1
|
Deng Y, Wu C, Na J, Tang J, Qin S, Zhang Z, Zhong L. Prospects and limitations of NK cell adoptive therapy in clinical applications. Cancer Metastasis Rev 2025; 44:57. [PMID: 40563075 DOI: 10.1007/s10555-025-10273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 06/10/2025] [Indexed: 06/28/2025]
Abstract
During the last three decades, there has been substantial advancement in comprehending the chemical attributes and roles of natural killer (NK) cells, resulting in a growing interest in these cells. Simultaneously, the swift advancement of adoptive transfer therapy for immune cells, particularly the impressive achievements of autologous chimeric antigen receptor-T (CAR-T) cells in treating hematological malignant tumors, has fueled interest in using immune cells as a cancer treatment modality and opened the door for NK cell adoptive immunotherapy. NK cell-mediated immunotherapy has shown potential as a readily available, safe, and effective treatment for patients with leukemia. Moreover, clinical studies have demonstrated that NK cell adoptive immunotherapy shows efficacy in various solid tumors and hematologic malignancies, indicating a promising future for this therapeutic approach. This paper will provide an overview of NK cell adoptive therapy, focusing on current clinical trial results and the challenges associated with clinical applications.
Collapse
Affiliation(s)
- Yamin Deng
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Chen Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jing Tang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Simin Qin
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhiyong Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Department of Surgery, Robert-Wood-Johnson Medical School University Hospital, Rutgers University, New Brunswick, NJ, 08901-8554, USA.
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, Guangxi, 530021, China.
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Wang L, Zhou X, Lu T. Role of mitochondria in physiological activities, diseases, and therapy. MOLECULAR BIOMEDICINE 2025; 6:42. [PMID: 40536597 DOI: 10.1186/s43556-025-00284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 05/27/2025] [Accepted: 05/30/2025] [Indexed: 06/22/2025] Open
Abstract
Mitochondria are generally considered essential for life in eukaryotic organisms because they produce most of the energy or adenosine triphosphate (ATP) needed by the cell. Beyond energy production, it is now widely accepted that mitochondria also play a pivotal role in maintaining cellular homeostasis and signaling. The two core processes of mitochondrial dynamics, fission and fusion, serve as crucial foundations for maintaining mitochondrial morphology, distribution, and quantity, thereby ensuring cellular homeostasis. Mitochondrial autophagy (mitophagy) ensures the selective degradation of damaged mitochondria, maintaining quality control. Mitochondrial transport and communication further enhance their role in cellular processes. In addition, mitochondria are susceptible to damage, resulting in dysfunction and disruption of intracellular homeostasis, which is closely associated with the development of numerous diseases. These include mitochondrial diseases, neurodegenerative diseases, cardiovascular diseases (CVDs) and stroke, metabolic disorders such as diabetes mellitus, cancer, infectious diseases, and the aging process. Given the central role of mitochondria in disease pathology, there is a growing need to understand their mechanisms and develop targeted therapies. This review aims to provide a comprehensive overview of mitochondrial structure and functions, with a particular focus on their roles in disease development and the current therapeutic strategies targeting mitochondria. These strategies include mitochondrial-targeted antioxidants, modulation of mitochondrial dynamics and quality control, mitochondrial genome editing and genetic therapy, and mitochondrial transplantation. We also discuss the challenges currently facing mitochondrial research and highlight potential future directions for development. By summarizing the latest advancements and addressing gaps in knowledge, this review seeks to guide future research and clinical efforts in the field of mitochondrial medicine.
Collapse
Affiliation(s)
- Lilin Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xiaoting Zhou
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tianqi Lu
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China.
- Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China.
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Yuan H, Liu J, Xu R, Yang K, Qu R, Liu S, Zhang Y, Xiang M. The spatiotemporal heterogeneity of reactive oxygen species in the malignant transformation of viral hepatitis to hepatocellular carcinoma: a new insight. Cell Mol Biol Lett 2025; 30:70. [PMID: 40517270 PMCID: PMC12167593 DOI: 10.1186/s11658-025-00745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025] Open
Abstract
During the transformation of viral hepatitis into hepatocellular carcinoma (HCC), oxidative stress levels increase significantly, leading to tissue damage and chronic inflammation. HCC is characterized by spatiotemporal heterogeneity, which influences oxidative stress patterns, with reactive oxygen species (ROS) as the primary representative molecules. ROS serve not only as critical biomarkers of cancer but also as potential therapeutic targets for HCC, given that their increased levels can either promote or inhibit disease progression. In this review, we systematically examine the temporal heterogeneity of ROS, emphasizing its role in different stages of HCC progression caused by viral hepatitis and in influencing cell fate. We further explore ROS spatial heterogeneity at three levels: cellular, organelle, and biomolecular. Next, we comprehensively review clinical applications and potential therapies designed to selectively modulate ROS on the basis of its spatiotemporal heterogeneity. Finally, we discuss potential future applications of novel therapies that target ROS spatiotemporal heterogeneity to prevent and manage HCC onset and progression. In conclusion, this review enhances understanding of ROS in the progression of viral hepatitis to HCC and offers insights into developing new therapeutic targets and strategies centered on ROS heterogeneity.
Collapse
MESH Headings
- Humans
- Reactive Oxygen Species/metabolism
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/virology
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/virology
- Oxidative Stress
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Animals
- Hepatitis, Viral, Human/metabolism
- Hepatitis, Viral, Human/pathology
- Hepatitis, Viral, Human/complications
- Disease Progression
Collapse
Affiliation(s)
- Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Jia Liu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Ruochen Xu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Keshan Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Ruiyang Qu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Shuai Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China.
| |
Collapse
|
4
|
Coleborn E, Ghebosu R, Wolfram J, Souza-Fonseca-Guimaraes F. Cancer-derived extracellular vesicles in natural killer cell immune evasion: Molecular mechanisms and therapeutic insights. Mol Ther 2025:S1525-0016(25)00405-8. [PMID: 40452185 DOI: 10.1016/j.ymthe.2025.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/21/2025] [Accepted: 05/28/2025] [Indexed: 06/19/2025] Open
Abstract
Natural killer cells are innate lymphocytes equipped with the ability to rapidly identify and eliminate cancer cells. However, cancer cells release nanosized extracellular vesicles that can induce an immunosuppressive tumor microenvironment, subsequently hindering natural killer cell immunosurveillance. Studies have reported that extracellular vesicles derived from different cancers, such as acute myeloid leukemia, melanoma, mesothelioma, head and neck squamous carcinoma, lung carcinoma, breast cancer, hepatocellular carcinoma, and pancreatic ductal adenocarcinoma, can induce natural killer cell dysfunction by suppressing cytolytic proteins and downregulating expression of receptors involved in the recognition of oncogenic cells. Additionally, cancer-derived extracellular vesicles can interfere with natural killer cell survival, proliferation, cell migration, and metabolic functions. Therefore, extracellular vesicle-induced natural killer cell suppression has emerged as a key target for research and new therapeutic approaches to recover and enhance the tumoricidal potential of these immune cells. Here, we summarize the current knowledge regarding cancer-derived extracellular vesicles and natural killer cell interactions, their role in immunosuppression, implications for developing efficient cellular immunotherapies and outstanding questions in this field.
Collapse
Affiliation(s)
- Elaina Coleborn
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Raluca Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Fernando Souza-Fonseca-Guimaraes
- Frazer Institute, Faculty of Health, Medicine and Behavioural Sciences, The University of Queensland, Brisbane, QLD 4102, Australia.
| |
Collapse
|
5
|
Changaei M, Azimzadeh Tabrizi Z, Karimi M, Kashfi SA, Koochaki Chahardeh T, Hashemi SM, Soudi S. From powerhouse to modulator: regulating immune system responses through intracellular mitochondrial transfer. Cell Commun Signal 2025; 23:232. [PMID: 40394666 PMCID: PMC12090700 DOI: 10.1186/s12964-025-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Mitochondria are traditionally known as the cells' powerhouses; however, their roles go far beyond energy suppliers. They are involved in intracellular signaling and thus play a crucial role in shaping cells' destiny and functionality, including immune cells. Mitochondria can be actively exchanged between immune and non-immune cells via mechanisms such as nanotubes and extracellular vesicles. The mitochondria transfer from immune cells to different cells is associated with physiological and pathological processes, including inflammatory disorders, cardiovascular diseases, diabetes, and cancer. On the other hand, mitochondrial transfer from mesenchymal stem cells, bone marrow-derived stem cells, and adipocytes to immune cells significantly affects their functions. Mitochondrial transfer can prevent exhaustion/senescence in immune cells through intracellular signaling pathways and metabolic reprogramming. Thus, it is emerging as a promising therapeutic strategy for immune system diseases, especially those involving inflammation and autoimmune components. Transferring healthy mitochondria into damaged or dysfunctional cells can restore mitochondrial function, which is crucial for cellular energy production, immune regulation, and inflammation control. Also, mitochondrial transfer may enhance the potential of current therapeutic immune cell-based therapies such as CAR-T cell therapy.
Collapse
Affiliation(s)
- Mostafa Changaei
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Azimzadeh Tabrizi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Adnan Kashfi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tina Koochaki Chahardeh
- Department of Basic Sciences, Biology and Health, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Verhezen T, Wouters A, Smits E, De Waele J. Powering immunity: mitochondrial dynamics in natural killer cells. Trends Mol Med 2025:S1471-4914(25)00106-6. [PMID: 40393875 DOI: 10.1016/j.molmed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
Natural killer (NK) cells are innate lymphocytes that are crucial for eliminating malignant and infected cells, and have significant therapeutic potential against cancer and viral infections. However, their functionality is often impaired under pathological conditions. Emerging evidence identifies mitochondria as key regulators of NK cell metabolism, fitness, and fate. This review examines how mitochondrial dysfunction impacts on NK cell activity in cancer, viral infections, and inflammatory disorders. We discuss strategies to target mitochondrial architecture, dynamics, and function as potential therapies to restore NK cell fitness. Finally, we highlight unanswered questions and future directions to better understand mitochondrial regulation in NK cells and its implications for therapeutic development.
