1
|
Agarwal P, Sampson A, Hueneman K, Choi K, Jakobsen NA, Uible E, Ishikawa C, Yeung J, Bolanos L, Zhao X, Setchell KD, Haslam DB, Galloway-Pena J, Byrd JC, Vyas P, Starczynowski DT. Microbial metabolite drives ageing-related clonal haematopoiesis via ALPK1. Nature 2025:10.1038/s41586-025-08938-8. [PMID: 40269158 DOI: 10.1038/s41586-025-08938-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
Clonal haematopoiesis of indeterminate potential (CHIP) involves the gradual expansion of mutant pre-leukaemic haematopoietic cells, which increases with age and confers a risk for multiple diseases, including leukaemia and immune-related conditions1. Although the absolute risk of leukaemic transformation in individuals with CHIP is very low, the strongest predictor of progression is the accumulation of mutant haematopoietic cells2. Despite the known associations between CHIP and increased all-cause mortality, our understanding of environmental and regulatory factors that underlie this process during ageing remains rudimentary. Here we show that intestinal alterations, which can occur with age, lead to systemic dissemination of a microbial metabolite that promotes pre-leukaemic cell expansion. Specifically, ADP-D-glycero-β-D-manno-heptose (ADP-heptose), a biosynthetic bi-product specific to Gram-negative bacteria3-5, is uniquely found in the circulation of older individuals and favours the expansion of pre-leukaemic cells. ADP-heptose is also associated with increased inflammation and cardiovascular risk in CHIP. Mechanistically, ADP-heptose binds to its receptor, ALPK1, triggering transcriptional reprogramming and NF-κB activation that endows pre-leukaemic cells with a competitive advantage due to excessive clonal proliferation. Collectively, we identify that the accumulation of ADP-heptose represents a direct link between ageing and expansion of rare pre-leukaemic cells, suggesting that the ADP-heptose-ALPK1 axis is a promising therapeutic target to prevent progression of CHIP to overt leukaemia and immune-related conditions.
Collapse
Affiliation(s)
- Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Niels Asger Jakobsen
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lyndsey Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xueheng Zhao
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - David B Haslam
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessica Galloway-Pena
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | - Paresh Vyas
- MRC Molecular Haematology Unit, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Hormoz S, Sankaran VG, Mullally A. Evolution of myeloproliferative neoplasms from normal blood stem cells. Haematologica 2025; 110:840-849. [PMID: 39633553 PMCID: PMC11959262 DOI: 10.3324/haematol.2023.283951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Over the course of the last decade, genomic studies in the context of normal human hematopoiesis have provided new insights into the early pathogenesis of myeloproliferative neoplasms (MPN). A preclinical phase of MPN, termed clonal hematopoiesis was identified and subsequent lineage tracing studies revealed a multi-decade long time interval from acquisition of an MPN phenotypic driver mutation in a hematopoietic stem cell to the development of overt MPN. Multiple germline variants associated with MPN risk have been identified through genome-wide association studies and in some cases functional interrogation of the impact of the variant has uncovered new insights into hematopoietic stem cell biology and MPN development. Increasingly sophisticated methods to study clonal contributions to human hematopoiesis and measure hematopoietic stem cell fitness have helped to discern the biology underlying the tremendous clinical heterogeneity observed in MPN. Despite these advances, significant knowledge gaps remain, particularly with respect to germline genetic contributors to both MPN pathogenesis and phenotypic diversity, as well as limitations in the ability to prospectively quantify rates of clonal expansion in individual MPN patients. Ultimately, we envisage a personalized approach to MPN care in the future, in which an individualized genetic assessment can predict MPN trajectory and this information will be used to inform and guide therapy. MPN is particularly amenable to precision medicine strategies and our increased understanding of the evolution of MPN from normal blood stem cells provides a unique opportunity for early therapeutic intervention approaches and potentially MPN prevention strategies.
Collapse
Affiliation(s)
- Sahand Hormoz
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Vijay G Sankaran
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Hematology Division, VA Palo Alto Health Care System, Palo Alto, CA.
| |
Collapse
|
3
|
Giudice V, Selleri C. How fast does leukemia progress? Leukemia 2025; 39:805-809. [PMID: 39994464 DOI: 10.1038/s41375-025-02536-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081, Baronissi, Italy.
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131, Salerno, Italy.
| | - Carmine Selleri
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081, Baronissi, Italy.
- Hematology and Transplant Center, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", 84131, Salerno, Italy.
| |
Collapse
|
4
|
Safonov A, Nomakuchi TT, Chao E, Horton C, Dolinsky JS, Yussuf A, Richardson M, Speare V, Li S, Bogus ZC, Bonanni M, Raper A, Odia T, Wubbenhorst BS, Faulders E, Schuth EM, Loranger K, Zhang J, Scalise CB, ElNaggar A, Sha Y, Felker SA, Weitzel J, Kallish S, Ritchie MD, Nathanson KL, Drivas TG. A genotype-first approach identifies high incidence of NF1 pathogenic variants with distinct disease associations. Nat Commun 2025; 16:3121. [PMID: 40169570 PMCID: PMC11962086 DOI: 10.1038/s41467-025-57077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
Loss of function variants in the NF1 gene cause neurofibromatosis type 1, a genetic disorder characterized by complete penetrance, characteristic physical exam findings, and a substantially increased risk for malignancy. However, our understanding of the disorder is based on patients ascertained through phenotype-first approaches, which estimate prevalence at 1 in 3000. Leveraging a genotype-first approach in multiple large patient cohorts including over one million individuals, we demonstrate an unexpectedly high prevalence (1 in 1,286) of NF1 pathogenic variants. Half are identified in individuals lacking clinical features of NF1, with many appearing to have post-zygotic mosaicism for the identified variant. Incidentally discovered variants are not associated with classic neurofibromatosis features but are associated with an increased incidence of malignancy compared to control populations. Our findings suggest that NF1 pathogenic variants are substantially more common than previously thought, often characterized by somatic mosaicism and reduced penetrance, and are important contributors to cancer risk in the general population.
Collapse
Affiliation(s)
- Anton Safonov
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tomoki T Nomakuchi
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Chao
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Carrie Horton
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Jill S Dolinsky
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Amal Yussuf
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Marcy Richardson
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Virginia Speare
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Shuwei Li
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA, USA
| | - Zoe C Bogus
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Bonanni
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Raper
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Trust Odia
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley S Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elsa Faulders
- College of Arts and Sciences, Oberlin College, Oberlin, OH, USA
| | - Elisabeth M Schuth
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | - Stephanie A Felker
- University of Alabama in Birmingham, Heersink School of Medicine, Department of Genetics, Birmingham, AL, USA
- HudsonAlpha Institute of Biotechnology, Huntsville, AL, USA
| | - Jeffrey Weitzel
- Division of Precision Prevention, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Staci Kallish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Theodore G Drivas
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Agarwal G, Antoszewski M, Xie X, Pershad Y, Arora UP, Poon CL, Lyu P, Lee AJ, Guo CJ, Ye T, Norford LB, Neehus AL, Volpe LD, Wahlster L, Ranasinghe D, Ho TC, Barlowe TS, Chow A, Schurer A, Taggart J, Durham BH, Abdel-Wahab O, McGraw KL, Allan JM, Soldatov R, Bick AG, Kharas MG, Sankaran VG. Inherited resilience to clonal hematopoiesis by modifying stem cell RNA regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645017. [PMID: 40196615 PMCID: PMC11974868 DOI: 10.1101/2025.03.24.645017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Somatic mutations that increase hematopoietic stem cell (HSC) fitness drive their expansion in clonal hematopoiesis (CH) and predispose to blood cancers. Although CH frequently occurs with aging, it rarely progresses to overt malignancy. Population variation in the growth rate and potential of mutant clones suggests the presence of genetic factors protecting against CH, but these remain largely undefined. Here, we identify a non-coding regulatory variant, rs17834140-T, that significantly protects against CH and myeloid malignancies by downregulating HSC-selective expression and function of the RNA-binding protein MSI2. By modeling variant effects and mapping MSI2 binding targets, we uncover an RNA network that maintains human HSCs and influences CH risk. Importantly, rs17834140-T is associated with slower CH expansion rates in humans, and stem cell MSI2 levels modify ASXL1-mutant HSC clonal dominance in experimental models. These findings leverage natural resilience to highlight a key role for post-transcriptional regulation in human HSCs, and offer genetic evidence supporting inhibition of MSI2 or its downstream targets as rational strategies for blood cancer prevention.
Collapse
Affiliation(s)
- Gaurav Agarwal
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mateusz Antoszewski
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xueqin Xie
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yash Pershad
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Uma P. Arora
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chi-Lam Poon
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peng Lyu
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew J. Lee
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chun-Jie Guo
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tianyi Ye
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Laila Barakat Norford
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna-Lena Neehus
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lucrezia della Volpe
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Lara Wahlster
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Diyanath Ranasinghe
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tzu-Chieh Ho
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Trevor S. Barlowe
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arthur Chow
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra Schurer
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James Taggart
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin H. Durham
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathy L. McGraw
- Immune Deficiency Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, MD; Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD; Myeloid Malignancies Program, National Institute of Health, Bethesda, MD
| | - James M. Allan
- Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ruslan Soldatov
- Computational Oncology Service, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Latorre-Crespo E, Robertson NA, Kosebent EG, MacGillivray L, Murphy L, Uddin M, Whitsel E, Honigberg M, Bick A, Reiner AP, Orrù V, Marongiu M, Cucca F, Fiorillo E, Deary IJ, Harris S, Cox S, Marioni R, Schumacher L, Chandra T, Kirschner K. Clinical progression of clonal hematopoiesis is determined by a combination of mutation timing, fitness, and clonal structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640879. [PMID: 40093158 PMCID: PMC11908133 DOI: 10.1101/2025.02.28.640879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Clonal hematopoiesis (CH) is characterized by expanding blood cell clones carrying somatic mutations in healthy aged individuals and is associated with various age-related diseases and all-cause mortality. While CH mutations affect diverse genes associated with myeloid malignancies, their mechanisms of expansion and disease associations remain poorly understood. We investigate the relationship between clonal fitness and clinical outcomes by integrating data from three longitudinal aging cohorts (n=713, observations=2,341). We demonstrate pathway-specific fitness advantage and clonal composition influence clonal dynamics. Further, the timing of mutation acquisition is necessary to determine the extent of clonal expansion reached during the host individual's lifetime. We introduce MACS120, a metric combining mutation context, timing, and variant fitness to predict future clonal growth, outperforming traditional variant allele frequency measurements in predicting clinical outcomes. Our unified analytical framework enables standardized clonal dynamics inference across cohorts, advancing our ability to predict and potentially intervene in CH-related pathologies.
