1
|
Moreno-Sánchez I, Hernández-Huertas L, Nahón-Cano D, Martínez-García PM, Treichel AJ, Gómez-Marin C, Tomás-Gallardo L, da Silva Pescador G, Kushawah G, Egidy R, Perera A, Díaz-Moscoso A, Cano-Ruiz A, Walker JA, Muñoz MJ, Holden K, Galcerán J, Nieto MÁ, Bazzini AA, Moreno-Mateos MA. Enhanced RNA-targeting CRISPR-Cas technology in zebrafish. Nat Commun 2025; 16:2591. [PMID: 40091120 PMCID: PMC11911407 DOI: 10.1038/s41467-025-57792-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
CRISPR-Cas13 RNA-targeting systems are widely used in basic and applied sciences. However, its application has recently generated controversy due to collateral activity in mammalian cells and mouse models. Moreover, its competence could be improved in vivo. Here, we optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. We i) use chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, ii) improve nuclear RNA targeting, and iii) compare different computational models and determine the most accurate to predict gRNA activity in vivo. Furthermore, we demonstrate that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Finally, we implement alternative RNA-targeting CRISPR-Cas systems such as CRISPR-Cas7-11 and CRISPR-DjCas13d. Altogether, these findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and assist in the progression of in vivo applications.
Collapse
Grants
- F31 HD110268 NICHD NIH HHS
- R01 GM136849 NIGMS NIH HHS
- R21 OD034161 NIH HHS
- This work was supported by Ramon y Cajal (RyC-2017-23041), PID2021-127535NB-I00, CNS2022-135564 and CEX2020-001088-M grants funded by MICIU/AEI/ 10.13039/501100011033 by “ERDF A way of making Europe” (“ERDF/EU”), and by ESF Investing in your future from Ministerio de Ciencia, Innovación y Universidades and European Union (M.A.M.-M.). This work has also been co-financed by the Spanish Ministry of Science and Innovation with funds from the European Union NextGenerationEU (PRTR-C17.I1) and the Regional Ministry of University, Research and Innovation of the Autonomous Community of Andalusia within the framework of the Biotechnology Plan applied to Health. The Moreno-Mateos lab was also funded by European Regional Development Fund (FEDER 80% of the total funding) by the Ministry of Economy, Knowledge, Business and University, of the Government of Andalusia, within the framework of the FEDER Andalusia 2014-2020 operational program within the objective "Promotion and generation of frontier knowledge and knowledge oriented to the challenges of society, development of emerging technologies (grant UPO-1380590)” and by the Fondo Europeo de Desarrollo Regional (FEDER) and Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía, within the operative program FEDER Andalucía 2014-2020 (01 - Refuerzo de la investigación, el desarrollo tecnológico y la innovación, grant P20_00866). M.A.M.-M. was the recipient of the Genome Engineer Innovation 2019 Grant from Synthego. The CABD is an institution funded by University Pablo de Olavide, Consejo Superior de Investigaciones Científicas (CSIC), and Junta de Andalucía.
Collapse
Affiliation(s)
- Ismael Moreno-Sánchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - Luis Hernández-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Daniel Nahón-Cano
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Pedro Manuel Martínez-García
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
| | | | - Carlos Gómez-Marin
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Laura Tomás-Gallardo
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
| | | | - Gopal Kushawah
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Rhonda Egidy
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Alejandro Díaz-Moscoso
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Instituto de Investigaciones Químicas (IIQ-CICIC), CSIC-US, Seville, Spain
| | - Alejandra Cano-Ruiz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | | | - Manuel J Muñoz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | | | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - M Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
| | - Ariel A Bazzini
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Miguel A Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Seville, Spain.
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
2
|
Yuan Y, Li Y, Li G, Lei L, Huang X, Li M, Yao Y. Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics. Mol Pharm 2025; 22:1142-1159. [PMID: 39878334 DOI: 10.1021/acs.molpharmaceut.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy. In the realm of genome editing, LNPs have emerged as a potent vehicle for delivering CRISPR/Cas components, offering significant advantages such as high in vivo efficacy. The incorporation of machine learning into the optimization of LNP platforms for gene therapeutics represents a significant advancement, harnessing its predictive capabilities to substantially accelerate the research and development process. This review highlights the dynamic evolution of LNP technology, which is expected to drive transformative progress in the field of gene therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Ying Li
- Research Center for Space Computing System, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Liqun Lei
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Xingxu Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
3
|
Huang F, Li K, Chen Z, Cui Z, Hankey W, Fang K, Yan J, Wang H, Jin VX, Dong Y, Wang Q. Integrative analysis identifies the atypical repressor E2F8 as a targetable transcriptional activator driving lethal prostate cancer. Oncogene 2025; 44:481-493. [PMID: 39613933 DOI: 10.1038/s41388-024-03239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
Acquired resistance to androgen receptor (AR)-targeted therapies underscores the need to identify alternative therapeutic targets for treating lethal prostate cancer. In this study, we evaluated the prognostic significance of 1635 human transcription factors (TFs) by analyzing castration-resistant prostate cancer (CRPC) datasets from the West and East Stand Up to Cancer (SU2C) cohorts. Through this screening approach, we identified E2F8, a putative transcriptional repressor, as a TF consistently associated with poorer patient outcomes in both cohorts. Notably, E2F8 is highly expressed and active in AR-negative CRPC compared to AR-positive CRPC. Integrative profiling of E2F8 cistromes and transcriptomes in AR-negative CRPC cells revealed that E2F8 directly and non-canonically activates target oncogenes involved in cancer-associated pathways. To target E2F8 in CRPC, we employed the CRISPR/CasRx system to knockdown E2F8 mRNA, resulting in effective and specific downregulation of E2F8 and its target oncogenes, as well as significant growth inhibition in AR-negative CRPC in both cultured cells and xenograft models. Our findings identify and characterize E2F8 as a targetable transcriptional activator driving CRPC, particularly the growth of AR-negative CRPC.
Collapse
Affiliation(s)
- Furong Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kexin Li
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zhong Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Zhifen Cui
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - William Hankey
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kun Fang
- Data Science Institute, MCW Cancer Center and Mellowes Center for Genome Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jingyue Yan
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute , Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Victor X Jin
- Data Science Institute, MCW Cancer Center and Mellowes Center for Genome Science and Precision Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Biomedical Engineering and Imaging Institute, Friedman Brain Institute , Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
4
|
Zheng Q, Yao R, Liu J, Luo T, Ma T, Wang M. Synthetic Nanocapsules with Tailored Surface Chemistry for Lung-Specific Protein Delivery and Cancer Immunotherapy. Adv Healthc Mater 2025; 14:e2402366. [PMID: 39498692 DOI: 10.1002/adhm.202402366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/21/2024] [Indexed: 11/07/2024]
Abstract
Efficient delivery of therapeutic proteins remains a major challenge in developing effective immunotherapies and treatments for genetic disorders due to the limited tissue targeting capability of native proteins. In this study, the design and synthesis of protein nanocapsules (NCs) that achieve lung-specific delivery of therapeutic proteins are reported. These NCs are synthesized through a surface modification process that involves coating protein with functional monomers and cross-linkers, followed by in situ polymerization to create a protective shell on the protein surface with tailored surface chemistry. This approach preserves protein integrity and significantly enhances delivery efficiency and tissue specificity. Notably, it is shown that protein@NC with guanidine-rich surfaces exhibit exceptional lung-targeting capabilities. This is likely attributed to the formation of a vitronectin-rich protein corona, which facilitates receptor-mediated endocytosis by lung cells. The platform effectively delivers various proteins, such as ovalbumin, to antigen-presenting cells (APCs) in the lung, thereby enhancing antigen presentation and offering a promising strategy for cancer immunotherapy. These findings provide a significant advancement in tissue-specific protein delivery and hold the potential for targeted cancer immunotherapy.
