1
|
Li Z, Chang Y, He D, Dong K, Zhang H, Wang S. Human antigen R -mediated autophagy-related gene 3 methylation enhances autophagy-driven ferroptosis in Crohn's disease colitis. Int Immunopharmacol 2025; 154:114565. [PMID: 40174340 DOI: 10.1016/j.intimp.2025.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
BACKGROUND AND AIMS Crohn's disease (CD) is a chronic inflammatory disorder that can affect any part of the gastrointestinal tract, with the exact etiology remaining unclear. Recent studies have implicated the role of human antigen R (HuR) in the pathogenesis of various inflammatory diseases, including CD. However, the role of HuR in the modulation of CD remains underexplored. Therefore, this study aimed to investigate the mechanistic involvement of HuR in CD. METHODS We established colitis models using human intestinal epithelial cells and lipopolysaccharide and dextran sulfate sodium-induced mice. Additionally, by knocking out HuR in both cell and animal models, we validated the role of HuR in autophagy and ferroptosis. The role of HuR in regulating ferroptosis accompanied by autophagy activation in CD was detected using ELISA, flow cytometry, immunofluorescence, transmission electron microscopy, Western blot, and RT-qPCR. The demethylation level of ATG3 and the stability of ATG3 mRNA regulated by HuR were detected using immunofluorescence, RIP, and MeRIP-qPCR. The effect of HuR on DSS-induced colitis was evaluated using DAI score, H&E staining, TUNEL staining, and immunohistochemistry. RESULTS The results show that HuR expression is significantly increased in CD colonic inflammation. Compared with the control group, the model group mice exhibited decreased levels of lipid peroxidation markers glutathione and superoxide dismutase, elevated malondialdehyde and reactive oxygen species levels, and reduced expression of iron-related proteins glutathione peroxidase 4, ferritin heavy chain protein 1, and solute carrier family 7 member 11. Additionally, the expression of autophagy-related proteins microtubule-associated protein 1 A/1B-light chain 3, beclin-1, and autophagy related 3 (ATG3) was upregulated, while p62 expression was downregulated. In both in vitro and in vivo models, HuR knockout reversed these changes induced by lipopolysaccharide and dextran sulfate sodium, concomitant with improved tissue pathology. Mechanistically, HuR enhances autophagy-mediated ferroptosis in CD colonic inflammation by regulating ATG3 methylation and mRNA stability. CONCLUSION HuR accelerates colonic inflammation in CD by regulating ATG3 methylation, which enhances autophagy-mediated ferroptosis. Knockout of HuR alleviates Crohn's colitis. This finding provides a potential therapeutic target for the treatment of CD.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Hepatobiliary Pancreas Surgery, Nanshan District People's Hospital, Shenzhen, Guangdong 518052, China
| | - Yunxiang Chang
- Department of Hepatobiliary Pancreas Surgery, Nanshan District People's Hospital, Shenzhen, Guangdong 518052, China
| | - Di He
- Department of Hepatobiliary Pancreas Surgery, Nanshan District People's Hospital, Shenzhen, Guangdong 518052, China
| | - Kai Dong
- Department of Hepatobiliary Pancreas Surgery, Nanshan District People's Hospital, Shenzhen, Guangdong 518052, China
| | - Hongzhen Zhang
- Department of Hepatobiliary Pancreas Surgery, Nanshan District People's Hospital, Shenzhen, Guangdong 518052, China
| | - Shikai Wang
- Department of Hepatobiliary Pancreas Surgery, Nanshan District People's Hospital, Shenzhen, Guangdong 518052, China..
