1
|
Zhang Y, Liu J, Zhou Y, Hu X, Geng B, Yang S. Establishment of a RecET-Assisted CRISPR-Cas12a System for Large Deoxyribonucleic Acid-Fragment Manipulation in Zymomonas mobilis. ACS Synth Biol 2025; 14:1606-1614. [PMID: 40298457 DOI: 10.1021/acssynbio.4c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
The lack of effective and efficient genome-editing toolkits for large DNA-fragment manipulation impedes the development of robust cell factories to meet the needs of fast-growing biomanufacturing. Zymomonas mobilis is an important nonmodel polyploid industrial strain with excellent industrial characteristics. Although diverse CRISPR-Cas systems have been established in Z. mobilis for gene deletion, replacement, and ssDNA recombination, it is still challenging to achieve large DNA-fragment manipulation due to its low recombination and repair efficiencies for double-strand DNA breaks. In this study, a RecET-assisted CRISPR-Cas12a genome editing system was developed using a chromosome-borne cas12a and recET-encoded recombinase, as well as an all-in-one editing plasmid. Different promoters were used for recET and cas12a to determine optimal expression. The combination of PB-cas12a_Pt-recET had the highest efficiency of 97.92 ± 2.95% for 9-kb DNA-fragment deletion, which also had efficiencies about 100%, 80%, and 5%, respectively, for the deletion of 9-16, 20-25, and 30 kb DNA fragments. The RecET-assisted CRISPR-Cas12a was further applied for deletions of different large gene clusters and had the potential for efficient pathway knock-in. This study highlights the importance of the Cas12a nuclease expression levels and the combination of the RecET system in improving the double-strand DNA repair capability for large DNA-fragment manipulation in Z. mobilis. The RecET-assisted CRISPR-Cas12a system established in this study provides a versatile and powerful tool for large DNA-fragment manipulation in Z. mobilis, which is beneficial for functional genomic research, strain improvement, as well as the development of synthetic microbial chassis.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jian Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yunfeng Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaoyue Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Huang J, Ding K, Chen J, Fan J, Huang L, Qiu S, Wang L, Du X, Wang C, Pan H, Yuan Z, Liu H, Song H. Comparison of CRISPR-Cas9, CRISPR-Cas12f1, and CRISPR-Cas3 in eradicating resistance genes KPC-2 and IMP-4. Microbiol Spectr 2025:e0257224. [PMID: 40293254 DOI: 10.1128/spectrum.02572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/22/2025] [Indexed: 04/30/2025] Open
Abstract
Bacterial plasmid encoding antibiotic resistance could be eradicated by various CRISPR systems, such as CRISPR-Cas9, Cas12f1, and Cas3. However, the efficacy of these gene editing tools against bacterial resistance has not been systematically assessed and compared. This study eliminates carbapenem resistance genes KPC-2 and IMP-4 via CRISPR-Cas9, Cas12f1, and Cas3 systems, respectively. The eradication efficiency of the three CRISPR systems was evaluated. First, the target sites for the three CRISPR systems were designed within the regions 542-576 bp of the KPC-2 gene and 213-248 bp of the IMP-4 gene, respectively. The recombinant CRISPR plasmids were transformed into Escherichia coli carrying KPC-2 or IMP-4-encoding plasmid. Colony PCR of transformants showed that KPC-2 and IMP-4 were eradicated by the three different CRISPR systems, and the elimination efficacy was both 100.00%. The drug sensitivity test results showed that the resistant E. coli strain was resensitized to ampicillin. In addition, the three CRISPR plasmids could block the horizontal transfer of drug-resistant plasmids, with a blocking rate as high as 99%. Importantly, a qPCR assay was performed to analyze the copy number changes of drug-resistant plasmids in E. coli cells. The results indicated that CRISPR-Cas3 showed higher eradication efficiency than CRISPR-Cas9 and Cas12f1 systems. IMPORTANCE With the continuous development and application of CRISPR-based resistance removal technologies, CRISPR-Cas9, Cas12f1, and Cas3 have gradually come into focus. However, it remains uncertain which system exhibits more potent efficacy in the removal of bacterial resistance. This study verifies that CRISPR-Cas9, Cas12f1, and Cas3 can eradicate the carbapenem-resistant genes KPC-2 and IMP-4 and restore the sensitivity of drug-resistant model bacteria to antibiotics. Among the three CRISPR systems, the CRISPR-Cas3 system showed the highest eradication efficiency. Although each system has its advantages and characteristics, our results provide guidance on the selection of the CRISPR system from the perspective of resistance gene removal efficiency, contributing to the further application of CRISPR-based bacterial resistance removal technologies.
Collapse
Affiliation(s)
- Jun Huang
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
- Department of Human Anatomy and Histology, School of Basic Medicine, Capital Medical University, Beijing, China
| | - Kanghui Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiahui Chen
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jiao Fan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Luyao Huang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Shaofu Qiu
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Ligui Wang
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Xinying Du
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Chao Wang
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Haifeng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhengquan Yuan
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Hongbo Liu
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| | - Hongbin Song
- Department of Infectious Disease Prevention and Control, Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Xie Y, Liu X, Wu T, Luo Y. Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1174-1182. [PMID: 39821831 DOI: 10.1007/s11427-024-2677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 01/19/2025]
Abstract
Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains. Through a plasmid interference assay, we identified the effective protospacer adjacent motif as 5'-AAN-3'. Utilizing this system, we achieved targeted chromosomal deletions ranging from 8 bp to 100 kb, with efficiencies exceeding 92%. We further utilized this system to insert DNA fragments into different Streptomyces genomes, facilitating the heterologous expression of exogenous genes and the activation of endogenous natural product biosynthetic gene clusters. Overall, we established a type I CRISPR/Cas-based gene-editing methodology that significantly advances the exploration of Streptomyces, known for their rich natural product resources. This is the first report of a gene editing tool developed based on the endogenous class 1 type I CRISPR/Cas system in Streptomyces spp. Our work enriches the Streptomyces gene manipulation toolbox and advances the discovery of valuable natural products within these organisms.
Collapse
Affiliation(s)
- Yuhui Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tingting Wu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Whitford CM, Gockel P, Faurdal D, Gren T, Sigrist R, Weber T. CASCADE-Cas3 enables highly efficient genome engineering in Streptomyces species. Nucleic Acids Res 2025; 53:gkaf214. [PMID: 40138716 PMCID: PMC11941474 DOI: 10.1093/nar/gkaf214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Type I clustered regularly interspaced short palindromic repeat (CRISPR) systems are widespread in bacteria and archaea. Compared to more widely applied type II systems, type I systems differ in the multi-effector CRISPR-associated complex for antiviral defense needed for crRNA processing and target recognition, as well as the processive nature of the hallmark nuclease Cas3. Given the widespread nature of type I systems, the processive nature of Cas3 and the recombinogenic overhangs created by Cas3, we hypothesized that CASCADE-Cas3 would be uniquely positioned to enable efficient genome engineering in streptomycetes. Here, we report a new type I based CRISPR genome engineering tool for streptomycetes. The plasmid system, called pCRISPR-Cas3, utilizes a compact type I-C CRISPR system and enables highly efficient genome engineering. pCRISPR-Cas3 outperforms pCRISPR-Cas9 and facilitates targeted and random sized deletions. Furthermore, we demonstrate its ability to effectively perform substitutions of large genomic regions such as biosynthetic gene clusters. Without additional modifications, pCRISPR-Cas3 enabled genome engineering in several Streptomyces species at high efficiencies.
