, Kim J. The BAF complex enhances transcription through interaction with H3K56ac in the histone globular domain. Nat Commun 2024; 15:9614. [PMID: 39511190 PMCID: PMC11544104 DOI: 10.1038/s41467-024-53981-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Histone post-translational modifications play pivotal roles in eukaryotic gene expression. To date, most studies have focused on modifications in unstructured histone N-terminal tail domains and their binding proteins. However, transcriptional regulation by chromatin-effector proteins that directly recognize modifications in histone globular domains has yet to be clearly demonstrated, despite the richness of their multiple modifications. Here, we show that the ATP-dependent chromatin-remodeling BAF complex stimulates p53-dependent transcription through direct interaction with H3K56ac located on the lateral surface of the histone globular domain. Mechanistically, the BAF complex recognizes nucleosomal H3K56ac via the DPF domain in the DPF2 subunit and exhibits enhanced nucleosome-remodeling activity in the presence of H3K56ac. We further demonstrate that a defect in H3K56ac-BAF complex interaction leads to impaired p53-dependent gene expression and DNA damage responses. Our study provides direct evidence that histone globular domain modifications participate in the regulation of gene expression.
Collapse
Affiliation(s)
- Kwangbeom Hyun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihye Ahn
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Hyoungmin Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Jihyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Yong-In Kim
- Center for Bioanalysis, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, 10065, USA
| | - J Eugene Lee
- Division of Biomedical Metrology, Korea Research Institute of Standards and Science, Daejeon, 34113, South Korea.
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| |
Collapse
|
15
|
Sielaff H, Zhao ZW. Visualizing, quantifying and mapping chromatin remodelers at work with single-molecule and single-cell imaging. Int J Biochem Cell Biol 2024; 176:106667. [PMID: 39362301 DOI: 10.1016/j.biocel.2024.106667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/26/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Chromatin remodeling, carried out by four major subfamilies of ATP-dependent remodeler complexes across eukaryotes, alleviates the topological challenge posed by nucleosomes to regulate genome access. Recently, single-molecule and single-cell imaging techniques have been widely employed to probe this crucial process, both in vitro and in cellulo. Herein, we provide an integrated account of key recent efforts that leverage these approaches to visualize, quantify and map chromatin remodelers at work, elucidating diverse aspects of the remodeling process in both space and time, including molecular mechanisms of DNA wrapping/unwrapping, nucleosome translocation and histone exchange, dynamics of chromatin binding/target search and their intranuclear organization into hotspots or phase condensates, as well as functional coupling with transcription. The mechanistic insights and quantitative parameters revealed shed light on a multi-modal yet shared landscape for regulating remodeling across molecular and cellular scales, and pave the way for further interrogating the implications of its misregulation in disease contexts.
Collapse
Affiliation(s)
- Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore.
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore; Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
16
|
Manzo SG, Mazouzi A, Leemans C, van Schaik T, Neyazi N, van Ruiten MS, Rowland BD, Brummelkamp TR, van Steensel B. Chromatin protein complexes involved in gene repression in lamina-associated domains. EMBO J 2024; 43:5260-5287. [PMID: 39322756 PMCID: PMC11535540 DOI: 10.1038/s44318-024-00214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/27/2024] Open
Abstract
Lamina-associated domains (LADs) are large chromatin regions that are associated with the nuclear lamina (NL) and form a repressive environment for transcription. The molecular players that mediate gene repression in LADs are currently unknown. Here, we performed FACS-based whole-genome genetic screens in human cells using LAD-integrated fluorescent reporters to identify such regulators. Surprisingly, the screen identified very few NL proteins, but revealed roles for dozens of known chromatin regulators. Among these are the negative elongation factor (NELF) complex and interacting factors involved in RNA polymerase pausing, suggesting that regulation of transcription elongation is a mechanism to repress transcription in LADs. Furthermore, the chromatin remodeler complex BAF and the activation complex Mediator can work both as activators and repressors in LADs, depending on the local context and possibly by rewiring heterochromatin. Our data indicate that the fundamental regulators of transcription and chromatin remodeling, rather than interaction with NL proteins, play a major role in transcription regulation within LADs.