Collapse
Affiliation(s)
- Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tianli Luo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianyu Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Kontarakis Z, Revah O, Rossi A. CRISPR-Cas13d: RNA's own Jedi Master in the fight against viral darkness. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102321. [PMID: 39380713 PMCID: PMC11459062 DOI: 10.1016/j.omtn.2024.102321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Affiliation(s)
- Zacharias Kontarakis
- Genome Engineering and Measurement Laboratory, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich of ETH Zurich/University of Zurich, Zurich, Switzerland
| | - Omer Revah
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Andrea Rossi
- Genome Engineering and Model Development Laboratory, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
6
|
Fei Y, Yu X, Liu P, Ren H, Wei T, Cheng Q. Simplified Lipid Nanoparticles for Tissue- And Cell-Targeted mRNA Delivery Facilitate Precision Tumor Therapy in a Lung Metastasis Mouse Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409812. [PMID: 39390844 DOI: 10.1002/adma.202409812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Indexed: 10/12/2024]
Abstract
mRNA-based applications have achieved remarkable success in the development of next-generation vaccines and the treatment of diverse liver diseases. Overcoming the challenge of delivering mRNA to extrahepatic tissues, especially specific cells within tissues, is crucial for precision therapy. In this study, a platform is developed for selective mRNA delivery to desired cells within tissues by combining lipid nanoparticle (LNP)-based targeted delivery with mRNA sequence-controlled expression. Through systematic optimization, a three-component LNP platform is developed, enabling targeted mRNA delivery to the lung, liver, and spleen. The incorporation of unique microRNA target sites into the mRNA scaffold further enhances control over protein translation in specific cells within the target tissue. This combined strategy, named SELECT (Simplified LNP with Engineered mRNA for Cell-type Targeting), demonstrates its efficacy in distinguishing mRNA expression between tumor and normal cells based on intracellular microRNA abundance. SELECT encapsulating mRNA encoding a tumor-specific cytotoxic protein, human ELANE, exhibits selective mRNA delivery to tumor lesions and significant inhibition of tumor growth in a mouse model of melanoma lung metastasis. Overall, SELECT has great potential as a new precision tumor treatment approach and also offers promising prospects for other mRNA therapies targeting specific cell types.
Collapse
Affiliation(s)
- Yuan Fei
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xiaolu Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyu Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Hongyu Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| |
Collapse
|
7
|
McCoullough LC, Fareh M, Hu W, Sozzi V, Makhlouf C, Droungas Y, Lee CL, Takawy M, Fabb SA, Payne TJ, Pouton CW, Netter HJ, Lewin SR, Purcell DF, Holmes JA, Trapani JA, Littlejohn M, Revill PA. CRISPR-Cas13b-mediated suppression of HBV replication and protein expression. J Hepatol 2024; 81:794-805. [PMID: 38815932 DOI: 10.1016/j.jhep.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/19/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND & AIMS New antiviral approaches that target multiple aspects of the HBV replication cycle to improve rates of functional cure are urgently required. HBV RNA represents a novel therapeutic target. Here, we programmed CRISPR-Cas13b endonuclease to specifically target the HBV pregenomic RNA and viral mRNAs in a novel approach to reduce HBV replication and protein expression. METHODS Cas13b CRISPR RNAs (crRNAs) were designed to target multiple regions of HBV pregenomic RNA. Mammalian cells transfected with replication competent wild-type HBV DNA of different genotypes, a HBV-expressing stable cell line, a HBV infection model and a hepatitis B surface antigen (HBsAg)-expressing stable cell line were transfected with PspCas13b-BFP (blue fluorescent protein) and crRNA plasmids, and the impact on HBV replication and protein expression was measured. Wild-type HBV DNA, PspCas13b-BFP and crRNA plasmids were simultaneously hydrodynamically injected into mice, and serum HBsAg was measured. PspCas13b mRNA and crRNA were also delivered to a HBsAg-expressing stable cell line via lipid nanoparticles and the impact on secreted HBsAg determined. RESULTS Our HBV-targeting crRNAs strongly suppressed HBV replication and protein expression in mammalian cells by up to 96% (p <0.0001). HBV protein expression was also reduced in a HBV-expressing stable cell line and in the HBV infection model. CRISPR-Cas13b crRNAs reduced HBsAg expression by 50% (p <0.0001) in vivo. Lipid nanoparticle-encapsulated PspCas13b mRNA reduced secreted HBsAg by 87% (p = 0.0168) in a HBsAg-expressing stable cell line. CONCLUSIONS Together, these results show that CRISPR-Cas13b can be programmed to specifically target and degrade HBV RNAs to reduce HBV replication and protein expression, demonstrating its potential as a novel therapeutic option for chronic HBV infection. IMPACT AND IMPLICATIONS Owing to the limitations of current antiviral therapies for hepatitis B, there is an urgent need for new treatments that target multiple aspects of the HBV replication cycle to improve rates of functional cure. Here, we present CRISPR-Cas13b as a novel strategy to target HBV replication and protein expression, paving the way for its development as a potential new treatment option for patients living with chronic hepatitis B.
Collapse
Affiliation(s)
- Laura C McCoullough
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Mohamed Fareh
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Wenxin Hu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Vitina Sozzi
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Christina Makhlouf
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Yianni Droungas
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Chee Leng Lee
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Mina Takawy
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Stewart A Fabb
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Thomas J Payne
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hans J Netter
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia
| | - Damian Fj Purcell
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacinta A Holmes
- Department of Gastroenterology, St. Vincent's Hospital, Melbourne, Victoria, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Peter A Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Ciudad CJ, Valiuska S, Rojas JM, Nogales-Altozano P, Aviñó A, Eritja R, Chillón M, Sevilla N, Noé V. Polypurine reverse hoogsteen hairpins as a therapeutic tool for SARS-CoV-2 infection. J Biol Chem 2024; 300:107884. [PMID: 39395809 PMCID: PMC11570937 DOI: 10.1016/j.jbc.2024.107884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024] Open
Abstract
Although the COVID-19 pandemic was declared no longer a global emergency by the World Health Organization in May 2023, SARS-CoV-2 is still infecting people across the world. Many therapeutic oligonucleotides such as ASOs, siRNAs, or CRISPR-based systems emerged as promising antiviral strategies for the treatment of SARS-CoV-2. In this work, we explored the inhibitory potential on SARS-CoV-2 replication of Polypurine Reverse Hoogsteen Hairpins (PPRHs), CC1-PPRH, and CC3-PPRH, targeting specific polypyrimidine sequences within the replicase and Spike regions, respectively, and previously validated for COVID-19 diagnosis. Both PPRHs are bound to their target sequences in the viral genome with high affinity in the order of nM. In vitro, both PPRHs reduced viral replication by more than 92% when transfected into VERO-E6 cells 24 h prior to infection with SARS-CoV-2. In vivo intranasal administration of CC1-PPRH in K18-hACE2 mice expressing the human ACE receptor protected all the animals from SARS-CoV-2 infection. The properties of PPRHs position them as promising candidates for the development of novel therapeutics against SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Carlos J Ciudad
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain.
