1
|
Cui X, Liu H, Liu Y, Yu Z, Wang D, Wei W, Wang S. Tissue-specific decellularized extracellular matrix rich in collagen, glycoproteins, and proteoglycans and its applications in advanced organoid engineering: A review. Int J Biol Macromol 2025:144469. [PMID: 40409619 DOI: 10.1016/j.ijbiomac.2025.144469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025]
Abstract
Decellularized extracellular matrix derived from specific organs represents a promising platform for organoid development, offering distinct advantages in tissue engineering. This matrix maintains the complex three-dimensional network of biological macromolecules secreted by tissue-specific cells, including collagen, glycoproteins, and proteoglycans. This extracellular matrix orchestrates cellular behaviors, such as proliferation, migration, and differentiation, while maintaining optimal tissue homeostasis. The organ-specific composition of decellularized extracellular matrix preserves native biological cues, including growth factors and cytokines, as well as mechanical properties, facilitating natural cell-matrix interactions and promoting appropriate stem cell development. These characteristics make organ-derived decellularized extracellular matrix an ideal scaffold for organoid construction. The implementation of decellularized extracellular matrix enhances the physiological relevance of organoid models, which is particularly valuable in drug development, personalized medicine, and the study of complex organ microenvironments. This advancement significantly improves the translational potential of organoid technology for organ transplantation while providing robust research tools. Consequently, decellularized extracellular matrix-based organoid models offer superior platforms for preclinical therapeutic evaluation. This review examines recent progress in decellularized extracellular matrix-based organoid development, beginning with current application strategies and proceeding to an analysis of existing decellularized extracellular matrix-derived organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Hongfei Liu
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Yantong Liu
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Zhitong Yu
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Deyu Wang
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China
| | - Wei Wei
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China.
| | - Shixuan Wang
- Department of Orthopedics, Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110167, PR China.
| |
Collapse
|
2
|
Michiba K, Namai M, Hashimoto Y, Shimomura O, Miyazaki Y, Hashimoto S, Ohara Y, Enomoto T, Oda T, Maeda K, Kusuhara H. Characterization of intestinal transporters in human ileal spheroid-derived differentiated cells for the prediction of intestinal drug absorption. Drug Metab Dispos 2025; 53:100075. [PMID: 40319556 DOI: 10.1016/j.dmd.2025.100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/23/2025] [Indexed: 05/07/2025] Open
Abstract
This study aimed to characterize the functional properties of human spheroid-derived differentiated cells for absorption, distribution, metabolism, and excretion studies. Three-dimensional human intestinal spheroids were successfully established from crypts isolated from fresh surgical specimens of the terminal ileum. The mRNA expression of major intestinal transporters and drug-metabolizing enzymes was tested. Region-specific functional expression of proton-coupled folate transporter/solute carrier (SLC) SLC46A1 and apical sodium-dependent bile acid transporter (ASBT)/SLC10A2 was confirmed in freshly isolated human proximal jejunal and terminal ileal tissue sections mounted onto Ussing chambers. Proximal jejunal and terminal ileal spheroid-derived differentiated cell monolayers showed H+- and Na+-coupled uptake of methotrexate and [3H]-taurocholic acid, respectively. The functional expression of CYP3A, CYP2C9, UGT1A, P-glycoprotein, and breast cancer resistance protein (BCRP) was confirmed based on the formation of metabolites (1'-hydroxy midazolam, 4'-hydroxy diclofenac, raloxifene-4'-glucuronide, and raloxifene-6-glucuronide) and the efflux ratio of typical substrates (digoxin, sulfasalazine, rosuvastatin, dantrolene, and furosemide). Terminal ileum-derived differentiated cell monolayers showed extensive taurocholic acid-d5 transport in the apical-to-basal direction, which was markedly inhibited by the ASBT inhibitor elobixibat. One of the terminal ileal spheroids was identified as homozygous for the mutant allele of ABCG2 (rs2231142). The transport activity of BCRP in the differentiated cells, when dantrolene was used as a probe, might reflect this genetic variation. In conclusion, the functional expression of region-specific uptake transporters (proton-coupled folate transporter and ASBT) was successfully reproduced in human intestinal spheroid-derived differentiated cells, which also maintain the activities of P-glycoprotein, BCRP, and metabolic enzymes. Human intestinal spheroid-derived differentiated cells would be useful for investigating region-specific functions in drug transport and metabolism. SIGNIFICANCE STATEMENT: The expression levels of some transporters are not homogeneous along the longitudinal axis of the intestine. To date, there is no in vitro model that can reproduce regional differences in the transporter-mediated transport of nutrients and drugs in the intestine. This study successfully demonstrated that the functional expression of region-specific transporters, the proton-coupled folate transporter and the apical sodium-dependent bile acid transporter, was maintained in human proximal jejunal and terminal ileal spheroid-derived differentiated cell monolayers.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Mana Namai
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shinji Hashimoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yusuke Ohara
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tsuyoshi Enomoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan.
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
3
|
Jang JY, Kim N, Nam RH, Kim EH, Song CH, Ha S, Lee J. Establishment of an Organoid Culture Model Derived from Small Intestinal Epithelium of C57BL/6 Mice and Its Benefits over Tissues. J Cancer Prev 2025; 30:12-23. [PMID: 40201028 PMCID: PMC11973465 DOI: 10.15430/jcp.25.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
This study aimed to establish an organoid culture model using small intestine tissues from male and female C57BL/6 mice and to compare it with rat organoid cultures derived from frozen tissues. Crypts were isolated from the small intestines of eight-week-old male and female mice and cultured in 3D extracellular matrix with Wnt, R-spondin, and Noggin. In addition, small intestine tissues from sixteen-week-old F344 rats were preserved in a storage solution immediately post-sacrifice and stored at -80°C before being transferred to a nitrogen tank. Upon thawing, crypts from frozen rat tissues failed to develop into organoids due to structural damage, suggesting the need for fresh tissues or optimized preservation methods. In contrast, mouse-derived organoids showed viability for 7 days, with distinct morphological changes and clear differentiation by Day 7. Quantitative real-time PCR analysis revealed that Lgr5, a stem cell marker, showed significantly higher expression in organoids than in tissues, confirming the successful establishment of the organoid culture. Among epithelial markers, the antimicrobial enzyme Lyz1 was more highly expressed in organoids, while Muc2, a key goblet cell marker, was more highly expressed in male tissues. The enterocyte marker Alp exhibited higher expression in male organoids compared to females, with no sex differences in tissues. These findings highlight sex-specific differences in gene expression related to small intestine differentiation and demonstrate the challenges in organoid culture from frozen rat tissues. The results suggest the importance of immediate tissue processing or improved preservation methods for successful organoid cultures.
Collapse
Affiliation(s)
- Jae Young Jang
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Medical Device Development, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Research Center for Sex- and Gender-specific Medicine, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Hye Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sungchan Ha
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Health Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
4
|
Sugihara HY, Okamoto R, Mizutani T. Intestinal organoids: The path towards clinical application. Eur J Cell Biol 2025; 104:151474. [PMID: 39740324 DOI: 10.1016/j.ejcb.2024.151474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Organoids have revolutionized the whole field of biology with their ability to model complex three-dimensional human organs in vitro. Intestinal organoids were especially consequential as the first successful long-term culture of intestinal stem cells, which raised hopes for translational medical applications. Despite significant contributions to basic research, challenges remain to develop intestinal organoids into clinical tools for diagnosis, prognosis, and therapy. In this review, we outline the current state of translational research involving adult stem cell and pluripotent stem cell derived intestinal organoids, highlighting the advances and limitations in disease modeling, drug-screening, personalized medicine, and stem cell therapy. Preclinical studies have demonstrated a remarkable functional recapitulation of infectious and genetic diseases, and there is mounting evidence for the reliability of intestinal organoids as a patient-specific avatar. Breakthroughs now allow the generation of structurally and cellularly complex intestinal models to better capture a wider range of intestinal pathophysiology. As the field develops and evolves, there is a need for standardized frameworks for generation, culture, storage, and analysis of intestinal organoids to ensure reproducibility, comparability, and interpretability of these preclinical and clinical studies to ultimately enable clinical translation.