| |
Collapse
|
2
|
Kim Y, Saville L, O'Neill K, Garant JM, Liu Y, Haile-Merhu S, Ghashghaei M, Hoang QA, Louwagie A, Park YP, Jones SJM, Vu LP. Nanopore direct RNA sequencing of human transcriptomes reveals the complexity of mRNA modifications and crosstalk between regulatory features. CELL GENOMICS 2025:100872. [PMID: 40359935 DOI: 10.1016/j.xgen.2025.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/20/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025]
Abstract
The identification and functional characterization of chemical modifications on an mRNA molecule, in particular N6-methyladenosine (m6A) modification, significantly broadened our understanding of RNA function and regulation. While interactions between RNA modifications and other RNA features have been proposed, direct evidence showing correlation is limited. Here, using Oxford Nanopore long-read direct RNA sequencing (dRNA-seq), we simultaneously interrogate the transcriptome and epitranscriptome of a human leukemia cell line to investigate the correlation between m6A modifications, mRNA abundance, mRNA stability, polyadenylation (poly(A)) tail length, and alternative splicing. High-quality dRNA-seq is important for unbiased and large-scale correlative analyses. Global assessments indicated a negative association between poly(A) tail length and mRNA abundance while uncovering pathway-specific responses upon depletion of the m6A-forming enzyme METTL3. Overall, our study presented a rich dRNA-seq data resource that has been validated and can be further exploited to inquire into the complexity of RNA modifications and potential interplays between RNA regulatory elements.
Collapse
Affiliation(s)
- Yerin Kim
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada; Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Canada's Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 0B4, Canada
| | - Luke Saville
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kieran O'Neill
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 0B4, Canada
| | - Jean-Michel Garant
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 0B4, Canada
| | - Yilin Liu
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada; Department of Experimental Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Simon Haile-Merhu
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 0B4, Canada
| | - Maryam Ghashghaei
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Quang Anh Hoang
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amber Louwagie
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yongjin P Park
- Faculty of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 0B4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Ly P Vu
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC V5Z 0B4, Canada; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
3
|
VanInsberghe M, van Oudenaarden A. Sequencing technologies to measure translation in single cells. Nat Rev Mol Cell Biol 2025; 26:337-346. [PMID: 39833532 DOI: 10.1038/s41580-024-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Translation is one of the most energy-intensive processes in a cell and, accordingly, is tightly regulated. Genome-wide methods to measure translation and the translatome and to study the complex regulation of protein synthesis have enabled unprecedented characterization of this crucial step of gene expression. However, technological limitations have hampered our understanding of translation control in multicellular tissues, rare cell types and dynamic cellular processes. Recent optimizations, adaptations and new techniques have enabled these measurements to be made at single-cell resolution. In this Progress, we discuss single-cell sequencing technologies to measure translation, including ribosome profiling, ribosome affinity purification and spatial translatome methods.
Collapse
Affiliation(s)
- Michael VanInsberghe
- Oncode Institute, Utrecht, the Netherlands.
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands.
- University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Alexander van Oudenaarden
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, the Netherlands
- University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
4
|
Bakker RA, Nicholson OB, Park H, Xiao YL, Tang W, Subramaniam AR, Lapointe CP. Deaminase-based RNA recording enables high throughput mutational profiling of protein-RNA interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.11.648485. [PMID: 40291665 PMCID: PMC12027372 DOI: 10.1101/2025.04.11.648485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Protein-RNA interactions govern nearly every aspect of RNA metabolism and are frequently dysregulated in disease. While individual protein residues and RNA nucleotides critical for these interactions have been characterized, scalable methods that jointly map protein- and RNA-level determinants remain limited. RNA deaminase fusions have emerged as a powerful strategy to identify transcriptome-wide targets of RNA-binding proteins by converting binding events into site-specific nucleotide edits. Here, we demonstrate that this 'RNA recording' approach enables high-throughput mutational scanning of protein-RNA interfaces. Using the λN-boxB system as a model, we show that editing by a fused TadA adenosine deaminase directly correlates with binding affinity between protein and RNA variants in vitro . Systematic variation of RNA sequence context reveals a strong bias for editing at UA dinucleotides by the engineered TadA8.20, mirroring wild-type TadA preferences. We further demonstrate that stepwise recruitment of the deaminase using nanobody and protein A/G fusions maintains both sequence and binding specificity. Stable expression of the TadA fusion in human cells reproduces in vitro editing patterns across a library of RNA variants. Finally, comprehensive single amino acid mutagenesis of λN in human cells reveals critical residues mediating RNA binding. Together, our results establish RNA recording as a versatile and scalable tool for dissecting protein-RNA interactions at nucleotide and residue resolution, both in vitro and in cells.