| | - Simonas Valiuska
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| | - José Manuel Rojas
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | | | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Ramón Eritja
- Institute for Advanced Chemistry of Catalonia, CSIC, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Chillón
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal-CISA, INIA, CSIC, Madrid, Spain
| | - Verónique Noé
- Department of Biochemistry & Physiology, School Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Moreno-Sanchez I, Hernandez-Huertas L, Nahon-Cano D, Gomez-Marin C, Martinez-García PM, Treichel AJ, Tomas-Gallardo L, da Silva Pescador G, Kushawah G, Díaz-Moscoso A, Cano-Ruiz A, Walker JA, Muñoz MJ, Holden K, Galcerán J, Nieto MÁ, Bazzini A, Moreno-Mateos MA. Enhanced RNA-targeting CRISPR-Cas technology in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617220. [PMID: 39416004 PMCID: PMC11482928 DOI: 10.1101/2024.10.08.617220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
CRISPR-Cas13 systems are widely used in basic and applied sciences. However, its application has recently generated controversy due to collateral activity in mammalian cells and mouse models. Moreover, its efficiency could be improved in vivo. Here, we optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. We i) used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, ii) improved nuclear RNA-targeting, and iii) compared different computational models and determined the most accurate to predict gRNA activity in vivo. Furthermore, we demonstrated that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Finally, we implemented alternative RNA-targeting CRISPR-Cas systems with reduced or absent collateral activity. Altogether, these findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and assist in the progression of in vivo applications.
Collapse
Affiliation(s)
- Ismael Moreno-Sanchez
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d’Alacant, Alicante, Spain
| | - Luis Hernandez-Huertas
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Daniel Nahon-Cano
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Carlos Gomez-Marin
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Pedro Manuel Martinez-García
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
| | - Anthony J. Treichel
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Laura Tomas-Gallardo
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD) Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013 Seville, Spain
| | | | - Gopal Kushawah
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
| | - Alejandro Díaz-Moscoso
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Proteomics and Biochemistry Platform, Andalusian Center for Developmental Biology (CABD) Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013 Seville, Spain
| | - Alejandra Cano-Ruiz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - Manuel J. Muñoz
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| | | | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d’Alacant, Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Spain
| | - María Ángela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d’Alacant, Alicante, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Spain
| | - Ariel Bazzini
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Miguel A. Moreno-Mateos
- Andalusian Center for Developmental Biology (CABD), Pablo de Olavide University/CSIC/Junta de Andalucía, Ctra. Utrera Km.1, 41013, Seville, Spain
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Ctra. Utrera Km.1, 41013, Seville, Spain
| |
Collapse
|
10
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Zhu G, Zhou X, Wen M, Qiao J, Li G, Yao Y. CRISPR-Cas13: Pioneering RNA Editing for Nucleic Acid Therapeutics. BIODESIGN RESEARCH 2024; 6:0041. [PMID: 39228750 PMCID: PMC11371277 DOI: 10.34133/bdr.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
The CRISPR-Cas13 system has emerged as a revolutionary tool for RNA editing, offering new opportunities for the development of nucleic acid therapeutics. Unlike DNA-targeting CRISPR-Cas9, Cas13 targets and cleaves RNA, enabling gene silencing and preventing genomic instability. Its applications include suppressing disease-causing genes, correcting splicing errors, and modulating immune responses. Despite these advances, challenges persist, such as the need to refine specificity, mitigate off-target impacts, and ensure effective delivery. This review provides an overview of the CRISPR-Cas13 mechanism, elucidating its role in RNA-targeted therapies and its transformative potential for disease treatment. Furthermore, it addresses the ongoing challenges that the scientific community is striving to overcome.
Collapse
Affiliation(s)
- Guanglin Zhu
- School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
| | - Xinzhi Zhou
- ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Zhejiang University, Hangzhou, Zhejiang 311200, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingzhang Wen
- School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education),
Tianjin University, Tianjin 300072, P. R. China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology,
Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education),
Tianjin University, Tianjin 300072, P. R. China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Zhejiang University, Hangzhou, Zhejiang 311200, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
- Xianghu Laboratory, Hangzhou 311231, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center,
Zhejiang University, Hangzhou, Zhejiang 311200, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Institute of Tianjin University, Shaoxing 312300, China
| |
Collapse
|
12
|
Wang M, Zhang D, Lei T, Zhou Y, Qin H, Wu Y, Liu S, Zhang L, Jia K, Dong Y, Wang S, Li Y, Fan Y, Gui L, Dong Y, Zhang W, Li Z, Hou J. Interferon-responsive neutrophils and macrophages extricate SARS-CoV-2 Omicron critical patients from the nasty fate of sepsis. J Med Virol 2024; 96:e29889. [PMID: 39206862 DOI: 10.1002/jmv.29889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/24/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
The SARS-CoV-2 Omicron variant is characterized by its high transmissibility, which has caused a worldwide epidemiological event. Yet, it turns ominous once the disease progression degenerates into severe pneumonia and sepsis, presenting a horrendous lethality. To elucidate the alveolar immune or inflammatory landscapes of Omicron critical-ill patients, we performed single-cell RNA-sequencing (scRNA-seq) of bronchoalveolar lavage fluid (BALF) from the patients with critical pneumonia caused by Omicron infection, and analyzed the correlation between the clinical severity scores and different immune cell subpopulations. In the BALF of Omicron critical patients, the alveolar violent myeloid inflammatory environment was determined. ISG15+ neutrophils and CXCL10+ macrophages, both expressed the interferon-stimulated genes (ISGs), were negatively correlated with clinical pulmonary infection score, while septic CST7+ neutrophils and inflammatory VCAN+ macrophages were positively correlated with sequential organ failure assessment. The percentages of ISG15+ neutrophils were associated with more protective alveolar epithelial cells, and may reshape CD4+ T cells to the exhaustive phenotype, thus preventing immune injuries. The CXCL10+ macrophages may promote plasmablast/plasma cell survival and activation as well as the production of specific antibodies. As compared to the previous BALF scRNA-seq data from SARS-CoV-2 wild-type/Alpha critical patients, the subsets of neutrophils and macrophages with pro-inflammatory and immunoregulatory features presented obvious distinctions, suggesting an immune disparity in Omicron variants. Overall, this study provides a BALF single-cell atlas of Omicron critical patients, and suggests that alveolar interferon-responsive neutrophils and macrophages may extricate SARS-CoV-2 Omicron critical patients from the nasty fate of sepsis.