Collapse
Affiliation(s)
- Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Peter Gockel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - David Faurdal
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Renata Sigrist
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Padmaswari MH, Agrawal S, Nelson CE. Preclinical development of genome editing to treat Duchenne muscular dystrophy by exon skipping. J Neuromuscul Dis 2025:22143602251326993. [PMID: 40105473 DOI: 10.1177/22143602251326993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations to the gene encoding dystrophin. Restoring the reading frame of dystrophin by removing internal out-of-frame exons may address symptoms of DMD. Therefore, the principle of exon skipping has been at the center stage in drug development for Duchenne muscular dystrophy (DMD) over the past two decades. Antisense oligonucleotides (AONs) have proven effective in modulating splicing sites for exon skipping, resulting in the FDA approval of several drugs using this technique in recent years. However, due to the temporary nature of AON, researchers are actively exploring genome editing as a potential long-term, single-administration treatment. The advancements in genome-editing technology over the last decade have boosted this transition. While no clinical trials for exon skipping in DMD via genome editing have been conducted as of this writing, preclinical studies show encouraging results. This review describes the preclinical landscape of genome editing for exon skipping in DMD treatment. Along with highlighting the adaptability of genome editing in exon skipping, this review also describes delivery challenges and outlines future research directions that could set a new stage for enhanced therapeutic development in DMD.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
6
|
Fitzpatrick AD, Taylor VL, Patel PH, Faith DR, Secor PR, Maxwell KL. Phage reprogramming of Pseudomonas aeruginosa amino acid metabolism drives efficient phage replication. mBio 2025; 16:e0246624. [PMID: 39918338 PMCID: PMC11898732 DOI: 10.1128/mbio.02466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/18/2024] [Indexed: 03/14/2025] Open
Abstract
Phages have been shown to use diverse strategies to commandeer bacterial host cell metabolism during infection. However, for many of the physiological changes in bacteria during infection, it is often unclear if they are part of a bacterial response to infection or if they are actively driven by the phage itself. Here, we identify two phage proteins that promote efficient phage replication by reprogramming host amino acid metabolism. These proteins, Eht1 and Eht2, are expressed early in the infection cycle and increase the levels of key amino acids and the arginine-derived polyamine putrescine. This provides a fitness advantage as these metabolites are important for phage replication and are often depleted during infection. We provide evidence that Eht1 and Eht2 alter the expression of bacterial host metabolic genes, and their activities may impinge on metabolism-related signaling processes. This work provides new insight into how phages ensure access to essential host resources during infection and the competitive advantage this provides.IMPORTANCEBacterial viruses, known as phages, are abundant in all environments that are inhabited by bacteria. During the infection process, phages exploit bacterial resources, resulting in notable changes to bacterial metabolism. However, precise mechanisms underlying these changes, and if they are driven by the phage or are a generalized bacterial response to infection, remain poorly understood. We characterized two proteins in Pseudomonas aeruginosa phage JBD44 whose activities alter bacterial host metabolism to optimize phage replication. Our work provides insight into how phages control bacterial processes to ensure access to essential host resources during infection.
Collapse
Affiliation(s)
| | | | | | - Dominick R. Faith
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Patrick R. Secor
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Karen L. Maxwell
- Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Du W, Meister LL, van Grinsven T, Branco dos Santos F. Efficient Multiplex Genome Editing of the Cyanobacterium Synechocystis sp. PCC6803 via CRISPR-Cas12a. Biotechnol Bioeng 2025; 122:736-743. [PMID: 39702692 PMCID: PMC11808434 DOI: 10.1002/bit.28910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Cyanobacteria have been genetically modified to convert CO2 into biochemical products, but efficient genetic engineering tools, including CRISPR-Cas systems, remain limited. This is primarily due to the polyploid nature of cyanobacteria, which hinders their effectiveness. Here, we address the latter by specifically (i) modifying the RSF1010-based replicative plasmid to simplify cloning efforts while maintaining high conjugation efficiency; (ii) improving the design of the guide RNA (gRNA) to facilitate chromosomal cleavage; (iii) introducing template DNA fragments as pure plasmids via natural transformation; and (iv) using sacB to facilitate replicative plasmid curing. With this system, the replicative plasmid containing both Cas12a and gRNA is introduced to Synechocystis sp. PCC6803 cells via conjugation to cleave the circular chromosomes. Template DNA plasmid that has meanwhile been assimilated will then repair it achieving the desired genetic modifications. This system was validated by successfully deleting various "neutral" chromosomal loci, both individually and collectively, as well as targeting an essential gene, sll1797. With the sacB-sucrose counter-selection, all deletions were simultaneously made markerless in < 4 weeks. Moreover, we also integrate YFP with various protein degradation tags into the chromosome, allowing for their characterization at the chromosomal level. We foresee this system will greatly facilitate future genome engineering in cyanobacteria.
Collapse
Affiliation(s)
- Wei Du
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luna L. Meister
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tobias van Grinsven
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Wang H, Dong Z, Shi J, Chen L, Sun T, Zhang W. Genome-Wide A → G and C → T Mutations Induced by Functional TadA Variants in Escherichia coli. ACS Synth Biol 2025; 14:431-440. [PMID: 39787000 DOI: 10.1021/acssynbio.4c00597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The fusion expression of deoxyribonucleic acid (DNA) replication-related proteins with nucleotide deaminase enzymes promotes random mutations in bacterial genomes, thereby increasing genetic diversity among the population. Most previous studies have focused on cytosine deaminase, which produces only C → T mutations, significantly limiting the variety of mutation types. In this study, we developed a fusion expression system by combining DnaG (RNA primase) with adenine deaminase TadA-8e (DnaG-TadA) in Escherichia coli, which is capable of rapidly introducing A → G mutations into the E. coli genome, resulting in a 664-fold increase in terms of mutation rate. Additionally, we tested a dual-functional TadA variant, TadAD, and then fused it with DnaG. This construct introduced both C → T and A → G mutations into the E. coli genome, with the mutation rate increased by 370-fold upon coexpression with a uracil glycosylase inhibitor (DnaG-TadAD-UGI). We applied DnaG-TadA and DnaG-TadAD-UGI systems to the adaptive laboratory evolution for Cd2+ and kanamycin resistance, achieving an 8.0 mM Cd2+ and 200 μg/mL kanamycin tolerance within just 17 days and 132 h, respectively. Compared to conventional evolution methods, the final tolerance levels were increased by 320 and 266%, respectively. Our work offers a novel strategy for random mutagenesis in E. coli and potentially other prokaryotic species.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Jingyi Shi
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P. R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P. R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P. R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
9
|
Liu Y, Wang L, Zhang Q, Fu P, Zhang L, Yu Y, Zhang H, Zhu H. Structural basis for RNA-guided DNA degradation by Cas5-HNH/Cascade complex. Nat Commun 2025; 16:1335. [PMID: 39904990 PMCID: PMC11794572 DOI: 10.1038/s41467-024-55716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025] Open
Abstract
Type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated proteins) system is one of the most extensively studied RNA-guided adaptive immune systems in prokaryotes, providing defense against foreign genetic elements. Unlike the previously characterized Cas3 nuclease, which exhibits progressive DNA cleavage in the typical type I-E system, a recently identified HNH-comprising Cascade system enables precise DNA cleavage. Here, we present several near-atomic cryo-electron microscopy (cryo-EM) structures of the Candidatus Cloacimonetes bacterium Cas5-HNH/Cascade complex, both in its DNA-bound and unbound states. Our analysis reveals extensive interactions between the HNH domain and adjacent subunits, including Cas6 and Cas11, with mutations in these key interactions significantly impairing enzymatic activity. Upon DNA binding, the Cas5-HNH/Cascade complex adopts a more compact conformation, with subunits converging toward the center of nuclease, leading to its activation. Notably, we also find that divalent ions such as zinc, cobalt, and nickel down-regulate enzyme activity by destabilizing the Cascade complex. Together, these findings offer structural insights into the assembly and activation of the Cas5-HNH/Cascade complex.
Collapse
Affiliation(s)
- Yanan Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Lin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Pengyu Fu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Banta AB, Cuellar RA, Nadig N, Davis BC, Peters JM. The promise of CRISPR-associated transposons for bacterial functional genomics. Curr Opin Microbiol 2025; 83:102563. [PMID: 39631148 PMCID: PMC11830528 DOI: 10.1016/j.mib.2024.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
CRISPR-associated transposons (CASTs) are naturally occurring amalgamations of CRISPR-Cas machinery and Tn7-like transposons that direct site-specific integration of transposon DNA via programmable guide RNAs. Although the mechanisms of CAST-based transposition have been well studied at the molecular and structural level, CASTs have yet to be broadly applied to bacterial genome engineering and systematic gene phenotyping (i.e. functional genomics) - likely due to their relatively recent discovery. Here, we describe the function and applications of CASTs, focusing on well-characterized systems, including the type I-F CAST from Vibrio cholerae (VcCAST) and type V-K CAST from Scytonema hofmanni (ShCAST). Further, we discuss the potentially transformative impact of targeted transposition on bacterial functional genomics by proposing genome-scale extensions of existing CAST tools.