Collapse
Affiliation(s)
- Stefano G Manzo
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Abdelghani Mazouzi
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christ Leemans
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Tom van Schaik
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Nadia Neyazi
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Marjon S van Ruiten
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Benjamin D Rowland
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Thijn R Brummelkamp
- Oncode Institute, Amsterdam, the Netherlands
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Hossain I, Priam P, Reynoso SC, Sahni S, Zhang XX, Côté L, Doumat J, Chik C, Fu T, Lessard JA, Pastor WA. ZIC2 and ZIC3 promote SWI/SNF recruitment to safeguard progression towards human primed pluripotency. Nat Commun 2024; 15:8539. [PMID: 39358345 PMCID: PMC11447223 DOI: 10.1038/s41467-024-52431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
The primed epiblast acts as a transitional stage between the relatively homogeneous naïve epiblast and the gastrulating embryo. Its formation entails coordinated changes in regulatory circuits driven by transcription factors and epigenetic modifications. Using a multi-omic approach in human embryonic stem cell models across the spectrum of peri-implantation development, we demonstrate that the transcription factors ZIC2 and ZIC3 have overlapping but essential roles in opening primed-specific enhancers. Together, they are essential to facilitate progression to and maintain primed pluripotency. ZIC2/3 accomplish this by recruiting SWI/SNF to chromatin and loss of ZIC2/3 or degradation of SWI/SNF both prevent enhancer activation. Loss of ZIC2/3 also results in transcriptome changes consistent with perturbed Polycomb activity and a shift towards the expression of genes linked to differentiation towards the mesendoderm. Additionally, we find an intriguing dependency on the transcriptional machinery for sustained recruitment of ZIC2/3 over a subset of primed-hESC specific enhancers. Taken together, ZIC2 and ZIC3 regulate highly dynamic lineage-specific enhancers and collectively act as key regulators of human primed pluripotency.
Collapse
Affiliation(s)
| | - Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Sofia C Reynoso
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sahil Sahni
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Xiao X Zhang
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Laurence Côté
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - Joelle Doumat
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Candus Chik
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Tianxin Fu
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Julie A Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
- Department of Pathology and Cellular Biology, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- The Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
18
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
19
|
Sahu RK, Dhakshnamoorthy J, Jain S, Folco HD, Wheeler D, Grewal SIS. Nucleosome remodeler exclusion by histone deacetylation enforces heterochromatic silencing and epigenetic inheritance. Mol Cell 2024; 84:3175-3191.e8. [PMID: 39096900 PMCID: PMC11649001 DOI: 10.1016/j.molcel.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/05/2024]
Abstract
Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jothy Dhakshnamoorthy
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shweta Jain
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hernan Diego Folco
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wheeler
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shiv I S Grewal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Engl W, Kunstar-Thomas A, Chen S, Ng WS, Sielaff H, Zhao ZW. Single-molecule imaging of SWI/SNF chromatin remodelers reveals bromodomain-mediated and cancer-mutants-specific landscape of multi-modal DNA-binding dynamics. Nat Commun 2024; 15:7646. [PMID: 39223123 PMCID: PMC11369179 DOI: 10.1038/s41467-024-52040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Despite their prevalent cancer implications, the in vivo dynamics of SWI/SNF chromatin remodelers and how misregulation of such dynamics underpins cancer remain poorly understood. Using live-cell single-molecule tracking, we quantify the intranuclear diffusion and chromatin-binding of three key subunits common to all major human SWI/SNF remodeler complexes (BAF57, BAF155 and BRG1), and resolve two temporally distinct stable binding modes for the fully assembled complex. Super-resolved density mapping reveals heterogeneous, nanoscale remodeler binding "hotspots" across the nucleoplasm where multiple binding events (especially longer-lived ones) preferentially cluster. Importantly, we uncover distinct roles of the bromodomain in modulating chromatin binding/targeting in a DNA-accessibility-dependent manner, pointing to a model where successive longer-lived binding within "hotspots" leads to sustained productive remodeling. Finally, systematic comparison of six common BRG1 mutants implicated in various cancers unveils alterations in chromatin-binding dynamics unique to each mutant, shedding insight into a multi-modal landscape regulating the spatio-temporal organizational dynamics of SWI/SNF remodelers.
Collapse
Affiliation(s)
- Wilfried Engl
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Aliz Kunstar-Thomas
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Siyi Chen
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore, 119543, Singapore.
- Centre for BioImaging Sciences, Faculty of Science, National University of Singapore, Singapore, 117557, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore.