Collapse
Affiliation(s)
- Mu Wang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Dingji Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Ting Lei
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Ye Zhou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Hao Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Shuxun Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Liyuan Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Kaiwei Jia
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yue Dong
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Suyuan Wang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yunhui Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yiwen Fan
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Liangchen Gui
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Zhixuan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University, Shanghai, China
| |
Collapse
|
13
|
Liu J, Zheng Q, Yao R, Wang M. Lung-specific supramolecular nanoparticles for efficient delivery of therapeutic proteins and genome editing nucleases. Proc Natl Acad Sci U S A 2024; 121:e2406654121. [PMID: 39116129 PMCID: PMC11331071 DOI: 10.1073/pnas.2406654121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.
Collapse
Affiliation(s)
- Ji Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Rui Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
14
|
Kang DD, Hou X, Wang L, Xue Y, Li H, Zhong Y, Wang S, Deng B, McComb DW, Dong Y. Engineering LNPs with polysarcosine lipids for mRNA delivery. Bioact Mater 2024; 37:86-93. [PMID: 38523704 PMCID: PMC10957522 DOI: 10.1016/j.bioactmat.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Since the approval of the lipid nanoparticles (LNP)-mRNA vaccines against the SARS-CoV-2 virus, there has been an increased interest in the delivery of mRNA through LNPs. However, current LNP formulations contain PEG lipids, which can stimulate the generation of anti-PEG antibodies. The presence of these antibodies can potentially cause adverse reactions and reduce therapeutic efficacy after administration. Given the widespread deployment of the COVID-19 vaccines, the increased exposure to PEG may necessitate the evaluation of alternative LNP formulations without PEG components. In this study, we investigated a series of polysarcosine (pSar) lipids as alternatives to the PEG lipids to determine whether pSar lipids could still provide the functionality of the PEG lipids in the ALC-0315 and SM-102 LNP systems. We found that complete replacement of the PEG lipid with a pSar lipid can increase or maintain mRNA delivery efficiency and exhibit similar safety profiles in vivo.
Collapse
Affiliation(s)
- Diana D. Kang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leiming Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yonger Xue
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yichen Zhong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, 43212, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Villiger L, Joung J, Koblan L, Weissman J, Abudayyeh OO, Gootenberg JS. CRISPR technologies for genome, epigenome and transcriptome editing. Nat Rev Mol Cell Biol 2024; 25:464-487. [PMID: 38308006 DOI: 10.1038/s41580-023-00697-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/04/2024]
Abstract
Our ability to edit genomes lags behind our capacity to sequence them, but the growing understanding of CRISPR biology and its application to genome, epigenome and transcriptome engineering is narrowing this gap. In this Review, we discuss recent developments of various CRISPR-based systems that can transiently or permanently modify the genome and the transcriptome. The discovery of further CRISPR enzymes and systems through functional metagenomics has meaningfully broadened the applicability of CRISPR-based editing. Engineered Cas variants offer diverse capabilities such as base editing, prime editing, gene insertion and gene regulation, thereby providing a panoply of tools for the scientific community. We highlight the strengths and weaknesses of current CRISPR tools, considering their efficiency, precision, specificity, reliance on cellular DNA repair mechanisms and their applications in both fundamental biology and therapeutics. Finally, we discuss ongoing clinical trials that illustrate the potential impact of CRISPR systems on human health.
Collapse
Affiliation(s)
- Lukas Villiger
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA
| | - Julia Joung
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luke Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathan Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omar O Abudayyeh
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, Cambridge, MA, USA.
| |
Collapse
|
16
|
Yang YL, Wang B, Li W, Cai HL, Qian QY, Qin Y, Shi FS, Bosch BJ, Huang YW. Functional dissection of the spike glycoprotein S1 subunit and identification of cellular cofactors for regulation of swine acute diarrhea syndrome coronavirus entry. J Virol 2024; 98:e0013924. [PMID: 38501663 PMCID: PMC11019839 DOI: 10.1128/jvi.00139-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.
Collapse
Affiliation(s)
- Yong-Le Yang
- Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Bin Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Wentao Li
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hou-Li Cai
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Qian-Yu Qian
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Qin
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang-Shu Shi
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Berend-Jan Bosch
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Yao-Wei Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Apostolopoulos A, Kawamoto N, Chow SYA, Tsuiji H, Ikeuchi Y, Shichino Y, Iwasaki S. dCas13-mediated translational repression for accurate gene silencing in mammalian cells. Nat Commun 2024; 15:2205. [PMID: 38467613 PMCID: PMC10928199 DOI: 10.1038/s41467-024-46412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024] Open
Abstract
Current gene silencing tools based on RNA interference (RNAi) or, more recently, clustered regularly interspaced short palindromic repeats (CRISPR)‒Cas13 systems have critical drawbacks, such as off-target effects (RNAi) or collateral mRNA cleavage (CRISPR‒Cas13). Thus, a more specific method of gene knockdown is needed. Here, we develop CRISPRδ, an approach for translational silencing, harnessing catalytically inactive Cas13 proteins (dCas13). Owing to its tight association with mRNA, dCas13 serves as a physical roadblock for scanning ribosomes during translation initiation and does not affect mRNA stability. Guide RNAs covering the start codon lead to the highest efficacy regardless of the translation initiation mechanism: cap-dependent, internal ribosome entry site (IRES)-dependent, or repeat-associated non-AUG (RAN) translation. Strikingly, genome-wide ribosome profiling reveals the ultrahigh gene silencing specificity of CRISPRδ. Moreover, the fusion of a translational repressor to dCas13 further improves the performance. Our method provides a framework for translational repression-based gene silencing in eukaryotes.
Collapse
Grants
- JP20H05784 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05278 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP21H05734 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H04268 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05786 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP23H02415 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20K07016 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23K05648 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP21K15023 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP23KJ2175 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005h0001 Japan Agency for Medical Research and Development (AMED)
- JP23gm6910005 Japan Agency for Medical Research and Development (AMED)
- JP20gm1410001 Japan Agency for Medical Research and Development (AMED)
- Pioneering Projects MEXT | RIKEN
- Pioneering Projects MEXT | RIKEN
- Exploratory Research Center on Life and Living Systems (ExCELLS), 23EX601
Collapse
Affiliation(s)
- Antonios Apostolopoulos
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Naohiro Kawamoto
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
| | - Hitomi Tsuiji
- Education and Research Division of Pharmacy, School of Pharmacy, Aichi Gakuin University, Nagoya, Aichi, 464-8650, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| | - Shintaro Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
18
|
Xie X, Lan Q, Zhao J, Zhang S, Liu L, Zhang Y, Xu W, Shao M, Peng J, Xia S, Zhu Y, Zhang K, Zhang X, Zhang R, Li J, Dai W, Ge Z, Hu S, Yu C, Wang J, Ma D, Zheng M, Yang H, Xiao G, Rao Z, Lu L, Zhang L, Bai F, Zhao Y, Jiang S, Liu H. Structure-based design of pan-coronavirus inhibitors targeting host cathepsin L and calpain-1. Signal Transduct Target Ther 2024; 9:54. [PMID: 38443334 PMCID: PMC10914734 DOI: 10.1038/s41392-024-01758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Respiratory disease caused by coronavirus infection remains a global health crisis. Although several SARS-CoV-2-specific vaccines and direct-acting antivirals are available, their efficacy on emerging coronaviruses in the future, including SARS-CoV-2 variants, might be compromised. Host-targeting antivirals provide preventive and therapeutic strategies to overcome resistance and manage future outbreak of emerging coronaviruses. Cathepsin L (CTSL) and calpain-1 (CAPN1) are host cysteine proteases which play crucial roles in coronaviral entrance into cells and infection-related immune response. Here, two peptidomimetic α-ketoamide compounds, 14a and 14b, were identified as potent dual target inhibitors against CTSL and CAPN1. The X-ray crystal structures of human CTSL and CAPN1 in complex with 14a and 14b revealed the covalent binding of α-ketoamide groups of 14a and 14b to C25 of CTSL and C115 of CAPN1. Both showed potent and broad-spectrum anticoronaviral activities in vitro, and it is worth noting that they exhibited low nanomolar potency against SARS-CoV-2 and its variants of concern (VOCs) with EC50 values ranging from 0.80 to 161.7 nM in various cells. Preliminary mechanistic exploration indicated that they exhibited anticoronaviral activity through blocking viral entrance. Moreover, 14a and 14b exhibited good oral pharmacokinetic properties in mice, rats and dogs, and favorable safety in mice. In addition, both 14a and 14b treatments demonstrated potent antiviral potency against SARS-CoV-2 XBB 1.16 variant infection in a K18-hACE2 transgenic mouse model. And 14b also showed effective antiviral activity against HCoV-OC43 infection in a mouse model with a final survival rate of 60%. Further evaluation showed that 14a and 14b exhibited excellent anti-inflammatory effects in Raw 264.7 mouse macrophages and in mice with acute pneumonia. Taken together, these results suggested that 14a and 14b are promising drug candidates, providing novel insight into developing pan-coronavirus inhibitors with antiviral and anti-inflammatory properties.