Collapse
Affiliation(s)
- Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
5
|
Gerçel G, Durakbaşa ÇU. An Analysis Regarding the Ultimate Outcome of Abstracts Presented at the European Paediatric Surgeons' Association Congress. Eur J Pediatr Surg 2025; 35:2-8. [PMID: 39442555 DOI: 10.1055/a-2447-8720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The objective of this study is to analyze the conversion rate of abstracts presented at the European Paediatric Surgeons' Association (EUPSA) congress into full-text publications and to conduct a thorough analysis of the attributes and quality of the papers published. MATERIALS AND METHODS Abstract books including the years 2017 to 2022 were reviewed. Searches on PubMed and Google Scholar, utilizing keywords from the titles and the author names, were conducted to trace subsequent full-text publications. A categorical analysis detected variations and trends, with a significance threshold of p < 0.05. Quantitative data were presented as means ± standard deviations, whereas categorical data were represented as counts (n) and percentages (%). RESULTS A total of 2,139 abstracts were presented at the EUPSA annual meetings during five consecutive congresses. The average number of presented abstracts was 427.6 ± 20.4 per year from across 63 different countries. European countries contributed the majority (71%). The presentations included both oral (n = 817, 38.2%) and poster presentations (n = 1,322, 61.8%). They predominantly focused on clinical topics (90.6%). Single-center retrospective studies were the most common study design (43.7%). Out of all abstracts presented, 1,033 (48.3%) were published within an average time interval of 1.39 ± 1.19 years after presentation. Most journals had an impact factor (IF) between 1 and 5 (74.5%). There was no significant year-to-year variation in publication rates (p = 1). Basic science studies were published in journals with significantly higher IF compared with clinical studies (p < 0.001). CONCLUSIONS The publication rate of abstracts presented at the EUPSA annual congress stands at 48.3%, aligning with the rates observed in other similar studies. This suggests that abstracts submitted to the EUPSA congresses were evaluated and scored rigorously, adhering to international selection criteria. Furthermore, the majority of these abstracts were published in journals with moderate to high IFs, providing quantitative evidence of the scientific quality of research within the field of pediatric surgery.
Collapse
Affiliation(s)
- Gonca Gerçel
- Department of Pediatric Surgery, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Türkiye
| | - Çiğdem Ulukaya Durakbaşa
- Department of Pediatric Surgery, Istanbul Medeniyet University, Faculty of Medicine, Istanbul, Türkiye
| |
Collapse
|
6
|
Li G, Wang Z, Wu C, Wang D, Han I, Lee J, Kaeli DR, Dy JG, Weinberger KQ, Gu AZ. Towards high-accuracy bacterial taxonomy identification using phenotypic single-cell Raman spectroscopy data. ISME COMMUNICATIONS 2025; 5:ycaf015. [PMID: 40092580 PMCID: PMC11910137 DOI: 10.1093/ismeco/ycaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/20/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025]
Abstract
Single-cell Raman Spectroscopy (SCRS) emerges as a promising tool for single-cell phenotyping in environmental ecological studies, offering non-intrusive, high-resolution, and high-throughput capabilities. In this study, we obtained a large and the first comprehensive SCRS dataset that captured phenotypic variations with cell growth status for 36 microbial strains, and we compared and optimized analysis techniques and classifiers for SCRS-based taxonomy identification. First, we benchmarked five dimensionality reduction (DR) methods, 10 classifiers, and the impact of cell growth variances using a SCRS dataset with both taxonomy and cellular growth stage labels. Unsupervised DR methods and non-neural network classifiers are recommended for at a balance between accuracy and time efficiency, achieved up to 96.1% taxonomy classification accuracy. Second, accuracy variances caused by cellular growth variance (<2.9% difference) was found less than the influence from model selection (up to 41.4% difference). Remarkably, simultaneous high accuracy in growth stage classification (93.3%) and taxonomy classification (94%) were achievable using an innovative two-step classifier model. Third, this study is the first to successfully apply models trained on pure culture SCRS data to achieve taxonomic identification of microbes in environmental samples at an accuracy of 79%, and with validation via Raman-FISH (fluorescence in situ hybridization). This study paves the groundwork for standardizing SCRS-based biotechnologies in single-cell phenotyping and taxonomic classification beyond laboratory pure culture to real environmental microorganisms and promises advances in SCRS applications for elucidating organismal functions, ecological adaptability, and environmental interactions.
Collapse
Affiliation(s)
- Guangyu Li
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Zijian Wang
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, NY 14850, United States
- Center for Research on Programmable Plant Systems, 103 Rice Hall, Cornell University, Ithaca, NY 14850, United States
| | - Chieh Wu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, United States
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710021, China
| | - Il Han
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - Jangho Lee
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
| | - David R Kaeli
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, United States
| | - Jennifer G Dy
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, United States
| | - Kilian Q Weinberger
- Department of Computer Science, Cornell University, Ithaca, NY 14850, United States
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14850, United States
- Center for Research on Programmable Plant Systems, 103 Rice Hall, Cornell University, Ithaca, NY 14850, United States
| |
Collapse
|
7
|
Takahashi J, Sugihara HY, Kato S, Kawasaki S, Nagata S, Okamoto R, Mizutani T. Controlled aggregative assembly to form self-organizing macroscopic human intestine from induced pluripotent stem cells. CELL REPORTS METHODS 2024; 4:100930. [PMID: 39662475 PMCID: PMC11704612 DOI: 10.1016/j.crmeth.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/11/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024]
Abstract
Human intestinal organoids (HIOs) derived from human pluripotent stem cells (hPSCs) are promising resources for intestinal regenerative therapy as they recapitulate both endodermal and mesodermal components of the intestine. However, due to their hPSC-line-dependent mesenchymal development and spherical morphology, HIOs have limited applicability beyond basic research and development. Here, we demonstrate the incorporation of separately differentiated mesodermal and mid/hindgut cells into assembled spheroids to stabilize mesenchymal growth in HIOs. In parallel, we generate tubular intestinal constructs (assembled human intestinal tubules [a-HITs]) by leveraging the high aggregative property of assembled spheroids. Through rotational culture in a bioreactor, a-HITs self-organize to develop epithelium and supportive mesenchyme. Upon mesenteric transplantation, a-HITs mature into centimeter-scale tubular intestinal tissue with complex architectures. Our aggregation- and suspension-based approach offers basic technology for engineering tubular intestinal tissue from hPSCs, which could be ultimately applied to the generation of the human intestine for clinical application.
Collapse
Affiliation(s)
- Junichi Takahashi
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Hady Yuki Sugihara
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shu Kato
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sho Kawasaki
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sayaka Nagata
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tomohiro Mizutani
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
8
|
Gulino ME, Ordóñez-Morán P, Mahida YR. Establishment of a 3D organoid culture model for the investigation of adult slow-cycling putative intestinal stem cells. Histochem Cell Biol 2024; 162:351-362. [PMID: 39073425 DOI: 10.1007/s00418-024-02312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.
Collapse
Affiliation(s)
- Maria Eugenia Gulino
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, School of Medicine, Centre for Cancer Sciences, Biodiscovery Institute-3, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Yashwant R Mahida
- Translational Medical Sciences, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
9
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
10
|
Au KM, Wilson JE, Ting JPY, Wang AZ. An injectable subcutaneous colon-specific immune niche for the treatment of ulcerative colitis. Nat Biomed Eng 2024; 8:1243-1265. [PMID: 38049469 DOI: 10.1038/s41551-023-01136-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/14/2023] [Indexed: 12/06/2023]
Abstract
As a chronic autoinflammatory condition, ulcerative colitis is often managed via systemic immunosuppressants. Here we show, in three mouse models of established ulcerative colitis, that a subcutaneously injected colon-specific immunosuppressive niche consisting of colon epithelial cells, decellularized colon extracellular matrix and nanofibres functionalized with programmed death-ligand 1, CD86, a peptide mimic of transforming growth factor-beta 1, and the immunosuppressive small-molecule leflunomide, induced intestinal immunotolerance and reduced inflammation in the animals' lower gastrointestinal tract. The bioengineered colon-specific niche triggered autoreactive T cell anergy and polarized pro-inflammatory macrophages via multiple immunosuppressive pathways, and prevented the infiltration of immune cells into the colon's lamina propria, promoting the recovery of epithelial damage. The bioengineered niche also prevented colitis-associated colorectal cancer and eliminated immune-related colitis triggered by kinase inhibitors and immune checkpoint blockade.