Collapse
Affiliation(s)
- Amy B Banta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Rodrigo A Cuellar
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA
| | - Nischala Nadig
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bryce C Davis
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jason M Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53726, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Doctor Y, Sanghvi M, Mali P. A Manual for Genome and Transcriptome Engineering. IEEE Rev Biomed Eng 2025; 18:250-267. [PMID: 39514364 PMCID: PMC11875898 DOI: 10.1109/rbme.2024.3494715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Genome and transcriptome engineering have emerged as powerful tools in modern biotechnology, driving advancements in precision medicine and novel therapeutics. In this review, we provide a comprehensive overview of the current methodologies, applications, and future directions in genome and transcriptome engineering. Through this, we aim to provide a guide for tool selection, critically analyzing the strengths, weaknesses, and best use cases of these tools to provide context on their suitability for various applications. We explore standard and recent developments in genome engineering, such as base editors and prime editing, and provide insight into tool selection for change of function (knockout, deletion, insertion, substitution) and change of expression (repression, activation) contexts. Advancements in transcriptome engineering are also explored, focusing on established technologies like antisense oligonucleotides (ASOs) and RNA interference (RNAi), as well as recent developments such as CRISPR-Cas13 and adenosine deaminases acting on RNA (ADAR). This review offers a comparison of different approaches to achieve similar biological goals, and consideration of high-throughput applications that enable the probing of a variety of targets. This review elucidates the transformative impact of genome and transcriptome engineering on biological research and clinical applications that will pave the way for future innovations in the field.
Collapse
Affiliation(s)
| | | | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, CA 92039, USA
| |
Collapse
|
12
|
Rust S, Randau L. Golden Gate Cloning of Synthetic CRISPR RNA Spacer Sequences. Methods Mol Biol 2025; 2850:297-306. [PMID: 39363078 DOI: 10.1007/978-1-0716-4220-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Prokaryotes use CRISPR-Cas systems to interfere with viruses and other mobile genetic elements. CRISPR arrays comprise repeated DNA elements and spacer sequences that can be engineered for custom target sites. These arrays are transcribed into precursor CRISPR RNAs (pre-crRNAs) that undergo maturation steps to form individual CRISPR RNAs (crRNAs). Each crRNA contains a single spacer that identifies the target cleavage site for a large variety of Cas protein effectors. Precise manipulation of spacer sequences within CRISPR arrays is crucial for advancing the functionality of CRISPR-based technologies. Here, we describe a protocol for the design and creation of a minimal, plasmid-based CRISPR array to enable the expression of specific, synthetic crRNAs. Plasmids contain entry spacer sequences with two type IIS restriction sites and Golden Gate cloning enables the efficient exchange of these spacer sequences. Factors that influence the compatibility of the CRISPR arrays with native or recombinant Cas proteins are discussed.
Collapse
Affiliation(s)
- Selina Rust
- Department of Biology, Philipps Universität Marburg, Marburg, Germany
| | - Lennart Randau
- Department of Biology, Philipps Universität Marburg, Marburg, Germany.
- SYNMIKRO, Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
13
|
Lemak S, Brown G, Makarova KS, Koonin EV, Yakunin AF. Biochemical plasticity of the Escherichia coli CRISPR Cascade revealed by in vitro reconstitution of Cascade activities from purified Cas proteins. FEBS J 2024; 291:5177-5194. [PMID: 39375921 PMCID: PMC11617276 DOI: 10.1111/febs.17295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The most abundant clustered regularly interspaced short palindromic repeats (CRISPR) type I systems employ a multisubunit RNA-protein effector complex (Cascade), with varying protein composition and activity. The Escherichia coli Cascade complex consists of 11 protein subunits and functions as an effector through CRISPR RNA (crRNA) binding, protospacer adjacent motif (PAM)-specific double-stranded DNA targeting, R-loop formation, and Cas3 helicase-nuclease recruitment for target DNA cleavage. Here, we present a biochemical reconstruction of the E. coli Cascade from purified Cas proteins and analyze its activities including crRNA binding, dsDNA targeting, R-loop formation, and Cas3 recruitment. Affinity purification of 6His-tagged Cas7 coexpressed with untagged Cas5 revealed the physical association of these proteins, thus producing the Cas5-Cas7 subcomplex that was able to bind specifically to type I-E crRNA with an efficiency comparable to that of the complete Cascade. The crRNA-loaded Cas5-7 was found to bind specifically to the target dsDNA in a PAM-independent manner, albeit with a lower affinity than the complete Cascade, with both spacer sequence complementarity and repeat handles contributing to the DNA targeting specificity. The crRNA-loaded Cas5-7 targeted the complementary dsDNA with detectable formation of R-loops, which was stimulated by the addition of Cas8 and/or Cas11 acting synergistically. Cascade activity reconstitution using purified Cas5-7 and other Cas proteins showed that Cas8 was essential for specific PAM recognition, whereas the addition of Cas11 was required for Cas3 recruitment and target DNA nicking. Thus, although the core Cas5-7 subcomplex is sufficient for specific crRNA binding and basal DNA targeting, both Cas8 and Cas11 make unique contributions to efficient target recognition and cleavage.
Collapse
Affiliation(s)
- Sofia Lemak
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Greg Brown
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Centre for Environmental Biotechnology, School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| |
Collapse
|
14
|
Yang Z, Li B, Bu R, Wang Z, Xin Z, Li Z, Zhang L, Wang W. A highly efficient method for genomic deletion across diverse lengths in thermophilic Parageobacillus thermoglucosidasius. Synth Syst Biotechnol 2024; 9:658-666. [PMID: 38817825 PMCID: PMC11137367 DOI: 10.1016/j.synbio.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024] Open
Abstract
Parageobacillus thermoglucosidasius is emerging as a highly promising thermophilic organism for metabolic engineering. The utilization of CRISPR-Cas technologies has facilitated programmable genetic manipulation in P. thermoglucosidasius. However, the absence of thermostable NHEJ enzymes limited the capability of the endogenous type I CRISPR-Cas system to generate a variety of extensive genomic deletions. Here, two thermophilic NHEJ enzymes were identified and combined with the endogenous type I CRISPR-Cas system to develop a genetic manipulation tool that can achieve long-range genomic deletion across various lengths. By optimizing this tool-through adjusting the expression level of NHEJ enzymes and leveraging our discovery of a negative correlation between GC content of the guide RNA (gRNA) and deletion efficacy-we streamlined a comprehensive gRNA selection manual for whole-genome editing, achieving a 100 % success rate in randomly selecting gRNAs. Notably, using just one gRNA, we achieved genomic deletions spanning diverse length, exceeding 200 kilobases. This tool will facilitate the genomic manipulation of P. thermoglucosidasius for both fundamental research and applied engineering studies, further unlocking its potential as a thermophilic cell factory.
Collapse
Affiliation(s)
- Zhiheng Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Bixiao Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, Frontiers Science Center for High Energy Material, Advanced Research Institute of Multidisciplinary Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruihong Bu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhengduo Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Zhenguo Xin
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology (ECUST), 200237, Shanghai, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
15
|
Yang P, Zhang S, Hu D, Li X, Guo Y, Guo H, Zhang L, Ding X. Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System. Int J Mol Sci 2024; 25:12544. [PMID: 39684256 DOI: 10.3390/ijms252312544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The CRISPR-Cas system functions as an adaptive immune mechanism in archaea and bacteria, providing defense against the invasion of foreign nucleic acids. Most CRISPR-Cas systems are classified into class 1 or class 2, with further subdivision into several subtypes. The primary distinction between class 1 and class 2 systems lies in the assembly of their effector modules. In class 1 systems, the effector complex consists of multiple proteins with distinct functions, whereas in class 2 systems, the effector is associated with a single protein. Class 1 systems account for approximately 90% of the CRISPR-Cas repertoire and are categorized into three types (type I, type IV, and type III) and 12 subtypes. To date, various CRISPR-Cas systems have been widely employed in the field of genetic engineering as essential tools and techniques for genome editing. Type I CRISPR-Cas systems remain a valuable resource for developing sophisticated application tools. This review provides a comprehensive review of the characteristics, mechanisms of action, and applications of class 1 type I CRISPR-Cas systems, as well as transposon-associated systems, offering effective approaches and insights for future research on the mechanisms of action, as well as the subsequent development and application of type I CRISPR-Cas systems.
Collapse
Affiliation(s)
- Peihong Yang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Shuai Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Debao Hu
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xin Li
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Yiwen Guo
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Hong Guo
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiangbin Ding
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China
| |
Collapse
|
16
|
Wang L, Han H. Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system. Heliyon 2024; 10:e38588. [PMID: 39397905 PMCID: PMC11471210 DOI: 10.1016/j.heliyon.2024.e38588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Since its advent, gene-editing technology has been widely used in microorganisms, animals, plants, and other species. This technology shows remarkable application prospects, giving rise to a new biotechnological industry. In particular, third-generation gene editing technology, represented by the CRISPR/Cas9 system, has become the mainstream gene editing technology owing to its advantages of high efficiency, simple operation, and low cost. These systems can be widely used because they have been modified and optimized, leading to notable improvements in the efficiency of gene editing. This review introduces the characteristics of popular CRISPR/Cas systems and optimization methods aimed at improving the editing efficiency of class 2 CRISPR/Cas systems, providing a reference for the development of superior gene editing systems. Additionally, the review discusses the development and optimization of base editors, primer editors, gene activation and repression tools, as well as the advancement and refinement of compact systems such as IscB, TnpB, Fanzor, and Cas12f.