Collapse
Affiliation(s)
- Eric Latorre-Crespo
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Centre de Recerca Matemàtica, Bellaterra (Barcelona), Spain
| | - Neil A Robertson
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Mayo Clinic, Rochester, Minnesota, USA
| | - E Gozde Kosebent
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Mayo Clinic, Rochester, Minnesota, USA
| | - Louise MacGillivray
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Mesbah Uddin
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Michael Honigberg
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Heart and Vascular Institute, Massachusetts General Brigham, Boston, MA, USA
| | - Alex Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Alexander P Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Health Systems and Population Health, University of Washington, Seattle, WA, USA
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
| | - Michele Marongiu
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
| | - Francesco Cucca
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
- Department of Biomedical Sciences, National Research Council, 08045, Lanusei, Italy
| | - Edoardo Fiorillo
- Institute for Genetic and Biomedical Research, National Research Council, 08045, Lanusei, Italy
| | - Ian J Deary
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah Harris
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Simon Cox
- Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Riccardo Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Linus Schumacher
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, EH16 4UU, UK
- School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, UK
| | | | - Kristina Kirschner
- Cancer Research UK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, G61 1QH, UK
- Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Zhuang Q, Jin S, Wang W, Wang Y, Tong H, Liu Z, Sun J. Clonal hematopoiesis of indeterminate potential: the root cause of, and fertile ground for, hematological malignancies. Trends Mol Med 2025; 31:252-264. [PMID: 39490273 DOI: 10.1016/j.molmed.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Clonal hematopoiesis (CH) of indeterminate potential (CHIP), characterized by propagation of blood cell clones carrying somatic mutations in specific driver genes, is increasingly recognized as a critical factor in the development of hematological malignancies. This phenomenon, which often emerges with age, underscores the complex interplay between genetic predisposition and environmental influences in cancer initiation and progression. Recent years have witnessed significant advances in our understanding of the link between CHIP and hematological diseases. In this review, we provide a comprehensive overview of the features of CHIP and explore its role in promoting tumorigenesis and influencing treatment outcomes for blood cancers. Finally, we summarize current available tools for risk stratification and discuss management strategies for patients with CHIP.
Collapse
Affiliation(s)
- Qiqi Zhuang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Shengjie Jin
- Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Wei Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Myelodysplastic Syndromes Diagnosis and Therapy Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| | - Zuyun Liu
- The Second Affiliated Hospital, and School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Hematologic Malignancies, Diagnosis, and Treatment, Hangzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Weeks LD. Monitoring CH: time to move beyond VAF? Blood 2025; 145:907-908. [PMID: 40014324 DOI: 10.1182/blood.2024027472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
|
9
|
Bak-Gordon P, Manley JL. SF3B1: from core splicing factor to oncogenic driver. RNA (NEW YORK, N.Y.) 2025; 31:314-332. [PMID: 39773890 PMCID: PMC11874996 DOI: 10.1261/rna.080368.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Highly recurrent somatic mutations in the gene encoding the core splicing factor SF3B1 are drivers of multiple cancer types. SF3B1 is a scaffold protein that orchestrates multivalent protein-protein interactions within the spliceosome that are essential for recognizing the branchsite (BS) and selecting the 3' splice site during the earliest stage of pre-mRNA splicing. In this review, we first describe the molecular mechanism by which multiple oncogenic SF3B1 mutations disrupt splicing. This involves perturbation of an early spliceosomal trimeric protein complex necessary for accurate BS recognition in a subset of introns, which leads to activation of upstream branchpoints and selection of cryptic 3' splice sites. We next discuss how specific transcripts affected by aberrant splicing in SF3B1-mutant cells contribute to the initiation and progression of cancer. Finally, we highlight the prognostic value and disease phenotypes of different cancer-associated SF3B1 mutations, which is critical for developing new targeted therapeutics against SF3B1-mutant cancers still lacking in the clinic.
Collapse
Affiliation(s)
- Pedro Bak-Gordon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
10
|
Poon G, Vedi A, Sanders M, Laurenti E, Valk P, Blundell JR. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. CELL GENOMICS 2025; 5:100744. [PMID: 39842433 PMCID: PMC11872528 DOI: 10.1016/j.xgen.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/03/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
The representation of driver mutations in preleukemic hematopoietic stem cells (pHSCs) provides a window into the somatic evolution that precedes acute myeloid leukemia (AML). Here, we isolate pHSCs from the bone marrow of 16 patients diagnosed with AML and perform single-cell DNA sequencing on thousands of cells to reconstruct phylogenetic trees of the major driver clones in each patient. We develop a computational framework that can infer levels of positive selection operating during preleukemic evolution from the statistical properties of these phylogenetic trees. Combining these data with 67 previously published phylogenetic trees, we find that the highly variable structures of preleukemic trees emerge naturally from a simple model of somatic evolution with pervasive positive selection typically in the range of 9%-24% per year. At these levels of positive selection, we show that the identification of early multiple-mutant clones could be used to identify individuals at risk of future AML.
Collapse
Affiliation(s)
- Gladys Poon
- Early Cancer Institute, University of Cambridge, Cambridge, UK.
| | - Aditi Vedi
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK; Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Mathijs Sanders
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Elisa Laurenti
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Peter Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | |
Collapse
|
11
|
Kallai A, Ungvari Z, Fekete M, Maier AB, Mikala G, Andrikovics H, Lehoczki A. Genomic instability and genetic heterogeneity in aging: insights from clonal hematopoiesis (CHIP), monoclonal gammopathy (MGUS), and monoclonal B-cell lymphocytosis (MBL). GeroScience 2025; 47:703-720. [PMID: 39405013 PMCID: PMC11872960 DOI: 10.1007/s11357-024-01374-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 03/04/2025] Open
Abstract
Aging is a multifaceted process characterized by a gradual decline in physiological function and increased susceptibility to a range of chronic diseases. Among the molecular and cellular mechanisms driving aging, genomic instability is a fundamental hallmark, contributing to increased mutation load and genetic heterogeneity within cellular populations. This review explores the role of genomic instability and genetic heterogeneity in aging in the hematopoietic system, with a particular focus on clonal hematopoiesis of indeterminate potential (CHIP), monoclonal gammopathy of undetermined significance (MGUS), and monoclonal B-cell lymphocytosis (MBL) as biomarkers. CHIP involves the clonal expansion of hematopoietic stem cells with somatic mutations. In contrast, MGUS is characterized by the presence of clonal plasma cells producing monoclonal immunoglobulins, while MBL is characterized by clonal proliferation of B cells. These conditions are prevalent in the aging population and serve as measurable indicators of underlying genomic instability. Studying these entities offers valuable insights into the mechanisms by which somatic mutations accumulate and drive clonal evolution in the hematopoietic system, providing a deeper understanding of how aging impacts cellular and tissue homeostasis. In summary, the hematopoietic system serves as a powerful model for investigating the interplay between genomic instability and aging. Incorporating age-related hematological conditions into aging research, alongside other biomarkers such as epigenetic clocks, can enhance the precision and predictive power of biological age assessments. These biomarkers provide a comprehensive view of the aging process, facilitating the early detection of age-related diseases and hopefully enabling personalized healthcare strategies.
Collapse
Affiliation(s)
- Attila Kallai
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Doctoral College/Institute of Preventive Medicine and Public Health, International Training Program in Geroscience, Semmelweis University, Budapest, Hungary
| | - Mónika Fekete
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Republic of Singapore
- Healthy Longevity Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, @AgeSingapore, National University Health System, Singapore, Republic of Singapore
| | - Gabor Mikala
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Hajnalka Andrikovics
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular Genetics, Central Hospital of Southern Pest, National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Andrea Lehoczki
- Healthy Aging Program, Institute of Preventive Medicine and Public Health, Semmelweis University, Budapest, Hungary.
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Simitsis P, Nohria A, Kelleher J, Boulet J, Wanderley MRB, Natarajan P, Libby P, Mehra MR. Clonal Hematopoiesis of Indeterminate Potential and Long-term Outcomes in Heart Transplantation. J Card Fail 2025; 31:400-410. [PMID: 38885783 DOI: 10.1016/j.cardfail.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Clonal hematopoiesis of indeterminate potential (CHIP) mutations, a trait of aging, has been associated with the progression of cardiovascular disease and the development of malignancy. Uncertainty prevails regarding a robust association between CHIP and heart-transplantation (HT) outcomes. OBJECTIVES To determine the prevalence of CHIP mutations in HT and their association with long-term outcomes, including cardiac allograft vasculopathy (CAV), graft failure, malignancy, and all-cause mortality. METHODS We conducted a mixed retrospective-prospective observational study of HT recipients with targeted sequencing for CHIP mutations (variant allele frequency [VAF] of ≥ 2%). The primary composite outcome was the first occurrence of CAV grade ≥ 2, graft failure, malignancy, cardiac retransplantation, or all-cause death. Secondary outcomes were the individual components of the composite primary outcome. Sensitivity analyses with base-case and extreme scenarios were performed. RESULTS Among 95 HT recipients, 30 had CHIP mutations (31.6%). DNMT3A mutations were most common (44.7%), followed by PPM1D (13.2%), SF3B1 (10.5%), TET2 (7.9%), and TP53 (7.9%). The only significant independent predictor of CHIP was age at enrollment or age at transplantation. After multivariable adjustment, CHIP mutations were not associated with the primary outcome, which occurred in 44 (46.3%) patients (HR = 0.487; 95% CI:0.197-1.204; P = 0.119), nor were they associated with mlalignancy alone, or death. CONCLUSION We demonstrated no association between CHIP mutations and post-transplant outcomes, including CAV, graft failure, malignancy, and all-cause mortality. In line with previously published data, our analysis provides additional evidence about the lack of clinical value of using CHIP mutations as a biomarker for surveillance in outcomes after HT.
Collapse
Affiliation(s)
- Panagiotis Simitsis
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anju Nohria
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jane Kelleher
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jacinthe Boulet
- Department of Medicine, Division of Cardiology, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | - Mauro R B Wanderley
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pradeep Natarajan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mandeep R Mehra
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
13
|
Regan JA, Shah SH. CHIP-ing Away at Post-Transplant Outcomes: the Role of Somatic Mutations in Heart Transplant Outcomes. J Card Fail 2025; 31:411-414. [PMID: 39710296 PMCID: PMC12147682 DOI: 10.1016/j.cardfail.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Affiliation(s)
- Jessica A Regan
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina
| | - Svati H Shah
- Division of Cardiology, Duke University School of Medicine, Durham, North Carolina; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina; Duke Center for Precision Health, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
14
|
Pershad Y, Uddin MM, Xue L, Haessler J, Collins JM, Mack TM, Glick E, Glaser V, Zhao K, Jaiswal S, Manson JE, Pandey U, Desai P, Natarajan P, Honigberg MC, Kooperberg C, Whitsel EA, Kitzman JO, Bick AG, Reiner AP. Correlates and Consequences of Clonal Hematopoiesis Expansion Rate: A 15-Year Longitudinal Study of 6,986 Women. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.12.25320422. [PMID: 39867366 PMCID: PMC11759600 DOI: 10.1101/2025.01.12.25320422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is associated with increased mortality and malignancy risk, yet the determinants of clonal expansion remain poorly understood. We performed sequencing at >4,000x depth of coverage for CHIP mutations in 6,986 postmenopausal women from the Women's Health Initiative at two timepoints approximately 15 years apart. Among 3,685 mutations detected at baseline (VAF ≥ 0.5%), 50% progressed to CHIP (VAF ≥ 2%) at follow-up. We confirmed that clonal expansion is highly dependent on initial clone size and CHIP driver gene, with SF3B1 and JAK2 mutations exhibiting the fastest growth rate. We identified germline variants in TERT , IL6R , TCL1A , and MSI2 that modulate clonal expansion rate. Measured baseline leukocyte telomere length showed differential effects on incident CHIP risk, with shorter baseline leukocyte telomere length predisposing to incident PPM1D mutations and longer baseline leukocyte telomere length favoring incident DNMT3A mutations. We discovered that the IL6R missense variant p.Asp358Ala specifically impairs TET2 clonal expansion, supported by direct measurements of soluble interleukin-6 receptor and interleukin-6. Faster clonal growth rate was associated with increased risk of cytopenia, leukemia, and all-cause mortality. Notably, CHIP clonal expansion rate mediated 34.4% and 43.7% of the Clonal Hematopoiesis Risk Score's predictive value for leukemia and all-cause mortality, respectively. These findings reveal key biological determinants of CHIP progression and suggest that incorporating growth rate measurements could enhance risk stratification.