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
21
|
Mittal P, Myers JA, Carter RD, Radko-Juettner S, Malone HA, Rosikiewicz W, Robertson AN, Zhu Z, Narayanan IV, Hansen BS, Parrish M, Bhanu NV, Mobley RJ, Rehg JE, Xu B, Drosos Y, Pruett-Miller SM, Ljungman M, Garcia BA, Wu G, Partridge JF, Roberts CWM. PHF6 cooperates with SWI/SNF complexes to facilitate transcriptional progression. Nat Commun 2024; 15:7303. [PMID: 39181868 PMCID: PMC11344777 DOI: 10.1038/s41467-024-51566-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Genes encoding subunits of SWI/SNF (BAF) chromatin remodeling complexes are mutated in nearly 25% of cancers. To gain insight into the mechanisms by which SWI/SNF mutations drive cancer, we contributed ten rhabdoid tumor (RT) cell lines mutant for SWI/SNF subunit SMARCB1 to a genome-scale CRISPR-Cas9 depletion screen performed across 896 cell lines. We identify PHF6 as specifically essential for RT cell survival and demonstrate that dependency on Phf6 extends to Smarcb1-deficient cancers in vivo. As mutations in either SWI/SNF or PHF6 can cause the neurodevelopmental disorder Coffin-Siris syndrome, our findings of a dependency suggest a previously unrecognized functional link. We demonstrate that PHF6 co-localizes with SWI/SNF complexes at promoters, where it is essential for maintenance of an active chromatin state. We show that in the absence of SMARCB1, PHF6 loss disrupts the recruitment and stability of residual SWI/SNF complex members, collectively resulting in the loss of active chromatin at promoters and stalling of RNA Polymerase II progression. Our work establishes a mechanistic basis for the shared syndromic features of SWI/SNF and PHF6 mutations in CSS and the basis for selective dependency on PHF6 in SMARCB1-mutant cancers.
Collapse
Affiliation(s)
- Priya Mittal
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacquelyn A Myers
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Raymond D Carter
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sandi Radko-Juettner
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alexis N Robertson
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhexin Zhu
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ishwarya V Narayanan
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Meadow Parrish
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Natarajan V Bhanu
- Department of Biochemistry and Biophysics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Mobley
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Beisi Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiannis Drosos
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mats Ljungman
- Department of Radiation Oncology, Rogel Cancer Center and Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Smilow Center for Translational Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Janet F Partridge
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
22
|
Grossi E, Nguyen CB, Carcamo S, Moran S, Callaú VK, Filipescu D, Hasson D, Bernstein E. The SWI/SNF PBAF complex facilitates REST occupancy at repressive chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609212. [PMID: 39229151 PMCID: PMC11370600 DOI: 10.1101/2024.08.23.609212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Multimeric SWI/SNF chromatin remodelers assemble into discrete conformations with unique complex functionalities difficult to dissect. Distinct cancers harbor mutations in specific subunits, altering the chromatin landscape, such as the PBAF-specific component ARID2 in melanoma. Here, we performed comprehensive epigenomic profiling of SWI/SNF complexes and their associated chromatin states in melanoma and melanocytes and uncovered a subset of PBAF-exclusive regions that coexist with PRC2 and repressive chromatin. Time-resolved approaches revealed that PBAF regions are generally less sensitive to ATPase-mediated remodeling than BAF sites. Moreover, PBAF/PRC2-bound loci are enriched for REST, a transcription factor that represses neuronal genes. In turn, absence of ARID2 and consequent PBAF complex disruption hinders the ability of REST to bind and inactivate its targets, leading to upregulation of synaptic transcripts. Remarkably, this gene signature is conserved in melanoma patients with ARID2 mutations. In sum, we demonstrate a unique role for PBAF in generating accessibility for a silencing transcription factor at repressed chromatin, with important implications for disease.
Collapse
Affiliation(s)
- Elena Grossi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie B. Nguyen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saul Carcamo
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shannon Moran
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentina Kirigin Callaú
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Filipescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Hasson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emily Bernstein
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
23
|
Liao J, Ho J, Burns M, Dykhuizen EC, Hargreaves DC. Collaboration between distinct SWI/SNF chromatin remodeling complexes directs enhancer selection and activation of macrophage inflammatory genes. Immunity 2024; 57:1780-1795.e6. [PMID: 38843835 PMCID: PMC11324393 DOI: 10.1016/j.immuni.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/08/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
Macrophages elicit immune responses to pathogens through induction of inflammatory genes. Here, we examined the role of three variants of the SWI/SNF nucleosome remodeling complex-cBAF, ncBAF, and PBAF-in the macrophage response to bacterial endotoxin (lipid A). All three SWI/SNF variants were prebound in macrophages and retargeted to genomic sites undergoing changes in chromatin accessibility following stimulation. Cooperative binding of all three variants associated with de novo chromatin opening and latent enhancer activation. Isolated binding of ncBAF and PBAF, in contrast, associated with activation and repression of active enhancers, respectively. Chemical and genetic perturbations of variant-specific subunits revealed pathway-specific regulation in the activation of lipid A response genes, corresponding to requirement for cBAF and ncBAF in inflammatory and interferon-stimulated gene (ISG) activation, respectively, consistent with differential engagement of SWI/SNF variants by signal-responsive transcription factors. Thus, functional diversity among SWI/SNF variants enables increased regulatory control of innate immune transcriptional programs, with potential for specific therapeutic targeting.