Collapse
Affiliation(s)
- Kin Man Au
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Justin E Wilson
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Z Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
11
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJMW, van den Broek P, Stommel MWJ, Bervoets S, O'Gorman L, Greupink R, Russel FGM, van de Steeg E, de Wildt SN. Human enteroid monolayers as a potential alternative for Ussing chamber and Caco-2 monolayers to study passive permeability and drug efflux. Eur J Pharm Sci 2024; 201:106877. [PMID: 39154715 DOI: 10.1016/j.ejps.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/20/2024]
Abstract
After oral administration, the intestine is the first site of drug absorption, making it a key determinant of the bioavailability of a drug, and hence drug efficacy and safety. Existing non-clinical models of the intestinal barrier in vitro often fail to mimic the barrier and absorption of the human intestine. We explore if human enteroid monolayers are a suitable tool for intestinal absorption studies compared to primary tissue (Ussing chamber) and Caco-2 cells. Bidirectional drug transport was determined in enteroid monolayers, fresh tissue (Ussing chamber methodology) and Caco-2 cells. Apparent permeability (Papp) and efflux ratios for enalaprilat (paracellular), propranolol (transcellular), talinolol (P-glycoprotein (P-gp)) and rosuvastatin (Breast cancer resistance protein (BCRP)) were determined and compared between all three methodologies and across intestinal regions. Bulk RNA sequencing was performed to compare gene expression between enteroid monolayers and primary tissue. All three models showed functional efflux transport by P-gp and BCRP with higher basolateral to apical (B-to-A) transport compared to apical-to-basolateral (A-to-B). B-to-A Papp values were similar for talinolol and rosuvastatin in tissue and enteroids. Paracellular transport of enalaprilat was lower and transcellular transport of propranolol was higher in enteroids compared to tissue. Enteroids appeared show more region- specific gene expression compared to tissue. Fresh tissue and enteroid monolayers both show active efflux by P-gp and BCRP in jejunum and ileum. Hence, the use of enteroid monolayers represents a promising and versatile experimental platform to complement current in vitro models.
Collapse
Affiliation(s)
- Eva J Streekstra
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands; Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Marit Keuper-Navis
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Jeroen J M W van den Heuvel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Petra van den Broek
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Martijn W J Stommel
- Department of Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sander Bervoets
- Radboudumc Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luke O'Gorman
- Radboudumc Technology Center for Bioinformatics, Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rick Greupink
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Frans G M Russel
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, Netherlands Organization for Applied Scientific Research (TNO), Leiden, the Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands; Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
13
|
Lee H, Yang S, Lee KJ, Kim SN, Jeong JS, Kim KY, Jung CR, Jeon S, Kwon D, Lee S, Lee H, Park C, Ahn SJ, Yoo J, Son MY. Standardization and quality assessment for human intestinal organoids. Front Cell Dev Biol 2024; 12:1383893. [PMID: 39329062 PMCID: PMC11424408 DOI: 10.3389/fcell.2024.1383893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/02/2024] [Indexed: 09/28/2024] Open
Abstract
To enhance the practical application of intestinal organoids, it is imperative to establish standardized guidelines. This proposed standardization outlines a comprehensive framework to ensure consistency and reliability in the development, characterization, and application of intestinal organoids. The recommended guidelines encompass crucial parameters, including culture conditions, critical quality attributes, quality control measures, and functional assessments, aimed at fostering a standardized approach across diverse research initiatives. The implementation of these guidelines is anticipated to significantly contribute to the reproducibility and comparability of results in the burgeoning field of intestinal organoid research.
Collapse
Affiliation(s)
- Hana Lee
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seunghye Yang
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
| | - Kyung Jin Lee
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
| | - Si-Na Kim
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
| | - Ji-Seon Jeong
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Ki Young Kim
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Cho-Rok Jung
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sooyeon Jeon
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dayeon Kwon
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sungin Lee
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hanbyeol Lee
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chihye Park
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sun-Ju Ahn
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Digital Health Laboratory, Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jongman Yoo
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- ORGANOIDSCIENCES, Seongnam-si, Republic of Korea
- Department of Microbiology, CHA University School of Medicine, Seongnam-si, Republic of Korea
| | - Mi-Young Son
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Organoid Standards Initiative (OSI), Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
- Department of Biological Science, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
14
|
Herath M, Speer AL. Bioengineering of Intestinal Grafts. Gastroenterol Clin North Am 2024; 53:461-472. [PMID: 39068007 PMCID: PMC11284275 DOI: 10.1016/j.gtc.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal failure manifests as an impaired capacity of the intestine to sufficiently absorb vital nutrients and electrolytes essential for growth and well-being in pediatric and adult populations. Although parenteral nutrition remains the mainstay therapeutic approach, the pursuit of a definitive and curative strategy, such as regenerative medicine, is imperative. Substantial advancements in the field of engineered intestinal tissues present a promising avenue for addressing intestinal failure; nevertheless, extensive research is still necessary for effective translation from experimental benchwork to clinical bedside applications.
Collapse
Affiliation(s)
- Madushani Herath
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA
| | - Allison L Speer
- Program in Children's Regenerative Medicine, Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), 6431 Fannin Street, Suite 5.254, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Wada M, Watanabe K, Sugimoto S, Sato T, Kobayashi E. A Novel Organoid-Based Strategy Using Hybrid Colon Interposition for Short Bowel Syndrome: A Mini Review of In Vivo Models and Possible Human Candidates. Gastroenterol Clin North Am 2024; 53:481-491. [PMID: 39068009 DOI: 10.1016/j.gtc.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This comprehensive review focuses on advances in surgical techniques and in vivo animal models for treating short bowel syndrome (SBS) with intestinal organoids. Notably, this review discusses a novel method involving the replacement of the epithelium of large intestinal tissue with small intestinal organoids, which improves function and prognosis when grafted back into the small intestine. This study not only underscores the importance of integrating organoid technology and surgical techniques to improve the outcomes of patients with SBS but also acknowledges the challenges that lie ahead, including achieving functional organoids with peristaltic movement and vascularization.
Collapse
Affiliation(s)
- Motoshi Wada
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kazuhiro Watanabe
- Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shinya Sugimoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Integrated Medicine and Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eiji Kobayashi
- Department of Kidney Regenerative Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan.
| |
Collapse
|
16
|
Mainali BB, Yoo JJ, Ladd MR. Tissue engineering and regenerative medicine approaches in colorectal surgery. Ann Coloproctol 2024; 40:336-349. [PMID: 39228197 PMCID: PMC11375227 DOI: 10.3393/ac.2024.00437.0062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Tissue engineering and regenerative medicine (TERM) is an emerging field that has provided new therapeutic opportunities by delivering innovative solutions. The development of nontraditional therapies for previously unsolvable diseases and conditions has brought hope and excitement to countless individuals globally. Many regenerative medicine therapies have been developed and delivered to patients clinically. The technology platforms developed in regenerative medicine have been expanded to various medical areas; however, their applications in colorectal surgery remain limited. Applying TERM technologies to engineer biological tissue and organ substitutes may address the current therapeutic challenges and overcome some complications in colorectal surgery, such as inflammatory bowel diseases, short bowel syndrome, and diseases of motility and neuromuscular function. This review provides a comprehensive overview of TERM applications in colorectal surgery, highlighting the current state of the art, including preclinical and clinical studies, current challenges, and future perspectives. This article synthesizes the latest findings, providing a valuable resource for clinicians and researchers aiming to integrate TERM into colorectal surgical practice.
Collapse
Affiliation(s)
- Bigyan B Mainali
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| | - Mitchell R Ladd
- Department of General Surgery, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Wake Forest University, Winston-Salem, NC, USA
| |
Collapse
|
17
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Hammerhøj A, Chakravarti D, Sato T, Jensen KB, Nielsen OH. Organoids as regenerative medicine for inflammatory bowel disease. iScience 2024; 27:110118. [PMID: 38947526 PMCID: PMC11214415 DOI: 10.1016/j.isci.2024.110118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder with an increasing global prevalence. Managing disease activity relies on various pharmacological options. However, the effectiveness of current therapeutics is limited and not universally applicable to all patients and circumstances. Consequently, developing new management strategies is necessary. Recent advances in endoscopically obtained intestinal biopsy specimens have highlighted the potential of intestinal epithelial organoid transplantation as a novel therapeutic approach. Experimental studies using murine and human organoid transplantations have shown promising outcomes, including tissue regeneration and functional recovery. Human trials with organoid therapy have commenced; thus, this article provides readers with insights into the necessity and potential of intestinal organoid transplantation as a new regenerative therapeutic option in clinical settings and explores its associated challenges.