Collapse
|
15
|
García-Tejera R, Tian JY, Amoyel M, Grima R, Schumacher LJ. Licensing and niche competition in spermatogenesis: mathematical models suggest complementary regulation of tissue maintenance. Development 2025; 152:dev202796. [PMID: 39745313 PMCID: PMC11829763 DOI: 10.1242/dev.202796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/21/2024] [Indexed: 02/17/2025]
Abstract
To maintain and regenerate adult tissues after injury, division and differentiation of tissue-resident stem cells must be precisely regulated. It remains elusive which regulatory strategies prevent exhaustion or overgrowth of the stem cell pool, whether there is coordination between multiple mechanisms, and how to detect them from snapshots. In Drosophila testes, somatic stem cells transition to a state that licenses them to differentiate, but remain capable of returning to the niche and resuming cell division. Here, we build stochastic mathematical models for the somatic stem cell population to investigate how licensing contributes to homeostasis. We find that licensing, in combination with differentiation occurring in pairs, is sufficient to maintain homeostasis and prevent stem cell extinction from stochastic fluctuations. Experimental data have shown that stem cells are competing for niche access, and our mathematical models demonstrate that this contributes to the reduction in the variability of stem cell numbers but does not prevent extinction. Hence, a combination of both regulation strategies, licensing with pairwise differentiation and competition for niche access, may be needed to reduce variability and prevent extinction simultaneously.
Collapse
Affiliation(s)
- Rodrigo García-Tejera
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Jing-Yi Tian
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Linus J. Schumacher
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
16
|
An J, Ko M. Editorial for the Special Issue 'Molecular Mechanisms of Leukemia'. Curr Issues Mol Biol 2024; 47:14. [PMID: 39852129 PMCID: PMC11763483 DOI: 10.3390/cimb47010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Leukemia encompasses a diverse and intricate group of hematological malignancies that arise from hematopoietic stem and progenitors (HSPCs) in the bone marrow [...].
Collapse
Affiliation(s)
- Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Myunggon Ko
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
17
|
Stiehl T. Stem cell graft dose and composition could impact on the expansion of donor-derived clones after allogeneic hematopoietic stem cell transplantation - a virtual clinical trial. Front Immunol 2024; 15:1321336. [PMID: 39737169 PMCID: PMC11682905 DOI: 10.3389/fimmu.2024.1321336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 09/10/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Hematopoietic stem cell transplantation is a potentially curative intervention for a broad range of diseases. However, there is evidence that malignant or pre-malignant clones contained in the transplant can expand in the recipient and trigger donor-derived malignancies. This observation has gained much attention in the context of clonal hematopoiesis, a medical condition where significant amounts of healthy blood cells are derived from a small number of hematopoietic stem cell clones. In many cases the dominating clones carry mutations conferring a growth advantage and thus could undergo malignant transformation in the recipient. Since clonal hematopoiesis exists in a significant proportion of potential stem cell donors, a more detailed understanding of its role for stem cell transplantation is required. Methods We propose mechanistic computational models and perform virtual clinical trials to investigate clonal dynamics during and after allogenic hematopoietic stem cell transplantation. Different mechanisms of clonal expansion are considered, including mutation-related changes of stem cell proliferation and self-renewal, aberrant response of mutated cells to systemic signals, and self-sustaining chronic inflammation triggered by the mutated cells. Results Model simulations suggest that an aberrant response of mutated cells to systemic signals is sufficient to explain the frequently observed quick expansion of the mutated clone shortly after transplantation which is followed by a stabilization of the mutated cell number at a constant value. In contrary, a mutation-related increase of self-renewal or self-sustaining chronic inflammation lead to ongoing clonal expansion. Our virtual clinical trials suggest that a low number of transplanted stem cells per kg of body weight increases the transplantation-related expansion of donor-derived clones, whereas the transplanted progenitor dose or growth factor support after transplantation have no impact on clonal dynamics. Furthermore, in our simulations the change of the donors' variant allele frequencies in the year before stem cell donation is associated with the expansion of donor-derived clones in the recipient. Discussion This in silico study provides insights in the mechanisms leading to clonal expansion and identifies questions that could be addressed in future clinical trials.
Collapse
Affiliation(s)
- Thomas Stiehl
- Aachen Medical School, Institute for Computational Biomedicine & Disease Modeling,
RWTH Aachen University, Aachen, Germany
- Department for Science and Environment, Roskilde University,
Roskilde, Denmark
| |
Collapse
|
18
|
Kreger J, Mooney JA, Shibata D, MacLean AL. Developmental hematopoietic stem cell variation explains clonal hematopoiesis later in life. Nat Commun 2024; 15:10268. [PMID: 39592593 PMCID: PMC11599844 DOI: 10.1038/s41467-024-54711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Clonal hematopoiesis becomes increasingly common with age, but its cause is enigmatic because driver mutations are often absent. Serial observations infer weak selection indicating variants are acquired much earlier in life with unexplained initial growth spurts. Here we use fluctuating CpG methylation as a lineage marker to track stem cell clonal dynamics of hematopoiesis. We show, via the shared prenatal circulation of monozygotic twins, that weak selection conferred by stem cell variation created before birth can reliably yield clonal hematopoiesis later in life. Theory indicates weak selection will lead to dominance given enough time and large enough population sizes. Human hematopoiesis satisfies both these conditions. Stochastic loss of weakly selected variants is naturally prevented by the expansion of stem cell lineages during development. The dominance of stem cell clones created before birth is supported by blood fluctuating CpG methylation patterns that exhibit low correlation between unrelated individuals but are highly correlated between many elderly monozygotic twins. Therefore, clonal hematopoiesis driven by weak selection in later life appears to reflect variation created before birth.
Collapse
Affiliation(s)
- Jesse Kreger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jazlyn A Mooney
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Darryl Shibata
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Kjær L, Skov V, Larsen MK, Kristiansen MH, Wienecke T, Cordua S, Ellervik C, Langabeer SE, Hasselbalch HC. Clonal Hematopoiesis from a Diagnostic Perspective: 10 Years of CHIP. Mol Diagn Ther 2024; 28:665-668. [PMID: 39164495 DOI: 10.1007/s40291-024-00737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Affiliation(s)
- Lasse Kjær
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark.
| | - Vibe Skov
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | | | | | - Troels Wienecke
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
| | - Sabrina Cordua
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen E Langabeer
- Cancer Molecular Diagnostics, St. James's Hospital, Dublin, D08 W9RT, Ireland
| | | |
Collapse
|
20
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024; 45:ehae682. [PMID: 39417710 PMCID: PMC11638724 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Díez-Díez M, Ramos-Neble BL, de la Barrera J, Silla-Castro JC, Quintas A, Vázquez E, Rey-Martín MA, Izzi B, Sánchez-García L, García-Lunar I, Mendieta G, Mass V, Gómez-López N, Espadas C, González G, Quesada AJ, García-Álvarez A, Fernández-Ortiz A, Lara-Pezzi E, Dopazo A, Sánchez-Cabo F, Ibáñez B, Andrés V, Fuster V, Fuster JJ. Unidirectional association of clonal hematopoiesis with atherosclerosis development. Nat Med 2024; 30:2857-2866. [PMID: 39215150 PMCID: PMC11485253 DOI: 10.1038/s41591-024-03213-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Clonal hematopoiesis, a condition in which acquired somatic mutations in hematopoietic stem cells lead to the outgrowth of a mutant hematopoietic clone, is associated with a higher risk of hematological cancer and a growing list of nonhematological disorders, most notably atherosclerosis and associated cardiovascular disease. However, whether accelerated atherosclerosis is a cause or a consequence of clonal hematopoiesis remains a matter of debate. Some studies support a direct contribution of certain clonal hematopoiesis-related mutations to atherosclerosis via exacerbation of inflammatory responses, whereas others suggest that clonal hematopoiesis is a symptom rather than a cause of atherosclerosis, as atherosclerosis or related traits may accelerate the expansion of mutant hematopoietic clones. Here we combine high-sensitivity DNA sequencing in blood and noninvasive vascular imaging to investigate the interplay between clonal hematopoiesis and atherosclerosis in a longitudinal cohort of healthy middle-aged individuals. We found that the presence of a clonal hematopoiesis-related mutation confers an increased risk of developing de novo femoral atherosclerosis over a 6-year period, whereas neither the presence nor the extent of atherosclerosis affects mutant cell expansion during this timeframe. These findings indicate that clonal hematopoiesis unidirectionally promotes atherosclerosis, which should help translate the growing understanding of this condition into strategies for the prevention of atherosclerotic cardiovascular disease in individuals exhibiting clonal hematopoiesis.
Collapse
Affiliation(s)
- Miriam Díez-Díez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - J C Silla-Castro
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Ana Quintas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Enrique Vázquez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Benedetta Izzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, University Hospital La Moraleja, Madrid, Spain
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Virginia Mass
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Cristina Espadas
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Gema González
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Ana García-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Servicio de Cardiología, Institut Clínic Cardiovascular, Hospital Clínic de Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
- Universitat de Barcelona, Barcelona, Spain
| | - Antonio Fernández-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Hospital Clínico San Carlos, Universidad Complutense, IdISSC, Madrid, Spain
| | - Enrique Lara-Pezzi
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Valentín Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.
| |
Collapse
|
22
|
Komarova NL, Rignot C, Fleischman AG, Wodarz D. Dynamically adjusted cell fate decisions and resilience to mutant invasion during steady-state hematopoiesis revealed by an experimentally parameterized mathematical model. Proc Natl Acad Sci U S A 2024; 121:e2321525121. [PMID: 39250660 PMCID: PMC11420203 DOI: 10.1073/pnas.2321525121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024] Open
Abstract
A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g., TET2 or DNMT3A mutants, and how to potentially reduce mutant burden.