Collapse
Affiliation(s)
- Linli Wang
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongbing Han
- Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Lokareddy RK, Hou CFD, Forti F, Iglesias SM, Li F, Pavlenok M, Horner DS, Niederweis M, Briani F, Cingolani G. Integrative structural analysis of Pseudomonas phage DEV reveals a genome ejection motor. Nat Commun 2024; 15:8482. [PMID: 39353939 PMCID: PMC11445570 DOI: 10.1038/s41467-024-52752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
DEV is an obligatory lytic Pseudomonas phage of the N4-like genus, recently reclassified as Schitoviridae. The DEV genome encodes 91 ORFs, including a 3398 amino acid virion-associated RNA polymerase (vRNAP). Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts. We built de novo structures of all capsid factors and tail components involved in host attachment. We demonstrate that DEV long tail fibers are essential for infection of Pseudomonas aeruginosa but dispensable for infecting mutants with a truncated lipopolysaccharide devoid of the O-antigen. We determine that DEV vRNAP is part of a three-gene operon conserved in 191 Schitoviridae genomes. We propose these three proteins are ejected into the host to form a genome ejection motor spanning the cell envelope. We posit that the design principles of the DEV ejection apparatus are conserved in all Schitoviridae.
Collapse
Affiliation(s)
- Ravi K Lokareddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at. Birmingham (UAB), 1825 University Blvd, Birmingham, AL, USA
| | - Chun-Feng David Hou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Francesca Forti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Stephano M Iglesias
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fenglin Li
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mikhail Pavlenok
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, USA
| | - David S Horner
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, AL, USA
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
| | - Gino Cingolani
- Department of Biochemistry and Molecular Genetics, University of Alabama at. Birmingham (UAB), 1825 University Blvd, Birmingham, AL, USA.
| |
Collapse
|
18
|
Li X, Liu Y, Han J, Zhang L, Liu Z, Wang L, Zhang S, Zhang Q, Fu P, Yin H, Zhu H, Zhang H. Structural basis for the type I-F Cas8-HNH system. EMBO J 2024; 43:4656-4667. [PMID: 39251884 PMCID: PMC11480323 DOI: 10.1038/s44318-024-00229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
The Cas3 nuclease is utilized by canonical type I CRISPR-Cas systems for processive target DNA degradation, while a newly identified type I-F CRISPR variant employs an HNH nuclease domain from the natural fusion Cas8-HNH protein for precise target cleavage both in vitro and in human cells. Here, we report multiple cryo-electron microscopy structures of the type I-F Cas8-HNH system at different functional states. The Cas8-HNH Cascade complex adopts an overall G-shaped architecture, with the HNH domain occupying the C-terminal helical bundle domain (HB) of the Cas8 protein in canonical type I systems. The Linker region connecting Cas8-NTD and HNH domains adopts a rigid conformation and interacts with the Cas7.6 subunit, enabling the HNH domain to be in a functional position. The full R-loop formation displaces the HNH domain away from the Cas6 subunit, thus activating the target DNA cleavage. Importantly, our results demonstrate that precise target cleavage is dictated by a C-terminal helix of the HNH domain. Together, our work not only delineates the structural basis for target recognition and activation of the type I-F Cas8-HNH system, but also guides further developments leveraging this system for precise DNA editing.
Collapse
Affiliation(s)
- Xuzichao Li
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jie Han
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
- Department of Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhikun Liu
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Lin Wang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Shuqin Zhang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qian Zhang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Pengyu Fu
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
| | - Heng Zhang
- Tianjin Institute of Immunology, State Key Laboratory of Experimental Hematology, International Joint Laboratory of Ocular Diseases (Ministry of Education), Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
19
|
Yogi D, Ashok K, Anu CN, Shashikala T, Pradeep C, Bhargava CN, Parvathy MS, Jithesh MN, Manamohan M, Jha GK, Asokan R. CRISPR/Cas12a ribonucleoprotein mediated editing of tryptophan 2,3-dioxygenase of Spodoptera frugiperda. Transgenic Res 2024; 33:369-381. [PMID: 39210187 DOI: 10.1007/s11248-024-00406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
In insect genome editing CRISPR/Cas9 is predominantly employed, while the potential of several classes of Cas enzymes such as Cas12a largely remain untested. As opposed to Cas9 which requires a GC-rich protospacer adjacent motif (PAM), Cas12a requires a T-rich PAM and causes staggered cleavage in the target DNA, opening possibilities for multiplexing. In this regard, the utility of Cas12a has been shown in only a few insect species such as fruit flies and the silkworm, but not in non-model insects such as the fall armyworm, Spodoptera frugiperda, a globally important invasive pest that defies most of the current management methods. In this regard, a more recent genetic biocontrol method known as the precision-guided sterile insect technique (pgSIT) has shown successful implementation in Drosophila melanogaster, with certain thematic adaptations required for application in agricultural pests. However, before the development of a controllable gene drive for a non-model species, it is important to validate the activity of Cas12a in that species. In the current study we have, for the first time, demonstrated the potential of Cas12a by editing an eye color gene, tryptophan 2,3-dioxygenase (TO) of S. frugiperda by microinjecting ribonucleoprotein complex into pre-blastoderm (G0) eggs. Analysis of G0 mutants revealed that all five mutants (two male and three female) exhibited distinct edits consisting of both deletion and insertion events. All five edits were further validated through in silico modeling to understand the changes at the protein level and further corroborate with the range of eye-color phenotypes observed in the present study.
Collapse
Affiliation(s)
- Dhawane Yogi
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- Jain University, Bengaluru, Karnataka, 560069, India
| | - Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India.
- Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| | - Cholenahalli Narayanappa Anu
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Thalooru Shashikala
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Chalapathy Pradeep
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - Madhusoodanan Sujatha Parvathy
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
- University of Agricultural Sciences, Bengaluru, Karnataka, 560065, India
| | - M N Jithesh
- Jain University, Bengaluru, Karnataka, 560069, India
| | | | - Girish Kumar Jha
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India.
| |
Collapse
|
20
|
Kim D, Lee S, Ha H, Park H. Structural basis of Cas3 activation in type I-C CRISPR-Cas system. Nucleic Acids Res 2024; 52:10563-10574. [PMID: 39180405 PMCID: PMC11417383 DOI: 10.1093/nar/gkae723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
CRISPR-Cas systems function as adaptive immune mechanisms in bacteria and archaea and offer protection against phages and other mobile genetic elements. Among many types of CRISPR-Cas systems, Type I CRISPR-Cas systems are most abundant, with target interference depending on a multi-subunit, RNA-guided complex known as Cascade that recruits a transacting helicase nuclease, Cas3, to degrade the target. While structural studies on several other types of Cas3 have been conducted long ago, it was only recently that the structural study of Type I-C Cas3 in complex with Cascade was revealed, shedding light on how Cas3 achieve its activity in the Cascade complex. In the present study, we elucidated the first structure of standalone Type I-C Cas3 from Neisseria lactamica (NlaCas3). Structural analysis revealed that the histidine-aspartate (HD) nuclease active site of NlaCas3 was bound to two Fe2+ ions that inhibited its activity. Moreover, NlaCas3 could cleave both single-stranded and double-stranded DNA in the presence of Ni2+ or Co2+, showing the highest activity in the presence of both Ni2+ and Mg2+ ions. By comparing the structural studies of various Cas3 proteins, we determined that our NlaCas3 stays in an inactive conformation, allowing us to understand the structural changes associated with its activation and their implication.
Collapse
Affiliation(s)
- Do Yeon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - So Yeon Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
21
|
Wang S, Zeng X, Jiang Y, Wang W, Bai L, Lu Y, Zhang L, Tan GY. Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing. Nat Prod Rep 2024; 41:1441-1455. [PMID: 38888887 DOI: 10.1039/d4np00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
Collapse
Affiliation(s)
- Shuliu Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yue Jiang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
22
|
Suttenfield LC, Rapti Z, Chandrashekhar JH, Steinlein AC, Vera JC, Kim T, Whitaker RJ. Phage-mediated resolution of genetic conflict alters the evolutionary trajectory of Pseudomonas aeruginosa lysogens. mSystems 2024; 9:e0080124. [PMID: 39166874 PMCID: PMC11406979 DOI: 10.1128/msystems.00801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogen Pseudomonas aeruginosa is persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers and cas genes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations.