Collapse
Affiliation(s)
- Alexander Hammerhøj
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kim Bak Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Haagen Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| |
Collapse
|
19
|
Xiang T, Wang J, Li H. Current applications of intestinal organoids: a review. Stem Cell Res Ther 2024; 15:155. [PMID: 38816841 PMCID: PMC11140936 DOI: 10.1186/s13287-024-03768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
In the past decade, intestinal organoid technology has paved the way for reproducing tissue or organ morphogenesis during intestinal physiological processes in vitro and studying the pathogenesis of various intestinal diseases. Intestinal organoids are favored in drug screening due to their ability for high-throughput in vitro cultivation and their closer resemblance to patient genetic characteristics. Furthermore, as disease models, intestinal organoids find wide applications in screening diagnostic markers, identifying therapeutic targets, and exploring epigenetic mechanisms of diseases. Additionally, as a transplantable cellular system, organoids have played a significant role in the reconstruction of damaged epithelium in conditions such as ulcerative colitis and short bowel syndrome, as well as in intestinal material exchange and metabolic function restoration. The rise of interdisciplinary approaches, including organoid-on-chip technology, genome editing techniques, and microfluidics, has greatly accelerated the development of organoids. In this review, VOSviewer software is used to visualize hot co-cited journal and keywords trends of intestinal organoid firstly. Subsequently, we have summarized the current applications of intestinal organoid technology in disease modeling, drug screening, and regenerative medicine. This will deepen our understanding of intestinal organoids and further explore the physiological mechanisms of the intestine and drug development for intestinal diseases.
Collapse
Affiliation(s)
- Tao Xiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Hui Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
21
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
22
|
Gerli MFM, Calà G, Beesley MA, Sina B, Tullie L, Sun KY, Panariello F, Michielin F, Davidson JR, Russo FM, Jones BC, Lee DDH, Savvidis S, Xenakis T, Simcock IC, Straatman-Iwanowska AA, Hirst RA, David AL, O'Callaghan C, Olivo A, Eaton S, Loukogeorgakis SP, Cacchiarelli D, Deprest J, Li VSW, Giobbe GG, De Coppi P. Single-cell guided prenatal derivation of primary fetal epithelial organoids from human amniotic and tracheal fluids. Nat Med 2024; 30:875-887. [PMID: 38438734 PMCID: PMC10957479 DOI: 10.1038/s41591-024-02807-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/05/2024] [Indexed: 03/06/2024]
Abstract
Isolation of tissue-specific fetal stem cells and derivation of primary organoids is limited to samples obtained from termination of pregnancies, hampering prenatal investigation of fetal development and congenital diseases. Therefore, new patient-specific in vitro models are needed. To this aim, isolation and expansion of fetal stem cells during pregnancy, without the need for tissue samples or reprogramming, would be advantageous. Amniotic fluid (AF) is a source of cells from multiple developing organs. Using single-cell analysis, we characterized the cellular identities present in human AF. We identified and isolated viable epithelial stem/progenitor cells of fetal gastrointestinal, renal and pulmonary origin. Upon culture, these cells formed clonal epithelial organoids, manifesting small intestine, kidney tubule and lung identity. AF organoids exhibit transcriptomic, protein expression and functional features of their tissue of origin. With relevance for prenatal disease modeling, we derived lung organoids from AF and tracheal fluid cells of congenital diaphragmatic hernia fetuses, recapitulating some features of the disease. AF organoids are derived in a timeline compatible with prenatal intervention, potentially allowing investigation of therapeutic tools and regenerative medicine strategies personalized to the fetus at clinically relevant developmental stages.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK.
- Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Giuseppe Calà
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Max Arran Beesley
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Beatrice Sina
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Politecnico di Milano, Milan, Italy
| | - Lucinda Tullie
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | - Kylin Yunyan Sun
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, UK
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Francesco Panariello
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Federica Michielin
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Joseph R Davidson
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
| | - Francesca Maria Russo
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Brendan C Jones
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Dani Do Hyang Lee
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Savvas Savvidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Theodoros Xenakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Ian C Simcock
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Radiology, Great Ormond Street Hospital, London, UK
| | | | - Robert A Hirst
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | | | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Simon Eaton
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Stavros P Loukogeorgakis
- Great Ormond Street Institute of Child Health, University College London, London, UK
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Davide Cacchiarelli
- Armenise/Harvard Laboratory of Integrative Genomics, Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
- Genomics and Experimental Medicine Program, Scuola Superiore Meridionale, Naples, Italy
| | - Jan Deprest
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, UK
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Paolo De Coppi
- Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Development and Regeneration, Woman and Child and UZ Leuven Clinical Department of Obstetrics and Gynaecology, KU Leuven, Leuven, Belgium.
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
- Medical and Surgical Department of the Fetus, Newborn and Infant, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
23
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
24
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
25
|
Guo X, Liu B, Zhang Y, Cheong S, Xu T, Lu F, He Y. Decellularized extracellular matrix for organoid and engineered organ culture. J Tissue Eng 2024; 15:20417314241300386. [PMID: 39611117 PMCID: PMC11603474 DOI: 10.1177/20417314241300386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
The repair and regeneration of tissues and organs using engineered biomaterials has attracted great interest in tissue engineering and regenerative medicine. Recent advances in organoids and engineered organs technologies have enabled scientists to generate 3D tissue that recapitulate the structural and functional characteristics of native organs, opening up new avenues in regenerative medicine. The matrix is one of the most important aspects for improving organoids and engineered organs construction. However, the clinical application of these techniques remained a big challenge because current commercial matrix does not represent the complexity of native microenvironment, thereby limiting the optimal regenerative capacity. Decellularized extracellular matrix (dECM) is expected to maintain key native matrix biomolecules and is believed to hold enormous potential for regenerative medicine applications. Thus, it is worth investigating whether the dECM can be used as matrix for improving organoid and engineered organs construction. In this review, the characteristics of dECM and its preparation method were summarized. In addition, the present review highlights the applications of dECM in the fabrication of organoids and engineered organs.
Collapse
Affiliation(s)
- Xiaoxu Guo
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Boxun Liu
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Yi Zhang
- Research and Development Department, Huamei Biotech Co. Ltd., Shenzhen, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Xu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, People’s Republic of China
- Bio-intelligent Manufacturing and Living Matter Bioprinting Center, Research Institute of Tsinghua University in Shenzhen, Tsinghua University, Shenzhen, People’s Republic of China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Michiba K, Watanabe K, Imaoka T, Nakai D. Recent Advances in the Gastrointestinal Complex in Vitro Model for ADME Studies. Pharmaceutics 2023; 16:37. [PMID: 38258048 PMCID: PMC10819272 DOI: 10.3390/pharmaceutics16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Intestinal absorption is a complex process involving the permeability of the epithelial barrier, efflux transporter activity, and intestinal metabolism. Identifying the key factors that govern intestinal absorption for each investigational drug is crucial. To assess and predict intestinal absorption in humans, it is necessary to leverage appropriate in vitro systems. Traditionally, Caco-2 monolayer systems and intestinal Ussing chamber studies have been considered the 'gold standard' for studying intestinal absorption. However, these methods have limitations that hinder their universal use in drug discovery and development. Recently, there has been an increasing number of reports on complex in vitro models (CIVMs) using human intestinal organoids derived from intestinal tissue specimens or iPSC-derived enterocytes plated on 2D or 3D in microphysiological systems. These CIVMs provide a more physiologically relevant representation of key ADME-related proteins compared to conventional in vitro methods. They hold great promise for use in drug discovery and development due to their ability to replicate the expressions and functions of these proteins. This review highlights recent advances in gut CIVMs employing intestinal organoid model systems compared to conventional methods. It is important to note that each CIVM should be tailored to the investigational drug properties and research questions at hand.
Collapse
Affiliation(s)
- Kazuyoshi Michiba
- Drug Metabolism & Pharmacokinetics Research Laboratory, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan; (K.W.); (T.I.); (D.N.)
| | | | | | | |
Collapse
|
27
|
Bornholdt J, Müller CV, Nielsen MJ, Strickertsson J, Rago D, Chen Y, Maciag G, Skov J, Wellejus A, Schweiger PJ, Hansen SL, Broholm C, Gögenur I, Maimets M, Sloth S, Hendel J, Baker A, Sandelin A, Jensen KB. Detecting host responses to microbial stimulation using primary epithelial organoids. Gut Microbes 2023; 15:2281012. [PMID: 37992398 PMCID: PMC10730191 DOI: 10.1080/19490976.2023.2281012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023] Open
Abstract
The intestinal epithelium is constantly exposed to microbes residing in the lumen. Traditionally, the response to microbial interactions has been studied in cell lines derived from cancerous tissues, e.g. Caco-2. It is, however, unclear how the responses in these cancer cell lines reflect the responses of a normal epithelium and whether there might be microbial strain-specific effects. To address these questions, we derived organoids from the small intestine from a cohort of healthy individuals. Culturing intestinal epithelium on a flat laminin matrix induced their differentiation, facilitating analysis of microbial responses via the apical membrane normally exposed to the luminal content. Here, it was evident that the healthy epithelium across multiple individuals (n = 9) demonstrates robust acute both common and strain-specific responses to a range of probiotic bacterial strains (BB-12Ⓡ, LGGⓇ, DSM33361, and Bif195). Importantly, parallel experiments using the Caco-2 cell line provide no acute response. Collectively, we demonstrate that primary epithelial cells maintained as organoids represent a valuable resource for assessing interactions between the epithelium and luminal microbes across individuals, and that these models are likely to contribute to a better understanding of host microbe interactions.