Collapse
Affiliation(s)
- Xiong Xie
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Jinyi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yumin Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Maolin Shao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingjing Peng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Yan Zhu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Keke Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ruxue Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jian Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Wenhao Dai
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Ge
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
| | - Shulei Hu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Changyue Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dakota Ma
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Gengfu Xiao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Leike Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yao Zhao
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.
| | - Hong Liu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xian Lin Road, Jiangsu, 210023, Nanjing, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China.
| |
Collapse
|
19
|
Kim MJ, Kim S, Reinheckel T, Krainc D. Inhibition of cysteine protease cathepsin L increases the level and activity of lysosomal glucocerebrosidase. JCI Insight 2024; 9:e169594. [PMID: 38329128 PMCID: PMC10967467 DOI: 10.1172/jci.insight.169594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.
Collapse
Affiliation(s)
- Myung Jong Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
20
|
Abarova S, Alexova R, Dragomanova S, Solak A, Fagone P, Mangano K, Petralia MC, Nicoletti F, Kalfin R, Tancheva L. Emerging Therapeutic Potential of Polyphenols from Geranium sanguineum L. in Viral Infections, Including SARS-CoV-2. Biomolecules 2024; 14:130. [PMID: 38275759 PMCID: PMC10812934 DOI: 10.3390/biom14010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.
Collapse
Affiliation(s)
- Silviya Abarova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria;
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blvd 84A, 9002 Varna, Bulgaria;
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 53, 1407 Sofia, Bulgaria;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
| |
Collapse
|
21
|
Kuo HC, Prupes J, Chou CW, Finkelstein IJ. Massively parallel profiling of RNA-targeting CRISPR-Cas13d. Nat Commun 2024; 15:498. [PMID: 38216559 PMCID: PMC10786891 DOI: 10.1038/s41467-024-44738-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
CRISPR-Cas13d cleaves RNA and is used in vivo and for diagnostics. However, a systematic understanding of its RNA binding and cleavage specificity is lacking. Here, we describe an RNA Chip-Hybridized Association-Mapping Platform (RNA-CHAMP) for measuring the binding affinity for > 10,000 RNAs containing structural perturbations and other alterations relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d reveals that it does not require a protospacer flanking sequence but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is penalized by mismatches in the distal crRNA-target RNA region, while alterations in the proximal region inhibit nuclease activity. A biophysical model built from these data reveals that target recognition initiates in the distal end of the target RNA. Using this model, we design crRNAs that can differentiate between SARS-CoV-2 variants by modulating nuclease activation. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme.
Collapse
Affiliation(s)
- Hung-Che Kuo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Joshua Prupes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
22
|
Gao S, Guan H, Bloomer H, Wich D, Song D, Khirallah J, Ye Z, Zhao Y, Chen M, Xu C, Liu L, Xu Q. Harnessing non-Watson-Crick's base pairing to enhance CRISPR effectors cleavage activities and enable gene editing in mammalian cells. Proc Natl Acad Sci U S A 2024; 121:e2308415120. [PMID: 38150477 PMCID: PMC10786293 DOI: 10.1073/pnas.2308415120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/29/2023] Open
Abstract
Genomic DNA of the cyanophage S-2L virus is composed of 2-aminoadenine (Z), thymine (T), guanine (G), and cytosine (C), forming the genetic alphabet ZTGC, which violates Watson-Crick base pairing rules. The Z-base has an extra amino group on the two position that allows the formation of a third hydrogen bond with thymine in DNA strands. Here, we explored and expanded applications of this non-Watson-Crick base pairing in protein expression and gene editing. Both ZTGC-DNA (Z-DNA) and ZUGC-RNA (Z-RNA) produced in vitro show detectable compatibility and can be decoded in mammalian cells, including Homo sapiens cells. Z-crRNA can guide CRISPR-effectors SpCas9 and LbCas12a to cleave specific DNA through non-Watson-Crick base pairing and boost cleavage activities compared to A-crRNA. Z-crRNA can also allow for efficient gene and base editing in human cells. Together, our results help pave the way for potential strategies for optimizing DNA or RNA payloads for gene editing therapeutics and give insights to understanding the natural Z-DNA genome.
Collapse
Affiliation(s)
- Shuliang Gao
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Huiwen Guan
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Hanan Bloomer
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Douglas Wich
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Donghui Song
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Jennifer Khirallah
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Yu Zhao
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Mengting Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Chutian Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Lihan Liu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA02155
| |
Collapse
|
23
|
Hou J, Wei Y, Zou J, Jaffery R, Sun L, Liang S, Zheng N, Guerrero AM, Egan NA, Bohat R, Chen S, Zheng C, Mao X, Yi SS, Chen K, McGrail DJ, Sahni N, Shi PY, Chen Y, Xie X, Peng W. Integrated multi-omics analyses identify anti-viral host factors and pathways controlling SARS-CoV-2 infection. Nat Commun 2024; 15:109. [PMID: 38168026 PMCID: PMC10761986 DOI: 10.1038/s41467-023-44175-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Host anti-viral factors are essential for controlling SARS-CoV-2 infection but remain largely unknown due to the biases of previous large-scale studies toward pro-viral host factors. To fill in this knowledge gap, we perform a genome-wide CRISPR dropout screen and integrate analyses of the multi-omics data of the CRISPR screen, genome-wide association studies, single-cell RNA-Seq, and host-virus proteins or protein/RNA interactome. This study uncovers many host factors that are currently underappreciated, including the components of V-ATPases, ESCRT, and N-glycosylation pathways that modulate viral entry and/or replication. The cohesin complex is also identified as an anti-viral pathway, suggesting an important role of three-dimensional chromatin organization in mediating host-viral interaction. Furthermore, we discover another anti-viral regulator KLF5, a transcriptional factor involved in sphingolipid metabolism, which is up-regulated, and harbors genetic variations linked to COVID-19 patients with severe symptoms. Anti-viral effects of three identified candidates (DAZAP2/VTA1/KLF5) are confirmed individually. Molecular characterization of DAZAP2/VTA1/KLF5-knockout cells highlights the involvement of genes related to the coagulation system in determining the severity of COVID-19. Together, our results provide further resources for understanding the host anti-viral network during SARS-CoV-2 infection and may help develop new countermeasure strategies.