Collapse
Affiliation(s)
- Natalia L. Komarova
- Department of Mathematics, University of California San Diego, La Jolla, CA92093
| | - Chiara Rignot
- Department of Mathematics, University of California Irvine, Irvine, CA92697
| | | | - Dominik Wodarz
- Department of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
23
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby WE, Ganesh S, Lannery K, Schuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals insights into determinants of clonal hematopoiesis. Nat Commun 2024; 15:7858. [PMID: 39251642 PMCID: PMC11385577 DOI: 10.1038/s41467-024-52302-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CHIP is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CHIP. Splicing factor genes (SF3B1, SRSF2, U2AF1, and ZRSR2) and TET2 CHIP grow significantly faster than DNMT3A non-R882 clones. We find that age at baseline and sex significantly influence the incidence of CHIP, while ASCVD and other traditional ASCVD risk factors do not exhibit such associations. Additionally, baseline synonymous passenger mutations are strongly associated with CHIP status and are predictive of new CHIP clone acquisition and clonal growth over extended follow-up, providing valuable insights into clonal dynamics of aging hematopoietic stem and progenitor cells. This study also reveals associations between germline genetic variants and incident CHIP. Our comprehensive longitudinal assessment yields insights into cell-intrinsic and -extrinsic factors contributing to the development and progression of CHIP clones in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney E Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Schuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Gajagowni S, Hopkins S, Qadeer Y, Virani SS, Verdonschot JAJ, Coombs CC, Amos CI, Nead KT, Jaiswal S, Krittanawong C. Clonal hematopoiesis of indeterminate potential and cardiovascular disease: Pathogenesis, clinical presentation, and future directions. Prog Cardiovasc Dis 2024; 86:79-85. [PMID: 39278303 DOI: 10.1016/j.pcad.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a well-studied phenomenon in hematologic malignancies. With advancements in gene sampling and analysis and the use of large cohort studies, CHIP has recently been linked to cardiovascular disease (CVD). The relationship between CHIP and CVD appears to be bidirectional, with traditional risk factors for cardiovascular disease increasing the mutation burden in CHIP, and CHIP itself effecting the incidence or prognosis of a variety of CVD. The purpose of this review is to understand the epidemiology, risk factors, and pathogenesis of CHIP in the context of various CVD conditions.
Collapse
Affiliation(s)
- Saivaroon Gajagowni
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Steven Hopkins
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Yusuf Qadeer
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Salim S Virani
- Office of the Vice Provost (Research), The Aga Khan University, Karachi 74800, Pakistan; Section of Cardiology and Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, P. Debyelaan 25, 6229, HX, Maastricht, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202, AZ, Maastricht, the Netherlands
| | - Catherine C Coombs
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, California, United States of America
| | - Christopher I Amos
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States of America
| | - Kevin T Nead
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, United States of America; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, United States of America
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, NY, United States of America.
| |
Collapse
|
25
|
David C, Arango-Franco CA, Badonyi M, Fouchet J, Rice GI, Didry-Barca B, Maisonneuve L, Seabra L, Kechiche R, Masson C, Cobat A, Abel L, Talouarn E, Béziat V, Deswarte C, Livingstone K, Paul C, Malik G, Ross A, Adam J, Walsh J, Kumar S, Bonnet D, Bodemer C, Bader-Meunier B, Marsh JA, Casanova JL, Crow YJ, Manoury B, Frémond ML, Bohlen J, Lepelley A. Gain-of-function human UNC93B1 variants cause systemic lupus erythematosus and chilblain lupus. J Exp Med 2024; 221:e20232066. [PMID: 38869500 PMCID: PMC11176256 DOI: 10.1084/jem.20232066] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/29/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
UNC93B1 is a transmembrane domain protein mediating the signaling of endosomal Toll-like receptors (TLRs). We report five families harboring rare missense substitutions (I317M, G325C, L330R, R466S, and R525P) in UNC93B1 causing systemic lupus erythematosus (SLE) or chilblain lupus (CBL) as either autosomal dominant or autosomal recessive traits. As for a D34A mutation causing murine lupus, we recorded a gain of TLR7 and, to a lesser extent, TLR8 activity with the I317M (in vitro) and G325C (in vitro and ex vivo) variants in the context of SLE. Contrastingly, in three families segregating CBL, the L330R, R466S, and R525P variants were isomorphic with respect to TLR7 activity in vitro and, for R525P, ex vivo. Rather, these variants demonstrated a gain of TLR8 activity. We observed enhanced interaction of the G325C, L330R, and R466S variants with TLR8, but not the R525P substitution, indicating different disease mechanisms. Overall, these observations suggest that UNC93B1 mutations cause monogenic SLE or CBL due to differentially enhanced TLR7 and TLR8 signaling.
Collapse
Affiliation(s)
- Clémence David
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Department of Microbiology and Parasitology, Group of Primary Immunodeficiencies, School of Medicine, University of Antioquia, Medellín, Colombia
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Julien Fouchet
- Faculté de Médecine Necker, Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Gillian I. Rice
- Faculty of Biology, Medicine and Health, Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Blaise Didry-Barca
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Lucie Maisonneuve
- Faculté de Médecine Necker, Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Robin Kechiche
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, Assistance publique–hôpitaux de Paris (AP-HP), Paris, France
| | - Cécile Masson
- Bioinformatics Core Facility, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
| | - Estelle Talouarn
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
| | - Caroline Deswarte
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Katie Livingstone
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Carle Paul
- Université Toulouse Paul Sabatier, Toulouse, France
| | - Gulshan Malik
- Paediatric Rheumatology, Royal Aberdeen Children’s Hospital, Aberdeen, UK
| | - Alison Ross
- Paediatric Rheumatology, Royal Aberdeen Children’s Hospital, Aberdeen, UK
| | - Jane Adam
- Paediatric Rheumatology, Royal Aberdeen Children’s Hospital, Aberdeen, UK
| | - Jo Walsh
- Department of Paediatric Rheumatology, Royal Hospital for Children, Glasgow, UK
| | - Sathish Kumar
- Department of Pediatrics, Pediatric Rheumatology, Christian Medical College, Vellore, India
| | - Damien Bonnet
- Medical and Surgical Unit of Congenital and Paediatric Cardiology, Reference Centre for Complex Congenital Heart Defects—M3C, University Hospital Necker-Enfants Malades, Paris, France
- Université Paris Cité, Paris, France
| | - Christine Bodemer
- Department of Dermatology, Hospital Necker-Enfants Malades, AP-HP. Université Paris Cité, Paris, France
| | - Brigitte Bader-Meunier
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, Assistance publique–hôpitaux de Paris (AP-HP), Paris, France
- Centre for Inflammatory Rheumatism, AutoImmune Diseases and Systemic Interferonopathies in Children (RAISE), Paris, France
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Imagine Institute, Université Paris Cité, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Yanick J. Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Université Paris Cité, Paris, France
| | - Bénédicte Manoury
- Faculté de Médecine Necker, Institut Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Université Paris Cité, Paris, France
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Department of Paediatric Hematology-Immunology and Rheumatology, Necker-Enfants Malades Hospital, Assistance publique–hôpitaux de Paris (AP-HP), Paris, France
- Centre for Inflammatory Rheumatism, AutoImmune Diseases and Systemic Interferonopathies in Children (RAISE), Paris, France
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Université Paris Cité, Paris, France
| | - Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| |
Collapse
|
26
|
Yu Z, Coorens THH, Uddin MM, Ardlie KG, Lennon N, Natarajan P. Genetic variation across and within individuals. Nat Rev Genet 2024; 25:548-562. [PMID: 38548833 PMCID: PMC11457401 DOI: 10.1038/s41576-024-00709-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
Germline variation and somatic mutation are intricately connected and together shape human traits and disease risks. Germline variants are present from conception, but they vary between individuals and accumulate over generations. By contrast, somatic mutations accumulate throughout life in a mosaic manner within an individual due to intrinsic and extrinsic sources of mutations and selection pressures acting on cells. Recent advancements, such as improved detection methods and increased resources for association studies, have drastically expanded our ability to investigate germline and somatic genetic variation and compare underlying mutational processes. A better understanding of the similarities and differences in the types, rates and patterns of germline and somatic variants, as well as their interplay, will help elucidate the mechanisms underlying their distinct yet interlinked roles in human health and biology.
Collapse
Affiliation(s)
- Zhi Yu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Md Mesbah Uddin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | | - Niall Lennon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Pradeep Natarajan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Pendse S, Loeffler D. Decoding Clonal Hematopoiesis: Emerging Themes and Novel Mechanistic Insights. Cancers (Basel) 2024; 16:2634. [PMID: 39123361 PMCID: PMC11311828 DOI: 10.3390/cancers16152634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.
Collapse
Affiliation(s)
- Shalmali Pendse
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| | - Dirk Loeffler
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Comprehensive Cancer Center, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Pathology & Laboratory Medicine, The University of Tennessee, Memphis, TN 37996, USA
| |
Collapse
|
28
|
Mack T, Vlasschaert C, von Beck K, Silver AJ, Heimlich JB, Poisner H, Condon HR, Ulloa J, Sochacki AL, Spaulding TP, Kishtagari A, Bejan CA, Xu Y, Savona MR, Jones A, Bick AG. Cost-Effective and Scalable Clonal Hematopoiesis Assay Provides Insight into Clonal Dynamics. J Mol Diagn 2024; 26:563-573. [PMID: 38588769 PMCID: PMC11536471 DOI: 10.1016/j.jmoldx.2024.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon in which hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP mutations are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or to serial sequencing. In this study, an affordable (approximately US $8 per sample), accurate, and scalable sequencing assay for CHIP is introduced and validated. The efficacy of the assay was demonstrated by identifying CHIP mutations in a cohort of 456 individuals with DNA collected at multiple time points in Vanderbilt University's biobank and quantifying clonal expansion rates over time. A total of 101 individuals with CHIP/clonal cytopenia of undetermined significance were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction at both time points. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. Additionally, mutation co-occurrence and clonal competition between multiple driver mutations were explored.