Collapse
|
5
|
Chen Y, Chen Y, Qin W. Mapping RNA-Protein Interactions via Proximity Labeling-Based Approaches. Chem Asian J 2025:e202500118. [PMID: 40249647 DOI: 10.1002/asia.202500118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
RNA-protein interactions are fundamental to a wide range of biological processes, and understanding these interactions in their native cellular context is both vital and challenging. Traditional methods for studying RNA-protein interactions rely on crosslinking, which can introduce artifacts. Recently, proximity labeling-based techniques have emerged as powerful alternatives, offering a crosslinking-free approach to investigate these interactions. This review highlights recent advancements in the development and application of proximity labeling methods, focusing on both RNA-centric and protein-centric strategies for profiling cellular RNA-protein interactions. By examining these innovative approaches, we aim to provide insights into their potential for enhancing our understanding of RNA-protein dynamics in various biological settings.
Collapse
Affiliation(s)
- Yongzuo Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuxin Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Qin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China
- The State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Wang X, Li J, Zhang C, Guan X, Li X, Jia W, Chen A. Old players and new insights: unraveling the role of RNA-binding proteins in brain tumors. Theranostics 2025; 15:5238-5257. [PMID: 40303323 PMCID: PMC12036871 DOI: 10.7150/thno.113312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
The human genome harbors >1,600 evolutionarily conserved RNA-binding proteins (RBPs), with extensive multi-omics investigations documenting their pervasive dysregulation in malignancies ranging from glioblastoma to melanoma. These RBPs are integral to the complex regulatory networks governing hallmark cancer processes. Recent studies have investigated the multifaceted contributions of RBPs to tumorigenesis, tumor metabolism, the tumor-immune microenvironment, and resistance to therapy. This complexity is further compounded by the intricate regulation of RNA function at various levels by RBPs, as well as the post-translational modifications of RBPs, which improve their functional capacity. Moreover, numerous RBP-based therapeutics have emerged, each underpinned by distinct molecular mechanisms that extend from genomic analysis to the interference of RBPs' function. This review aims to provide a comprehensive overview of the recent progress in the meticulous roles of RBPs in brain tumors and to explore potential therapeutic interventions targeting these RBPs, complemented by a discussion of innovative techniques emerging in this research field. Advances in deciphering RNA-RBP interactomes and refining targeted therapeutic strategies are revealing the transformative potential of RBP-centric approaches in brain tumor treatment, establishing them as pivotal agents for overcoming current clinical challenges.
Collapse
Affiliation(s)
- Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Jiang Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Chengkai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Xiudong Guan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Fengtai, Beijing, China
| | - Anjing Chen
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, China and Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| |
Collapse
|
7
|
Luo H, Yao J, Zhang R. Harnessing RNA base editing for diverse applications in RNA biology and RNA therapeutics. ADVANCED BIOTECHNOLOGY 2025; 3:11. [PMID: 40198443 PMCID: PMC11979053 DOI: 10.1007/s44307-025-00063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/10/2025]
Abstract
Recent advancements in molecular engineering have established RNA-based technologies as powerful tools for both fundamental research and translational applications. Among the various RNA-based technologies developed, RNA base editing has recently emerged as a groundbreaking advancement. It primarily involves the conversion of adenosine (A) to inosine (I) and cytidine (C) to uridine (U), which are mediated by ADAR and APOBEC enzymes, respectively. RNA base editing has been applied in both biological research and therapeutic contexts. It enables site-directed editing within target transcripts, offering reversible, dose-dependent effects, in contrast to the permanent or heritable changes associated with DNA base editing. Additionally, RNA editing-based profiling of RNA-binding protein (RBP) binding sites facilitates transcriptome-wide mapping of RBP-RNA interactions in specific tissues and at the single-cell level. Furthermore, RNA editing-based sensors have been utilized to express effector proteins in response to specific RNA species. As RNA base editing technologies continue to evolve, we anticipate that they will significantly drive advancements in RNA therapeutics, synthetic biology, and biological research.