Collapse
Affiliation(s)
- Jiakai Hou
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Yanjun Wei
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Roshni Jaffery
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Long Sun
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Computer Science, Rice University, Houston, TX, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ningbo Zheng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ashley M Guerrero
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Nicholas A Egan
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ritu Bohat
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Si Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Caishang Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobo Mao
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Stephen Yi
- Department of Oncology, Livestrong Cancer Institutes, and Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
- Interdisciplinary Life Sciences Graduate Programs (ILSGP) and Oden Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin, Austin, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel J McGrail
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
| | - Nidhi Sahni
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Structural Biology & Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Science, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Yiwen Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Quantitative Sciences Program, MD Anderson Cancer Center, UT Health Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Institute for Drug Discovery, The University of Texas Medical Branch, Galveston, TX, USA.
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
24
|
Shi P, Wu X. Programmable RNA targeting with CRISPR-Cas13. RNA Biol 2024; 21:1-9. [PMID: 38764173 PMCID: PMC11110701 DOI: 10.1080/15476286.2024.2351657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/20/2024] [Accepted: 05/01/2024] [Indexed: 05/21/2024] Open
Abstract
The RNA-targeting CRISPR-Cas13 system has enabled precise engineering of endogenous RNAs, significantly advancing our understanding of RNA regulation and the development of RNA-based diagnostic and therapeutic applications. This review aims to provide a summary of Cas13-based RNA targeting tools and applications, discuss limitations and challenges of existing tools and suggest potential directions for further development of the RNA targeting system.
Collapse
Affiliation(s)
- Peiguo Shi
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Xuebing Wu
- Department of Medicine and Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
25
|
Obaha A, Novinec M. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Int J Mol Sci 2023; 24:17120. [PMID: 38069440 PMCID: PMC10707025 DOI: 10.3390/ijms242317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
This comprehensive review addresses the intricate and multifaceted regulation of peptidase activity in human health and disease, providing a comprehensive investigation that extends well beyond the boundaries of the active site. Our review focuses on multiple mechanisms and highlights the important role of exosites, allosteric sites, and processes involved in zymogen activation. These mechanisms play a central role in shaping the complex world of peptidase function and are promising potential targets for the development of innovative drugs and therapeutic interventions. The review also briefly discusses the influence of glycosaminoglycans and non-inhibitory binding proteins on enzyme activities. Understanding their role may be a crucial factor in the development of therapeutic strategies. By elucidating the intricate web of regulatory mechanisms that control peptidase activity, this review deepens our understanding in this field and provides a roadmap for various strategies to influence and modulate peptidase activity.
Collapse
Affiliation(s)
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
26
|
Zong Y, Lin Y, Wei T, Cheng Q. Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303261. [PMID: 37196221 DOI: 10.1002/adma.202303261] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.
Collapse
Affiliation(s)
- Yan Zong
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Yi Lin
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Tuo Wei
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiang Cheng
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| |
Collapse
|
27
|
Feng S, Xie X, Liu J, Li A, Wang Q, Guo D, Li S, Li Y, Wang Z, Guo T, Zhou J, Tang DYY, Show PL. A potential paradigm in CRISPR/Cas systems delivery: at the crossroad of microalgal gene editing and algal-mediated nanoparticles. J Nanobiotechnology 2023; 21:370. [PMID: 37817254 PMCID: PMC10563294 DOI: 10.1186/s12951-023-02139-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Microalgae as the photosynthetic organisms offer enormous promise in a variety of industries, such as the generation of high-value byproducts, biofuels, pharmaceuticals, environmental remediation, and others. With the rapid advancement of gene editing technology, CRISPR/Cas system has evolved into an effective tool that revolutionised the genetic engineering of microalgae due to its robustness, high target specificity, and programmability. However, due to the lack of robust delivery system, the efficacy of gene editing is significantly impaired, limiting its application in microalgae. Nanomaterials have become a potential delivery platform for CRISPR/Cas systems due to their advantages of precise targeting, high stability, safety, and improved immune system. Notably, algal-mediated nanoparticles (AMNPs), especially the microalgae-derived nanoparticles, are appealing as a sustainable delivery platform because of their biocompatibility and low toxicity in a homologous relationship. In addition, living microalgae demonstrated effective and regulated distribution into specified areas as the biohybrid microrobots. This review extensively summarised the uses of CRISPR/Cas systems in microalgae and the recent developments of nanoparticle-based CRISPR/Cas delivery systems. A systematic description of the properties and uses of AMNPs, microalgae-derived nanoparticles, and microalgae microrobots has also been discussed. Finally, this review highlights the challenges and future research directions for the development of gene-edited microalgae.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan, China.
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Doris Ying Ying Tang
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
28
|
Li Y, Lan J, Wong G. Advances in treatment strategies for COVID-19: Insights from other coronavirus diseases and prospects. BIOSAFETY AND HEALTH 2023; 5:272-279. [PMID: 40078910 PMCID: PMC11895002 DOI: 10.1016/j.bsheal.2023.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 03/14/2025] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is the third human disease outbreak caused by an emerging coronavirus in the 21st century. Caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the COVID-19 pandemic has been the most devastating, with millions of deaths. Medical countermeasures are needed to limit the number of infections and fatalities. Here, we discuss advances in clinical and research-based treatment methods for SARS-CoV-2 that were initially derived from treatments for other coronaviruses. Recent advances in SARS-CoV-2 treatments, from traditional drugs and immunotherapies to artificial intelligence to predict potential future treatment methods, are summarized and discussed.
Collapse
Affiliation(s)
- Yingwen Li
- Viral Hemorrhagic Fevers Research Unit, C.A.S. Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, C.A.S. Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, C.A.S. Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
29
|
Cui Z, Wang H, Dong Y, Liu SL, Wang Q. Deciphering and targeting host factors to counteract SARS-CoV-2 and coronavirus infections: insights from CRISPR approaches. Front Genome Ed 2023; 5:1231656. [PMID: 37520399 PMCID: PMC10372414 DOI: 10.3389/fgeed.2023.1231656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Severe respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses depend on host factors for the process of viral infection and replication. A better understanding of the dynamic interplay between viral pathogens and host cells, as well as identifying of virus-host dependencies, offers valuable insights into disease mechanisms and informs the development of effective therapeutic strategies against viral infections. This review delves into the key host factors that facilitate or hinder SARS-CoV-2 infection and replication, as identified by CRISPR/Cas9-based screening platforms. Furthermore, we explore CRISPR/Cas13-based gene therapy strategies aimed at targeting these host factors to inhibit viral infection, with the ultimate goal of eradicating SARS-CoV-2 and preventing and treating related coronaviruses for future outbreaks.