Collapse
Affiliation(s)
- Tias Verhezen
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - An Wouters
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital, Edegem, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
7
|
Zhao Y, Wang Y, Liang T, Song X, Zhu Y, Liu X, Lv M, Zheng C, Ni F. Dysregulated glutathione metabolism impairs natural killer cell function in patients with acute leukemia. Int Immunopharmacol 2025; 154:114566. [PMID: 40184815 DOI: 10.1016/j.intimp.2025.114566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Natural killer (NK) cell function is markedly impaired in patients with acute leukemia, weakening their anti-tumor immune response. However, the mechanisms underlying NK cell dysfunction are not fully understood. Here, we reveal that NK cells from patients with acute leukemia (AL-NK) exhibit significantly reduced intracellular glutathione (GSH) levels, accompanied by disrupted redox homeostasis and increased levels of mitochondrial reactive oxygen species. Flow cytometry and transcriptomic analyses indicate that dysregulated GSH metabolism leads to mitochondrial dysfunction in NK cells, thereby impairing their antileukemic cytotoxicity and proliferative capacity. Notably, supplementation with glutathione reduced ethyl ester (GSHEE)-a GSH precursor-effectively restores GSH levels in AL-NK cells, enhancing mitochondrial activity, oxidative phosphorylation, ATP production, and NK cell-mediated cytotoxicity. Moreover, GSHEE treatment activates the mTOR signaling pathway in NK cells, further promoting their function and proliferation. Overall, our study identifies dysregulated GSH metabolism as a key driver of NK cell dysfunction in acute leukemia and suggests that GSH-based interventions may provide a promising strategy to enhance NK cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Tingting Liang
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Xian Song
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Yingqiao Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xinru Liu
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China
| | - Mengya Lv
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Changcheng Zheng
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| | - Fang Ni
- Department of Hematology, The First Affiliated Hospital of USTC, National Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Institute of Blood and Cell Therapy and Anhui Provincial Key Laboratory of Blood Research and Applications, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Institute of Immunology, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230022, China.
| |
Collapse
|
8
|
Wei H, Suo C, Gu X, Shen S, Lin K, Zhu C, Yan K, Bian Z, Chen L, Zhang T, Yan R, Yang Z, Yu Y, Li Z, Liu R, He J, He Q, Zhong X, Jia W, Wong CM, Dong Z, Cao J, Sun L, Zhang H, Gao P. AKR1D1 suppresses liver cancer progression by promoting bile acid metabolism-mediated NK cell cytotoxicity. Cell Metab 2025; 37:1103-1118.e7. [PMID: 40010348 DOI: 10.1016/j.cmet.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bile acid metabolism and antitumor immunity are both disrupted during liver cancer progression. However, the complex regulatory relationship between them remains largely unclear. Here, we find that loss of aldo-keto reductase 1D1 (AKR1D1) promotes the accumulation of isolithocholic acid (iso-LCA) through gut microbiome dysregulation, thereby impairing the cytotoxic function of natural killer (NK) cells and leading to the accelerated development of hepatocellular carcinoma (HCC). Mechanistically, AKR1D1 deficiency leads to an increased proportion of Bacteroidetes ovatus (B. ovatus), which breaks down chenodeoxycholic acid (CDCA) into iso-LCA. Moreover, accumulated iso-LCA impairs the antitumor activity of hepatic NK cells in a phosphorylated-CREB1 (p-CREB1)-dependent manner. The potassium-sparing diuretic spironolactone treatment significantly enhances the inhibitory effect of anti-PD1 antibody on HCC progression by targeting iso-LCA-mediated tumor immune escape. Taken together, our results uncover a previously unappreciated link between AKR1D1 and HCC and suggest that targeting iso-LCA produced by B. ovatus might be a promising strategy to activate NK cell cytotoxicity to treat HCC.
Collapse
Affiliation(s)
- Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kashuai Lin
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ronghui Yan
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyi Yang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingxuan Yu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhikun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Rui Liu
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junming He
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qiwei He
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
9
|
Wang Y, Guo A, Yang L, Han X, Li Q, Liu J, Han Y, Yang Y, Chao L. Immune dysregulation of decidual NK cells mediated by GRIM19 downregulation contributes to the occurrence of recurrent pregnancy loss. Mol Cell Biochem 2025; 480:3117-3131. [PMID: 39663335 DOI: 10.1007/s11010-024-05181-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
In patients with recurrent pregnancy loss (RPL), excessive activation of decidual natural killer (dNK) cells has been widely observed, yet the precise underlying mechanisms remain to be elucidated. We collected decidual specimens from RPL patients and controls to assess GRIM19 expression, activation phenotype, cytotoxic function, inflammatory cytokine secretion, and mitochondrial homeostasis in dNK cells. Furthermore, we established a GRIM19-knockout NK-92MI cell line and a GRIM19 ± C57BL/6J mouse model to investigate the relationship between GRIM19 downregulation and dNK immune dysregulation, ultimately contributing to pregnancy loss. Decidual NK cells from RPL patients exhibited significantly lower GRIM19 expression, accompanied by abnormal hyperactivation, enhanced cytotoxicity, and abnormal mitochondrial activation. In vitro experiments confirmed that reduced GRIM19 expression significantly potentiated the cytotoxicity and pro-inflammatory cytokine secretion of NK-92MI cells, while also promoting mitochondrial homeostasis imbalance. Mouse model studies corroborated that GRIM19 downregulation triggers NK cell homeostasis imbalance, contributing to the occurrence of pregnancy loss. Downregulation of GRIM19 in dNK cells contributes to RPL through hyperactivation and disruption of mitochondrial homeostasis, emphasizing its potential as a diagnostic and therapeutic target.
Collapse
MESH Headings
- Female
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/metabolism
- Animals
- Humans
- Mice
- Pregnancy
- Down-Regulation
- Abortion, Habitual/immunology
- Abortion, Habitual/pathology
- Abortion, Habitual/metabolism
- Abortion, Habitual/genetics
- Decidua/immunology
- Decidua/pathology
- Decidua/metabolism
- Mice, Inbred C57BL
- Apoptosis Regulatory Proteins/immunology
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Adult
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/immunology
- NADH, NADPH Oxidoreductases
Collapse
Affiliation(s)
- Ying Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Anliang Guo
- Shandong University, Jinan, 250012, Shandong, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaojuan Han
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qianni Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jin Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yilong Han
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lan Chao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Siemińska I, Lenart M. Immunometabolism of Innate Immune Cells in Gastrointestinal Cancer. Cancers (Basel) 2025; 17:1467. [PMID: 40361394 PMCID: PMC12071029 DOI: 10.3390/cancers17091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Cancer cells are often described as voracious consumers of nutrients, with glucose frequently cited as a key energy source; however, their metabolic plasticity allows them to adapt and utilize various substrates, including lipids and amino acids, to sustain growth and survival. However, the metabolic demands of immune cells within the tumor microenvironment (TME) are less commonly discussed despite their critical role in shaping the immune response. In this review, we explored the intricate interplay between immunometabolism and innate immunity cells in gastrointestinal cancers. We focused on how metabolic pathways, including glycolysis, fatty acid oxidation, and amino acid metabolism, drive the immunosuppressive functions of myeloid-derived suppressor cells (MDSCs) and tumor-associated neutrophils (TANs), tumor-associated macrophages (TAMs) and innate lymphocyte subsets such as NK cells. These cells contribute to a hostile immune landscape, supporting tumor growth and evasion from immune surveillance in a phenomenon of tumor-derived immunosuppression. Additionally, we investigated the influence of dietary interventions on the metabolic reprogramming of these immune cells, highlighting how nutrition can modulate the TME. Finally, we discussed emerging therapeutic strategies that target metabolic vulnerabilities in MDSCs, TANs, NK cells, and monocytes, offering a novel avenue for enhancing antitumor immunity. By dissecting these mechanisms, we aim to provide insights into how metabolic pathways can be harnessed to improve cancer treatment outcomes. This review underscores the importance of understanding immunometabolism not only as a driver of immune suppression but also as a potential therapeutic target in gastrointestinal cancer.
Collapse
Affiliation(s)
- Izabela Siemińska
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| | - Marzena Lenart
- Department of Clinical Immunology, Institute of Paediatrics, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland
| |
Collapse
|
11
|
Luo J, Guo M, Huang M, Liu Y, Qian Y, Liu Q, Cao X. Neoleukin-2/15-armored CAR-NK cells sustain superior therapeutic efficacy in solid tumors via c-Myc/NRF1 activation. Signal Transduct Target Ther 2025; 10:78. [PMID: 40025022 PMCID: PMC11873268 DOI: 10.1038/s41392-025-02158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 01/22/2025] [Indexed: 03/04/2025] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR)-modified natural killer (NK) cells represents a transformative approach that has significantly advanced clinical outcomes in patients with malignant hematological conditions. However, the efficacy of CAR-NK cells in treating solid tumors is limited by their exhaustion, impaired infiltration and poor persistence in the immunosuppressive tumor microenvironment (TME). As NK cell functional states are associated with IL-2 cascade, we engineered mesothelin-specific CAR-NK cells that secrete neoleukin-2/15 (Neo-2/15), an IL-2Rβγ agonist, to resist immunosuppressive polarization within TME. The adoptively transferred Neo-2/15-armored CAR-NK cells exhibited enhanced cytotoxicity, less exhaustion and longer persistence within TME, thereby having superior antitumor activity against pancreatic cancer and ovarian cancer. Mechanistically, Neo-2/15 provided sustained and enhanced downstream IL-2 receptor signaling, which promotes the expression of c-Myc and nuclear respiratory factor 1 (NRF1) in CAR-NK cells. This upregulation was crucial for maintaining mitochondrial adaptability and metabolic resilience, ultimately leading to increased cytotoxicity and pronounced persistence of CAR-NK cells within the TME. The resistance against TME immunosuppressive polarization necessitated the upregulation of NRF1, which is essential to the augmentative effects elicited by Neo-2/15. Overexpression of NRF1 significantly bolsters the antitumor efficacy of CAR-NK cells both in vitro and in vivo, with increased ATP production. Collectively, Neo-2/15-expressing CAR-NK cells exerts superior antitumor effects by exhaustion-resistance and longer survival in solid tumors.
Collapse
Affiliation(s)
- Jianhua Luo
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Navy Medical University, Shanghai, 200433, China
| | - Meng Guo
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Navy Medical University, Shanghai, 200433, China.
| | - Mingyan Huang
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Navy Medical University, Shanghai, 200433, China
| | - Yanfang Liu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Navy Medical University, Shanghai, 200433, China
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| | - Yuping Qian
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| | - Qiuyan Liu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Navy Medical University, Shanghai, 200433, China.
| | - Xuetao Cao
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Navy Medical University, Shanghai, 200433, China.