Collapse
Affiliation(s)
- Laura C Suttenfield
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jayadevi H Chandrashekhar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amelia C Steinlein
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juan Cristobal Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ted Kim
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J Whitaker
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
23
|
Ma S, Zhang S, Liu K, Hu T, Hu C. Efficient, compact, and versatile: Type I-F2 CRISPR-Cas system. MLIFE 2024; 3:384-386. [PMID: 39359675 PMCID: PMC11442125 DOI: 10.1002/mlf2.12145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Shengsheng Ma
- Department of Biological Sciences, Faculty of Science National University of Singapore Singapore Singapore
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science National University of Singapore Singapore Singapore
| | - Kunming Liu
- Department of Biological Sciences, Faculty of Science National University of Singapore Singapore Singapore
| | - Tao Hu
- Department of Biological Sciences, Faculty of Science National University of Singapore Singapore Singapore
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science National University of Singapore Singapore Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Precision Medicine Translational Research Programme (TRP) National University of Singapore Singapore Singapore
| |
Collapse
|
24
|
Guo J, Gong L, Yu H, Li M, An Q, Liu Z, Fan S, Yang C, Zhao D, Han J, Xiang H. Engineered minimal type I CRISPR-Cas system for transcriptional activation and base editing in human cells. Nat Commun 2024; 15:7277. [PMID: 39179566 PMCID: PMC11343773 DOI: 10.1038/s41467-024-51695-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024] Open
Abstract
Type I CRISPR-Cas systems are widespread and have exhibited high versatility and efficiency in genome editing and gene regulation in prokaryotes. However, due to the multi-subunit composition and large size, their application in eukaryotes has not been thoroughly investigated. Here, we demonstrate that the type I-F2 Cascade, the most compact among type I systems, with a total gene size smaller than that of SpCas9, can be developed for transcriptional activation in human cells. The efficiency of the engineered I-F2 tool can match or surpass that of dCas9. Additionally, we create a base editor using the I-F2 Cascade, which induces a considerably wide editing window (~30 nt) with a bimodal distribution. It can expand targetable sites, which is useful for disrupting functional sequences and genetic screening. This research underscores the application of compact type I systems in eukaryotes, particularly in the development of a base editor with a wide editing window.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Luyao Gong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Haiying Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qiaohui An
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhenquan Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuru Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Changjialian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China.
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
| |
Collapse
|
25
|
Zhang C, Chen F, Wang F, Xu H, Xue J, Li Z. Mechanisms for HNH-mediated target DNA cleavage in type I CRISPR-Cas systems. Mol Cell 2024; 84:3141-3153.e5. [PMID: 39047725 DOI: 10.1016/j.molcel.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The metagenome-derived type I-E and type I-F variant CRISPR-associated complex for antiviral defense (Cascade) complexes, fused with HNH domains, precisely cleave target DNA, representing recently identified genome editing tools. However, the underlying working mechanisms remain unknown. Here, structures of type I-FHNH and I-EHNH Cascade complexes at different states are reported. In type I-FHNH Cascade, Cas8fHNH loosely attaches to Cascade head and is adjacent to the 5' end of the target single-stranded DNA (ssDNA). Formation of the full R-loop drives the Cascade head to move outward, allowing Cas8fHNH to detach and rotate ∼150° to accommodate target ssDNA for cleavage. In type I-EHNH Cascade, Cas5eHNH domain is adjacent to the 5' end of the target ssDNA. Full crRNA-target pairing drives the lift of the Cascade head, widening the substrate channel for target ssDNA entrance. Altogether, these analyses into both complexes revealed that crRNA-guided positioning of target DNA and target DNA-induced HNH unlocking are two key factors for their site-specific cleavage of target DNA.
Collapse
Affiliation(s)
- Chendi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Fugen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Feng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Haijiang Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Jialin Xue
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China
| | - Zhuang Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, Hubei, China.
| |
Collapse
|
26
|
Loeff L, Adams DW, Chanez C, Stutzmann S, Righi L, Blokesch M, Jinek M. Molecular mechanism of plasmid elimination by the DdmDE defense system. Science 2024; 385:188-194. [PMID: 38870273 DOI: 10.1126/science.adq0534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024]
Abstract
Seventh-pandemic Vibrio cholerae strains contain two pathogenicity islands that encode the DNA defense modules DdmABC and DdmDE. In this study, we used cryogenic electron microscopy to determine the mechanistic basis for plasmid defense by DdmDE. The helicase-nuclease DdmD adopts an autoinhibited dimeric architecture. The prokaryotic Argonaute protein DdmE uses a DNA guide to target plasmid DNA. The structure of the DdmDE complex, validated by in vivo mutational studies, shows that DNA binding by DdmE triggers disassembly of the DdmD dimer and loading of monomeric DdmD onto the nontarget DNA strand. In vitro studies indicate that DdmD translocates in the 5'-to-3' direction, while partially degrading the plasmid DNA. These findings provide critical insights into the mechanism of DdmDE systems in plasmid elimination.
Collapse
Affiliation(s)
- Luuk Loeff
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - David W Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christelle Chanez
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Sandrine Stutzmann
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurie Righi
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
28
|
Glasgo LD, Lukasiak KL, Zinser ER. Expanding the capabilities of MuGENT for large-scale genetic engineering of the fastest-replicating species, Vibrio natriegens. Microbiol Spectr 2024; 12:e0396423. [PMID: 38667341 PMCID: PMC11237659 DOI: 10.1128/spectrum.03964-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/27/2024] [Indexed: 06/06/2024] Open
Abstract
The fastest replicating bacterium Vibrio natriegens is a rising workhorse for molecular and biotechnological research with established tools for efficient genetic manipulation. Here, we expand on the capabilities of multiplex genome editing by natural transformation (MuGENT) by identifying a neutral insertion site and showing how two selectable markers can be swapped at this site for sequential rounds of natural transformation. Second, we demonstrated that MuGENT can be used for complementation by gene insertion at an ectopic chromosomal locus. Additionally, we developed a robust method to cure the competence plasmid required to induce natural transformation. Finally, we demonstrated the ability of MuGENT to create massive deletions; the 280 kb deletion created in this study is one of the largest artificial deletions constructed in a single round of targeted mutagenesis of a bacterium. These methods each advance the genetic potential of V. natriegens and collectively expand upon its utility as an emerging model organism for synthetic biology. IMPORTANCE Vibrio natriegens is an emerging model organism for molecular and biotechnological applications. Its fast growth, metabolic versatility, and ease of genetic manipulation provide an ideal platform for synthetic biology. Here, we develop and apply novel methods that expand the genetic capabilities of the V. natriegens model system. Prior studies developed a method to manipulate multiple regions of the chromosome in a single step. Here, we provide new resources that diversify the utility of this method. We also provide a technique to remove the required genetic tools from the cell once the manipulation is performed, thus establishing "clean" derivative cells. Finally, we show the full extent of this technique's capability by generating one of the largest chromosomal deletions reported in the literature. Collectively, these new tools will be beneficial broadly to the Vibrio community and specifically to the advancement of V. natriegens as a model system.
Collapse
Affiliation(s)
- Liz D. Glasgo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Katie L. Lukasiak
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Erik R. Zinser
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
29
|
Ma S, Su T, Lu X, Qi Q. Bacterial genome reduction for optimal chassis of synthetic biology: a review. Crit Rev Biotechnol 2024; 44:660-673. [PMID: 37380345 DOI: 10.1080/07388551.2023.2208285] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/13/2022] [Accepted: 02/20/2023] [Indexed: 06/30/2023]
Abstract
Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.
Collapse
Affiliation(s)
- Shuai Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Tianyuan Su
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Xuemei Lu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, P. R. China
| |
Collapse
|
30
|
Chen XR, Cui YZ, Li BZ, Yuan YJ. Genome engineering on size reduction and complexity simplification: A review. J Adv Res 2024; 60:159-171. [PMID: 37442424 PMCID: PMC11156615 DOI: 10.1016/j.jare.2023.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Genome simplification is an important topic in the field of life sciences that has attracted attention from its conception to the present day. It can help uncover the essential components of the genome and, in turn, shed light on the underlying operating principles of complex biological systems. This has made it a central focus of both basic and applied research in the life sciences. With the recent advancements in related technologies and our increasing knowledge of the genome, now is an opportune time to delve into this topic. AIM OF REVIEW Our review investigates the progress of genome simplification from two perspectives: genome size reduction and complexity simplification. In addition, we provide insights into the future development trends of genome simplification. KEY SCIENTIFIC CONCEPTS OF REVIEW Reducing genome size requires eliminating non-essential elements as much as possible. This process has been facilitated by advances in genome manipulation and synthesis techniques. However, we still need a better and clearer understanding of living systems to reduce genome complexity. As there is a lack of quantitative and clearly defined standards for this task, we have opted to approach the topic from various perspectives and present our findings accordingly.