Collapse
Affiliation(s)
- Hui Luo
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jing Yao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
- Innovation Center for Evolutionary Synthetic Biology, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
8
|
Schwehn PM, Falter-Braun P. Inferring protein from transcript abundances using convolutional neural networks. BioData Min 2025; 18:18. [PMID: 40016737 PMCID: PMC11866710 DOI: 10.1186/s13040-025-00434-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Although transcript abundance is often used as a proxy for protein abundance, it is an unreliable predictor. As proteins execute biological functions and their expression levels influence phenotypic outcomes, we developed a convolutional neural network (CNN) to predict protein abundances from mRNA abundances, protein sequence, and mRNA sequence in Homo sapiens (H. sapiens) and the reference plant Arabidopsis thaliana (A. thaliana). RESULTS After hyperparameter optimization and initial data exploration, we implemented distinct training modules for value-based and sequence-based data. By analyzing the learned weights, we revealed common and organism-specific sequence features that influence protein-to-mRNA ratios (PTRs), including known and putative sequence motifs. Adding condition-specific protein interaction information identified genes correlated with many PTRs but did not improve predictions, likely due to insufficient data. The integrated model predicted protein abundance on unseen genes with a coefficient of determination (r2) of 0.30 in H. sapiens and 0.32 in A. thaliana. CONCLUSIONS For H. sapiens, our model improves prediction performance by nearly 50% compared to previous sequence-based approaches, and for A. thaliana it represents the first model of its kind. The model's learned motifs recapitulate known regulatory elements, supporting its utility in systems-level and hypothesis-driven research approaches related to protein regulation.
Collapse
Affiliation(s)
- Patrick Maximilian Schwehn
- Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Neuherberg, Germany
| | - Pascal Falter-Braun
- Institute of Network Biology (INET), Molecular Targets and Therapies Center (MTTC), Helmholtz Munich, Neuherberg, Germany.
- Microbe-Host Interactions, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Garat J, Di Paolo A, Eastman G, Castillo PE, Sotelo-Silveira J. The Trail of Axonal Protein Synthesis: Origins and Current Functional Landscapes. Neuroscience 2025; 567:195-208. [PMID: 39755230 DOI: 10.1016/j.neuroscience.2024.12.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/03/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Local protein synthesis (LPS) in axons is now recognized as a physiological process, participating both in the maintenance of axonal function and diverse plastic phenomena. In the last decades of the 20th century, the existence and function of axonal LPS were topics of significant debate. Very early, axonal LPS was thought not to occur at all and was later accepted to play roles only during development or in response to specific conditions. However, compelling evidence supports its essential and pervasive role in axonal function in the mature nervous system. Remarkably, in the last five decades, Uruguayan neuroscientists have contributed significantly to demonstrating axonal LPS by studying motor and sensory axons of the peripheral nervous system of mammals, as well as giant axons of the squid and the Mauthner cell of fish. For LPS to occur, a highly regulated transport system must deliver the necessary macromolecules, such as mRNAs and ribosomes. This review discusses key findings related to the localization and abundance of axonal mRNAs and their translation levels, both in basal states and in response to physiological processes, such as learning and memory consolidation, as well as neurodevelopmental and neurodegenerative disorders, including Alzheimer's disease, autism spectrum disorder, and axonal injury. Moreover, we discuss the current understanding of axonal ribosomes, from their localization to the potential roles of locally translated ribosomal proteins, in the context of emerging research that highlights the regulatory roles of the ribosome in translation. Lastly, we address the main challenges and open questions for future studies.
Collapse
Affiliation(s)
- Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Psychiatry & Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - José Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Av. Italia 3318, Montevideo, CP 11600, Uruguay; Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Iguá, Montevideo, 4225, CP 11400, Uruguay.
| |
Collapse
|
10
|
Maji RK, Leisegang MS, Boon RA, Schulz MH. Revealing microRNA regulation in single cells. Trends Genet 2025:S0168-9525(24)00317-2. [PMID: 39863489 DOI: 10.1016/j.tig.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and control cellular functions in physiological and pathophysiological states. miRNAs play important roles in disease, stress, and development, and are now being investigated for therapeutic approaches. Alternative processing of miRNAs during biogenesis results in the generation of miRNA isoforms (isomiRs) which further diversify miRNA gene regulation. Single-cell RNA-sequencing (scsRNA-seq) technologies, together with computational strategies, enable exploration of miRNAs, isomiRs, and interacting RNAs at the cellular level. By integration with other miRNA-associated single-cell modalities, miRNA roles can be resolved at different stages of processing and regulation. In this review we discuss (i) single-cell experimental assays that measure miRNA and isomiR abundances, and (ii) computational methods for their analysis to investigate the mechanisms of miRNA biogenesis and post-transcriptional regulation.