Collapse
Affiliation(s)
- Jette Bornholdt
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Christina V. Müller
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Maria Juul Nielsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | | | - Daria Rago
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yun Chen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Grzegorz Maciag
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Skov
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Anja Wellejus
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Pawel J. Schweiger
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Stine L. Hansen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | | | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Koge, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martti Maimets
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| | - Stine Sloth
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Hendel
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Adam Baker
- Human Health Research, Chr. Hansen AS, Hørsholm, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kim B. Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Endo R, Sugimoto S, Shirosaki K, Kato H, Wada M, Kanai T, Sato T. Clinical challenges of short bowel syndrome and the path forward for organoid-based regenerative medicine. Regen Ther 2023; 24:64-73. [PMID: 37868721 PMCID: PMC10584670 DOI: 10.1016/j.reth.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 10/24/2023] Open
Abstract
Short bowel syndrome (SBS) is a rare condition, the main symptom of which is malabsorption following extensive resection of the small intestine. Treatment for SBS is mainly supportive, consisting of supplementation, prevention and treatment of complications, and promotion of intestinal adaptation. While development of parenteral nutrition and drugs promoting intestinal adaptation has improved clinical outcomes, the prognosis of patients with SBS remains poor. Intestinal transplantation is the only curative therapy but its outcome is unsatisfactory. In the absence of definitive therapy, novel treatment is urgently needed. With the advent of intestinal organoids, research on the intestine has developed remarkably in recent years. Concepts such as the "tissue-engineered small intestine" and "small intestinalized colon," which create a functional small intestine by combining organoids with other technologies, are potentially novel regenerative therapeutic approaches for SBS. Although they are still under development and there are substantial issues to be resolved, the problems that have prevented establishment of the complex function and structure of the small intestine are gradually being overcome. This review discusses the current treatments for SBS, the fundamentals of the intestine and organoids, the current status of these new technologies, and future perspectives.
Collapse
Affiliation(s)
- Ryoma Endo
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koji Shirosaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hirochika Kato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Department of Surgery, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Motoshi Wada
- Department of Pediatric Surgery, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
29
|
Kim H, Kim GS, Hyun SH, Kim E. Advancements in 2D and 3D In Vitro Models for Studying Neuromuscular Diseases. Int J Mol Sci 2023; 24:17006. [PMID: 38069329 PMCID: PMC10707046 DOI: 10.3390/ijms242317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a genetically or clinically heterogeneous group of diseases that involve injury or dysfunction of neuromuscular tissue components, including peripheral motor neurons, skeletal muscles, and neuromuscular junctions. To study NMDs and develop potential therapies, remarkable progress has been made in generating in vitro neuromuscular models using engineering approaches to recapitulate the complex physical and biochemical microenvironments of 3D human neuromuscular tissues. In this review, we discuss recent studies focusing on the development of in vitro co-culture models of human motor neurons and skeletal muscles, with the pros and cons of each approach. Furthermore, we explain how neuromuscular in vitro models recapitulate certain aspects of specific NMDs, including amyotrophic lateral sclerosis and muscular dystrophy. Research on neuromuscular organoids (NMO) will continue to co-develop to better mimic tissues in vivo and will provide a better understanding of the development of the neuromuscular tissue, mechanisms of NMD action, and tools applicable to preclinical studies, including drug screening and toxicity tests.
Collapse
Affiliation(s)
- Haneul Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
- Institute for Stem Cell & Regenerative Medicine, Chungbuk National University, Chengju 28644, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea;
| |
Collapse
|
30
|
Tan H, Chen X, Wang C, Song J, Xu J, Zhang Y, Suo H. Intestinal organoid technology and applications in probiotics. Crit Rev Food Sci Nutr 2023; 65:1055-1069. [PMID: 38032232 DOI: 10.1080/10408398.2023.2288887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The impacts of probiotics on maintaining the host's intestinal health have been extensively confirmed. Organoid technology revolutionizes intestinal health research by providing a unique platform to study the effects of probiotics. It overcomes challenges posed by animal models and 2D cell models in accurately simulating the in vivo environment. This review summarizes the development of intestinal organoid technology and its potential applications in intestinal health research as well as highlights the regulatory mechanisms of probiotics on intestinal health, which have been revealed using intestinal organoid technology. Furthermore, an overview of its potential applications in probiotic research has also been provided. This review aims to improve the understanding of intestinal organoid technology's applications in this field as well as to contribute to its further development.
Collapse
Affiliation(s)
- Han Tan
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhong Zhang
- Institute of Food Sciences and Technology, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, China
- Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
31
|
Shigeta Y, Saleh T, Benedetti G, Caciolli L, Chang J, Zambaiti E, Wu L, Khalaf S, Song W, Pellegata AF, Giobbe GG, De Coppi P. Stomach engineering: region-specific characterization of the decellularized porcine stomach. Pediatr Surg Int 2023; 40:13. [PMID: 38032517 PMCID: PMC10689559 DOI: 10.1007/s00383-023-05591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
PURPOSE Patients affected by microgastria, severe gastroesophageal reflux, or those who have undergone subtotal gastrectomy, have commonly described reporting dumping syndromes or other symptoms that seriously impair the quality of their life. Gastric tissue engineering may offer an alternative approach to treating these pathologies. Decellularization protocols have great potential to generate novel biomaterials for large gastric defect repair. There is an urgency to define more reliable protocols to foster clinical applications of tissue-engineered decellularized gastric grafts. METHODS In this work, we investigated the biochemical and mechanical properties of decellularized porcine stomach tissue compared to its native counterpart. Histological and immunofluorescence analyses were performed to screen the quality of decellularized samples. Quantitative analysis was also performed to assess extracellular matrix composition. At last, we investigated the mechanical properties and cytocompatibility of the decellularized tissue compared to the native. RESULTS The optimized decellularization protocol produced efficient cell removal, highlighted in the absence of native cellular nuclei. Decellularized scaffolds preserved collagen and elastin contents, with partial loss of sulfated glycosaminoglycans. Decellularized gastric tissue revealed increased elastic modulus and strain at break during mechanical tensile tests, while ultimate tensile strength was significantly reduced. HepG2 cells were seeded on the ECM, revealing matrix cytocompatibility and the ability to support cell proliferation. CONCLUSION Our work reports the successful generation of acellular porcine gastric tissue able to support cell viability and proliferation of human cells.
Collapse
Affiliation(s)
- Yusuke Shigeta
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Pediatric General and Urogenital Surgery, Juntendo University, Tokyo, Japan
| | - Tarek Saleh
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Giada Benedetti
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Lorenzo Caciolli
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK
- Wellcome / EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, London, UK
| | - Jinke Chang
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, University College London, London, UK
| | - Elisa Zambaiti
- Paediatric Surgery, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Lei Wu
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, University College London, London, UK
| | - Sahira Khalaf
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Wulei Song
- Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery and Interventional Science, University College London, London, UK
| | - Alessandro Filippo Pellegata
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Politecnico di Milano, Milan, Italy
| | - Giovanni Giuseppe Giobbe
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
32
|
Zhang FL, Hu Z, Wang YF, Zhang WJ, Zhou BW, Sun QS, Lin ZB, Liu KX. Organoids transplantation attenuates intestinal ischemia/reperfusion injury in mice through L-Malic acid-mediated M2 macrophage polarization. Nat Commun 2023; 14:6779. [PMID: 37880227 PMCID: PMC10600233 DOI: 10.1038/s41467-023-42502-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Intestinal organoid transplantation is a promising therapy for the treatment of mucosal injury. However, how the transplanted organoids regulate the immune microenvironment of recipient mice and their role in treating intestinal ischemia-reperfusion (I/R) injury remains unclear. Here, we establish a method for transplanting intestinal organoids into intestinal I/R mice. We find that transplantation improve mouse survival, promote self-renewal of intestinal stem cells and regulate the immune microenvironment after intestinal I/R, depending on the enhanced ability of macrophages polarized to an anti-inflammatory M2 phenotype. Specifically, we report that L-Malic acid (MA) is highly expressed and enriched in the organoids-derived conditioned medium and cecal contents of transplanted mice, demonstrating that organoids secrete MA during engraftment. Both in vivo and in vitro experiments demonstrate that MA induces M2 macrophage polarization and restores interleukin-10 levels in a SOCS2-dependent manner. This study provides a therapeutic strategy for intestinal I/R injury.