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
12
|
Chung H, Bak SH, Shin E, Park T, Kim J, Jeong H, Jung H, Yoon SR, Noh JY. Resveratrol from Peanut Sprout Extract Promotes NK Cell Activation and Antitumor Activity. Biomol Ther (Seoul) 2025; 33:355-364. [PMID: 39971707 PMCID: PMC11893499 DOI: 10.4062/biomolther.2024.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 02/21/2025] Open
Abstract
Natural killer (NK) cells are innate immune cells that are crucial for anticancer activity and have been developed as an immune cell therapy for leukemia. However, their limited effectiveness against solid tumors has prompted research into methods to enhance NK cell activity through combination therapies. Health supplements capable of boosting immune surveillance against tumor cells are gaining attention owing to their potential benefits. Resveratrol, a stilbenoid produced by several plants including peanuts and grapes, reportedly exerts anticancer effects and can activate immune cells. The peanut sprout extract cultivated with fermented sawdust medium (PSEFS) is rich in resveratrol, leveraging its health benefits in terms of the dry weight of herbal products, thus maximizing the utilization of resveratrol's beneficial properties. Our study compared the efficacy of resveratrol and PSEFS and revealed that PSEFS significantly enhanced NK cell activation compared with an equivalent dose of resveratrol. We investigated the ability of PSEFS to potentiate NK cell anticancer activity, focusing on NK cell survival, tumor cell lysis, and NK cell activation in PSEFS-administered mice. Our findings suggest that PSEFS could be a potential NK cell booster for cancer immunotherapy.
Collapse
Affiliation(s)
- Hyunmin Chung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jinwoo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hanseul Jeong
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Suk Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
13
|
Viel S, Vivier E, Walzer T, Marçais A. Targeting metabolic dysfunction of CD8 T cells and natural killer cells in cancer. Nat Rev Drug Discov 2025; 24:190-208. [PMID: 39668206 DOI: 10.1038/s41573-024-01098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
The importance of metabolic pathways in regulating immune responses is now well established, and a mapping of the bioenergetic metabolism of different immune cell types is under way. CD8 T cells and natural killer (NK) cells contribute to cancer immunosurveillance through their cytotoxic functions and secretion of cytokines and chemokines, complementing each other in target recognition mechanisms. Several immunotherapies leverage these cell types by either stimulating their activity or redirecting their specificity against tumour cells. However, the anticancer activity of CD8 T cells and NK cells is rapidly diminished in the tumour microenvironment, closely linked to a decline in their metabolic capacities. Various strategies have been developed to restore cancer immunosurveillance, including targeting bioenergetic metabolism or genetic engineering. This Review provides an overview of metabolic dysfunction in CD8 T cells and NK cells within the tumour microenvironment, highlighting current therapies aiming to overcome these issues.
Collapse
Affiliation(s)
- Sébastien Viel
- Plateforme de Biothérapie et de Production de Médicaments de Thérapie Innovante, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- APHM, Hôpital de la Timone, Marseille, France
- Paris Saclay Cancer Cluster, Villejuif, France
- Université Paris-Saclay, Gustave Roussy, Inserm, Prédicteurs moléculaires et nouvelles cibles en oncologie, Villejuif, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, (Team Lyacts), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308 ENS de Lyon, Lyon, France.
| |
Collapse
|
14
|
Chang TD, Chen YJ, Luo JL, Zhang C, Chen SY, Lin ZQ, Zhang PD, Shen YX, Tang TX, Li H, Dong LM, Tang ZH, Chen D, Wang YM. Adaptation of Natural Killer Cells to Hypoxia: A Review of the Transcriptional, Translational, and Metabolic Processes. Immunotargets Ther 2025; 14:99-121. [PMID: 39990274 PMCID: PMC11846490 DOI: 10.2147/itt.s492334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
As important innate immune cells, natural killer (NK) cells play an essential role in resisting pathogen invasion and eliminating transformed cells. However, the hypoxic microenvironment caused by disease conditions is an important physicochemical factor that impairs NK cell function. With the increasing prominence of NK cells in immunotherapy, there has been a surge of interest in developing biological means through which NK cells may overcome the inhibition caused by hypoxia in disease conditions. Although the effects of hypoxic conditions in shaping the functions of NK cells have been increasingly recognized and investigated, reviews have been scantly. A comprehensive understanding of how NK cells adapt to hypoxia can provide valuable insights into how the functional capacity of NK cells may be restored. This review focuses on the functional alterations of NK cells in response to hypoxia. It delineates the mechanisms by which NK cells adapt to hypoxia at the transcriptional, metabolic, translational levels. Furthermore, given the complexity of the hypoxic microenvironment, we also elucidated the effects of key hypoxic metabolites on NK cells. Finally, this review discusses the current clinical therapies derived from targeting hypoxic NK cells. The study of NK cell adaptation to hypoxia has yielded new insights into immunotherapy. These insights may lead to development of novel strategies to improve the treatment of infectious diseases and cancer.
Collapse
Affiliation(s)
- Te-Ding Chang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Jie Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jia-Liu Luo
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Cong Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Shun-Yao Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhi-Qiang Lin
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Pei-Dong Zhang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - You-Xie Shen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ting-Xuan Tang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hui Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Li-Ming Dong
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zhao-Hui Tang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Deng Chen
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yu-Man Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
15
|
Chen TH, Lin SH, Lee MY, Wang HC, Tsai KF, Chou CK. Mitochondrial alterations and signatures in hepatocellular carcinoma. Cancer Metastasis Rev 2025; 44:34. [PMID: 39966277 PMCID: PMC11836208 DOI: 10.1007/s10555-025-10251-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/09/2025] [Indexed: 02/20/2025]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer worldwide. Its primary risk factors are chronic liver diseases such as metabolic fatty liver disease, non-alcoholic steatohepatitis, and hepatitis B and C viral infections. These conditions contribute to a specific microenvironment in liver tumors which affects mitochondrial function. Mitochondria are energy producers in cells and are responsible for maintaining normal functions by controlling mitochondrial redox homeostasis, metabolism, bioenergetics, and cell death pathways. HCC involves abnormal mitochondrial functions, such as accumulation of reactive oxygen species, oxidative stress, hypoxia, impairment of the mitochondrial unfolded protein response, irregularities in mitochondrial dynamic fusion/fission mechanisms, and mitophagy. Cell death mechanisms, such as necroptosis, pyroptosis, ferroptosis, and cuproptosis, contribute to hepatocarcinogenesis and play a significant role in chemoresistance. The relationship between mitochondrial dynamics and HCC is thus noteworthy. In this review, we summarize the recent advances in mitochondrial alterations and signatures in HCC and attempt to elucidate its molecular biology. Here, we provide an overview of the mitochondrial processes involved in hepatocarcinogenesis and offer new insights into the molecular pathology of the disease. This may help guide future research focused on improving patient outcomes using innovative therapies.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
| | - Shu-Hsien Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
| | - Ming-Yang Lee
- Division of Hemato-Oncology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan
- Min-Hwei Junior College of Health Care Management, Tainan, 73658, Taiwan
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi, 62102, Taiwan
| | - Kun-Feng Tsai
- Department of Internal Medicine, Gastroenterology and Hepatology Section, An Nan Hospital, China Medical University, Tainan, 70965, Taiwan.
- Department of Medical Sciences Industry, Chang Jung Christian University, Tainan, 71101, Taiwan.
| | - Chu-Kuang Chou
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
- Department of Medical Quality, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
| |
Collapse
|
16
|
Zhang ZY, Wang F, Zhou G. Decrease of NAD + Inhibits the Apoptosis of OLP T Cells via Inducing Mitochondrial Fission. J Inflamm Res 2025; 18:1091-1106. [PMID: 39871961 PMCID: PMC11771177 DOI: 10.2147/jir.s502273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025] Open
Abstract
Purpose Oral lichen planus (OLP) is a chronic, immune-mediated inflammatory disease involving T cells. Mitochondrial fission plays a crucial role in T cell fate through structural remodeling. Nicotinamide adenine dinucleotide (NAD+) regulates mitochondrial remodeling and function. This study explored the role of NAD+ in modulating mitochondrial fission and apoptosis in T cells under the OLP immune-inflammatory environment. Patients and Methods T cells and plasma were isolated from peripheral blood. Mitochondrial morphology was characterized by transmission electron microscopy and Mito-Tracker staining. OLP plasma-exposed Jurkat T cells were infected with the Drp1 shRNA virus to investigate the role of mitochondrial fission in OLP T cell apoptosis. OLP T cells and OLP plasma-exposed Jurkat T cells were treated with either β-nicotinamide mononucleotide (an NAD+ synthesis precursor) or FK866 (an NAD+ synthesis inhibitor) to assess the effect of NAD+ regulation on mitochondrial remodeling and T cell apoptosis. Results OLP T cells exhibited fragmented mitochondria with elevated dynamin-related protein 1 (Drp1) and reduced mitofusin 2 (Mfn2) expression, accompanied by decreased apoptosis. Drp1 knockdown in OLP plasma-exposed Jurkat T cells increased apoptosis and reduced proliferation. NAD+ levels were reduced in both OLP T cells and OLP plasma-treated Jurkat T cells, leading to enhanced mitochondrial fission, decreased mitochondrial membrane potential (MMP) and respiration function, and reduced apoptosis rate. β-nicotinamide mononucleotide supplementation restored NAD+ levels, suppressed mitochondrial fission, improved MMP, and promoted apoptosis in these cells. Conclusion Reduced NAD+ levels in OLP T cells enhanced mitochondrial fission and contributed to decreased apoptosis. NAD+ supplementation mitigated these effects, suggesting a potential therapeutic strategy for restoring T cell homeostasis in OLP.
Collapse
Affiliation(s)
- Zhuo-Yu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Fang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Center for Cariology, Endodontics and Periodontics, Optical Valley Branch, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
17
|
Zhang H, Cao X, Gui R, Li Y, Zhao X, Mei J, Zhou B, Wang M. Mesenchymal Stem/Stromal cells in solid tumor Microenvironment: Orchestrating NK cell remodeling and therapeutic insights. Int Immunopharmacol 2024; 142:113181. [PMID: 39305890 DOI: 10.1016/j.intimp.2024.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs), originating from normal tissues, possess the capacity to home to tumor sites and differentiate into tumor-associated MSCs (TA-MSCs), which are instrumental in shaping an immunosuppressive milieu within tumors. Natural killer (NK) cells, integral to the innate immune system, are endowed with the ability to eradicate target cells autonomously, serving as an immediate defense against neoplastic growths. Nonetheless, within the tumor microenvironment (TME), NK cells often exhibit a decline in both their numerical presence and functionality. TA-MSCs have been shown to exert profound inhibitory effects on the functions of tumor-infiltrating immune cells, notably NK cells. Understanding the mechanisms by which TA-MSCs contribute to NK cell dysfunction is critical for the advancement of immune surveillance and the enhancement of tumoricidal responses. This review summarizes existing literature on NK cell modulation by TA-MSCs within the TME and proposes innovative strategies to augment antitumor immunity.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xiaoli Cao
- Department of Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province, 226321, China
| | - Rulin Gui
- Laboratory Animal Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, China
| | - Yuanyuan Li
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Xinlan Zhao
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Jingyu Mei
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, Jiangsu Province, 222000, China.
| | - Mei Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
18
|
Li L, Zhang Y, Tang Q, Wu C, Yang M, Hu Y, Gong Z, Shi L, Guo C, Zeng Z, Chen P, Xiong W. Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria. Cell Oncol (Dordr) 2024; 47:2031-2047. [PMID: 39373857 DOI: 10.1007/s13402-024-01000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Chunyu Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Mei Yang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Yan Hu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410012, China
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
19
|
Yang MQ, Zhang SL, Sun L, Huang LT, Yu J, Zhang JH, Tian Y, Han CB, Ma JT. Targeting mitochondria: restoring the antitumor efficacy of exhausted T cells. Mol Cancer 2024; 23:260. [PMID: 39563438 PMCID: PMC11575104 DOI: 10.1186/s12943-024-02175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
Immune checkpoint blockade therapy has revolutionized cancer treatment, but resistance remains prevalent, often due to dysfunctional tumor-infiltrating lymphocytes. A key contributor to this dysfunction is mitochondrial dysfunction, characterized by defective oxidative phosphorylation, impaired adaptation, and depolarization, which promotes T cell exhaustion and severely compromises antitumor efficacy. This review summarizes recent advances in restoring the function of exhausted T cells through mitochondria-targeted strategies, such as metabolic remodeling, enhanced biogenesis, and regulation of antioxidant and reactive oxygen species, with the aim of reversing the state of T cell exhaustion and improving the response to immunotherapy. A deeper understanding of the role of mitochondria in T cell exhaustion lays the foundation for the development of novel mitochondria-targeted therapies and opens a new chapter in cancer immunotherapy.