Collapse
Affiliation(s)
- Xiang-Rong Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, China
| |
Collapse
|
31
|
Bravo JPK, Ramos DA, Fregoso Ocampo R, Ingram C, Taylor DW. Plasmid targeting and destruction by the DdmDE bacterial defence system. Nature 2024; 630:961-967. [PMID: 38740055 PMCID: PMC11649018 DOI: 10.1038/s41586-024-07515-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Although eukaryotic Argonautes have a pivotal role in post-transcriptional gene regulation through nucleic acid cleavage, some short prokaryotic Argonaute variants (pAgos) rely on auxiliary nuclease factors for efficient foreign DNA degradation1. Here we reveal the activation pathway of the DNA defence module DdmDE system, which rapidly eliminates small, multicopy plasmids from the Vibrio cholerae seventh pandemic strain (7PET)2. Through a combination of cryo-electron microscopy, biochemistry and in vivo plasmid clearance assays, we demonstrate that DdmE is a catalytically inactive, DNA-guided, DNA-targeting pAgo with a distinctive insertion domain. We observe that the helicase-nuclease DdmD transitions from an autoinhibited, dimeric complex to a monomeric state upon loading of single-stranded DNA targets. Furthermore, the complete structure of the DdmDE-guide-target handover complex provides a comprehensive view into how DNA recognition triggers processive plasmid destruction. Our work establishes a mechanistic foundation for how pAgos utilize ancillary factors to achieve plasmid clearance, and provides insights into anti-plasmid immunity in bacteria.
Collapse
Affiliation(s)
- Jack P K Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Institute of Science and Technology Austria (ISTA), Klosterneuberg, Austria.
| | - Delisa A Ramos
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | | | - Caiden Ingram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
- Livestrong Cancer Institutes, Dell Medical School, Austin, TX, USA
| |
Collapse
|
32
|
Lu M, Yu C, Zhang Y, Ju W, Ye Z, Hua C, Mao J, Hu C, Yang Z, Xiao Y. Structure and genome editing of type I-B CRISPR-Cas. Nat Commun 2024; 15:4126. [PMID: 38750051 PMCID: PMC11096372 DOI: 10.1038/s41467-024-48598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.
Collapse
Affiliation(s)
- Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chenlin Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuwen Zhang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjun Ju
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhi Ye
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chenyang Hua
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinze Mao
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Precision Medicine Translational Research Programme (TRP), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore
| | - Zhenhuang Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, 518112, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China.
| |
Collapse
|
33
|
Krink N, Nikel PI, Beisel CL. A Hitchhiker's guide to CRISPR editing tools in bacteria : CRISPR can help unlock the bacterial world, but technical and regulatory barriers persist. EMBO Rep 2024; 25:1694-1699. [PMID: 38347223 PMCID: PMC11014848 DOI: 10.1038/s44319-024-00086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 04/14/2024] Open
Abstract
Join us on a journey through the complex and ever-expanding universe of CRISPR approaches for genome editing in bacteria. Discover what is available, current technical challenges, successful implementation of these tools and the regulatory framework around their use.
Collapse
Affiliation(s)
- Nicolas Krink
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080, Würzburg, Germany.
- Medical Faculty, University of Würzburg, 97080, Würzburg, Germany.
| |
Collapse
|
34
|
Li J, Zhao D, Zhang T, Xiong H, Hu M, Liu H, Zhao F, Sun X, Fan P, Qian Y, Wang D, Lai L, Sui T, Li Z. Precise large-fragment deletions in mammalian cells and mice generated by dCas9-controlled CRISPR/Cas3. SCIENCE ADVANCES 2024; 10:eadk8052. [PMID: 38489357 PMCID: PMC10942115 DOI: 10.1126/sciadv.adk8052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Currently, the Cas9 and Cas12a systems are widely used for genome editing, but their ability to precisely generate large chromosome fragment deletions is limited. Type I-E CRISPR mediates broad and unidirectional DNA degradation, but controlling the size of Cas3-mediated DNA deletions has proven elusive thus far. Here, we demonstrate that the endonuclease deactivation of Cas9 (dCas9) can precisely control Cas3-mediated large-fragment deletions in mammalian cells. In addition, we report the elimination of the Y chromosome and precise retention of the Sry gene in mice using CRISPR/Cas3 and dCas9-controlled CRISPR/Cas3, respectively. In conclusion, dCas9-controlled CRISPR/Cas3-mediated precise large-fragment deletion provides an approach for establishing animal models by chromosome elimination. This method also holds promise as a potential therapeutic strategy for treating fragment mutations or human aneuploidy diseases that involve additional chromosomes.
Collapse
Affiliation(s)
- Jinze Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Ding Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Tao Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Haoyang Xiong
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Mingyang Hu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Hongmei Liu
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Feiyu Zhao
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Xiaodi Sun
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Peng Fan
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Yuqiang Qian
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Di Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
- Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Tingting Sui
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Jilin University, Changchun 130062, China
| |
Collapse
|
35
|
Sengupta A, Bandyopadhyay A, Sarkar D, Hendry JI, Schubert MG, Liu D, Church GM, Maranas CD, Pakrasi HB. Genome streamlining to improve performance of a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973. mBio 2024; 15:e0353023. [PMID: 38358263 PMCID: PMC10936165 DOI: 10.1128/mbio.03530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Cyanobacteria are photosynthetic organisms that have garnered significant recognition as potential hosts for sustainable bioproduction. However, their complex regulatory networks pose significant challenges to major metabolic engineering efforts, thereby limiting their feasibility as production hosts. Genome streamlining has been demonstrated to be a successful approach for improving productivity and fitness in heterotrophs but is yet to be explored to its full potential in phototrophs. Here, we present the systematic reduction of the genome of the cyanobacterium exhibiting the fastest exponential growth, Synechococcus elongatus UTEX 2973. This work, the first of its kind in a photoautotroph, involved an iterative process using state-of-the-art genome-editing technology guided by experimental analysis and computational tools. CRISPR-Cas3 enabled large, progressive deletions of predicted dispensable regions and aided in the identification of essential genes. The large deletions were combined to obtain a strain with 55-kb genome reduction. The strains with streamlined genome showed improvement in growth (up to 23%) and productivity (by 22.7%) as compared to the wild type (WT). This streamlining strategy not only has the potential to develop cyanobacterial strains with improved growth and productivity traits but can also facilitate a better understanding of their genome-to-phenome relationships.IMPORTANCEGenome streamlining is an evolutionary strategy used by natural living systems to dispense unnecessary genes from their genome as a mechanism to adapt and evolve. While this strategy has been successfully borrowed to develop synthetic heterotrophic microbial systems with desired phenotype, it has not been extensively explored in photoautotrophs. Genome streamlining strategy incorporates both computational predictions to identify the dispensable regions and experimental validation using genome-editing tool, and in this study, we have employed a modified strategy with the goal to minimize the genome size to an extent that allows optimal cellular fitness under specified conditions. Our strategy has explored a novel genome-editing tool in photoautotrophs, which, unlike other existing tools, enables large, spontaneous optimal deletions from the genome. Our findings demonstrate the effectiveness of this modified strategy in obtaining strains with streamlined genome, exhibiting improved fitness and productivity.
Collapse
Affiliation(s)
- Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | | - Debolina Sarkar
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - John I. Hendry
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Max G. Schubert
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
| | - Deng Liu
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - George M. Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | | |
Collapse
|
36
|
Gao H, Qiu Z, Wang X, Zhang X, Zhang Y, Dai J, Liang Z. Recent advances in genome-scale engineering in Escherichia coli and their applications. ENGINEERING MICROBIOLOGY 2024; 4:100115. [PMID: 39628784 PMCID: PMC11611031 DOI: 10.1016/j.engmic.2023.100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 12/06/2024]
Abstract
Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for Escherichia coli, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.