Collapse
Affiliation(s)
- Ranjan K Maji
- Institute for Computational Genomic Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany
| | - Matthias S Leisegang
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany; Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany
| | - Reinier A Boon
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany; Department of Physiology, Amsterdam UMC, VU University, De Boelelaan 1117, 1081, HV, Amsterdam, The Netherlands
| | - Marcel H Schulz
- Institute for Computational Genomic Medicine, Goethe University Frankfurt, Frankfurt, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt, Germany.
| |
Collapse
|
11
|
Gokhale NS, Sam RK, Somfleth K, Thompson MG, Marciniak DM, Smith JR, Genoyer E, Eggenberger J, Chu LH, Park M, Dvorkin S, Oberst A, Horner SM, Ong SE, Gale M, Savan R. Cellular RNA interacts with MAVS to promote antiviral signaling. Science 2024; 386:eadl0429. [PMID: 39700280 PMCID: PMC11905950 DOI: 10.1126/science.adl0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/12/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
Antiviral signaling downstream of RIG-I-like receptors (RLRs) proceeds through a multi-protein complex organized around the adaptor protein mitochondrial antiviral signaling protein (MAVS). Protein complex function can be modulated by RNA molecules that provide allosteric regulation or act as molecular guides or scaffolds. We hypothesized that RNA plays a role in organizing MAVS signaling platforms. We found that MAVS, through its central intrinsically disordered domain, directly interacted with the 3' untranslated regions of cellular messenger RNAs. Elimination of RNA by ribonuclease treatment disrupted the MAVS signalosome, including RNA-modulated MAVS interactors that regulate RLR signaling and viral restriction, and inhibited phosphorylation of transcription factors that induce interferons. This work uncovered a function for cellular RNA in promoting signaling through MAVS and highlights generalizable principles of RNA regulatory control of immune signaling complexes.
Collapse
Affiliation(s)
| | - Russell K. Sam
- Department of Immunology, University of Washington, Seattle, WA
| | - Kim Somfleth
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Julian R. Smith
- Department of Immunology, University of Washington, Seattle, WA
| | | | | | - Lan H. Chu
- Department of Immunology, University of Washington, Seattle, WA
| | - Moonhee Park
- Department of Integrative Immunobiology, Duke University, Durham, NC
| | - Steve Dvorkin
- Department of Immunology, University of Washington, Seattle, WA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA
| | - Stacy M. Horner
- Department of Integrative Immunobiology, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham NC
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, WA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
12
|
Yu T, Liang Q, Xu S, Yeo GW. Identification of RBP binding sites using RNA deaminases. Methods Enzymol 2024; 713:287-297. [PMID: 40250958 DOI: 10.1016/bs.mie.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
RNA-binding proteins (RBPs) are critical regulators of gene expression and RNA processing. Identification of their binding sites has important implications for their physiological and disease-related functions. Crosslinking and immunoprecipitation, followed by sequencing (CLIP-seq) and its derivatives, are the most commonly used methods to identify RBP binding sites, but are laborious and require a large amount of starting material. Recent advancements harnessing RNA deaminases in fusion to any RBP of interest, allow for the profiling of RBP binding sites from low-input samples in simpler procedures. Among these efforts, we developed STAMP (Surveying Targets by APOBEC-Mediated Profiling), which efficiently detects RBP-RNA interactions. This chapter describes the detailed protocol for the STAMP method, including plasmid construction, delivery and sorting, library preparation and bioinformatic data analysis.