Collapse
Affiliation(s)
- Zhifen Cui
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Hongyan Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Yizhou Dong
- Department of Oncological Sciences, Icahn Genomics Institute, Precision Immunology Institute, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shan-Lu Liu
- Center for Retrovirus Research, Viruses and Emerging Pathogens Program, Department of Veterinary Biosciences, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Qianben Wang
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
30
|
LaBauve AE, Saada EA, Jones IKA, Mosesso R, Noureddine A, Techel J, Gomez A, Collette N, Sherman MB, Serda RE, Butler KS, Brinker CJ, Schoeniger JS, Sasaki D, Negrete OA. Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins. Sci Rep 2023; 13:6873. [PMID: 37105997 PMCID: PMC10133914 DOI: 10.1038/s41598-023-33092-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann-Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.
Collapse
Affiliation(s)
- Annette E LaBauve
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, USA
| | - Edwin A Saada
- Department of Systems Biology, Sandia National Laboratories, Livermore, USA
- Biotechnology and Biosciences Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, USA
| | - Iris K A Jones
- Department of Systems Biology, Sandia National Laboratories, Livermore, USA
| | - Richard Mosesso
- Department of Systems Biology, Sandia National Laboratories, Livermore, USA
| | - Achraf Noureddine
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, USA
| | - Jessica Techel
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, USA
| | - Andrew Gomez
- Department of Active Ceramics Value Stream, Sandia National Laboratories, Albuquerque, USA
| | - Nicole Collette
- Biotechnology and Biosciences Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, USA
| | - Michael B Sherman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, USA
| | - Rita E Serda
- Department of Internal Medicine, Health Sciences Center, University of New Mexico, Albuquerque, USA
| | - Kimberly S Butler
- Department of Molecular and Microbiology, Sandia National Laboratories, Albuquerque, USA
| | - C Jeffery Brinker
- Chemical and Biological Engineering, University of New Mexico, Albuquerque, USA
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, USA
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, USA
| | | | - Darryl Sasaki
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, USA
| | - Oscar A Negrete
- Department of Systems Biology, Sandia National Laboratories, Livermore, USA.
| |
Collapse
|
31
|
Wang C, Ye X, Ding C, Zhou M, Li W, Wang Y, You Q, Zong S, Peng Q, Duanmu D, Chen H, Sun B, Qiao J. Two Resveratrol Oligomers Inhibit Cathepsin L Activity to Suppress SARS-CoV-2 Entry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5535-5546. [PMID: 36996017 PMCID: PMC10069644 DOI: 10.1021/acs.jafc.2c07811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 06/12/2023]
Abstract
Cell entry of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) depends on specific host cell proteases, which are the key targets for preventing and treating viral infections. Herein, we describe miyabenol C and trans-ε-viniferin, two resveratrol oligomers that specifically inhibit SARS-CoV-2 entry by targeting host protease cathepsin L. Several cell-based assays were used to demonstrate the effect of resveratrol oligomers, and their target was identified via screening of antiviral targets. Molecular docking analysis suggested that the oligomers could occupy the active cavity of cathepsin L. The surface plasmon resonance assay showed that the equilibrium dissociation constant (KD) values of miyabenol C-cathepsin L and trans-ε-viniferin-cathepsin L were 5.54 and 8.54 μM, respectively, indicating their excellent binding ability for cathepsin L. Our study demonstrated the potential application of resveratrol oligomers as lead compounds in controlling SARS-CoV-2 infection by targeting cathepsin L.
Collapse
Affiliation(s)
- Chenghai Wang
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
- State Key Laboratory of Agricultural Microbiology,
Hubei Hongshan Laboratory, Huazhong Agricultural University,
Wuhan 430070, China
| | - Xiansheng Ye
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Chengchao Ding
- The First Affiliated Hospital of USTC, Division of Life
Sciences and Medicine, University of Science and Technology of China
(USTC), Hefei 230026, China
| | - Mengqi Zhou
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Yuansong Wang
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Shan Zong
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology,
Hubei Hongshan Laboratory, Huazhong Agricultural University,
Wuhan 430070, China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug
Target, School of Pharmaceutical Sciences, Xiamen University,
Xiamen 361005, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of
Medicine, Jianghan University, Wuhan 430056,
China
- Hubei Key Laboratory of Wudang Local Chinese Medicine
Research, Hubei University of Medicine, Shiyan 442000,
China
| |
Collapse
|
32
|
Zhang Y, Yan J, Hou X, Wang C, Kang DD, Xue Y, Du S, Deng B, McComb DW, Liu SL, Zhong Y, Dong Y. STING Agonist-Derived LNP-mRNA Vaccine Enhances Protective Immunity Against SARS-CoV-2. NANO LETTERS 2023; 23:2593-2600. [PMID: 36942873 PMCID: PMC10042142 DOI: 10.1021/acs.nanolett.2c04883] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Lipid nanoparticle (LNP)-mediated delivery of messenger RNA (mRNA) COVID-19 vaccines has provided large-scale immune protection to the public. To elicit a robust immune response against SARS-CoV-2 infections, antigens produced by mRNAs encoding SARS-CoV-2 Spike glycoprotein need to be efficiently delivered and presented to antigen-presenting cells such as dendritic cells (DCs). As concurrent innate immune stimulation can facilitate the antigen presentation process, a library of non-nucleotide STING agonist-derived amino lipids (SALs) was synthesized and formulated into LNPs for mRNA delivery. SAL12 lipid nanoparticles (SAL12-LNPs) were identified as most potent in delivering mRNAs encoding the Spike glycoprotein (S) of SARS-CoV-2 while activating the STING pathway in DCs. Two doses of SAL12 S-LNPs by intramuscular immunization elicited potent neutralizing antibodies against SARS-CoV-2 in mice.
Collapse
Affiliation(s)
- Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Xucheng Hou
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Chang Wang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Diana D. Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212, United States
| | - David W. McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH 43212, United States
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Shan-Lu Liu
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, United States
| | - Yichen Zhong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
- Department of Radiation Oncology, Department of Biomedical Engineering, The Center for Clinical and Translational Science, The Comprehensive Cancer Center, Dorothy M. Davis Heart & Lung Research Institute, Center for Cancer Engineering, Center for Cancer Metabolism, Pelotonia Institute for Immune-Oncology, The Ohio State University, Columbus, OH 43210, United States
- Icahn Genomics Institute, Precision Immunology Institute, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
33
|
Guo X, Liu D, Huang Y, Deng Y, Wang Y, Mao J, Zhou Y, Xiong Y, Gao X. Revolutionizing viral disease vaccination: the promising clinical advancements of non-replicating mRNA vaccines. Virol J 2023; 20:64. [PMID: 37029389 PMCID: PMC10081822 DOI: 10.1186/s12985-023-02023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
The mRNA vaccine technology was developed rapidly during the global pandemic of COVID-19. The crucial role of the COVID-19 mRNA vaccine in preventing viral infection also have been beneficial to the exploration and application of other viral mRNA vaccines, especially for non-replication structure mRNA vaccines of viral disease with outstanding research results. Therefore, this review pays attention to the existing mRNA vaccines, which are of great value for candidates for clinical applications in viral diseases. We provide an overview of the optimization of the mRNA vaccine development process as well as the good immune efficacy and safety shown in clinical studies. In addition, we also provide a brief description of the important role of mRNA immunomodulators in the treatment of viral diseases. After that, it will provide a good reference or strategy for research on mRNA vaccines used in clinical medicine with more stable structures, higher translation efficiency, better immune efficacy and safety, shorter production time, and lower production costs than conditional vaccines to be used as preventive or therapeutic strategy for the control of viral diseases in the future.