Collapse
Affiliation(s)
- Hui Gao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichao Qiu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L’ Hospitalet de Llobregat, Barcelona 08908, Spain
- Faculty of Pharmacy and Food Science, Barcelona University, Barcelona 08028, Spain
| | - Xuan Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiyuan Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yujia Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Life Sciences, Northwest A&F University, Shaanxi 712100, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
37
|
Patel PH, Taylor VL, Zhang C, Getz LJ, Fitzpatrick AD, Davidson AR, Maxwell KL. Anti-phage defence through inhibition of virion assembly. Nat Commun 2024; 15:1644. [PMID: 38388474 PMCID: PMC10884400 DOI: 10.1038/s41467-024-45892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Bacteria have evolved diverse antiviral defence mechanisms to protect themselves against phage infection. Phages integrated into bacterial chromosomes, known as prophages, also encode defences that protect the bacterial hosts in which they reside. Here, we identify a type of anti-phage defence that interferes with the virion assembly pathway of invading phages. The protein that mediates this defence, which we call Tab (for 'Tail assembly blocker'), is constitutively expressed from a Pseudomonas aeruginosa prophage. Tab allows the invading phage replication cycle to proceed, but blocks assembly of the phage tail, thus preventing formation of infectious virions. While the infected cell dies through the activity of the replicating phage lysis proteins, there is no release of infectious phage progeny, and the bacterial community is thereby protected from a phage epidemic. Prophages expressing Tab are not inhibited during their own lytic cycle because they express a counter-defence protein that interferes with Tab function. Thus, our work reveals an anti-phage defence that operates by blocking virion assembly, thereby both preventing formation of phage progeny and allowing destruction of the infected cell due to expression of phage lysis genes.
Collapse
Affiliation(s)
| | | | - Chi Zhang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Landon J Getz
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Alan R Davidson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Karen L Maxwell
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Cingolani G, Lokareddy R, Hou CF, Forti F, Iglesias S, Li F, Pavlenok M, Niederweis M, Briani F. Integrative structural analysis of Pseudomonas phage DEV reveals a genome ejection motor. RESEARCH SQUARE 2024:rs.3.rs-3941185. [PMID: 38463957 PMCID: PMC10925440 DOI: 10.21203/rs.3.rs-3941185/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
DEV is an obligatory lytic Pseudomonas phage of the N4-like genus, recently reclassified as Schitoviridae. The DEV genome encodes 91 ORFs, including a 3,398 amino acid virion-associated RNA polymerase. Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts. We built de novo structures of all capsid factors and tail components involved in host attachment. We demonstrate that DEV long tail fibers are essential for infection of Pseudomonas aeruginosa and dispensable for infecting mutants with a truncated lipopolysaccharide devoid of the O-antigen. We identified DEV ejection proteins and, unexpectedly, found that the giant DEV RNA polymerase, the hallmark of the Schitoviridae family, is an ejection protein. We propose that DEV ejection proteins form a genome ejection motor across the host cell envelope and that these structural principles are conserved in all Schitoviridae.
Collapse
|
39
|
Geslewitz WE, Cardenas A, Zhou X, Zhang Y, Criss AK, Seifert HS. Development and implementation of a Type I-C CRISPR-based programmable repression system for Neisseria gonorrhoeae. mBio 2024; 15:e0302523. [PMID: 38126782 PMCID: PMC10865793 DOI: 10.1128/mbio.03025-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) are prokaryotic adaptive immune systems regularly utilized as DNA-editing tools. While Neisseria gonorrhoeae does not have an endogenous CRISPR, the commensal species Neisseria lactamica encodes a functional Type I-C CRISPR-Cas system. We have established an isopropyl β-d-1-thiogalactopyranoside added (IPTG)-inducible, CRISPR interference (CRISPRi) platform based on the N. lactamica Type I-C CRISPR missing the Cas3 nuclease to allow locus-specific transcriptional repression. As proof of principle, we targeted a non-phase-variable version of the opaD gene. We show that CRISPRi can downregulate opaD gene and protein expression, resulting in bacterial inability to stimulate neutrophil oxidative responses and to bind to an N-terminal fragment of CEACAM1. Importantly, we used CRISPRi to effectively knockdown all the transcripts of all 11 opa genes using a five-spacer CRISPR array, allowing control of the entire phase-variable opa family in strain FA1090. We also report that repression is reversible following IPTG removal. Finally, we showed that the Type I-C CRISPRi system can conditionally reduce the expression of two essential genes. This CRISPRi system will allow the interrogation of every Gc gene, essential and non-essential, to study physiology and pathogenesis and aid in antimicrobial development.IMPORTANCEClustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems have proven instrumental in genetically manipulating many eukaryotic and prokaryotic organisms. Despite its usefulness, a CRISPR system had yet to be developed for use in Neisseria gonorrhoeae (Gc), a bacterium that is the main etiological agent of gonorrhea infection. Here, we developed a programmable and IPTG-inducible Type I-C CRISPR interference (CRISPRi) system derived from the commensal species Neisseria lactamica as a gene repression system in Gc. As opposed to generating genetic knockouts, the Type I-C CRISPRi system allows us to block transcription of specific genes without generating deletions in the DNA. We explored the properties of this system and found that a minimal spacer array is sufficient for gene repression while also facilitating efficient spacer reprogramming. Importantly, we also show that we can use CRISPRi to knockdown genes that are essential to Gc that cannot normally be knocked out under laboratory settings. Gc encodes ~800 essential genes, many of which have no predicted function. We predict that this Type I-C CRISPRi system can be used to help categorize gene functions and perhaps contribute to the development of novel therapeutics for gonorrhea.
Collapse
Affiliation(s)
- Wendy E. Geslewitz
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| | - Amaris Cardenas
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Xufei Zhou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - H Steven Seifert
- Department of Microbiology and Immunology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
40
|
Allemailem KS. Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. Int J Nanomedicine 2024; 19:1125-1143. [PMID: 38344439 PMCID: PMC10859101 DOI: 10.2147/ijn.s453566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different bacteria possessing antibiotic resistance genes such as mecA, ermB, ramR, tetA, mqrB and blaKPC that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from S. pyogenes is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to be solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah51452, Saudi Arabia
| |
Collapse
|
41
|
Hu C, Myers MT, Zhou X, Hou Z, Lozen ML, Nam KH, Zhang Y, Ke A. Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications. Mol Cell 2024; 84:463-475.e5. [PMID: 38242128 PMCID: PMC10857747 DOI: 10.1016/j.molcel.2023.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024]
Abstract
Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.
Collapse
Affiliation(s)
- Chunyi Hu
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA; Department of Biological Sciences, Faculty of Science; Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Mason T Myers
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xufei Zhou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhonggang Hou
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Macy L Lozen
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ki Hyun Nam
- College of General Education, Kookmin University, Seoul 02707, Republic of Korea
| | - Yan Zhang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, 253 Biotechnology Building, Ithaca, NY 14853, USA.
| |
Collapse
|
42
|
Madariaga-Marcos J, Aldag P, Kauert DJ, Seidel R. Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions. Methods Mol Biol 2024; 2694:421-449. [PMID: 37824016 DOI: 10.1007/978-1-0716-3377-9_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Combining force spectroscopy and fluorescence microscopy provides a substantial improvement to the single-molecule toolbox by allowing simultaneous manipulation and orthogonal characterizations of the conformations, interactions, and activity of biomolecular complexes. Here, we describe a combined magnetic tweezers and total internal reflection fluorescence microscopy setup to carry out correlated single-molecule fluorescence spectroscopy and force/twisting experiments. We apply the setup to reveal the DNA interactions of the CRISPR-Cas surveillance complex Cascade. Single-molecule fluorescence of a labeled Cascade allows to follow the DNA association and dissociation of the protein. Simultaneously, the magnetic tweezers probe the DNA unwinding during R-loop formation by the bound Cascade complexes. Furthermore, the setup supports observation of 1D diffusion of protein complexes on stretched DNA molecules. This technique can be applied to study a vast range of protein-DNA interactions.