Collapse
Affiliation(s)
- Jingwen Liao
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA 92039, USA; Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Josephine Ho
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Mannix Burns
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Diana C Hargreaves
- Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| |
Collapse
|
24
|
Ahmad K, Brahma S, Henikoff S. Response to "Learning from chromatin reconstitution: Pioneering factors enabling nucleosome remodelers". Mol Cell 2024; 84:1818. [PMID: 38604173 DOI: 10.1016/j.molcel.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024]
Affiliation(s)
- Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Sandipan Brahma
- University of Nebraska Medical Center, Department of Genetics, Cell Biology & Anatomy, Omaha, NE, USA
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
25
|
Kinyamu HK, Bennett BD, Ward JM, Archer TK. Proteasome Inhibition Reprograms Chromatin Landscape in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1082-1099. [PMID: 38625038 PMCID: PMC11019832 DOI: 10.1158/2767-9764.crc-23-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - James M. Ward
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
26
|
Tufan T, Comertpay G, Villani A, Nelson GM, Terekhova M, Kelley S, Zakharov P, Ellison RM, Shpynov O, Raymond M, Sun J, Chen Y, Bockelmann E, Stremska M, Peterson LW, Boeckaerts L, Goldman SR, Etchegaray JI, Artyomov MN, Peri F, Ravichandran KS. Rapid unleashing of macrophage efferocytic capacity via transcriptional pause release. Nature 2024; 628:408-415. [PMID: 38480883 DOI: 10.1038/s41586-024-07172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.
Collapse
Affiliation(s)
- Turan Tufan
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gamze Comertpay
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ambra Villani
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Geoffrey M Nelson
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marina Terekhova
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shannon Kelley
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel Zakharov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rochelle M Ellison
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Oleg Shpynov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- JetBrains Research, Munich, Germany
| | - Michael Raymond
- Department of Neuroscience and MIC, University of Virginia, Charlottesville, VA, USA
| | - Jerry Sun
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yitan Chen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Enno Bockelmann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Marta Stremska
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lance W Peterson
- Department of Pediatrics, Division of Rheumatology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Laura Boeckaerts
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Seth R Goldman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - J Iker Etchegaray
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maxim N Artyomov
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca Peri
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Kodi S Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience and MIC, University of Virginia, Charlottesville, VA, USA.
- Unit for Cell Clearance in Health and Disease, VIB-UGent Center for Inflammation Research and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
27
|
Basurto-Cayuela L, Guerrero-Martínez JA, Gómez-Marín E, Sánchez-Escabias E, Escaño-Maestre M, Ceballos-Chávez M, Reyes JC. SWI/SNF-dependent genes are defined by their chromatin landscape. Cell Rep 2024; 43:113855. [PMID: 38427563 DOI: 10.1016/j.celrep.2024.113855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
SWI/SNF complexes are evolutionarily conserved, ATP-dependent chromatin remodeling machines. Here, we characterize the features of SWI/SNF-dependent genes using BRM014, an inhibitor of the ATPase activity of the complexes. We find that SWI/SNF activity is required to maintain chromatin accessibility and nucleosome occupancy for most enhancers but not for most promoters. SWI/SNF activity is needed for expression of genes with low to medium levels of expression that have promoters with (1) low chromatin accessibility, (2) low levels of active histone marks, (3) high H3K4me1/H3K4me3 ratio, (4) low nucleosomal phasing, and (5) enrichment in TATA-box motifs. These promoters are mostly occupied by the canonical Brahma-related gene 1/Brahma-associated factor (BAF) complex. These genes are surrounded by SWI/SNF-dependent enhancers and mainly encode signal transduction, developmental, and cell identity genes (with almost no housekeeping genes). Machine-learning models trained with different chromatin characteristics of promoters and their surrounding regulatory regions indicate that the chromatin landscape is a determinant for establishing SWI/SNF dependency.