Collapse
Affiliation(s)
- Mei-Qi Yang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shu-Ling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Le-Tian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jing Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jie-Hui Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yuan Tian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Cheng-Bo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jie-Tao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
- Department of Oncology, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
20
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Wei C, Li C, Zhang G, Li H, Li J, Zeng J. Causality Between Immune Cells, Metabolites and Breast Cancer: Mendelian Randomization and Mediation Analysis. Biochem Genet 2024:10.1007/s10528-024-10966-4. [PMID: 39514081 DOI: 10.1007/s10528-024-10966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Previous studies have shown that immune cells and metabolites are associated with the development of breast cancer, but the causal relationship is unclear. We use Mendelian randomization (MR) to explore potential connections between them. Based on two sample MR studies, we evaluated the causal relationship between 731 immune cell traits, 1400 metabolites and breast cancer. In addition, we evaluated the mediating role of metabolites between immune cells and breast cancer using two-step MR Studies. Pooled GWAS data on 731 immune cell traits (n = 3757), 1400 metabolites (n = 8299) and breast cancer (ncase = 122,977, ncontrol = 105,974) were obtained from publicly available authoritative databases. We mainly used inverse variance weighted (IVW) method combined with Bayesian weighted MR (BWMR), MR-Egger, weighted median, simple mode, and weighted mode methods. The results of MR Studies showed that 3 immune cells and 15 metabolites were associated with an increased risk of breast cancer. 8 immune cells and 11 metabolites are associated with a reduced risk of breast cancer. Mediating MR Analysis showed that 6 metabolites, Tricosanoyl sphingomyelin (d18:1/23:0) levels(Mediated proportion:17.5%), N-palmitoyl-heptadecasphingosine (d17:1/16:0) levels(8.74%), Inosine 5'-monophosphate (IMP) to phosphate ratio(11.3%), Glutamine to asparagine ratio(5.43%), Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] levels(8.48%), and Sphinganine-1-phosphate levels(8.68%), were found to mediate the relationship between immune cells and breast cancer. Our study reveals a potential causal relationship among multiple immune cells traits, metabolites, and breast cancer. It provides valuable clues and potential therapeutic targets for breast cancer biomarker discovery and breast cancer treatment.
Collapse
Affiliation(s)
- Changlong Wei
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Changwang Li
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Gongyin Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Honghui Li
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jingsong Li
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jinsheng Zeng
- Department of Breast Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
22
|
Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y, Kile QM, Hinderlie P, Khaw M, Huang RS, Kaufman M, Puchalska P, Russell A, Butler J, Abbott L, McClure P, Luo X, Lu QT, Blazar BR, Crawford PA, Lim J, Miller JS, Felices M. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. SCIENCE ADVANCES 2024; 10:eadn1849. [PMID: 39475618 PMCID: PMC11524192 DOI: 10.1126/sciadv.adn1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/02/2024]
Abstract
Limited oxygen (hypoxia) in solid tumors poses a challenge to successful immunotherapy with natural killer (NK) cells. NK cells have impaired cytotoxicity when cultured in hypoxia (1% oxygen) but not physiologic (>5%) or atmospheric oxygen (20%). We found that changes to cytotoxicity were regulated at the transcriptional level and accompanied by metabolic dysregulation. Dosing with interleukin-15 (IL-15) enhanced NK cell cytotoxicity in hypoxia, but preactivation with feeder cells bearing IL-21 and 4-1BBL was even better. Preactivation resulted in less perturbed metabolism in hypoxia; greater resistance to oxidative stress; and no hypoxia-induced loss of transcription factors (T-bet and Eomes), activating receptors, adhesion molecules (CD2), and cytotoxic proteins (TRAIL and FasL). There remained a deficit in CD122/IL-2Rβ when exposed to hypoxia, which affected IL-15 signaling. However, tri-specific killer engager molecules that deliver IL-15 in the context of anti-CD16/FcγRIII were able to bypass this deficit, enhancing cytotoxicity of both fresh and preactivated NK cells in hypoxia.
Collapse
Affiliation(s)
- Philippa R. Kennedy
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Upasana Sunil Arvindam
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Shee Kwan Phung
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Brianna Ettestad
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | | | - Yunmin Li
- Xcell Biosciences, San Francisco, CA, USA
| | - Quinlan M. Kile
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Hinderlie
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Melissa Khaw
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rih-Sheng Huang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marissa Kaufman
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Patrycja Puchalska
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Russell
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jonah Butler
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lucas Abbott
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Paul McClure
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Xianghua Luo
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | | | - Bruce R. Blazar
- Division of Pediatric Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter A. Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James Lim
- Xcell Biosciences, San Francisco, CA, USA
| | - Jeffrey S. Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Martin Felices
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Zhang X, Chen Y, Sun G, Fei Y, Zhu H, Liu Y, Dan J, Li C, Cao X, Liu J. Farnesyl pyrophosphate potentiates dendritic cell migration in autoimmunity through mitochondrial remodelling. Nat Metab 2024; 6:2118-2137. [PMID: 39425002 DOI: 10.1038/s42255-024-01149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Cellular metabolism modulates dendritic cell (DC) maturation and activation. Migratory dendritic cells (mig-DCs) travelling from the tissues to draining lymph nodes (dLNs) are critical for instructing adaptive immune responses. However, how lipid metabolites influence mig-DCs in autoimmunity remains elusive. Here, we demonstrate that farnesyl pyrophosphate (FPP), an intermediate of the mevalonate pathway, accumulates in mig-DCs derived from mice with systemic lupus erythematosus (SLE). FPP promotes mig-DC survival and germinal centre responses in the dLNs by coordinating protein geranylgeranylation and mitochondrial remodelling. Mechanistically, FPP-dependent RhoA geranylgeranylation promotes mitochondrial fusion and oxidative respiration through mitochondrial RhoA-MFN interaction, which subsequently facilitates the resolution of endoplasmic reticulum stress in mig-DCs. Simvastatin, a chemical inhibitor of the mevalonate pathway, restores mitochondrial function in mig-DCs and ameliorates systemic pathogenesis in SLE mice. Our study reveals a critical role for FPP in dictating mig-DC survival by reprogramming mitochondrial structure and metabolism, providing new insights into the pathogenesis of DC-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Xiaomin Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yali Chen
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Geng Sun
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yankang Fei
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Ha Zhu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Yanfang Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Junyan Dan
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Chunzhen Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
| | - Xuetao Cao
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China
- Department of Immunology, Institute of Basic Medical Research, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Juan Liu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, China.
| |
Collapse
|
24
|
Sun L, Shao Y, Zhuang Z, Liu Z, Liu M, Qu C, Yang H. Targeting TGR5 to mitigate liver fibrosis: Inhibition of hepatic stellate cell activation through modulation of mitochondrial fission. Int Immunopharmacol 2024; 140:112831. [PMID: 39111149 DOI: 10.1016/j.intimp.2024.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024]
Abstract
Chronic hepatitis B virus (HBV) infection continues to be a prominent cause of liver fibrosis and end-stage liver disease in China, necessitating the development of effective therapeutic strategies. This study investigated the potential of targeting TGR5 to alleviate liver fibrosis by impeding the activation of hepatic stellate cells (HSCs), which play a pivotal role in fibrotic progression. Using the human hepatic stellate cell line LX-2 overexpressing hepatitis B virus X protein (HBX), this study revealed that TGR5 activation through INT-777 inhibits HBX-induced LX-2 cell activation, thereby ameliorating liver fibrosis, which is associated with the attenuation of mitochondrial fission and introduces a novel regulatory pathway in liver fibrosis. Additional experiments with mitochondrial fission inducers and inhibitors confirm the crucial role of mitochondrial dynamics in TGR5-mediated effects. In vivo studies using TGR5 knockout mice substantiate these findings, demonstrating exacerbated fibrosis in the absence of TGR5 and its alleviation with the mitochondrial fission inhibitor Mdivi-1. Overall, this study provides insights into TGR5-mediated regulation of liver fibrosis through the modulation of mitochondrial fission in HSCs, suggesting potential therapeutic strategies for liver fibrosis intervention.
Collapse
Affiliation(s)
- Li Sun
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Yuancheng Shao
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Zehao Zhuang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China; Department of General Surgery, Second People's Hospital, Jintan District, Changzhou City, Jiangsu Province 213100, China
| | - Zhixin Liu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Mingjun Liu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China; Department of Graduate School, Dalian Medical University, Dalian City, Liaoning Province 116011, China
| | - Chang Qu
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China
| | - Haojun Yang
- Department of General Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou City, Jiangsu Province 213100, China.
| |
Collapse
|
25
|
Zhao Z, Li L, Liu Y, Shi L, Yuan M, Shi H, Ji Q, Liu G, Sun J. Prognostic value and immunomodulatory role of DNM1L in gastric adenocarcinoma. Front Oncol 2024; 14:1453795. [PMID: 39507763 PMCID: PMC11540555 DOI: 10.3389/fonc.2024.1453795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Background Mitochondrial fusion and fission are critical for the morphology and function of cells. DNM1L encodes dynamin-related protein 1 (DRP1), a key protein mediating mitochondrial fission, which is upregulated in a variety of cancers and is strongly associated with tumorigenesis. We aim to investigate the relationship between DNM1L and the prognosis of gastric cancer, as well as to explore the function and mechanism of DNM1L in gastric cancer (GC). Materials and methods In this study, we analyzed the expression differences of DNM1L in gastric cancer tissues and paracancerous tissues using The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. This was followed by validation through tissue microarrays. We then utilized the cohort information from these microarrays to explore the relationship between DNM1L expression and gastric cancer prognosis. Furthermore, we conducted enrichment analysis to investigate the function and mechanisms of DNM1L in gastric cancer, and lastly, we performed immune cell infiltration analysis using the CIBERSORT algorithm. Results We discovered that the expression of DNM1L is elevated in GC tissues. TCGA data showed that the overexpression of DNM1L was positively correlated with the T-stage of GC but not with lymph node metastasis, which was also corroborated by our immunohistochemistry experiments. Based on the Kaplan-Meier curves, the high DNM1L expression was remarkably correlated with poor overall survival in patients with GC. In addition, results of COX regression analysis indicated that high DNM1L expression was an independent prognostic factor in patients with GC. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) showed that DNM1L was closely associated with multiple signaling pathways and immune responses. CIBERSORT analysis indicated that increased DNM1L expression may affect the infiltration of immune cells in the tumor microenvironment. Conclusion The results of this study indicate that DNM1L is upregulated in gastric cancer (GC) and positively correlates with the T-stage and poor prognosis of GC patients, and it plays an important role in tumor immune infiltration.