Collapse
Affiliation(s)
- Taralynn Mack
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Kelly von Beck
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander J Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - J Brett Heimlich
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hannah Poisner
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Henry R Condon
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jessica Ulloa
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Andrew L Sochacki
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Travis P Spaulding
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ashwin Kishtagari
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cosmin A Bejan
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alexander G Bick
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
29
|
Werneth CM, Patel ZS, Thompson MS, Blattnig SR, Huff JL. Considering clonal hematopoiesis of indeterminate potential in space radiation risk analysis for hematologic cancers and cardiovascular disease. COMMUNICATIONS MEDICINE 2024; 4:105. [PMID: 38862635 PMCID: PMC11166645 DOI: 10.1038/s43856-023-00408-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/16/2023] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Expanding human presence in space through long-duration exploration missions and commercial space operations warrants improvements in approaches for quantifying crew space radiation health risks. Currently, risk assessment models for radiogenic cancer and cardiovascular disease consider age, sex, and tobacco use, but do not incorporate other modifiable (e.g., body weight, physical activity, diet, environment) and non-modifiable individual risk factors (e.g., genetics, medical history, race/ethnicity, family history) that may greatly influence crew health both in-mission and long-term. For example, clonal hematopoiesis of indeterminate potential (CHIP) is a relatively common age-related condition that is an emerging risk factor for a variety of diseases including cardiovascular disease and cancer. CHIP carrier status may therefore exacerbate health risks associated with space radiation exposure. METHODS In the present study, published CHIP hazard ratios were used to modify background hazard rates for coronary heart disease, stroke, and hematologic cancers in the National Aeronautics and Space Administration space radiation risk assessment model. The risk of radiation exposure-induced death for these endpoints was projected for a future Mars exploration mission scenario. RESULTS Here we show appreciable increases in the lifetime risk of exposure-induced death for hematologic malignancies, coronary heart disease, and stroke, which are observed as a function of age after radiation exposure for male and female crew members that are directly attributable to the elevated health risks for CHIP carriers. CONCLUSIONS We discuss the importance of evaluating individual risk factors such as CHIP as part of a comprehensive space radiation risk assessment strategy aimed at effective risk communication and disease surveillance for astronauts embarking on future exploration missions.
Collapse
Affiliation(s)
| | - Zarana S Patel
- Center for Scientific Review, National Institutes of Health, Bethesda, MD, USA
| | | | | | | |
Collapse
|
30
|
Silver AJ, Vlasschaert C, Mack T, Sharber B, Xu Y, Bick AG, Pinson CW, Savona MR. Solid Organ Transplant Recipients Exhibit More TET2-Mutant Clonal Hematopoiesis of Indeterminate Potential Not Driven by Increased Transplantation Risk. Clin Cancer Res 2024; 30:2475-2485. [PMID: 38551504 DOI: 10.1158/1078-0432.ccr-23-3840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE Solid organ transplant recipients comprise a unique population of immunosuppressed patients with increased risk of malignancy, including hematologic neoplasms. Clonal hematopoiesis of indeterminate potential (CHIP) represents a known risk factor for hematologic malignancy and this study describes the prevalence and patterns of CHIP mutations across several types of solid organ transplants. EXPERIMENTAL DESIGN We use two national biobank cohorts comprised of >650,000 participants with linked genomic and longitudinal phenotypic data to describe the features of CHIP across 2,610 individuals who received kidney, liver, heart, or lung allografts. RESULTS We find individuals with an allograft before their biobank enrollment had an increased prevalence of TET2 mutations (OR, 1.90; P = 4.0e-4), but individuals who received transplants post-enrollment had a CHIP mutation spectrum similar to that of the general population, without enrichment of TET2. In addition, we do not observe an association between CHIP and risk of incident transplantation among the overall population (HR, 1.02; P = 0.91). And in an exploratory analysis, we do not find evidence for a strong association between CHIP and rates of transplant complications such as rejection or graft failure. CONCLUSIONS These results demonstrate that recipients of solid organ transplants display a unique pattern of clonal hematopoiesis with enrichment of TET2 driver mutations, the causes of which remain unclear and are deserving of further study.
Collapse
Affiliation(s)
- Alexander J Silver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Taralynn Mack
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian Sharber
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yaomin Xu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander G Bick
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - C Wright Pinson
- Transplant Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael R Savona
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
31
|
Arends CM, Kopp K, Hablesreiter R, Estrada N, Christen F, Moll UM, Zeillinger R, Schmitt WD, Sehouli J, Kulbe H, Fleischmann M, Ray-Coquard I, Zeimet A, Raspagliesi F, Zamagni C, Vergote I, Lorusso D, Concin N, Bullinger L, Braicu EI, Damm F. Dynamics of clonal hematopoiesis under DNA-damaging treatment in patients with ovarian cancer. Leukemia 2024; 38:1378-1389. [PMID: 38637689 PMCID: PMC11147769 DOI: 10.1038/s41375-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Clonal hematopoiesis (CH) driven by mutations in the DNA damage response (DDR) pathway is frequent in patients with cancer and is associated with a higher risk of therapy-related myeloid neoplasms (t-MNs). Here, we analyzed 423 serial whole blood and plasma samples from 103 patients with relapsed high-grade ovarian cancer receiving carboplatin, poly(ADP-ribose) polymerase inhibitor (PARPi) and heat shock protein 90 inhibitor (HSP90i) treatment within the phase II EUDARIO trial using error-corrected sequencing of 72 genes. DDR-driven CH was detected in 35% of patients and was associated with longer duration of prior PARPi treatment. TP53- and PPM1D-mutated clones exhibited substantially higher clonal expansion rates than DNMT3A- or TET2-mutated clones during treatment. Expansion of DDR clones correlated with HSP90i exposure across the three study arms and was partially abrogated by the presence of germline mutations related to homologous recombination deficiency. Single-cell DNA sequencing of selected samples revealed clonal exclusivity of DDR mutations, and identified DDR-mutated clones as the origin of t-MN in two investigated cases. Together, these results provide unique insights into the architecture and the preferential selection of DDR-mutated hematopoietic clones under intense DNA-damaging treatment. Specifically, PARPi and HSP90i therapies pose an independent risk for the expansion of DDR-CH in a dose-dependent manner.
Collapse
Affiliation(s)
- Christopher Maximilian Arends
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Klara Kopp
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raphael Hablesreiter
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Estrada
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Christen
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ute Martha Moll
- Department of Pathology, Stony Brook University Cancer Center, Stony Brook, NY, 11794, USA
| | - Robert Zeillinger
- Department of Obstetrics and Gynaecology, Molecular Oncology Group, Comprehensive Cancer Center-Gynaecologic Cancer Unit, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Daniel Schmitt
- Department of Pathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Jalid Sehouli
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Hagen Kulbe
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Maximilian Fleischmann
- Klinik für Innere Medizin II, Abteilung Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Isabelle Ray-Coquard
- Centre Anticancereux Léon Bérard, University Claude Bernard Lyon, GINECO Group, Lyon, France
| | - Alain Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | | | - Claudio Zamagni
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ignace Vergote
- Division of Gynecological Oncology, Department of Gynecology and Obstetrics, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven, Belgium
- Belgium and Luxembourg Gynaecological Oncology Group (BGOG), Leuven, Belgium
| | | | - Nicole Concin
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Austrian AGO, Innsbruck, Austria
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elena Ioana Braicu
- Department of Gynaecology, European Competence Center for Ovarian Cancer, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Virchow Klinikum, Berlin, Germany
- North Eastern German Society for Gynecological Cancer. Tumor Bank Ovarian Cancer Network, Berlin, Germany
| | - Frederik Damm
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
32
|
Winter S, Götze KS, Hecker JS, Metzeler KH, Guezguez B, Woods K, Medyouf H, Schäffer A, Schmitz M, Wehner R, Glauche I, Roeder I, Rauner M, Hofbauer LC, Platzbecker U. Clonal hematopoiesis and its impact on the aging osteo-hematopoietic niche. Leukemia 2024; 38:936-946. [PMID: 38514772 PMCID: PMC11073997 DOI: 10.1038/s41375-024-02226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Clonal hematopoiesis (CH) defines a premalignant state predominantly found in older persons that increases the risk of developing hematologic malignancies and age-related inflammatory diseases. However, the risk for malignant transformation or non-malignant disorders is variable and difficult to predict, and defining the clinical relevance of specific candidate driver mutations in individual carriers has proved to be challenging. In addition to the cell-intrinsic mechanisms, mutant cells rely on and alter cell-extrinsic factors from the bone marrow (BM) niche, which complicates the prediction of a mutant cell's fate in a shifting pre-malignant microenvironment. Therefore, identifying the insidious and potentially broad impact of driver mutations on supportive niches and immune function in CH aims to understand the subtle differences that enable driver mutations to yield different clinical outcomes. Here, we review the changes in the aging BM niche and the emerging evidence supporting the concept that CH can progressively alter components of the local BM microenvironment. These alterations may have profound implications for the functionality of the osteo-hematopoietic niche and overall bone health, consequently fostering a conducive environment for the continued development and progression of CH. We also provide an overview of the latest technology developments to study the spatiotemporal dependencies in the CH BM niche, ideally in the context of longitudinal studies following CH over time. Finally, we discuss aspects of CH carrier management in clinical practice, based on work from our group and others.
Collapse
Affiliation(s)
- Susann Winter
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katharina S Götze
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- German MDS Study Group (D-MDS), Leipzig, Germany
| | - Judith S Hecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine III, Technical University of Munich (TUM), School of Medicine and Health, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich (TUM), Munich, Germany
| | - Klaus H Metzeler
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany
| | - Borhane Guezguez
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Kevin Woods
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Hematology and Oncology, University Medical Center Mainz, Mainz, Germany
| | - Hind Medyouf
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | - Alexander Schäffer
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Rebekka Wehner
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ingo Roeder
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Institute for Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III, and Center for Healthy Aging, University Medical Center, TU Dresden, Dresden, Germany.
| | - Uwe Platzbecker
- German Cancer Consortium (DKTK), CHOICE Consortium, Partner Sites Dresden/Munich/Frankfurt/Mainz, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German MDS Study Group (D-MDS), Leipzig, Germany.
- Department of Hematology, Cellular Therapy, Hemostaseology and Infectious Disease, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
33
|
Borsi E, Vigliotta I, Poletti A, Mazzocchetti G, Solli V, Zazzeroni L, Martello M, Armuzzi S, Taurisano B, Kanapari A, Pistis I, Zamagni E, Pantani L, Rocchi S, Mancuso K, Tacchetti P, Rizzello I, Rizzi S, Dan E, Sinigaglia B, Cavo M, Terragna C. Single-Cell DNA Sequencing Reveals an Evolutionary Pattern of CHIP in Transplant Eligible Multiple Myeloma Patients. Cells 2024; 13:657. [PMID: 38667272 PMCID: PMC11049155 DOI: 10.3390/cells13080657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) refers to the phenomenon where a hematopoietic stem cell acquires fitness-increasing mutation(s), resulting in its clonal expansion. CHIP is frequently observed in multiple myeloma (MM) patients, and it is associated with a worse outcome. High-throughput amplicon-based single-cell DNA sequencing was performed on circulating CD34+ cells collected from twelve MM patients before autologous stem cell transplantation (ASCT). Moreover, in four MM patients, longitudinal samples either before or post-ASCT were collected. Single-cell sequencing and data analysis were assessed using the MissionBio Tapestri® platform, with a targeted panel of 20 leukemia-associated genes. We detected CHIP pathogenic mutations in 6/12 patients (50%) at the time of transplant. The most frequently mutated genes were TET2, EZH2, KIT, DNMT3A, and ASXL1. In two patients, we observed co-occurring mutations involving an epigenetic modifier (i.e., DNMT3A) and/or a gene involved in splicing machinery (i.e., SF3B1) and/or a tyrosine kinase receptor (i.e., KIT) in the same clone. Longitudinal analysis of paired samples revealed a positive selection of mutant high-fitness clones over time, regardless of their affinity with a major or minor sub-clone. Copy number analysis of the panel of all genes did not show any numerical alterations present in stem cell compartment. Moreover, we observed a tendency of CHIP-positive patients to achieve a suboptimal response to therapy compared to those without. A sub-clone dynamic of high-fitness mutations over time was confirmed.