Collapse
Affiliation(s)
- Fang-Ling Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Fan Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Bo-Wei Zhou
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
33
|
Mao W, Bui HTD, Cho W, Yoo HS. Spectroscopic techniques for monitoring stem cell and organoid proliferation in 3D environments for therapeutic development. Adv Drug Deliv Rev 2023; 201:115074. [PMID: 37619771 DOI: 10.1016/j.addr.2023.115074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/22/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Spectroscopic techniques for monitoring stem cell and organoid proliferation have gained significant attention in therapeutic development. Spectroscopic techniques such as fluorescence, Raman spectroscopy, and infrared spectroscopy offer noninvasive and real-time monitoring of biochemical and biophysical changes that occur during stem cell and organoid proliferation. These techniques provide valuable insight into the underlying mechanisms of action of potential therapeutic agents, allowing for improved drug discovery and screening. This review highlights the importance of spectroscopic monitoring of stem cell and organoid proliferation and its potential impact on therapeutic development. Furthermore, this review discusses recent advances in spectroscopic techniques and their applications in stem cell and organoid research. Overall, this review emphasizes the importance of spectroscopic techniques as valuable tools for studying stem cell and organoid proliferation and their potential to revolutionize therapeutic development in the future.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hoai-Thuong Duc Bui
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wanho Cho
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Institue of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
34
|
Rutherford D, Ho GT. Therapeutic Potential of Human Intestinal Organoids in Tissue Repair Approaches in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2023; 29:1488-1498. [PMID: 37094358 PMCID: PMC10472753 DOI: 10.1093/ibd/izad044] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 04/26/2023]
Abstract
Inflammatory bowel diseases (IBDs) are chronic immune-mediated conditions characterized by significant gut tissue damage due to uncontrolled inflammation. Anti-inflammatory treatments have improved, but there are no current prorepair approaches. Organoids have developed into a powerful experimental platform to study mechanisms of human diseases. Here, we specifically focus on its role as a direct tissue repair modality in IBD. We discuss the scientific rationale for this, recent parallel advances in scientific technologies (CRISPR [clustered regularly interspaced short palindromic repeats]/Cas9 and metabolic programming), and in addition, the clinical IBD context in which this therapeutic approach is tractable. Finally, we review the translational roadmap for the application of organoids and the need for this as a novel direction in IBD.
Collapse
Affiliation(s)
- Duncan Rutherford
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gwo-Tzer Ho
- Gut Research Unit, Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Szabó L, Seubert AC, Kretzschmar K. Modelling adult stem cells and their niche in health and disease with epithelial organoids. Semin Cell Dev Biol 2023; 144:20-30. [PMID: 36127261 DOI: 10.1016/j.semcdb.2022.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Adult stem cells are responsible for homoeostasis and regeneration of epithelial tissues. Stem cell function is regulated by both cell autonomous mechanisms as well as the niche. Deregulated stem cell function contributes to diseases such as cancer. Epithelial organoid cultures generated from tissue-resident adult stem cells have allowed unprecedented insights into the biology of epithelial tissues. The subsequent adaptation of organoid technology enabled the modelling of the communication of stem cells with their cellular and non-cellular niche as well as diseases. Starting from its first model described in 2009, the murine small intestinal organoid, we discuss here how epithelial organoid cultures have been become a prime in vitro research tool for cell and developmental biology, bioengineering, and biomedicine in the last decade.
Collapse
Affiliation(s)
- Lili Szabó
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research, University Hospital Würzburg, IZKF/MSNZ, Würzburg, Germany.
| |
Collapse
|
36
|
Wei X, Tan X, Chen Q, Jiang Y, Wu G, Ma X, Fu J, Li Y, Gang K, Yang Q, Ni R, He J, Luo L. Extensive jejunal injury is repaired by migration and transdifferentiation of ileal enterocytes in zebrafish. Cell Rep 2023; 42:112660. [PMID: 37342912 DOI: 10.1016/j.celrep.2023.112660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
A major cause of intestinal failure (IF) is intestinal epithelium necrosis and massive loss of enterocytes, especially in the jejunum, the major intestinal segment in charge of nutrient absorption. However, mechanisms underlying jejunal epithelial regeneration after extensive loss of enterocytes remain elusive. Here, we apply a genetic ablation system to induce extensive damage to jejunal enterocytes in zebrafish, mimicking the jejunal epithelium necrosis that causes IF. In response to injury, proliferation and filopodia/lamellipodia drive anterior migration of the ileal enterocytes into the injured jejunum. The migrated fabp6+ ileal enterocytes transdifferentiate into fabp2+ jejunal enterocytes to fulfill the regeneration, consisting of dedifferentiation to precursor status followed by redifferentiation. The dedifferentiation is activated by the IL1β-NFκB axis, whose agonist promotes regeneration. Extensive jejunal epithelial damage is repaired by the migration and transdifferentiation of ileal enterocytes, revealing an intersegmental migration mechanism of intestinal regeneration and providing potential therapeutic targets for IF caused by jejunal epithelium necrosis.
Collapse
Affiliation(s)
- Xiangyong Wei
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinmiao Tan
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qi Chen
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Guozhen Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xue Ma
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jialong Fu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yongyu Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Kai Gang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Qifen Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Rui Ni
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Jianbo He
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
37
|
Yan J, Zhao Y, Jiang L, Wang Y, Cai W. Decreased Expression of KLF4 Leading to Functional Deficit in Pediatric Patients with Intestinal Failure and Potential Therapeutic Strategy Using Decanoic Acid. Nutrients 2023; 15:2660. [PMID: 37375564 DOI: 10.3390/nu15122660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Pediatric intestinal failure (IF) is the reduction in gut function to below the minimum necessary for the absorption of macronutrients and/or water and electrolytes, such that intravenous supplementation is required to maintain health and/or growth. The overall goal in treating IF is to achieve intestinal adaptation; however, the underlying mechanisms have not been fully understood. In this study, by performing single-cell RNA sequencing in pediatric IF patients, we found that decreased Kruppel-Like Factor 4 (KLF4) may serve as the hub gene responsible for the functional deficit in mature enterocytes in IF patients, leading to the downregulation of solute carrier (SLC) family transporters (e.g., SLC7A9) and, consequently, nutrient malabsorption. We also found that inducible KLF4 was highly sensitive to the loss of certain enteral nutrients: in a rodent model of total parenteral nutrition mimicking the deprivation of enteral nutrition, the expression of KLF4 dramatically decreased only at the tip of the villus and not at the bottom of crypts. By using IF patient-derived intestinal organoids and Caco-2 cells as in vitro models, we demonstrated that the supplementation of decanoic acid (DA) could significantly induce the expression of KLF4 along with SLC6A4 and SLC7A9, suggesting that DA may function as a potential therapeutic strategy to promote cell maturation and functional improvement. In summary, this study provides new insights into the mechanism of intestinal adaptation depending on KLF4, and proposed potential strategies for nutritional management using DA.