Collapse
Affiliation(s)
- Xiao Guo
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Dongying Liu
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yukai Huang
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Youcai Deng
- Department of Hematology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, People’s Republic of China
| | - Ying Wang
- Modern Medical Teaching and Research Section, Department of Tibetan Medicine, University of Tibetan Medicine, No. 10 Dangre Middle Rd, Chengguan District, Lhasa, 850000 Tibet Autonomous Region People’s Republic of China
| | - Jingrui Mao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy. No, 6 Niusha Road, Jinjiang District, Chengdu, 610299 People’s Republic of China
| | - Yongai Xiong
- School of Pharmacy, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| | - Xinghong Gao
- School of Basic Medicine, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
- Key Laboratory of Infectious Disease and Bio-Safety, Provincial Department of Education, Zunyi Medical University, West No. 6 Xuefu Road, Xinpu District, Zunyi, 563006 Guizhou People’s Republic of China
| |
Collapse
|
34
|
Kuo HC, Prupes J, Chou CW, Finkelstein IJ. Massively Parallel Profiling of RNA-targeting CRISPR-Cas13d. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534188. [PMID: 37034598 PMCID: PMC10081190 DOI: 10.1101/2023.03.27.534188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Type VI CRISPR enzymes cleave target RNAs and are widely used for gene regulation, RNA tracking, and diagnostics. However, a systematic understanding of their RNA binding specificity and cleavage activation is lacking. Here, we describe RNA chip-hybridized association-mapping platform (RNA-CHAMP), a massively parallel platform that repurposes next-generation DNA sequencing chips to measure the binding affinity for over 10,000 RNA targets containing structural perturbations, mismatches, insertions, and deletions relative to the CRISPR RNA (crRNA). Deep profiling of Cas13d, a compact and widely used RNA nuclease, reveals that it does not require a protospacer flanking sequence (PFS) but is exquisitely sensitive to secondary structure within the target RNA. Cas13d binding is strongly penalized by mismatches, insertions, and deletions in the distal crRNA-target RNA regions, while alterations in the proximal region inhibit nuclease activity without affecting binding. A biophysical model built from these data reveals that target recognition begins at the distal end of unstructured target RNAs and proceeds to the proximal end. Using this model, we designed a series of partially mismatched guide RNAs that modulate nuclease activity to detect single nucleotide polymorphisms (SNPs) in circulating SARS-CoV-2 variants. This work describes the key determinants of RNA targeting by a type VI CRISPR enzyme to improve CRISPR diagnostics and in vivo RNA editing. More broadly, RNA-CHAMP provides a quantitative platform for systematically measuring protein-RNA interactions.
Collapse
Affiliation(s)
- Hung-Che Kuo
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Joshua Prupes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Chia-Wei Chou
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ilya J. Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
35
|
Chen Z, Zheng S, Fu C. Shotgun knockdown of RNA by CRISPR-Cas13d in fission yeast. J Cell Sci 2023; 136:297260. [PMID: 36825467 DOI: 10.1242/jcs.260769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The CRISPR-Cas13d system has a single small effector protein that targets RNA and does not require the presence of a protospacer flanking site in the targeted transcript. These features make CRISPR-Cas13d an attractive system for RNA manipulation. Here, we report the successful implementation of the CRISPR-Cas13d system in fission yeast for RNA knockdown. A high effectiveness of the CRISPR-Cas13d system was ensured by using an array of CRISPR RNAs (crRNAs) that are flanked by two self-cleaving ribozymes and are expressed from an RNA polymerase II promoter. Given the repressible nature of the promoter, RNA knockdown by the CRISPR-Cas13d system is reversible. Moreover, using the CRISPR-Cas13d system, we identified an effective crRNA array targeting the transcript of gfp and the effectiveness was demonstrated by successful knockdown of the transcripts of noc4-gfp, bub1-gfp and ade6-gfp. In principle, the effective GFP crRNA array allows knockdown of any transcript carrying the GFP sequences. This new CRISPR-Cas13d-based toolkit is expected to have a wide range of applications in many aspects of biology, including dissection of gene function and visualization of RNA.
Collapse
Affiliation(s)
- Zhikai Chen
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shengnan Zheng
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
36
|
Zhou Q, Chen Y, Wang R, Jia F, He F, Yuan F. Advances of CRISPR-Cas13 system in COVID-19 diagnosis and treatment. Genes Dis 2022; 10:S2352-3042(22)00317-8. [PMID: 36591005 PMCID: PMC9793954 DOI: 10.1016/j.gendis.2022.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/28/2022] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in over 570 million infections and 6 million deaths worldwide. Early detection and quarantine are essential to arrest the spread of the highly contagious COVID-19. High-risk groups, such as older adults and individuals with comorbidities, can present severe symptoms, including pyrexia, pertussis, and acute respiratory distress syndrome, on SARS-CoV-2 infection that can prove fatal, demonstrating a clear need for high-throughput and sensitive platforms to detect and eliminate SARS-CoV-2. CRISPR-Cas13, an emerging CRISPR system targeting RNA with high specificity and efficiency, has recently drawn much attention for COVID-19 diagnosis and treatment. Here, we summarized the current research progress on CRISPR-Cas13 in COVID-19 diagnosis and treatment and highlight the challenges and future research directions of CRISPR-Cas13 for effectively counteracting COVID-19.
Collapse
Affiliation(s)
| | | | - Ruolei Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fengjing Jia
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fuwen Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
37
|
Kinetic Characterization of Cerium and Gallium Ions as Inhibitors of Cysteine Cathepsins L, K, and S. Int J Mol Sci 2022; 23:ijms23168993. [PMID: 36012257 PMCID: PMC9409168 DOI: 10.3390/ijms23168993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Heavy metal ions can disrupt biological functions via multiple molecular mechanisms, including inhibition of enzymes. We investigate the interactions of human papain-like cysteine endopeptidases cathepsins L, K, and S with gallium and cerium ions, which are associated with medical applications. We compare these results with zinc and lead, which are known to inhibit thiol enzymes. We show that Ga3+, Ce3+, and Ce4+ ions inhibit all tested peptidases with inhibition constants in the low micromolar range (between 0.5 µM and 10 µM) which is comparable to Zn2+ ions, whereas inhibition constants of Pb2+ ions are one order of magnitude higher (30 µM to 150 µM). All tested ions are linear specific inhibitors of cathepsin L, but cathepsins K and S are inhibited by Ga3+, Ce3+, and Ce4+ ions via hyperbolic inhibition mechanisms. This indicates a mode of interaction different from that of Zn2+ and Pb2+ ions, which act as linear specific inhibitors of all peptidases. All ions also inhibit the degradation of insoluble elastin, which is a common target of these peptidases in various inflammatory diseases. Our results suggest that these ions and their compounds have the potential to be used as cysteine cathepsin inhibitors in vitro and possibly in vivo.
Collapse
|