Collapse
Affiliation(s)
- Enrica Borsi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Ilaria Vigliotta
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Andrea Poletti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Gaia Mazzocchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Vincenza Solli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Luca Zazzeroni
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Marina Martello
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Silvia Armuzzi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Barbara Taurisano
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ajsi Kanapari
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ignazia Pistis
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Elena Zamagni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Lucia Pantani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Serena Rocchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Katia Mancuso
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Paola Tacchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Ilaria Rizzello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Simonetta Rizzi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Elisa Dan
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Barbara Sinigaglia
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| | - Michele Cavo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Carolina Terragna
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, 40138 Bologna, Italy
| |
Collapse
|
34
|
Fabre MA, Vassiliou GS. The lifelong natural history of clonal hematopoiesis and its links to myeloid neoplasia. Blood 2024; 143:573-581. [PMID: 37992214 DOI: 10.1182/blood.2023019964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT The study of somatic mutations and the associated clonal mosaicism across the human body has transformed our understanding of aging and its links to cancer. In proliferative human tissues, stem cells compete for dominance, and those with an advantage expand clonally to outgrow their peers. In the hematopoietic system, such expansion is termed clonal hematopoiesis (CH). The forces driving competition, namely heterogeneity of the hematopoietic stem cell (HSC) pool and attrition of their environment, become increasingly prominent with age. As a result, CH becomes progressively more common through life to the point of becoming essentially ubiquitous. We are beginning to unravel the specific intracellular and extracellular factors underpinning clonal behavior, with somatic mutations in specific driver genes, inflammation, telomere maintenance, extraneous exposures, and inherited genetic variation among the important players. The inevitability of CH with age combined with its unequivocal links to myeloid cancers poses a scientific and clinical challenge. Specifically, we need to decipher the factors determining clonal behavior and develop prognostic tools to identify those at high risk of malignant progression, for whom preventive interventions may be warranted. Here, we discuss how recent advances in our understanding of the natural history of CH have provided important insights into these processes and helped define future avenues of investigation.
Collapse
Affiliation(s)
- Margarete A Fabre
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals Research & Development, AstraZeneca, Cambridge, United Kingdom
| | - George S Vassiliou
- Department of Haematology, Cambridge University Hospitals National Health Service Trust, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
35
|
Ronchini C, Caprioli C, Tunzi G, D’Amico FF, Colombo E, Giani M, Foti G, Conconi D, Lavitrano M, Passerini R, Pase L, Capizzi S, Mastrilli F, Alcalay M, Orecchia R, Natoli G, Pelicci PG. High-sensitivity analysis of clonal hematopoiesis reveals increased clonal complexity of potential-driver mutations in severe COVID-19 patients. PLoS One 2024; 19:e0282546. [PMID: 38198467 PMCID: PMC10781164 DOI: 10.1371/journal.pone.0282546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Whether Clonal Hematopoiesis (CH) represents a risk factor for severity of the COVID-19 disease remains a controversial issue. We report the first high- sensitivity analysis of CH in COVID-19 patients (threshold of detection at 0.5% vs 1 or 2% in previous studies). We analyzed 24 patients admitted to ICU for COVID-19 (COV-ICU) and 19 controls, including healthy subjects and asymptomatic SARS-CoV2-positive individuals. Despite the significantly higher numbers of CH mutations identified (80% mutations with <2% variant allele frequency, VAF), we did not find significant differences between COV-ICU patients and controls in the prevalence of CH or in the numbers, VAF or functional categories of the mutated genes, suggesting that CH is not overrepresented in patients with COVID-19. However, when considering potential drivers CH mutations (CH-PD), COV-ICU patients showed higher clonal complexity, in terms of both mutation numbers and VAF, and enrichment of variants reported in myeloid neoplasms. However, we did not score an impact of increased CH-PD on patient survival or clinical parameters associated with inflammation. These data suggest that COVID-19 influence the clonal composition of the peripheral blood and call for further investigations addressing the potential long-term clinical impact of CH on people experiencing severe COVID-19. We acknowledge that it will indispensable to perform further studies on larger patient cohorts in order to validate and generalize our conclusions. Moreover, we performed CH analysis at a single time point. It will be necessary to consider longitudinal approaches with long periods of follow-up in order to assess if the COVID-19 disease could have an impact on the evolution of CH and long-term consequences in patients that experienced severe COVID-19.
Collapse
Affiliation(s)
- Chiara Ronchini
- Clinical Genomics, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Caprioli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianleo Tunzi
- Clinical Genomics, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Emanuela Colombo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Marco Giani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Ospedale San Gerardo, Monza, Italy
| | - Giuseppe Foti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Ospedale San Gerardo, Monza, Italy
| | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Rita Passerini
- Division of Laboratory Medicine, European Institute of Oncology IRCCS, Milan, Italy
| | - Luca Pase
- Occupational Medicine, European Institute of Oncology IRCCS, Milan, Italy
| | - Silvio Capizzi
- Medical Administration, CMO, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Fabrizio Mastrilli
- Medical Administration, CMO, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Myriam Alcalay
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, European Institute of Oncology IRCCS, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
36
|
Park E, Evans MA, Walsh K. Regulators of clonal hematopoiesis and physiological consequences of this condition. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:3. [PMID: 39119355 PMCID: PMC11309374 DOI: 10.20517/jca.2023.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.
Collapse
Affiliation(s)
- Eunbee Park
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kenneth Walsh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
37
|
Weeks LD, Ebert BL. Causes and consequences of clonal hematopoiesis. Blood 2023; 142:2235-2246. [PMID: 37931207 PMCID: PMC10862247 DOI: 10.1182/blood.2023022222] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
ABSTRACT Clonal hematopoiesis (CH) is described as the outsized contribution of expanded clones of hematopoietic stem and progenitor cells (HSPCs) to blood cell production. The prevalence of CH increases dramatically with age. CH can be caused by somatic mutations in individual genes or by gains and/or losses of larger chromosomal segments. CH is a premalignant state; the somatic mutations detected in CH are the initiating mutations for hematologic malignancies, and CH is a strong predictor of the development of blood cancers. Moreover, CH is associated with nonmalignant disorders and increased overall mortality. The somatic mutations that drive clonal expansion of HSPCs can alter the function of terminally differentiated blood cells, including the release of elevated levels of inflammatory cytokines. These cytokines may then contribute to a broad range of inflammatory disorders that increase in prevalence with age. Specific somatic mutations in the peripheral blood in coordination with blood count parameters can powerfully predict the development of hematologic malignancies and overall mortality in CH. In this review, we summarize the current understanding of CH nosology and origins. We provide an overview of available tools for risk stratification and discuss management strategies for patients with CH presenting to hematology clinics.
Collapse
Affiliation(s)
- Lachelle D. Weeks
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Benjamin L. Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
- Center for Early Detection and Interception of Blood Cancers, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| |
Collapse
|
38
|
Isobe T, Kucinski I, Barile M, Wang X, Hannah R, Bastos HP, Chabra S, Vijayabaskar MS, Sturgess KHM, Williams MJ, Giotopoulos G, Marando L, Li J, Rak J, Gozdecka M, Prins D, Shepherd MS, Watcham S, Green AR, Kent DG, Vassiliou GS, Huntly BJP, Wilson NK, Göttgens B. Preleukemic single-cell landscapes reveal mutation-specific mechanisms and gene programs predictive of AML patient outcomes. CELL GENOMICS 2023; 3:100426. [PMID: 38116120 PMCID: PMC10726426 DOI: 10.1016/j.xgen.2023.100426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 09/29/2023] [Indexed: 12/21/2023]
Abstract
Acute myeloid leukemia (AML) and myeloid neoplasms develop through acquisition of somatic mutations that confer mutation-specific fitness advantages to hematopoietic stem and progenitor cells. However, our understanding of mutational effects remains limited to the resolution attainable within immunophenotypically and clinically accessible bulk cell populations. To decipher heterogeneous cellular fitness to preleukemic mutational perturbations, we performed single-cell RNA sequencing of eight different mouse models with driver mutations of myeloid malignancies, generating 269,048 single-cell profiles. Our analysis infers mutation-driven perturbations in cell abundance, cellular lineage fate, cellular metabolism, and gene expression at the continuous resolution, pinpointing cell populations with transcriptional alterations associated with differentiation bias. We further develop an 11-gene scoring system (Stem11) on the basis of preleukemic transcriptional signatures that predicts AML patient outcomes. Our results demonstrate that a single-cell-resolution deep characterization of preleukemic biology has the potential to enhance our understanding of AML heterogeneity and inform more effective risk stratification strategies.
Collapse
Affiliation(s)
- Tomoya Isobe
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Iwo Kucinski
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Melania Barile
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Xiaonan Wang
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Rebecca Hannah
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Hugo P Bastos
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Shirom Chabra
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - M S Vijayabaskar
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Katherine H M Sturgess
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Matthew J Williams
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - George Giotopoulos
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Juan Li
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Justyna Rak
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Malgorzata Gozdecka
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Daniel Prins
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Mairi S Shepherd
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Sam Watcham
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - George S Vassiliou
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK; Hematological Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Brian J P Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK.
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Department of Hematology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
39
|
Mack T, Vlasschaert C, von Beck K, Silver AJ, Heimlich JB, Poisner H, Condon HR, Ulloa J, Sochacki AL, Spaulding TP, Kishtagari A, Bejan CA, Xu Y, Savona MR, Jones A, Bick A. Cost-effective and scalable clonal hematopoiesis assay provides insight into clonal dynamics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.08.23298270. [PMID: 37986782 PMCID: PMC10659520 DOI: 10.1101/2023.11.08.23298270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related phenomenon that occurs when hematopoietic stem cells acquire mutations in a select set of genes commonly mutated in myeloid neoplasia which then expand clonally. Current sequencing assays to detect CHIP are not optimized for the detection of these variants and can be cost-prohibitive when applied to large cohorts or serial sequencing. Here, we present and validate a CHIP targeted sequencing assay that is affordable (∼$8/sample), accurate and highly scalable. To demonstrate the utility of this assay, we detected CHIP in a cohort of 456 individuals with DNA collected at multiple timepoints in the Vanderbilt BioVU biobank and quantified clonal expansion rates over time. A total of 101 individuals with CHIP were identified, and individual-level clonal expansion rate was calculated using the variant allele fraction (VAF) at both timepoints. Differences in clonal expansion rate by driver gene were observed, but there was also significant individual-level heterogeneity, emphasizing the multifactorial nature of clonal expansion. We further describe the mutation co-occurrence and clonal competition between multiple driver mutations.