Collapse
Affiliation(s)
- Junkai Yan
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Yuling Zhao
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Lu Jiang
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
- Shanghai Institute for Pediatric Research, Shanghai 200092, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai 200092, China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| |
Collapse
|
38
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
39
|
Huang X, Gu W, Zhang J, Lan Y, Colarusso JL, Li S, Pertl C, Lu J, Kim H, Zhu J, Breault DT, Sévigny J, Zhou Q. Stomach-derived human insulin-secreting organoids restore glucose homeostasis. Nat Cell Biol 2023; 25:778-786. [PMID: 37106062 PMCID: PMC10859913 DOI: 10.1038/s41556-023-01130-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023]
Abstract
Gut stem cells are accessible by biopsy and propagate robustly in culture, offering an invaluable resource for autologous cell therapies. Insulin-producing cells can be induced in mouse gut, but it has not been possible to generate abundant and durable insulin-secreting cells from human gut tissues to evaluate their potential as a cell therapy for diabetes. Here we describe a protocol to differentiate cultured human gastric stem cells into pancreatic islet-like organoids containing gastric insulin-secreting (GINS) cells that resemble β-cells in molecular hallmarks and function. Sequential activation of the inducing factors NGN3 and PDX1-MAFA led human gastric stem cells onto a distinctive differentiation path, including a SOX4High endocrine and GalaninHigh GINS precursor, before adopting β-cell identity, at efficiencies close to 70%. GINS organoids acquired glucose-stimulated insulin secretion in 10 days and restored glucose homeostasis for over 100 days in diabetic mice after transplantation, providing proof of concept for a promising approach to treat diabetes.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Wei Gu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaoyue Zhang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ying Lan
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan L Colarusso
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Sanlan Li
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Christoph Pertl
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiaqi Lu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hyunkee Kim
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jian Zhu
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Jean Sévigny
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Quebec, Canada
- Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Qiao Zhou
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
40
|
Deguchi K, Zambaiti E, De Coppi P. Regenerative medicine: current research and perspective in pediatric surgery. Pediatr Surg Int 2023; 39:167. [PMID: 37014468 PMCID: PMC10073065 DOI: 10.1007/s00383-023-05438-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
The field of regenerative medicine, encompassing several disciplines including stem cell biology and tissue engineering, continues to advance with the accumulating research on cell manipulation technologies, gene therapy and new materials. Recent progress in preclinical and clinical studies may transcend the boundaries of regenerative medicine from laboratory research towards clinical reality. However, for the ultimate goal to construct bioengineered transplantable organs, a number of issues still need to be addressed. In particular, engineering of elaborate tissues and organs requires a fine combination of different relevant aspects; not only the repopulation of multiple cell phenotypes in an appropriate distribution but also the adjustment of the host environmental factors such as vascularisation, innervation and immunomodulation. The aim of this review article is to provide an overview of the recent discoveries and development in stem cells and tissue engineering, which are inseparably interconnected. The current status of research on tissue stem cells and bioengineering, and the possibilities for application in specific organs relevant to paediatric surgery have been specifically focused and outlined.
Collapse
Affiliation(s)
- Koichi Deguchi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Elisa Zambaiti
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK
- UOC Chirurgia Pediatrica, Ospedale Infantile Regina Margherita, Turin, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, University College London Great Ormond Street Institute of Child Health, London, UK.
- NIHR BRC SNAPS Great Ormond Street Hospitals, London, UK.
- Stem Cells and Regenerative Medicine Section, Faculty of Population Health Sciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
41
|
Calà G, Sina B, De Coppi P, Giobbe GG, Gerli MFM. Primary human organoids models: Current progress and key milestones. Front Bioeng Biotechnol 2023; 11:1058970. [PMID: 36959902 PMCID: PMC10029057 DOI: 10.3389/fbioe.2023.1058970] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
During the past 10 years the world has experienced enormous progress in the organoids field. Human organoids have shown huge potential to study organ development, homeostasis and to model diseases in vitro. The organoid technology has been widely and increasingly applied to generate patient-specific in vitro 3D cultures, starting from both primary and reprogrammed stem/progenitor cells. This has consequently fostered the development of innovative disease models and new regenerative therapies. Human primary, or adult stem/progenitor cell-derived, organoids can be derived from both healthy and pathological primary tissue samples spanning from fetal to adult age. The resulting 3D culture can be maintained for several months and even years, while retaining and resembling its original tissue's properties. As the potential of this technology expands, new approaches are emerging to further improve organoid applications in biology and medicine. This review discusses the main organs and tissues which, as of today, have been modelled in vitro using primary organoid culture systems. Moreover, we also discuss the advantages, limitations, and future perspectives of primary human organoids in the fields of developmental biology, disease modelling, drug testing and regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Calà
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Beatrice Sina
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Politecnico di Milano, Milano, Italy
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Mattia Francesco Maria Gerli
- Division of Surgery and Interventional Science, Department of Surgical Biotechnology, University College London, London, United Kingdom
- Stem Cell and Regenerative Medicine Section, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
42
|
Wu L, Ai Y, Xie R, Xiong J, Wang Y, Liang Q. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. LAB ON A CHIP 2023; 23:1192-1212. [PMID: 36644984 DOI: 10.1039/d2lc00804a] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organoids/organs-on-a-chip open up new frontiers for basic and clinical research of intestinal diseases. Species-specific differences hinder research on animal models, while organoids are emerging as powerful tools due to self-organization from stem cells and the reproduction of the functional properties in vivo. Organs-on-a-chip is also accelerating the process of faithfully mimicking the intestinal microenvironment. And by combining organoids and organ-on-a-chip technologies, they further are expected to serve as innovative preclinical tools and could outperform traditional cell culture models or animal models in the future. Above all, organoids/organs-on-a-chip with other strategies like genome editing, 3D printing, and organoid biobanks contribute to modeling intestinal homeostasis and disease. Here, the current challenges and future trends in intestinal pathophysiological models will be summarized.
Collapse
Affiliation(s)
- Lei Wu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Ruoxiao Xie
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Jialiang Xiong
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Yu Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China.
| |
Collapse
|
43
|
Jaksic T. Current short bowel syndrome management: An era of improved outcomes and continued challenges. J Pediatr Surg 2023; 58:789-798. [PMID: 36870826 DOI: 10.1016/j.jpedsurg.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023]
Abstract
Prior to the late 1960s, pediatric short bowel syndrome was a frequently fatal disease. Currently, pediatric interdisciplinary bowel rehabilitation centers report very high survival rates. The mortality trends, up-to-date definitions, incidence, causes, and clinical manifestations of short bowel syndrome are reviewed. Emphasis is placed upon the nutritional, medical, and surgical advances that have contributed to the dramatic improvement in outcomes for pediatric short bowel syndrome patients. Recent findings and remaining challenges are highlighted.
Collapse
Affiliation(s)
- Tom Jaksic
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, 333 Longwood Avenue, Boston MA, 02115, USA.
| |
Collapse
|
44
|
Däullary T, Imdahl F, Dietrich O, Hepp L, Krammer T, Fey C, Neuhaus W, Metzger M, Vogel J, Westermann AJ, Saliba AE, Zdzieblo D. A primary cell-based in vitro model of the human small intestine reveals host olfactomedin 4 induction in response to Salmonella Typhimurium infection. Gut Microbes 2023; 15:2186109. [PMID: 36939013 PMCID: PMC10038062 DOI: 10.1080/19490976.2023.2186109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Infection research largely relies on classical cell culture or mouse models. Despite having delivered invaluable insights into host-pathogen interactions, both have limitations in translating mechanistic principles to human pathologies. Alternatives can be derived from modern Tissue Engineering approaches, allowing the reconstruction of functional tissue models in vitro. Here, we combined a biological extracellular matrix with primary tissue-derived enteroids to establish an in vitro model of the human small intestinal epithelium exhibiting in vivo-like characteristics. Using the foodborne pathogen Salmonella enterica serovar Typhimurium, we demonstrated the applicability of our model to enteric infection research in the human context. Infection assays coupled to spatio-temporal readouts recapitulated the established key steps of epithelial infection by this pathogen in our model. Besides, we detected the upregulation of olfactomedin 4 in infected cells, a hitherto unrecognized aspect of the host response to Salmonella infection. Together, this primary human small intestinal tissue model fills the gap between simplistic cell culture and animal models of infection, and shall prove valuable in uncovering human-specific features of host-pathogen interplay.
Collapse
Affiliation(s)
- Thomas Däullary
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
- Faculty of Biology, Biocenter, Chair of Microbiology, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany
| | - Fabian Imdahl
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Oliver Dietrich
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Laura Hepp
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
| | - Tobias Krammer
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Christina Fey
- Fraunhofer Institute for Silicate Research (ISC),Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
| | - Winfried Neuhaus
- Austrian Institute of Technology (AIT), Vienna, Austria
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University (DPU), Krems, Austria
| | - Marco Metzger
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
- Fraunhofer Institute for Silicate Research (ISC),Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
- Fraunhofer Institute for Silicate Research, Project Center for Stem Cell Process Engineering, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz-Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Daniela Zdzieblo
- Chair of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg (UKW), Würzburg, Germany
- Fraunhofer Institute for Silicate Research (ISC),Translational Center Regenerative Therapies (TLC-RT), Würzburg, Germany
- Fraunhofer Institute for Silicate Research, Project Center for Stem Cell Process Engineering, Würzburg, Germany
| |
Collapse
|
45
|
Hanyu H, Sugimoto S, Sato T. Visualization of Differentiated Cells in 3D and 2D Intestinal Organoid Cultures. Methods Mol Biol 2023; 2650:141-153. [PMID: 37310630 DOI: 10.1007/978-1-0716-3076-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal epithelium maintains self-renewal and differentiation capacities via coordination of key signaling pathways, including the Wnt, bone morphogenetic protein (BMP), epidermal growth factor (EGF), and Notch signaling pathways. Based on this understanding, a combination of stem cell niche factors, EGF, Noggin, and the Wnt agonist R-spondin was shown to enable the growth of mouse intestinal stem cells and the formation of organoids with indefinite self-renewal and full differentiation capacity. Two small-molecule inhibitors, including a p38 inhibitor and a TGF-beta inhibitor, were added to propagate cultured human intestinal epithelium but at the cost of differentiation capacity. There have been improvements in culture conditions to overcome these issues. Substitution of the EGF and a p38 inhibitor with insulin-like growth factor-1 (IGF-1) and fibroblast growth factor-2 (FGF-2) enabled multilineage differentiation. Monolayer culture with mechanical flow to the apical epithelium promoted the formation of villus-like structures with mature enterocyte gene expression. Here, we summarize our recent technological improvements in human intestinal organoid culture that will deepen the understanding of intestinal homeostasis and diseases.