Collapse
Affiliation(s)
- Zhuo Zhao
- Department of Peripheral Vascular Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Li
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Liu
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Shi
- Department of Clinical Laboratory, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meijie Yuan
- Department of Peripheral Vascular Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongshuo Shi
- Department of Peripheral Vascular Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guobin Liu
- Department of Peripheral Vascular Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Sun
- Department of Peripheral Vascular Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Wang Q, Yin X, Huang X, Zhang L, Lu H. Impact of mitochondrial dysfunction on the antitumor effects of immune cells. Front Immunol 2024; 15:1428596. [PMID: 39464876 PMCID: PMC11502362 DOI: 10.3389/fimmu.2024.1428596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/24/2024] [Indexed: 10/29/2024] Open
Abstract
Mitochondrial dysfunction, a hallmark of immune cell failure, affects the antitumor effects of immune cells through metabolic reprogramming, fission, fusion, biogenesis, and immune checkpoint signal transduction of mitochondria. According to researchers, restoring damaged mitochondrial function can enhance the efficacy of immune cells. Nevertheless, the mechanism of mitochondrial dysfunction in immune cells in patients with cancer is unclear. In this review, we recapitulate the impact of mitochondrial dysfunction on the antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-associated macrophage and propose that targeting mitochondria can provide new strategies for antitumor therapy.
Collapse
Affiliation(s)
- Quan Wang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangzhi Yin
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Huang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
27
|
Ahn M, Ali A, Seo JH. Mitochondrial regulation in the tumor microenvironment: targeting mitochondria for immunotherapy. Front Immunol 2024; 15:1453886. [PMID: 39544945 PMCID: PMC11562472 DOI: 10.3389/fimmu.2024.1453886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 11/17/2024] Open
Abstract
Mitochondrial regulation plays a crucial role in cancer immunity in the tumor microenvironment (TME). Infiltrating immune cells, including T cells, natural killer (NK) cells, and macrophages, undergo mitochondrial metabolic reprogramming to survive the harsh conditions of the TME and enhance their antitumor activity. On the other hand, immunosuppressive cells like myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), mast cells, and tumor-associated macrophages (TAMs) rely on mitochondrial regulation to maintain their function as well. Additionally, mitochondrial regulation of cancer cells facilitates immune evasion and even hijacks mitochondria from immune cells to enhance their function. Recent studies suggest that targeting mitochondria can synergistically reduce cancer progression, especially when combined with traditional cancer therapies and immune checkpoint inhibitors. Many mitochondrial-targeting drugs are currently in clinical trials and have the potential to enhance the efficacy of immunotherapy. This mini review highlights the critical role of mitochondrial regulation in cancer immunity and provides lists of mitochondrial targeting drugs that have potential to enhance the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Minseo Ahn
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Akhtar Ali
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Jae Ho Seo
- Department of Biochemistry, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Sarcopenia Total Solution Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
- Institute of Wonkwang Medical Science, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
28
|
Qi H, Ma X, Ma Y, Jia L, Liu K, Wang H. Mechanisms of HIF1A-mediated immune evasion in gastric cancer and the impact on therapy resistance. Cell Biol Toxicol 2024; 40:87. [PMID: 39384651 PMCID: PMC11464584 DOI: 10.1007/s10565-024-09917-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND The high prevalence and detrimental effects on patient outcomes make gastric cancer (GC) a significant health issue that persists internationally. Existing treatment modalities exhibit limited efficacy, prompting the exploration of immune checkpoint inhibitors as a novel therapeutic approach. However, resistance to immunotherapy poses a significant challenge in GC management, necessitating a profound grasp of the intrinsic molecular pathways. METHODS This study focuses on investigating the immunosuppressive mechanisms of quiescent cancer cells (QCCs) in GC, particularly their resistance to T-cell-mediated immune responses. Utilizing mouse models, gene editing techniques, and transcriptome sequencing, we aim to elucidate the interactions between QCCs, immune cells, and key regulatory factors like HIF1A. Functional enrichment analysis will further underscore the role of glycolysis-related genes in mediating immunosuppression by QCCs. RESULTS The cancer cells that survived GC treated with T-cell therapy lost their proliferative ability. QCCs, as the main resistance force to immunotherapy, exhibit stronger resistance to CD8+ T-cell attack and possess higher cancer-initiating potential. Single-cell sequencing analysis revealed that the microenvironment in the QCCs region harbors more M2-type tumor-associated macrophages and fewer T cells. This microenvironment in the QCCs region leads to the downregulation of T-cell immune activation and alters macrophage metabolic function. Transcriptome sequencing of QCCs identified upregulated genes related to chemo-resistance, hypoxia, and glycolysis. In vitro cell experiments illustrated that HIF1A promotes the transcription of glycolysis-related genes, and silencing HIF1A in QCCs enhances T-cell proliferation and activation in co-culture systems, induces apoptosis in QCCs, and increases QCCs' sensitivity to immune checkpoint inhibitors. In vivo, animal experiments showed that silencing HIF1A in QCCs can inhibit GC growth and metastasis. CONCLUSION Unraveling the molecular mechanisms by which QCCs resist T-cell-mediated immune responses through immunosuppression holds promising implications for refining treatment strategies and enhancing patient outcomes in GC. By delineating these intricate interactions, this study contributes crucial insights into precision medicine and improved therapeutic outcomes in GC management.
Collapse
Affiliation(s)
- Hao Qi
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Ma
- Departments of Gastrointestinal Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yu Ma
- Department of Nuclear Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Liuyu Jia
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Kuncong Liu
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China
| | - Honghu Wang
- Department of Surgical Oncology, The First Affiliated Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
29
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Yu W, Zhao Y, Jia P, Liu W, Cheng Z, Li W, Zhu H. Preparation and evaluation of gastrodin microsphere-loaded Gastrodia elata polysaccharides composite hydrogel on UVB-induced skin damage in vitro and in vivo. Int J Biol Macromol 2024; 277:134303. [PMID: 39084431 DOI: 10.1016/j.ijbiomac.2024.134303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Skin damage from sun exposure is a common issue among outdoor workers and is primarily caused by ultraviolet rays. Upon absorption of these rays, the skin will experience inflammation and cell apoptosis. This study explored the concept of 'Combination of medicine and adjuvant' by utilizing Gastrodia elata polysaccharide, a key component of Gastrodia elata Bl., to develop a new hydrogel material. Oxidized Gastrodia elata polysaccharide (OGEP) and carboxymethyl chitosan (CMCS) was use to prepare a biocompatible, biodegradable and self-healing hydrogel OGEP/CMCS (OC). And this hydrogel was further loaded with Gastrodin-containing microspheres (GAS/GEL) to create GAS/GEL/OGEP/CMCS (GGOC) hydrogel. Characterization studies revealed that OC and GGOC hydrogels exhibited favorable mechanical properties, antioxidant activity and biocompatibility. The experiments showed that OC and GGOC hydrogels could regulate mitochondrial membrane potential, prevent mitochondrial breakage, inhibit proinflammatory factors, prevent NF-κB protein activation and regulate apoptosis-related pathways. This study highlighted the application potential of Gastrodia elata polysaccharide as a 'Combination of medicine and adjuvant' and the anti-UVB damage effect of the prepared hydrogel.
Collapse
Affiliation(s)
- Weimin Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Pinhui Jia
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Zhu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
31
|
Li X, Tie J, Sun Y, Gong C, Deng S, Chen X, Li S, Wang Y, Wang Z, Wu F, Liu H, Wu Y, Zhang G, Guo Q, Yang Y, Wang Y. Targeting DNM1L/DRP1-FIS1 axis inhibits high-grade glioma progression by impeding mitochondrial respiratory cristae remodeling. J Exp Clin Cancer Res 2024; 43:273. [PMID: 39350223 PMCID: PMC11440692 DOI: 10.1186/s13046-024-03194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The dynamics of mitochondrial respiratory cristae (MRC) and its impact on oxidative phosphorylation (OXPHOS) play a crucial role in driving the progression of high-grade glioma (HGG). However, the underlying mechanism remains unclear. METHODS In the present study, we employed machine learning-based transmission electron microscopy analysis of 7141 mitochondria from 54 resected glioma patients. Additionally, we conducted bioinformatics analysis and multiplex immunohistochemical (mIHC) staining of clinical glioma microarrays to identify key molecules involved in glioma. Subsequently, we modulated the expression levels of mitochondrial dynamic-1-like protein (DNM1L/DRP1), and its two receptors, mitochondrial fission protein 1 (FIS1) and mitochondrial fission factor (MFF), via lentiviral transfection to further investigate the central role of these molecules in the dynamics of glioblastoma (GBM) cells and glioma stem cells (GSCs). We then evaluated the potential impact of DNM1L/DRP1, FIS1, and MFF on the proliferation and progression of GBM cells and GSCs using a combination of CCK-8 assay, Transwell assay, Wound Healing assay, tumor spheroid formation assay and cell derived xenograft assay employing NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt (NCG) mouse model. Subsequently, we validated the ability of the DNM1L/DRP1-FIS1 axis to remodel MRC structure through mitophagy by utilizing Seahorse XF analysis technology, mitochondrial function detection, MRC abundance detection and monitoring dynamic changes in mitophagy. RESULTS Our findings revealed that compared to low-grade glioma (LGG), HGG exhibited more integrated MRC structures. Further research revealed that DNM1L/DRP1, FIS1, and MFF played pivotal roles in governing mitochondrial fission and remodeling MRC in HGG. The subsequent validation demonstrated that DNM1L/DRP1 exerts a positive regulatory effect on FIS1, whereas the interaction between MFF and FIS1 demonstrates a competitive inhibition relationship. The down-regulation of the DNM1L/DRP1-FIS1 axis significantly impaired mitophagy, thereby hindering the remodeling of MRC and inhibiting OXPHOS function in glioma, ultimately leading to the inhibition of its aggressive progression. In contrast, MFF exerts a contrasting effect on MRC integrity, OXPHOS activity, and glioma progression. CONCLUSIONS This study highlights that the DNM1L/DRP1-FIS1 axis stabilizes MRC structures through mitophagy in HGG cells while driving their OXPHOS activity ultimately leading to robust disease progression. The inhibition of the DNM1L/DRP1-FIS1 axis hinders MRC remodeling and suppresses GBM progression. We propose that down-regulation of the DNM1L/DRP1-FIS1 axis could be a potential therapeutic strategy for treating HGG.