Collapse
|
40
|
Feng Y, Yuan Q, Newsome RC, Robinson T, Bowman RL, Zuniga AN, Hall KN, Bernsten CM, Shabashvili DE, Krajcik KI, Gunaratne C, Zaroogian ZJ, Venugopal K, Casellas Roman HL, Levine RL, Chatila WK, Yaeger R, Riva A, Jobin C, Kopinke D, Avram D, Guryanova OA. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. J Exp Med 2023; 220:e20230011. [PMID: 37615936 PMCID: PMC10450614 DOI: 10.1084/jem.20230011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/12/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Clonal hematopoiesis (CH) is defined as clonal expansion of mutant hematopoietic stem cells absent diagnosis of a hematologic malignancy. Presence of CH in solid tumor patients, including colon cancer, correlates with shorter survival. We hypothesized that bone marrow-derived cells with heterozygous loss-of-function mutations of DNMT3A, the most common genetic alteration in CH, contribute to the pathogenesis of colon cancer. In a mouse model that combines colitis-associated colon cancer (CAC) with experimental CH driven by Dnmt3a+/Δ, we found higher tumor penetrance and increased tumor burden compared with controls. Histopathological analysis revealed accentuated colonic epithelium injury, dysplasia, and adenocarcinoma formation. Transcriptome profiling of colon tumors identified enrichment of gene signatures associated with carcinogenesis, including angiogenesis. Treatment with the angiogenesis inhibitor axitinib eliminated the colon tumor-promoting effect of experimental CH driven by Dnmt3a haploinsufficiency and rebalanced hematopoiesis. This study provides conceptually novel insights into non-tumor-cell-autonomous effects of hematopoietic alterations on colon carcinogenesis and identifies potential therapeutic strategies.
Collapse
Affiliation(s)
- Yang Feng
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Qingchen Yuan
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Rachel C. Newsome
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Troy Robinson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L. Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ashley N. Zuniga
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kendra N. Hall
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Cassandra M. Bernsten
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Daniil E. Shabashvili
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kathryn I. Krajcik
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Chamara Gunaratne
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Zachary J. Zaroogian
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Heidi L. Casellas Roman
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K. Chatila
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alberto Riva
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Christian Jobin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
- Immunology Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Olga A. Guryanova
- Department of Pharmacology and Therapeutics, University of FloridaCollege of Medicine, Gainesville, FL, USA
- University of FloridaHealth Cancer Center, Gainesville, FL, USA
| |
Collapse
|
41
|
van Zeventer IA, de Graaf AO, Jansen JH, Huls G. Evolution of clonal hematopoiesis. Clin Transl Med 2023; 13:e1444. [PMID: 37846136 PMCID: PMC10579999 DOI: 10.1002/ctm2.1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/01/2023] [Indexed: 10/18/2023] Open
Affiliation(s)
- Isabelle A. van Zeventer
- Department of HematologyUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| | - Aniek O. de Graaf
- Department of Laboratory MedicineLaboratory of HematologyRadboud University Medical CenterNijmegenNetherlands
| | - Joop H. Jansen
- Department of Laboratory MedicineLaboratory of HematologyRadboud University Medical CenterNijmegenNetherlands
| | - Gerwin Huls
- Department of HematologyUniversity Medical Center Groningen, University of GroningenGroningenNetherlands
| |
Collapse
|
42
|
Badar T, Vanegas YAM, Nanaa A, Foran JM, Al-Kali A, Mangaonkar A, Murthy H, Alkhateeb HB, Viswanatha D, He R, Shah M, Yi CA, Litzow MR, Gangat N, Tefferi A, Patnaik MM. U2AF1 pathogenic variants in myeloid neoplasms and precursor states: distribution of co-mutations and prognostic heterogeneity. Blood Cancer J 2023; 13:149. [PMID: 37735430 PMCID: PMC10514309 DOI: 10.1038/s41408-023-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
We have previously recognized the genotypic and prognostic heterogeneity of U2AF1 mutations (MT) in myelofibrosis (MF) and myelodysplastic syndromes (MDS). In the current study, we considered 179 U2AF1-mutated patients with clonal cytopenia of undetermined significance (CCUS; n = 22), MDS (n = 108), MDS/acute myeloid leukemia (AML; n = 18) and AML (n = 31). U2AF1 variants included S34 (60%), Q157 (35%), and others (5%): corresponding mutational frequencies were 45%, 55%, and 0% in CCUS; 57%, 39%, and 4% in MDS; 61%, 33%, and 6% in MDS/AML; and 55%, 35% and 10% in AML (P = 0.17, 0.36 and 0.09), respectively. Concurrent mutations included ASXL1 (37%), BCOR (19%), RUNX1 (14%), TET2 (15%), DNMT3A (10%), NRAS/KRAS (8%), TP53 (8%), JAK2 (5.5%) and SETBP1 (5%). The two most frequent U2AF1 MT were S34F (n = 97) and Q157P (n = 46); concurrent MT were more likely to be seen with the latter (91% vs 74%; P = 0.01) and abnormal karyotype with the former (70% vs 62%; P = 0.05). U2AF1 S34F MT clustered with BCOR (P = 0.04) and Q157P MT with ASXL1 (P = 0.01) and TP53 (P = 0.03). The median overall survival (OS) in months was significantly worse in AML (14.2) vs MDS/AML (27.3) vs MDS (33.7; P = 0.001); the latter had similar OS with CCUS (30.0). In morphologically high-risk disease (n = 49), defined by ≥10% blood or bone marrow blasts (i.e., AML or MDS/AML), median OS was 14.2 with Q157P vs 37.1 months in the presence of S34F (P = 0.008); transplant-adjusted multivariable analysis confirmed the detrimental impact of Q157P (P = 0.01) on survival and also identified JAK2 MT as an additional risk factor (P = 0.02). OS was favorably affected by allogeneic hematopoietic stem cell transplantation (HR: 0.16, 95% CI; 0.04-0.61, P = 0.007). The current study defines the prevalence and co-mutational profiles of U2AF1 pathogenic variants in AML, MDS/AML, MDS, and CCUS, and suggests prognostic heterogeneity in patients with ≥10% blasts.
Collapse
Affiliation(s)
- Talha Badar
- Division of Hematology-Oncology and Bone Marrow Transplant Program, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Yenny A Moreno Vanegas
- Division of Hematology-Oncology and Bone Marrow Transplant Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ahmad Nanaa
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
- John H. Stroger, Jr. Hospital of Cook County, Chicago, IL, 60612, USA
| | - James M Foran
- Division of Hematology-Oncology and Bone Marrow Transplant Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Aref Al-Kali
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Hemant Murthy
- Division of Hematology-Oncology and Bone Marrow Transplant Program, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - David Viswanatha
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rong He
- Division of Hematopathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mithun Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Cecilia Arana Yi
- Department of Hematology Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Mark R Litzow
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Naseema Gangat
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ayalew Tefferi
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | |
Collapse
|
43
|
Uddin MM, Saadatagah S, Niroula A, Yu B, Hornsby W, Ganesh S, Lannery K, Shuermans A, Honigberg MC, Bick AG, Libby P, Ebert BL, Ballantyne CM, Natarajan P. Long-term longitudinal analysis of 4,187 participants reveals new insights into determinants of incident clonal hematopoiesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.05.23295093. [PMID: 37732181 PMCID: PMC10508802 DOI: 10.1101/2023.09.05.23295093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Clonal hematopoiesis (CH), characterized by blood cells predominantly originating from a single mutated hematopoietic stem cell, is linked to diverse aging-related diseases, including hematologic malignancy and atherosclerotic cardiovascular disease (ASCVD). While CH is common among older adults, the underlying factors driving its development are largely unknown. To address this, we performed whole-exome sequencing on 8,374 blood DNA samples collected from 4,187 Atherosclerosis Risk in Communities Study (ARIC) participants over a median follow-up of 21 years. During this period, 735 participants developed incident CH. We found that age at baseline, sex, and dyslipidemia significantly influence the incidence of CH, while ASCVD and other traditional risk factors for ASCVD did not exhibit such associations. Our study also revealed associations between germline genetic variants and incident CH, prioritizing genes in CH development. Our comprehensive longitudinal assessment yields novel insights into the factors contributing to incident CH in older adults.
Collapse
Affiliation(s)
- Md Mesbah Uddin
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Seyedmohammad Saadatagah
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research on Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Abhishek Niroula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Institute of Biomedicine, SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Whitney Hornsby
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Shriienidhie Ganesh
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kim Lannery
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Art Shuermans
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Michael C. Honigberg
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Libby
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Benjamin L. Ebert
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | | | - Pradeep Natarajan
- Program in Medical and Population Genetics, Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Belizaire R, Wong WJ, Robinette ML, Ebert BL. Clonal haematopoiesis and dysregulation of the immune system. Nat Rev Immunol 2023; 23:595-610. [PMID: 36941354 PMCID: PMC11140722 DOI: 10.1038/s41577-023-00843-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 03/23/2023]
Abstract
Age-related diseases are frequently linked to pathological immune dysfunction, including excessive inflammation, autoreactivity and immunodeficiency. Recent analyses of human genetic data have revealed that somatic mutations and mosaic chromosomal alterations in blood cells - a condition known as clonal haematopoiesis (CH) - are associated with ageing and pathological immune dysfunction. Indeed, large-scale epidemiological studies and experimental mouse models have demonstrated that CH can promote cardiovascular disease, chronic obstructive pulmonary disease, chronic liver disease, osteoporosis and gout. The genes most frequently mutated in CH, the epigenetic regulators TET2 and DNMT3A, implicate increased chemokine expression and inflammasome hyperactivation in myeloid cells as a possible mechanistic connection between CH and age-related diseases. In addition, TET2 and DNMT3A mutations in lymphoid cells have been shown to drive methylation-dependent alterations in differentiation and function. Here we review the observational and mechanistic studies describing the connection between CH and pathological immune dysfunction, the effects of CH-associated genetic alterations on the function of myeloid and lymphoid cells, and the clinical and therapeutic implications of CH as a target for immunomodulation.
Collapse
Affiliation(s)
- Roger Belizaire
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Waihay J Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michelle L Robinette
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Boston, MA, USA
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
45
|
Buck MC, Bast L, Hecker JS, Rivière J, Rothenberg-Thurley M, Vogel L, Wang D, Andrä I, Theis FJ, Bassermann F, Metzeler KH, Oostendorp RA, Marr C, Götze KS. Progressive disruption of hematopoietic architecture from clonal hematopoiesis to MDS. iScience 2023; 26:107328. [PMID: 37520699 PMCID: PMC10382887 DOI: 10.1016/j.isci.2023.107328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) describes the age-related acquisition of somatic mutations in hematopoietic stem/progenitor cells (HSPC) leading to clonal blood cell expansion. Although CHIP mutations drive myeloid malignancies like myelodysplastic syndromes (MDS) it is unknown if clonal expansion is attributable to changes in cell type kinetics, or involves reorganization of the hematopoietic hierarchy. Using computational modeling we analyzed differentiation and proliferation kinetics of cultured hematopoietic stem cells (HSC) from 8 healthy individuals, 7 CHIP, and 10 MDS patients. While the standard hematopoietic hierarchy explained HSPC kinetics in healthy samples, 57% of CHIP and 70% of MDS samples were best described with alternative hierarchies. Deregulated kinetics were found at various HSPC compartments with high inter-individual heterogeneity in CHIP and MDS, while altered HSC rates were most relevant in MDS. Quantifying kinetic heterogeneity in detail, we show that reorganization of the HSPC compartment is already detectable in the premalignant CHIP state.