Collapse
Affiliation(s)
- Hikaru Hanyu
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shinya Sugimoto
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
46
|
Meran L, Tullie L, Eaton S, De Coppi P, Li VSW. Bioengineering human intestinal mucosal grafts using patient-derived organoids, fibroblasts and scaffolds. Nat Protoc 2023; 18:108-135. [PMID: 36261633 DOI: 10.1038/s41596-022-00751-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/30/2022] [Indexed: 01/14/2023]
Abstract
Tissue engineering is an interdisciplinary field that combines stem cells and matrices to form functional constructs that can be used to repair damaged tissues or regenerate whole organs. Tissue stem cells can be expanded and functionally differentiated to form 'mini-organs' resembling native tissue architecture and function. The choice of the scaffold is also pivotal to successful tissue reconstruction. Scaffolds may be broadly classified into synthetic or biological depending upon the purpose of the engineered organ. Bioengineered intestinal grafts represent a potential source of transplantable tissue for patients with intestinal failure, a condition resulting from extensive anatomical and functional loss of small intestine and therefore digestive and absorptive capacity. Prior strategies in intestinal bioengineering have predominantly used either murine or pluripotent cells and synthetic or decellularized rodent scaffolds, thus limiting their translation. Microscale models of human intestinal epithelium on shaped hydrogels and synthetic scaffolds are more physiological, but their regenerative potential is limited by scale. Here we present a protocol for bioengineering human intestinal grafts using patient-derived materials in a bioreactor culture system. This includes the isolation, expansion and biobanking of patient-derived intestinal organoids and fibroblasts, the generation of decellularized human intestinal scaffolds from native human tissue and providing a system for recellularization to form transplantable grafts. The duration of this protocol is 12 weeks, and it can be completed by scientists with prior experience of organoid culture. The resulting engineered mucosal grafts comprise physiological intestinal epithelium, matrix and surrounding niche, offering a valuable tool for both regenerative medicine and the study of human gastrointestinal diseases.
Collapse
Affiliation(s)
- Laween Meran
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
- Medical Research Council Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, DBC, Great Ormond Street Institute of Child Health, University College London, London, UK.
- Specialist Neonatal and Paediatric Surgery Unit, Great Ormond Street Hospital, London, UK.
| | - Vivian S W Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
47
|
Jalan-Sakrikar N, Brevini T, Huebert RC, Sampaziotis F. Organoids and regenerative hepatology. Hepatology 2023; 77:305-322. [PMID: 35596930 PMCID: PMC9676408 DOI: 10.1002/hep.32583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/03/2023]
Abstract
The burden of liver diseases is increasing worldwide, with liver transplantation remaining the only treatment option for end-stage liver disease. Regenerative medicine holds great potential as a therapeutic alternative, aiming to repair or replace damaged liver tissue with healthy functional cells. The properties of the cells used are critical for the efficacy of this approach. The advent of liver organoids has not only offered new insights into human physiology and pathophysiology, but also provided an optimal source of cells for regenerative medicine and translational applications. Here, we discuss various historical aspects of 3D organoid culture, how it has been applied to the hepatobiliary system, and how organoid technology intersects with the emerging global field of liver regenerative medicine. We outline the hepatocyte, cholangiocyte, and nonparenchymal organoids systems available and discuss their advantages and limitations for regenerative medicine as well as future directions.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
48
|
Abstract
Our understanding of the biology of the intestinal epithelium has advanced since the establishment of an organoid culture system. Although organoids have enabled investigation of the mechanism of self-renewal of human intestinal stem cells in vitro, it remains difficult to clarify the behavior of human normal and diseased intestinal epithelium in vivo. Recently, we developed a xenotransplantation system in which human intestinal organoids are engrafted onto epithelium-depleted mouse colons. This xenograft recapitulated the original tissue structures. Upon xenotransplantation, normal colon organoids developed normal colon crypt structures without tumorigenesis, whereas tumor-derived organoids formed colonic tumors resembling the original tumors. The non-tumorigenicity of human intestinal organoids highlights the safety of organoid-based regenerative medicine. As an example of regenerative medicine for short bowel syndrome, we devised a unique organ-repurposing approach to convert colons into small intestines by organoid transplantation. In this approach, the transplanted rat small intestinal organoids not only engrafted onto the rat colons but also remodeled the colon subepithelial structures into a small intestine-like conformation. Luminal flow accelerated the maturation of villi in the small intestine, which promoted the formation of a lymphovascular network mimicking lacteals. In this review, we provide an overview of recent advances in gastrointestinal organoid transplantation and share our understanding of human disease biology and regenerative medicine derived from these studies.
Collapse
|
49
|
Wan J, Wu T, Wang K, Xia K, Yin L, Chen C. Polydopamine-modified decellularized intestinal scaffolds loaded with adipose-derived stem cells promote intestinal regeneration. J Mater Chem B 2022; 11:154-168. [PMID: 36458582 DOI: 10.1039/d2tb01389d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regeneration of gastrointestinal tissues remains a great challenge due to their unique microenvironment. Functional composite decellularized scaffolds have shown great potential in gastrointestinal repair and inducing gastrointestinal tissue-specific proliferation. In this study, polydopamine (PDA)-mediated surface modification of decellularized intestinal scaffolds (DIS), combined with adipose tissue-derived stem cells (ADSC), was used to promote intestinal wound healing while avoiding intestinal resection. The results showed that DIS had good biocompatibility and could maintain the growth and proliferation of ADSC. Moreover, PDA-coated DIS not only had anti-infection ability but could also further promote the secretory activity for the paracrine effects of ADSC. ADSC cultured on PDA-DIS produced significantly higher levels of anti-inflammatory and proangiogenic cytokines than those cultured on plastic plates or DIS. In vivo, ADSC-PDA-DIS significantly promoted intestinal wound closure in rat intestinal defect models. Moreover, ADSC-PDA-DIS was able to induce more neovascularization at 4 weeks postoperatively and promoted macrophage recruitment to accelerate wound healing. Taken together, the results showed that PDA-modified DIS could significantly improve the efficacy of stem cell therapy, and ADSC-PDA-DIS could improve the wound healing process with anti-infection effects, enhancing neovascularization and immunoregulation, which may be of great clinical significance for gastrointestinal regeneration.
Collapse
Affiliation(s)
- Jian Wan
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, 226000, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226000, China
| | - Tianqi Wu
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Kai Xia
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Lu Yin
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chunqiu Chen
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
50
|
Elia E, Brownell D, Chabaud S, Bolduc S. Tissue Engineering for Gastrointestinal and Genitourinary Tracts. Int J Mol Sci 2022; 24:ijms24010009. [PMID: 36613452 PMCID: PMC9820091 DOI: 10.3390/ijms24010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The gastrointestinal and genitourinary tracts share several similarities. Primarily, these tissues are composed of hollow structures lined by an epithelium through which materials need to flow with the help of peristalsis brought by muscle contraction. In the case of the gastrointestinal tract, solid or liquid food must circulate to be digested and absorbed and the waste products eliminated. In the case of the urinary tract, the urine produced by the kidneys must flow to the bladder, where it is stored until its elimination from the body. Finally, in the case of the vagina, it must allow the evacuation of blood during menstruation, accommodate the male sexual organ during coitus, and is the natural way to birth a child. The present review describes the anatomy, pathologies, and treatments of such organs, emphasizing tissue engineering strategies.
Collapse
Affiliation(s)
- Elissa Elia
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - David Brownell
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1J 1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 42282)
| |
Collapse
|