Collapse
Affiliation(s)
- Xiaodong Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jingjing Tie
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
- Department of Human Anatomy, Histology and Embryology, Medical School of Yan'an University, Yan'an, China
| | - Yuze Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chengrong Gong
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shizhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Shujiao Li
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yaoliang Wang
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Zhenhua Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Feifei Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Liu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yousheng Wu
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China
| | - Guopeng Zhang
- Department of Computer Fundamentals, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Qingdong Guo
- Department of Neurosurgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
32
|
Deng Y, Tan C, Huang S, Zhou Z, Luo X, Yang X, Sun M. Engineered Platelet for In Situ Natural Killer Cell Activation to Inhibit Tumor Recurrence. NANO LETTERS 2024; 24:11814-11822. [PMID: 39282986 DOI: 10.1021/acs.nanolett.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Natural killer (NK) cells offer profound advantages against tumor recurrence due to their unique immunological behavior. NK cell therapies associated with the antibody-dependent cell-mediated cytotoxicity (ADCC) effect have made remarkable progress while being limited by insufficient antibody binding and the exhausted state of NK cells in the postsurgical immunosuppressive microenvironment. Leveraging the adherence of PLT to tumor cells, we developed an exogenously implanted platelet (PLT)-based NK cell-driven system (PLT-IgG-IL15) to improve the identifiability of residual tumors with IgG antibody labeling for NK cells catching and engaging, which consequently restored the ADCC effect and promoted the recovery of their killing function. Furthermore, interleukin-15 (IL-15) participated in the augmentation of NK cell function. Collectively, PLT-IgG-IL15 served as an NK cell tumor cell engager as well as an NK cell charger, achieving a <40% recurrence rate in mouse tumor models.
Collapse
Affiliation(s)
- Yueyang Deng
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Caixia Tan
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Shuguang Huang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhanwei Zhou
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xinping Luo
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Xue Yang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Minjie Sun
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
33
|
Li C, Yu X, Han X, Lian C, Wang Z, Shao S, Shao F, Wang H, Ma S, Liu J. Innate immune cells in tumor microenvironment: A new frontier in cancer immunotherapy. iScience 2024; 27:110750. [PMID: 39280627 PMCID: PMC11399700 DOI: 10.1016/j.isci.2024.110750] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Innate immune cells, crucial in resisting infections and initiating adaptive immunity, play diverse and significant roles in tumor development. These cells, including macrophages, granulocytes, dendritic cells (DCs), innate lymphoid cells, and innate-like T cells, are pivotal in the tumor microenvironment (TME). Innate immune cells are crucial components of the TME, based on which various immunotherapy strategies have been explored. Immunotherapy strategies, such as novel immune checkpoint inhibitors, STING/CD40 agonists, macrophage-based surface backpack anchoring, ex vivo polarization approaches, DC-based tumor vaccines, and CAR-engineered innate immune cells, aim to enhance their anti-tumor potential and counteract cancer-induced immunosuppression. The proximity of innate immune cells to tumor cells in the TME also makes them excellent drug carriers. In this review, we will first provide a systematic overview of innate immune cells within the TME and then discuss innate cell-based therapeutic strategies. Furthermore, the research obstacles and perspectives within the field will also be addressed.
Collapse
Affiliation(s)
- Changhui Li
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyu Yu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Xinyan Han
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Chen Lian
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
| | - Zijin Wang
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Fangwei Shao
- National Key Laboratory of Biobased Transportation Fuel Technology, ZJU-UIUC Institute, Zhejiang University, Hangzhou 310027, China
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shenglin Ma
- Department of Thoracic Oncology, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310029, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
- Biomedical and Heath Translational Research Center of Zhejiang Province, Haining, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Sant'Ana AN, Kehl Dias C, Krolow E Silva S, Figueiró F. Immunometabolism in cancer: A journey into innate and adaptive cells. Int Rev Immunol 2024; 44:17-30. [PMID: 39267425 DOI: 10.1080/08830185.2024.2401353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
In recent years, mostly spanning the past decade, the concept of immunometabolism has ushered with a novel perspective on carcinogenesis, tumor progression, and tumor response to therapy. It has become clear that the metabolic state of immune cells plays a significant role in shaping their antitumor or protumor activities within the cancer microenvironment. Consequently, the examination of tumor metabolic heterogeneity, including an exploration of immunometabolism, proves indispensable for enhancing prognostic tools and advancing the quest for personalized treatments. Here we have delved into how metabolic reprogramming profoundly influences the acquisition and maintenance of functional states, spanning from effector and cytotoxic profiles to regulatory and immunosuppressive phenotypes in both innate and adaptive immunity. These alterations wield considerable influence over tumor evolution and affect the outcome of cancer. Furthermore, we explore some of the cellular signaling mechanisms that underpin the metabolic and phenotypic flexibility of immune cells in response to external stimuli.
Collapse
Affiliation(s)
- Alexia Nedel Sant'Ana
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Camila Kehl Dias
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Sacha Krolow E Silva
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fabrício Figueiró
- Laboratório de Imunobioquímica do Câncer, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
35
|
Wang P, Zheng Y, Sun J, Zhang Y, Chan WK, Lu Y, Li X, Yang Z, Wang Y. Sepsis induced dysfunction of liver type 1 innate lymphoid cells. BMC Immunol 2024; 25:57. [PMID: 39210270 PMCID: PMC11363412 DOI: 10.1186/s12865-024-00648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition triggered by uncontrolled immune responses to infection, leading to widespread inflammation, tissue damage, organ dysfunction, and potentially death. The liver plays a crucial role in the immune response during sepsis, serving as a major site for immune cell activation and cytokine production. Liver type 1 innate lymphoid cells (ILCs) consist of NK cells and ILC1s. They maintain the local immune microenvironment by directly eliminating target cells and secreting cytokines. However, the specific roles and pathological changes of liver-resident NK cells and ILC1s during sepsis remain poorly understood. RESULTS This study aims to investigate the pathological changes of NK cells and ILC1s, which might contribute the dysfunction of liver. Sepsis mouse model was established by cecal ligation and puncture (CLP). Mouse immune cells from liver were isolated, and the surface makers, gene expression profiles, cytokine response and secretion, and mitochondrial function of NK (Natural Killer) cells and ILC1s (Innate Lymphoid Cell 1) were analyzed. A significant decrease in the number of mature NK cells was observed in the liver after CLP. Furthermore, the secretion of interferon-gamma (IFN-γ) was found to be reduced in spleen and liver NK cells when stimulated by IL-18. Mitochondrial activities in both liver NK cells and ILC1 were found to be increased during sepsis, suggesting an enhanced metabolic response in these cells to combat the infection. However, despite this heightened activity, liver NK cells exhibited a decreased level of cytotoxicity, which might impact their ability to target infected cells effectively. RNA sequencing supported and provided the potential mechanisms for the proinflammatory effects and exhaustion like phenotypes of liver NK cells. CONCLUSIONS Sepsis induces dysfunction and exhaustion-like phenotypes in liver NK cells and ILC1, which might further impair other immune cells and represent a potential therapeutic target for sepsis.
Collapse
Affiliation(s)
- Peiying Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yiran Zheng
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jiaman Sun
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Yumo Zhang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, OH, 43210, USA
| | - Yan Lu
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Xiaohong Li
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China.
| | - Youwei Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
36
|
Li M, Wei Y, Huang W, Wang C, He S, Bi S, Hu S, You L, Huang X. Identifying prognostic biomarkers in oral squamous cell carcinoma: an integrated single-cell and bulk RNA sequencing study on mitophagy-related genes. Sci Rep 2024; 14:19992. [PMID: 39198614 PMCID: PMC11358153 DOI: 10.1038/s41598-024-70498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) has an extremely poor prognosis. Recent studies have suggested that mitophagy-related genes (MRGs) are closely correlated with the development and occurrence of cancer, but the role they play in oral cancer has not yet been explained.We conducted a comprehensive analysis of integrated single-cell and bulk RNA sequencing (RNA-seq) data retrieved from Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) database. Multiple methods were combined to provide a comprehensive understanding of the genetic expression patterns and biology of OSCC, such as analysis of pseudotime series, CellChat cell communication, immune infiltration, Gene Ontology (GO), LASSO Cox regression, gene set variation analysis (GSVA), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), Tumor Mutation Burden (TMB) and drug sensitivity assessments. The findings of this study demonstrated significantly greater activity of MRGs in NK cells than in other cells in OSCC. A reliable prognostic model was developed using 12 candidate genes strongly associated with mitochondrial autophagy. T stage, N stage and risk score were revealed as independent prognostic factors. Distinctively enriched pathways and immune cells were observed in different risk groups. Notably, low-risk patients were more responsive to chemotherapy. In addition, a nomogram model with excellent predictive ability was established by combining the risk scores and clinical features. The activity of MRGs suggest the potential for the development of new targeted therapies. The construction of a robust prognostic model also provides reference value for individualized prediction and clinical decision-making in patients with OSCC.
Collapse
Affiliation(s)
- Minsi Li
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, NO.10 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
| | - Yi Wei
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, NO.10 Shuangyong Road, Nanning, 530021, China
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
| | - Wenhua Huang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Cen Wang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, NO.10 Shuangyong Road, Nanning, 530021, China
| | - Shixi He
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, NO.10 Shuangyong Road, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, 530021, China
| | - Shuwen Bi
- Department of Pathology, Beihai People's Hospital (Ninth Affiliated Hospital of Guangxi Medical University), Beihai, 536000, China
| | - Shuangyu Hu
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, NO.10 Shuangyong Road, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, 530021, China
| | - Ling You
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Medical University, Nanning, 530021, China
| | - Xuanping Huang
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, Guangxi Medical University, NO.10 Shuangyong Road, Nanning, 530021, China.