Collapse
Affiliation(s)
- Michèle C. Buck
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
| | - Lisa Bast
- Helmholtz Zentrum München–German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Technical University of Munich (TUM), Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Garching, Germany
| | - Judith S. Hecker
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
| | - Jennifer Rivière
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
| | - Maja Rothenberg-Thurley
- University Hospital, Ludwig-Maximilians-University, Department of Medicine III, Laboratory for Leukemia Diagnostics, Munich, Germany
| | - Luisa Vogel
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
| | - Dantong Wang
- Helmholtz Zentrum München–German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Technical University of Munich (TUM), Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Garching, Germany
| | - Immanuel Andrä
- Technical University of Munich, Microbiology Institute, Munich, Germany
| | - Fabian J. Theis
- Helmholtz Zentrum München–German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Technical University of Munich (TUM), Department of Mathematics, Chair of Mathematical Modeling of Biological Systems, Garching, Germany
| | - Florian Bassermann
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Partner Site Munich, Germany
| | - Klaus H. Metzeler
- University Hospital, Ludwig-Maximilians-University, Department of Medicine III, Laboratory for Leukemia Diagnostics, Munich, Germany
- University Hospital Leipzig, Department of Hematology and Cell Therapy, Leipzig, Germany
| | - Robert A.J. Oostendorp
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
| | - Carsten Marr
- Helmholtz Zentrum München–German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Partner Site Munich, Germany
- Helmholtz Zentrum München–German Research Center for Environmental Health, Institute of AI for Health, Neuherberg, Germany
| | - Katharina S. Götze
- Technical University of Munich (TUM), School of Medicine, Department of Medicine III, Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Partner Site Munich, Germany
| |
Collapse
|
46
|
Safonov A, Nomakuchi TT, Chao E, Horton C, Dolinsky JS, Yussuf A, Richardson M, Speare V, Li S, Bogus ZC, Bonanni M, Raper A, Kallish S, Ritchie MD, Nathanson KL, Drivas TG. A genotype-first approach identifies high incidence of NF1 pathogenic variants with distinct disease associations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.08.23293676. [PMID: 37609227 PMCID: PMC10441497 DOI: 10.1101/2023.08.08.23293676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Loss of function variants in the NF1 gene cause neurofibromatosis type 1 (NF1), a genetic disorder characterized by complete penetrance, prevalence of 1 in 3,000, characteristic physical exam findings, and a substantially increased risk for malignancy. However, our understanding of the disorder is entirely based on patients ascertained through phenotype-first approaches. Leveraging a genotype-first approach in two large patient cohorts, we demonstrate unexpectedly high prevalence (1 in 450-750) of NF1 pathogenic variants. Half were identified in individuals lacking clinical features of NF1, with many appearing to have post-zygotic mosaicism for the identified variant. Incidentally discovered variants were not associated with classic NF1 features but were associated with an increased incidence of malignancy compared to a control population. Our findings suggest that NF1 pathogenic variants are substantially more common than previously thought, often characterized by somatic mosaicism and reduced penetrance, and are important contributors to cancer risk in the general population.
Collapse
|
47
|
Avagyan S, Zon LI. Clonal hematopoiesis and inflammation - the perpetual cycle. Trends Cell Biol 2023; 33:695-707. [PMID: 36593155 PMCID: PMC10310890 DOI: 10.1016/j.tcb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
Acquired genetic or cytogenetic alterations in a blood stem cell that confer clonal fitness promote its relative expansion leading to clonal hematopoiesis (CH). Despite a largely intact hematopoietic output, CH is associated with a heightened risk of progression to hematologic malignancies and with non-hematologic health manifestations, including cardiovascular disease and overall mortality. We focus on the evidence for the role of inflammation in establishing, maintaining and reciprocally being affected by CH. We describe the known pro-inflammatory signals associated with CH and preclinical studies that elucidated the cellular mechanisms involved. We review the evolving literature on early-onset CH in germline predisposition conditions and the possible role of immune dysregulation in this context.
Collapse
Affiliation(s)
- Serine Avagyan
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorders Center, Boston, MA, USA.
| | - Leonard I Zon
- Boston Children's Hospital, Boston, MA 02215, USA; Howard Hughes Medical Institute, USA
| |
Collapse
|
48
|
Amancherla K, Schlendorf KH, Vlasschaert C, Lowery BD, Wells QS, See SB, Zorn E, Colombo PC, Reilly MP, Lindenfeld J, Uriel N, Freedman JE, Shah RV, Moslehi J, Bick AG, Clerkin K. Clonal hematopoiesis of indeterminate potential and outcomes after heart transplantation: A multicenter study. Am J Transplant 2023; 23:1256-1263. [PMID: 37156299 PMCID: PMC10524751 DOI: 10.1016/j.ajt.2023.04.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/11/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Cardiac allograft vasculopathy (CAV) is a leading cause of late graft failure and mortality after heart transplantation (HT). Sharing some features with atherosclerosis, CAV results in diffuse narrowing of the epicardial coronaries and microvasculature, with consequent graft ischemia. Recently, clonal hematopoiesis of indeterminate potential (CHIP) has emerged as a risk factor for cardiovascular disease and mortality. We aimed to investigate the relationship between CHIP and posttransplant outcomes, including CAV. We analyzed 479 HT recipients with stored DNA samples at 2 high-volume transplant centers, Vanderbilt University Medical Center and Columbia University Irving Medical Center. We explored the association between the presence of CHIP mutations with CAV and mortality after HT. In this case-control analysis, carriers of CHIP mutations were not at increased risk of CAV or mortality after HT. In a large multicenter genomics study of the heart transplant population, the presence of CHIP mutations was not associated with an increased risk of CAV or posttransplant mortality.
Collapse
Affiliation(s)
- Kaushik Amancherla
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Kelly H Schlendorf
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Brandon D Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Quinn S Wells
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah B See
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York City, New York City, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York City, New York City, USA
| | - Paolo C Colombo
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| | - Muredach P Reilly
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| | - JoAnn Lindenfeld
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nir Uriel
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| | - Jane E Freedman
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ravi V Shah
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Javid Moslehi
- Section of Cardio-Oncology and Immunology, University of California San Francisco, San Francisco, California, USA
| | - Alexander G Bick
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin Clerkin
- Division of Cardiology, Columbia University Medical Center, New York City, New York City, USA
| |
Collapse
|
49
|
Schuermans A, Nakao T, Ruan Y, Koyama S, Yu Z, Uddin MM, Haidermota S, Hornsby W, Lewandowski AJ, Bick AG, Niroula A, Jaiswal S, Ebert BL, Natarajan P, Honigberg MC. Birth Weight Is Associated With Clonal Hematopoiesis of Indeterminate Potential and Cardiovascular Outcomes in Adulthood. J Am Heart Assoc 2023; 12:e030220. [PMID: 37345823 PMCID: PMC10356089 DOI: 10.1161/jaha.123.030220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023]
Abstract
Background High and low birth weight are independently associated with increased cardiovascular disease risk in adulthood. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related clonal expansion of hematopoietic cells with preleukemic somatic mutations, predicts incident cardiovascular disease independent of traditional cardiovascular risk factors. Whether birth weight predicts development of CHIP later in life is unknown. Methods and Results A total of 221 047 adults enrolled in the UK Biobank with whole exome sequences and self-reported birth weight were analyzed. Of those, 22 030 (11.5%) had low (<2.5 kg) and 29 292 (14.7%) high birth weight (>4.0 kg). CHIP prevalence was higher among participants with low (6.0%, P=0.049) and high (6.3%, P<0.001) versus normal birth weight (5.7%, ref.). Multivariable-adjusted logistic regression analyses demonstrated that each 1-kg increase in birth weight was associated with a 3% increased risk of CHIP (odds ratio, 1.03 [95% CI, 1.00-1.06]; P=0.04), driven by a stronger association observed between birth weight and DNMT3A CHIP (odds ratio, 1.04 per 1-kg increase [95% CI, 1.01-1.08]; P=0.02). Mendelian randomization analyses supported a causal relationship of longer gestational age at delivery with DNMT3A CHIP. Multivariable Cox regression demonstrated that CHIP was independently and additively associated with incident cardiovascular disease or death across birth weight groups, with highest absolute risks in those with CHIP plus high or low birth weight. Conclusions Higher birth weight is associated with increased risk of developing CHIP in midlife, especially DNMT3A CHIP. These findings identify a novel risk factor for CHIP and provide insights into the relationships among early-life environment, CHIP, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of Cardiovascular SciencesKU LeuvenLeuvenBelgium
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Division of Cardiovascular Medicine, Department of MedicineBrigham and Women’s HospitalBostonMAUSA
| | - Yunfeng Ruan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Satoshi Koyama
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Md Mesbah Uddin
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Sara Haidermota
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
| | - Adam J. Lewandowski
- Cardiovascular Clinical Research Facility, Division of Cardiovascular MedicineUniversity of OxfordUnited Kingdom
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Abhishek Niroula
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Department of Laboratory MedicineLund UniversitySweden
| | - Siddhartha Jaiswal
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Benjamin L. Ebert
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease InitiativeBroad Institute of Harvard and MITCambridgeMAUSA
- Cardiovascular Research Center and Center for Genomic MedicineMassachusetts General HospitalBostonMAUSA
- Department of MedicineHarvard Medical SchoolBostonMAUSA
| |
Collapse
|
50
|
Yang F, Nourse C, Helgason GV, Kirschner K. Unraveling Heterogeneity in the Aging Hematopoietic Stem Cell Compartment: An Insight From Single-cell Approaches. Hemasphere 2023; 7:e895. [PMID: 37304939 PMCID: PMC10256339 DOI: 10.1097/hs9.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Specific cell types and, therefore, organs respond differently during aging. This is also true for the hematopoietic system, where it has been demonstrated that hematopoietic stem cells alter a variety of features, such as their metabolism, and accumulate DNA damage, which can lead to clonal outgrowth over time. In addition, profound changes in the bone marrow microenvironment upon aging lead to senescence in certain cell types such as mesenchymal stem cells and result in increased inflammation. This heterogeneity makes it difficult to pinpoint the molecular drivers of organismal aging gained from bulk approaches, such as RNA sequencing. A better understanding of the heterogeneity underlying the aging process in the hematopoietic compartment is, therefore, needed. With the advances of single-cell technologies in recent years, it is now possible to address fundamental questions of aging. In this review, we discuss how single-cell approaches can and indeed are already being used to understand changes observed during aging in the hematopoietic compartment. We will touch on established and novel methods for flow cytometric detection, single-cell culture approaches, and single-cell omics.
Collapse
Affiliation(s)
- Fei Yang
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Craig Nourse
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - G. Vignir Helgason
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Kristina Kirschner
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| |
Collapse
|