Collapse
Affiliation(s)
- Julene Madariaga-Marcos
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Pierre Aldag
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Dominik J Kauert
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, Germany.
| |
Collapse
|
43
|
Schroven K, Voet M, Lavigne R, Hendrix H. Targeted Genome Editing of Virulent Pseudomonas Phages Using CRISPR-Cas3. Methods Mol Biol 2024; 2793:113-128. [PMID: 38526727 DOI: 10.1007/978-1-0716-3798-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The vast number of unknown phage-encoded ORFan genes and limited insights into the genome organization of phages illustrate the need for efficient genome engineering tools to study bacteriophage genes in their natural context. In addition, there is an application-driven desire to alter phage properties, which is hampered by time constraints for phage genome engineering in the bacterial host. We here describe an optimized CRISPR-Cas3 system in Pseudomonas for straightforward editing of the genome of virulent bacteriophages. The two-vector system combines a broad host range CRISPR-Cas3 targeting plasmid with a SEVA plasmid for homologous directed repair, which enables the creation of clean deletions, insertions, or substitutions in the phage genome within a week. After creating the two plasmids separately, a co-transformation to P. aeruginosa cells is performed. A subsequent infection with the targeted phage allows the CRISPR-Cas3 system to cut the DNA specifically and facilitate or select for homologous recombination. This system has also been successfully applied for P. aeruginosa and Pseudomonas putida genome engineering. The method is straightforward, efficient, and universal, enabling to extrapolate the system to other phage-host pairs.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
44
|
Xu Z, Chen S, Wu W, Wen Y, Cao H. Type I CRISPR-Cas-mediated microbial gene editing and regulation. AIMS Microbiol 2023; 9:780-800. [PMID: 38173969 PMCID: PMC10758571 DOI: 10.3934/microbiol.2023040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
There are six major types of CRISPR-Cas systems that provide adaptive immunity in bacteria and archaea against invasive genetic elements. The discovery of CRISPR-Cas systems has revolutionized the field of genetics in many organisms. In the past few years, exploitations of the most abundant class 1 type I CRISPR-Cas systems have revealed their great potential and distinct advantages to achieve gene editing and regulation in diverse microorganisms in spite of their complicated structures. The widespread and diversified type I CRISPR-Cas systems are becoming increasingly attractive for the development of new biotechnological tools, especially in genetically recalcitrant microbial strains. In this review article, we comprehensively summarize recent advancements in microbial gene editing and regulation by utilizing type I CRISPR-Cas systems. Importantly, to expand the microbial host range of type I CRISPR-Cas-based applications, these structurally complicated systems have been improved as transferable gene-editing tools with efficient delivery methods for stable expression of CRISPR-Cas elements, as well as convenient gene-regulation tools with the prevention of DNA cleavage by obviating deletion or mutation of the Cas3 nuclease. We envision that type I CRISPR-Cas systems will largely expand the biotechnological toolbox for microbes with medical, environmental and industrial importance.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shuzhen Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yongqi Wen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Huiluo Cao
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
45
|
Schroven K, Putzeys L, Kerremans A, Ceyssens PJ, Vallino M, Paeshuyse J, Haque F, Yusuf A, Koch MD, Lavigne R. The phage-encoded PIT4 protein affects multiple two-component systems of Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0237223. [PMID: 37962408 PMCID: PMC10714779 DOI: 10.1128/spectrum.02372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/04/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE More and more Pseudomonas aeruginosa isolates have become resistant to antibiotics like carbapenem. As a consequence, P. aeruginosa ranks in the top three of pathogens for which the development of novel antibiotics is the most crucial. The pathogen causes both acute and chronic infections, especially in patients who are the most vulnerable. Therefore, efforts are urgently needed to develop alternative therapies. One path explored in this article is the use of bacteriophages and, more specifically, phage-derived proteins. In this study, a phage-derived protein was studied that impacts key virulence factors of the pathogen via interaction with multiple histidine kinases of TCSs. The fundamental insights gained for this protein can therefore serve as inspiration for the development of an anti-virulence compound that targets the bacterial TCS.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - Leena Putzeys
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | | | | - Marta Vallino
- Institute of Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Jan Paeshuyse
- Host and Pathogen Interactions, KU Leuven, Leuven, Belgium
| | - Farhana Haque
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Ahmed Yusuf
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Matthias D. Koch
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
46
|
Lammens EM, Volke DC, Schroven K, Voet M, Kerremans A, Lavigne R, Hendrix H. A SEVA-based, CRISPR-Cas3-assisted genome engineering approach for Pseudomonas with efficient vector curing. Microbiol Spectr 2023; 11:e0270723. [PMID: 37975669 PMCID: PMC10715078 DOI: 10.1128/spectrum.02707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/18/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE The CRISPR-Cas3 editing system as presented here facilitates the creation of genomic alterations in Pseudomonas putida and Pseudomonas aeruginosa in a straightforward manner. By providing the Cas3 system as a vector set with Golden Gate compatibility and different antibiotic markers, as well as by employing the established Standard European Vector Architecture (SEVA) vector set to provide the homology repair template, this system is flexible and can readily be ported to a multitude of Gram-negative hosts. Besides genome editing, the Cas3 system can also be used as an effective and universal tool for vector curing. This is achieved by introducing a spacer that targets the origin-of-transfer, present on the majority of established (SEVA) vectors. Based on this, the Cas3 system efficiently removes up to three vectors in only a few days. As such, this curing approach may also benefit other genomic engineering methods or remove naturally occurring plasmids from bacteria.
Collapse
Affiliation(s)
| | - Daniel Christophe Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Kaat Schroven
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Alison Kerremans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Li Y, Huang B, Chen J, Huang L, Xu J, Wang Y, Cui G, Zhao H, Xin B, Song W, Zhu J, Lai J. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2196-2208. [PMID: 37641539 PMCID: PMC10579709 DOI: 10.1111/pbi.14122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 06/25/2023] [Indexed: 08/31/2023]
Abstract
The CRISPR-Cas systems have been widely used as genome editing tools, with type II and V systems typically introducing small indels, and type I system mediating long-range deletions. However, the precision of type I systems for large fragment deletion is still remained to be optimized. Here, we developed a compact Cascade-Cas3 Dvu I-C system with Cas11c for plant genome editing. The Dvu I-C system was efficient to introduce controllable large fragment deletion up to at least 20 kb using paired crRNAs. The paired-crRNAs design also improved the controllability of deletions for the type I-E system. Dvu I-C system was sensitive to spacer length and mismatch, which was benefit for target specificity. In addition, we showed that the Dvu I-C system was efficient for generating stable transgenic lines in maize and rice with the editing efficiency up to 86.67%. Overall, Dvu I-C system we developed here is powerful for achieving controllable large fragment deletions.
Collapse
Affiliation(s)
- Yingnan Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Boyu Huang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Chen
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Liangliang Huang
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jianghai Xu
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingying Wang
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guanghui Cui
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Haiming Zhao
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Beibei Xin
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Weibin Song
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jian‐Kang Zhu
- Institute of Advanced Biotechnology and School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| |
Collapse
|
48
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
49
|
Volke DC, Orsi E, Nikel PI. Emergent CRISPR-Cas-based technologies for engineering non-model bacteria. Curr Opin Microbiol 2023; 75:102353. [PMID: 37413959 DOI: 10.1016/j.mib.2023.102353] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) technologies brought a transformative change in the way bacterial genomes are edited, and a plethora of studies contributed to developing multiple tools based on these approaches. Prokaryotic biotechnology benefited from the implementation of such genome engineering strategies, with an increasing number of non-model bacterial species becoming genetically tractable. In this review, we summarize the recent trends in engineering non-model microbes using CRISPR-Cas technologies, discussing their potential in supporting cell factory design towards biotechnological applications. These efforts include, among other examples, genome modifications as well as tunable transcriptional regulation (both positive and negative). Moreover, we examine how CRISPR-Cas toolkits for engineering non-model organisms enabled the exploitation of emergent biotechnological processes (e.g. native and synthetic assimilation of one-carbon substrates). Finally, we discuss our slant on the future of bacterial genome engineering for domesticating non-model organisms in light of the most recent advances in the ever-expanding CRISPR-Cas field.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
50
|
Kang YJ, Kim JH, Lee GH, Ha HJ, Park YH, Hong E, Park HH. The structure of AcrIC9 revealing the putative inhibitory mechanism of AcrIC9 against the type IC CRISPR-Cas system. IUCRJ 2023; 10:624-634. [PMID: 37668219 PMCID: PMC10478522 DOI: 10.1107/s2052252523007236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
CRISPR-Cas systems are known to be part of the bacterial adaptive immune system that provides resistance against intruders such as viruses, phages and other mobile genetic elements. To combat this bacterial defense mechanism, phages encode inhibitors called Acrs (anti-CRISPR proteins) that can suppress them. AcrIC9 is the most recently identified member of the AcrIC family that inhibits the type IC CRISPR-Cas system. Here, the crystal structure of AcrIC9 from Rhodobacter capsulatus is reported, which comprises a novel fold made of three central antiparallel β-strands surrounded by three α-helixes, a structure that has not been detected before. It is also shown that AcrIC9 can form a dimer via disulfide bonds generated by the Cys69 residue. Finally, it is revealed that AcrIC9 directly binds to the type IC cascade. Analysis and comparison of its structure with structural homologs indicate that AcrIC9 belongs to DNA-mimic Acrs that directly bind to the cascade complex and hinder the target DNA from binding to the cascade.
Collapse
Affiliation(s)
- Yong Jun Kang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Gwan Hee Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Young-Hoon Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|