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning, 530021, China.
| |
Collapse
|
37
|
Liu JC, Zhao XY, Wu ML, Shi YF, Huang ZP, Fang LP, Zhu C, Peng X, Shi ZL, Lan LJ, Ji WL, Luo L, Feng L, Zhang ZL, Xu DE, Li S, Qin ZH, Sun YY, Schachner M, Ma QH. GPR50 regulates neuronal development as a mitophagy receptor. Cell Death Dis 2024; 15:591. [PMID: 39143050 PMCID: PMC11324738 DOI: 10.1038/s41419-024-06978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.
Collapse
Affiliation(s)
- Ji-Chuan Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Xiu-Yun Zhao
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Yi-Fan Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Ze-Ping Huang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Li-Pao Fang
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Chao Zhu
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Xuan Peng
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Zi-Ling Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Li-Jun Lan
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Wen-Li Ji
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Li Luo
- School of Physical Education and Sports Science, Soochow University, Suzhou, 215021, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, 215000, China
| | - Zeng-Li Zhang
- School of Public Health, Soochow University, Suzhou, Jiangsu, 215021, China
| | - De-En Xu
- The Wuxi No.2 People Hospital, Wuxi, 214002, Jiangsu, China
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China
| | - Zheng-Hong Qin
- Institute of Health Technology, Suzhou Gaobo Vocational College, Suzhou High-Technology District, Science & Technology Town, 5 Qingshan Road, Suzhou, Jiangsu, 215163, PR China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong, 515041, China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215021, China.
- Institute of Neuroscience & Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-psycho-Diseases, Soochow University, Suzhou, Jiangsu, 215021, China.
| |
Collapse
|
38
|
He J, Gao L, Wang P, Chan WK, Zheng Y, Zhang Y, Sun J, Li X, Wang J, Li XH, Chen H, Yang Z, Wang Y. Prdm1 positively regulates liver Group 1 ILCs cancer immune surveillance and preserves functional heterogeneity. eLife 2024; 13:RP92948. [PMID: 39133873 PMCID: PMC11318973 DOI: 10.7554/elife.92948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Group 1 innate lymphoid cells (ILCs) comprise conventional natural killer (cNK) cells and type 1 innate lymphoid cells (ILC1s). The main functions of liver cNK cells and ILC1s not only include directly killing target cells but also regulating local immune microenvironment of the liver through the secretion of cytokines. Uncovering the intricate mechanisms by which transcriptional factors regulate and influence the functions of liver cNK cells and ILC1s, particularly within the context of liver tumors, presents a significant opportunity to amplify the effectiveness of immunotherapies against liver malignancies. Using Ncr1-drived conditional knockout mouse model, our study reveals the regulatory role of Prdm1 in shaping the composition and maturation of cNK cells. Although Prdm1 did not affect the killing function of cNK cells in an in vivo cytotoxicity model, a significant increase in cancer metastasis was observed in Prdm1 knockout mice. Interferon-gamma (IFN-γ), granzyme B, and perforin secretion decreased significantly in Prdm1-deficient cNK cells and liver ILC1s. Single-cell RNA sequencing (scRNA-seq) data also provided evidences that Prdm1 maintains functional subsets of cNK cells and liver ILC1s and facilitates communications between cNK cells, liver ILC1s, and macrophages. The present study unveiled a novel regulatory mechanism of Prdm1 in cNK cells and liver ILC1s, showing promising potential for developing innovative immune therapy strategies against liver cancer.
Collapse
Affiliation(s)
- Jitian He
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
- Organ Transplant Center, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhouChina
| | - Le Gao
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Peiying Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Wing Keung Chan
- Department of Internal Medicine, Division of Hematology, The Ohio State UniversityColumbusUnited States
| | - Yiran Zheng
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Yumo Zhang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Jiaman Sun
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin UniversityTianjinChina
| | - Jiming Wang
- Tianjin Economic-Technological Development Area (TEDA) HospitalTianjinChina
| | - Xiao-Hong Li
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin UniversityTianjinChina
- College of Pulmonary and Critical Care Medicine, 8th Medical Center, Chinese PLA General HospitalBeijingChina
- Tianjin Key Laboratory of Lung Regenerative MedicineTianjinChina
| | - Zhouxin Yang
- Zhejiang Provincial Key Lab of Geriatrics and Geriatrics Institute of Zhejiang Province, Zhejiang HospitalHangzhouChina
| | - Youwei Wang
- Institute of Medical Engineering & Translational Medicine, Tianjin UniversityTianjinChina
| |
Collapse
|
39
|
Gu M, Zhang Y, Lin Z, Hu X, Zhu Y, Xiao W, Jia X, Chen W, Lu G, Gong W. Decrease in UCP1 by sustained high lipid promotes NK cell necroptosis to exacerbate nonalcoholic liver fibrosis. Cell Death Dis 2024; 15:518. [PMID: 39033153 PMCID: PMC11271447 DOI: 10.1038/s41419-024-06910-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Uncoupling protein 1 (UCP1) catalyzes the leak of protons across the mitochondrial inner membrane for thermogenesis. Compromised NK cell activity is involved in the occurrence of nonalcoholic liver fibrosis. Here, decreased UCP1 in NK cells was identified in patients with advanced nonalcoholic fatty liver disease. Although no obvious changes were observed in the NK cells of physiologic UCP1-/- mice (8-10 weeks old), impaired NK cell bioactivity was shown in methionine-choline-diet (MCD)-fed UCP1-/- mice and involved in the acerbation of nonalcoholic steatohepatitis (NASH) progress to liver fibrosis. Moreover, UCP1-deficient NK cells were responsible for the aggravation of liver fibrosis, as confirmed in MCD-fed UCP1flox/flox-NCR1cre mice. Acerbation of liver fibrosis was also seen in wild-type mice when their endogenous NK cells were replaced with UCP1-/- NK cells. Transcriptions of mitophagy-associated molecules in UCP1-/- NK cells were enhanced according to RNA-seq. Electron microscopic results showed mitochondrial injuries and autophagic vesicles in MCD-fed NKWT cells, PA-treated NKWT cells, or physiologic NKKO cells. However, the co-existence of UCP1 deficiency and high lipid can synergistically induce NK cell necroptosis via DRP1S616 accompanied with reduced mitophagy. Finally, The UCP1 in NK cells was downregulated when treated by sustained high PA (600 μM) via the PPARγ/ATF2 axis. Thus, persistent high-lipid treatment not only decreases UCP1 expression but also combines with reduced UCP1 to promote NK cell necroptosis, and it is involved in NASH progression to fibrosis.
Collapse
Affiliation(s)
- Min Gu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Yu Zhang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, PR China
| | - Zhijie Lin
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Xiangyu Hu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Yaqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, PR China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, PR China
| | - Xiaoqin Jia
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, PR China
| | - Weiwei Chen
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, PR China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, PR China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China.
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou, PR China.
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, PR China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, PR China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, PR China.
| |
Collapse
|
40
|
Arellano-Ballestero H, Zubiak A, Dally C, Orchard K, Alrubayyi A, Charalambous X, Michael M, Torrance R, Eales T, Das K, Tran MGB, Sabry M, Peppa D, Lowdell MW. Proteomic and phenotypic characteristics of memory-like natural killer cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e008717. [PMID: 39032940 PMCID: PMC11261707 DOI: 10.1136/jitc-2023-008717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Human and mouse natural killer (NK) cells have been shown to develop memory-like function after short-term exposure to the cocktail of IL-12/15/18 or to overnight co-culture with some tumor cell lines. The resulting cells retain enhanced lytic ability for up to 7 days as well as after cryopreservation, and memory-like NK cells (mlNK) have been shown to induce complete remissions in patients with hematological malignancies. No single phenotype has been described for mlNK and the physiological changes induced by the short-term cytokine or tumor-priming which are responsible for these enhanced functions have not been fully characterized. Here, we have generated mlNK by cytokine and tumor-priming to find commonalities to better define the nature of NK cell "memory" in vitro and, for the first time, in vivo. METHODS We initiated mlNK in vitro from healthy donors with cytokines (initiated cytokine-induced memory-like (iCIML)-NK) and by tumor priming (TpNK) overnight and compared them by high-dimensional flow cytometry, proteomic and metabolomic profiling. As a potential mechanism of enhanced cytolytic function, we analyzed the avidity of binding of the mlNK to NK-resistant tumors (z-Movi). We generated TpNK from healthy donors and from cancer patients to determine whether mlNK generated by interaction with a single tumor type could enhance lytic activity. Finally, we used a replication-incompetent tumor cell line (INKmune) to treat patients with myeloid leukaemias to potentiate NK cell function in vivo. RESULTS Tumor-primed mlNK from healthy donors and patients with cancer showed increased cytotoxicity against multiple tumor cell lines in vitro, analogous to iCIML-NK cells. Multidimensional cytometry identified distinct memory-like profiles of subsets of cells with memory-like characteristics; upregulation of CD57, CD69, CD25 and ICAM1. Proteomic profiling identified 41 proteins restricted to mlNK cells and we identified candidate molecules for the basis of NK memory which can explain how mlNK overcome inhibition by resistant tumors. Finally, of five patients with myelodysplastic syndrome or refractory acute myeloid leukemia treated with INKmune, three responded to treatment with measurable increases in NK lytic function and systemic cytokines. CONCLUSIONS NK cell "memory" is a physiological state associated with resistance to MHC-mediated inhibition, increased metabolic function, mitochondrial fitness and avidity to NK-resistant target cells.