Collapse
Affiliation(s)
- Laura Basurto-Cayuela
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José A Guerrero-Martínez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Gómez-Marín
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - Elena Sánchez-Escabias
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Escaño-Maestre
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - María Ceballos-Chávez
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain
| | - José C Reyes
- Genome Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla-Universidad Pablo de Olavide (CSIC-USE-UPO), Av. Americo Vespucio, 41092 Seville, Spain.
| |
Collapse
|
28
|
Bandau S, Alvarez V, Jiang H, Graff S, Sundaramoorthy R, Gierlinski M, Toman M, Owen-Hughes T, Sidoli S, Lamond A, Alabert C. RNA polymerase II promotes the organization of chromatin following DNA replication. EMBO Rep 2024; 25:1387-1414. [PMID: 38347224 PMCID: PMC10933433 DOI: 10.1038/s44319-024-00085-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
Understanding how chromatin organisation is duplicated on the two daughter strands is a central question in epigenetics. In mammals, following the passage of the replisome, nucleosomes lose their defined positioning and transcription contributes to their re-organisation. However, whether transcription plays a greater role in the organization of chromatin following DNA replication remains unclear. Here we analysed protein re-association with newly replicated DNA upon inhibition of transcription using iPOND coupled to quantitative mass spectrometry. We show that nucleosome assembly and the re-establishment of most histone modifications are uncoupled from transcription. However, RNAPII acts to promote the re-association of hundreds of proteins with newly replicated chromatin via pathways that are not observed in steady-state chromatin. These include ATP-dependent remodellers, transcription factors and histone methyltransferases. We also identify a set of DNA repair factors that may handle transcription-replication conflicts during normal transcription in human non-transformed cells. Our study reveals that transcription plays a greater role in the organization of chromatin post-replication than previously anticipated.
Collapse
Affiliation(s)
- Susanne Bandau
- MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Vanesa Alvarez
- MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Hao Jiang
- Laboratory of Quantitative Proteomics, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Sarah Graff
- Department of Biochemistry at the Albert Einstein College of Medicine, New York, NY, USA
| | | | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Matt Toman
- Laboratory of Chromatin Structure and Function, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Tom Owen-Hughes
- Laboratory of Chromatin Structure and Function, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Simone Sidoli
- Department of Biochemistry at the Albert Einstein College of Medicine, New York, NY, USA
| | - Angus Lamond
- Laboratory of Quantitative Proteomics, MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK
| | - Constance Alabert
- MCDB, School of Life Sciences, University of Dundee, DD15EH, Dundee, UK.
| |
Collapse
|
29
|
Chick BY, Hargreaves DC. RNA polymerase II promoter-proximal pausing promotes BAF chromatin binding and remodeling. Nat Genet 2024; 56:19-20. [PMID: 38129539 DOI: 10.1038/s41588-023-01628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Brent Y Chick
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California at San Diego, La Jolla, CA, USA
| | - Diana C Hargreaves
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
30
|
Cornejo KG, Venegas A, Sono MH, Door M, Gutierrez-Ruiz B, Karabedian LB, Nandi SG, Dykhuizen EC, Saha RN. Activity-assembled nBAF complex mediates rapid immediate early gene transcription by regulating RNA Polymerase II productive elongation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.30.573688. [PMID: 38234780 PMCID: PMC10793463 DOI: 10.1101/2023.12.30.573688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Signal-dependent RNA Polymerase II (Pol2) productive elongation is an integral component of gene transcription, including those of immediate early genes (IEGs) induced by neuronal activity. However, it remains unclear how productively elongating Pol2 overcome nucleosomal barriers. Using RNAi, three degraders, and several small molecule inhibitors, we show that the mammalian SWI/SNF complex of neurons (neuronal BAF, or nBAF) is required for activity-induced transcription of neuronal IEGs, including Arc . The nBAF complex facilitates promoter-proximal Pol2 pausing, signal-dependent Pol2 recruitment (loading), and importantly, mediates productive elongation in the gene body via interaction with the elongation complex and elongation-competent Pol2. Mechanistically, Pol2 elongation is mediated by activity-induced nBAF assembly (especially, ARID1A recruitment) and its ATPase activity. Together, our data demonstrate that the nBAF complex regulates several aspects of Pol2 transcription and reveal mechanisms underlying activity-induced Pol2 elongation. These findings may offer insights into human maladies etiologically associated with mutational interdiction of BAF functions.
Collapse
|