Collapse
Affiliation(s)
| | - Agnieszka Zubiak
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Chris Dally
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Kim Orchard
- Department of Haematology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | | | | | | | - Trinity Eales
- Cancer Institute, University College London, London, UK
| | | | - Maxine G. B. Tran
- Department of Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, UK
| | - May Sabry
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| | - Dimitra Peppa
- Institute for Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| | - Mark W. Lowdell
- Cancer Institute, University College London, London, UK
- INmuneBio Inc, Boca Raton, Florida, USA
| |
Collapse
|
41
|
Wu S, Peng H, Li S, Huang L, Wang X, Li Y, Liu Y, Xiong P, Yang Q, Tian K, Wu W, Pu R, Lu X, Xiao Z, Yang J, Zhong Z, Gao Y, Deng Y, Deng Y. The ω-3 Polyunsaturated Fatty Acid Docosahexaenoic Acid Enhances NK-Cell Antitumor Effector Functions. Cancer Immunol Res 2024; 12:744-758. [PMID: 38526128 PMCID: PMC11148550 DOI: 10.1158/2326-6066.cir-23-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 01/16/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
ω-3 polyunsaturated fatty acids (PUFA) are known to directly repress tumor development and progression. In this study, we explored whether docosahexaenoic acid (DHA), a type of ω-3 PUFA, had an immunomodulatory role in inhibiting tumor growth in immunocompetent mice. The number of natural killer (NK) cells but not the number of T or B cells was decreased by DHA supplementation in various tissues under physiologic conditions. Although the frequency and number of NK cells were comparable, IFNγ production by NK cells in both the spleen and lung was increased in DHA-supplemented mice in the mouse B16F10 melanoma tumor model. Single-cell RNA sequencing revealed that DHA promoted effector function and oxidative phosphorylation in NK cells but had no obvious effects on other immune cells. Using Rag2-/- mice and NK-cell depletion by PK136 antibody injection, we demonstrated that the suppression of B16F10 melanoma tumor growth in the lung by DHA supplementation was dependent mainly on NK cells. In vitro experiments showed that DHA directly enhanced IFNγ production, CD107a expression, and mitochondrial oxidative phosphorylation (OXPHOS) activity and slightly increased proliferator-activated receptor gamma coactivator-1α (PGC-1α) protein expression in NK cells. The PGC-1α inhibitor SR-18292 in vitro and NK cell-specific knockout of PGC-1α in mice reversed the antitumor effects of DHA. In summary, our findings broaden the current knowledge on how DHA supplementation protects against cancer growth from the perspective of immunomodulation by upregulating PGC-1α signaling-mediated mitochondrial OXPHOS activity in NK cells.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Songyang Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lanlan Huang
- The School of Pediatrics, Hengyang Medical School, University of South China, Changsha, China
| | - Xiangyu Wang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yongjie Liu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunpeng Tian
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Weiru Wu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Rongxi Pu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| | - Xiulan Lu
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhenghui Xiao
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoyang Zhong
- The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yuan Gao
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province and Hunan Provincial Key Laboratory of Children's Emergency Medicine, Hunan Children's Hospital, Changsha, China
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- The School of Pediatrics, Hengyang Medical School, University of South China, Changsha, China
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, China
| |
Collapse
|
42
|
Huang M, Liu Y, Yan Q, Peng M, Ge J, Mo Y, Wang Y, Wang F, Zeng Z, Li Y, Fan C, Xiong W. NK cells as powerful therapeutic tool in cancer immunotherapy. Cell Oncol (Dordr) 2024; 47:733-757. [PMID: 38170381 DOI: 10.1007/s13402-023-00909-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells have gained considerable attention and hold great potential for their application in tumor immunotherapy. This is mainly due to their MHC-unrestricted and pan-specific recognition capabilities, as well as their ability to rapidly respond to and eliminate target cells. To artificially generate therapeutic NK cells, various materials can be utilized, such as peripheral blood mononuclear cells (PBMCs), umbilical cord blood (UCB), induced pluripotent stem cells (iPSCs), and NK cell lines. Exploiting the therapeutic potential of NK cells to treat tumors through in vivo and in vitro therapeutic modalities has yielded positive therapeutic results. CONCLUSION This review provides a comprehensive description of NK cell therapeutic approaches for tumors and discusses the current problems associated with these therapeutic approaches and the prospects of NK cell therapy for tumors.
Collapse
Affiliation(s)
- Mao Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yixuan Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Miao Peng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Junshang Ge
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yongzhen Mo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yong Li
- Department of Medicine, Comprehensive Cancer Center, Baylor College of Medicine, Alkek Building, RM N720, Houston, TX, USA
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, 410013, Changsha, Hunan Province, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
43
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
44
|
Neo SY, Tong L, Chong J, Liu Y, Jing X, Oliveira MMS, Chen Y, Chen Z, Lee K, Burduli N, Chen X, Gao J, Ma R, Lim JP, Huo J, Xu S, Alici E, Wickström SL, Haglund F, Hartman J, Wagner AK, Cao Y, Kiessling R, Lam KP, Westerberg LS, Lundqvist A. Tumor-associated NK cells drive MDSC-mediated tumor immune tolerance through the IL-6/STAT3 axis. Sci Transl Med 2024; 16:eadi2952. [PMID: 38748775 DOI: 10.1126/scitranslmed.adi2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/19/2024] [Indexed: 08/03/2024]
Abstract
Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Joni Chong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Yaxuan Liu
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08540, USA
| | - Keene Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Nutsa Burduli
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Juan Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510631, China
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Technical Operations, Cepheid AB, 17154 Stockholm, Sweden
| | - Jia Pei Lim
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Kong Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| |
Collapse
|
45
|
Moinuddin A, Poznanski SM, Portillo AL, Monteiro JK, Ashkar AA. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol Rev 2024; 323:19-39. [PMID: 38459782 DOI: 10.1111/imr.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Natural Killer (NK) cells are a top contender in the development of adoptive cell therapies for cancer due to their diverse antitumor functions and ability to restrict their activation against nonmalignant cells. Despite their success in hematologic malignancies, NK cell-based therapies have been limited in the context of solid tumors. Tumor cells undergo various metabolic adaptations to sustain the immense energy demands that are needed to support their rapid and uncontrolled proliferation. As a result, the tumor microenvironment (TME) is depleted of nutrients needed to fuel immune cell activity and contains several immunosuppressive metabolites that hinder NK cell antitumor functions. Further, we now know that NK cell metabolic status is a main determining factor of their effector functions. Hence, the ability of NK cells to withstand and adapt to these metabolically hostile conditions is imperative for effective and sustained antitumor activity in the TME. With this in mind, we review the consequences of metabolic hostility in the TME on NK cell metabolism and function. We also discuss tumor-like metabolic programs in NK cell induced by STAT3-mediated expansion that adapt NK cells to thrive in the TME. Finally, we examine how other approaches can be applied to enhance NK cell metabolism in tumors.
Collapse
Affiliation(s)
- Adnan Moinuddin
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Sophie M Poznanski
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ana L Portillo
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| | - Ali A Ashkar
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
46
|
Ma X, Niu M, Ni HM, Ding WX. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer. Hepatology 2024:01515467-990000000-00861. [PMID: 38683546 DOI: 10.1097/hep.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Mitochondria are intracellular organelles responsible for energy production, glucose and lipid metabolism, cell death, cell proliferation, and innate immune response. Mitochondria are highly dynamic organelles that constantly undergo fission, fusion, and intracellular trafficking, as well as degradation and biogenesis. Mitochondrial dysfunction has been implicated in a variety of chronic liver diseases including alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, and HCC. In this review, we provide a detailed overview of mitochondrial dynamics, mitophagy, and mitochondrial DNA-mediated innate immune response, and how dysregulation of these mitochondrial processes affects the pathogenesis of alcohol-associated liver disease and HCC. Mitochondrial dynamics and mitochondrial DNA-mediated innate immune response may thereby represent an attractive therapeutic target for ameliorating alcohol-associated liver disease and alcohol-associated HCC.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Mobility, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
47
|
Zhang T, Tai Z, Miao F, Zhang X, Li J, Zhu Q, Wei H, Chen Z. Adoptive cell therapy for solid tumors beyond CAR-T: Current challenges and emerging therapeutic advances. J Control Release 2024; 368:372-396. [PMID: 38408567 DOI: 10.1016/j.jconrel.2024.02.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
Adoptive cellular immunotherapy using immune cells expressing chimeric antigen receptors (CARs) is a highly specific anti-tumor immunotherapy that has shown promise in the treatment of hematological malignancies. However, there has been a slow progress toward the treatment of solid tumors owing to the complex tumor microenvironment that affects the localization and killing ability of the CAR cells. Solid tumors with a strong immunosuppressive microenvironment and complex vascular system are unaffected by CAR cell infiltration and attack. To improve their efficacy toward solid tumors, CAR cells have been modified and upgraded by "decorating" and "pruning". This review focuses on the structure and function of CARs, the immune cells that can be engineered by CARs and the transformation strategies to overcome solid tumors, with a view to broadening ideas for the better application of CAR cell therapy for the treatment of solid tumors.
Collapse
Affiliation(s)
- Tingrui Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China; Department of Pharmacy, First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Fengze Miao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Jiadong Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China
| | - Hua Wei
- Medical Guarantee Center, Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China; School of Medicine, Shanghai University, Shanghai 200444, China; Shanghai Engineering Research Center for Topical Chinese Medicine, Shanghai 200443, China.
| |
Collapse
|
48
|
Yang X, Li C, Yang H, Li T, Ling S, Zhang Y, Wu F, Liu X, Liu S, Fan C, Wang Q. Programmed Remodeling of the Tumor Milieu to Enhance NK Cell Immunotherapy Combined with Chemotherapy for Pancreatic Cancer. NANO LETTERS 2024; 24:3421-3431. [PMID: 38377170 DOI: 10.1021/acs.nanolett.4c00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Natural killer (NK) cell-based adoptive immunotherapy has demonstrated encouraging therapeutic effects in clinical trials for hematological cancers. However, the effectiveness of treatment for solid tumors remains a challenge due to insufficient recruitment and infiltration of NK cells into tumor tissues. Herein, a programmed nanoremodeler (DAS@P/H/pp) is designed to remodel dense physical stromal barriers and for dysregulation of the chemokine of the tumor environment to enhance the recruitment and infiltration of NK cells in tumors. The DAS@P/H/pp is triggered by the acidic tumor environment, resulting in charge reversal and subsequent hyaluronidase (HAase) release. HAase effectively degrades the extracellular matrix, promoting the delivery of immunoregulatory molecules and chemotherapy drugs into deep tumor tissues. In mouse models of pancreatic cancer, this nanomediated strategy for the programmed remodeling of the tumor microenvironment significantly boosts the recruitment of NK92 cells and their tumor cell-killing capabilities under the supervision of multiplexed near-infrared-II fluorescence.
Collapse
Affiliation(s)
- Xiaohu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongchao Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Sisi Ling
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Feng Wu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoqin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiangbin Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
50
|
Li T, Niu M, Zhang W, Qin S, Zhou J, Yi M. CAR-NK cells for cancer immunotherapy: recent advances and future directions. Front Immunol 2024; 15:1361194. [PMID: 38404574 PMCID: PMC10884099 DOI: 10.3389/fimmu.2024.1361194] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Natural Killer (NK) cells, intrinsic to the innate immune system, are pivotal in combating cancer due to their independent cytotoxic capabilities in antitumor immune response. Unlike predominant treatments that target T cell immunity, the limited success of T cell immunotherapy emphasizes the urgency for innovative approaches, with a spotlight on harnessing the potential of NK cells. Despite tumors adapting mechanisms to evade NK cell-induced cytotoxicity, there is optimism surrounding Chimeric Antigen Receptor (CAR) NK cells. This comprehensive review delves into the foundational features and recent breakthroughs in comprehending the dynamics of NK cells within the tumor microenvironment. It critically evaluates the potential applications and challenges associated with emerging CAR-NK cell therapeutic strategies, positioning them as promising tools in the evolving landscape of precision medicine. As research progresses, the unique attributes of CAR-NK cells offer a new avenue for therapeutic interventions, paving the way for a more effective and precise approach to cancer treatment.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijiang Zhang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|