Collapse
Affiliation(s)
- Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States; Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, United States; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States; Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, United States
| | - Qishan Liang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States; Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, United States; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States; Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, United States
| | - Shuhao Xu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States; Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, United States; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, United States; Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, United States; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, United States; Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, United States; Sanford Laboratories for Innovative Medicines, La Jolla, CA, United States.
| |
Collapse
|
13
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024; 25:879-895. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
14
|
Diao L, Xie S, Xu W, Zhang H, Hou Y, Hu Y, Liang X, Liang J, Zhang Q, Xiao Z. CRISPR/Cas13 sgRNA-Mediated RNA-RNA Interaction Mapping in Live Cells with APOBEC RNA Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409004. [PMID: 39392366 PMCID: PMC11615753 DOI: 10.1002/advs.202409004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Current research on long non-coding RNA (lncRNA) has predominantly focused on identifying their protein partners and genomic binding sites, leaving their RNA partners largely unknown. To address this gap, the study has developed a method called sarID (sgRNA scaffold assisted RNA-RNA interaction detection), which integrates Cas13-based RNA targeting, sgRNA engineering, and proximity RNA editing to investigate lncRNA-RNA interactomes. By applying sarID to the lncRNA NEAT1, over one thousand previously unidentified binding transcripts are discovered. sarID is further expanded to investigate binders of XIST, MALAT1, NBR2, and DANCR, demonstrating its broad applicability in identifying lncRNA-RNA interactions. The findings suggest that lncRNAs may regulate gene expression by interacting with mRNAs, expanding their roles beyond known functions as protein scaffolds, miRNA sponges, or guides for epigenetic modulators. sarID has the potential to be adapted for studying other specific RNAs, providing a novel immunoprecipitation-free method for uncovering RNA partners and facilitating the exploration of the RNA-RNA interactome.
Collapse
Affiliation(s)
- Li‐Ting Diao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Shu‐Juan Xie
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Wan‐Yi Xu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | - Ya‐Rui Hou
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Yan‐Xia Hu
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | | | | | - Qi Zhang
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Institute of VaccineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| | - Zhen‐Dong Xiao
- Biotherapy Center, The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease ResearchThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630P. R. China
| |
Collapse
|
15
|
Tang X, Li K, Wang Y, Rocchi S, Shen S, Cerezo M. Metabolism and mRNA translation: a nexus of cancer plasticity. Trends Cell Biol 2024:S0962-8924(24)00225-3. [PMID: 39603916 DOI: 10.1016/j.tcb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Tumors often face energy deprivation due to mutations, hypoxia, and nutritional deficiencies within the harsh tumor microenvironment (TME), and as an effect of anticancer treatments. This metabolic stress triggers adaptive reprogramming of mRNA translation, which in turn adjusts metabolic plasticity and associated signaling pathways to ensure tumor cell survival. Emerging evidence is beginning to reveal the complex interplay between metabolism and mRNA translation, shedding light on the mechanisms that synchronize ribosome assembly and reconfigure translation programs under metabolic stress. This review explores recent advances in our understanding of the coordination between metabolism and mRNA translation, offering insights that could inform therapeutic strategies targeting both cancer metabolism and translation, with the aim of disrupting cancer cell plasticity and survival.
Collapse
Affiliation(s)
- Xinpu Tang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiu Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Stéphane Rocchi
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France
| | - Shensi Shen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Michael Cerezo
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
16
|
Jagannatha P, Tankka AT, Lorenz DA, Yu T, Yee BA, Brannan KW, Zhou CJ, Underwood JG, Yeo GW. Long-read Ribo-STAMP simultaneously measures transcription and translation with isoform resolution. Genome Res 2024; 34:2012-2024. [PMID: 38906680 PMCID: PMC11610582 DOI: 10.1101/gr.279176.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/31/2024] [Indexed: 06/23/2024]
Abstract
Transcription and translation are intertwined processes in which mRNA isoforms are crucial intermediaries. However, methodological limitations in analyzing translation at the mRNA isoform level have left gaps in our understanding of critical biological processes. To address these gaps, we developed an integrated computational and experimental framework called long-read Ribo-STAMP (LR-Ribo-STAMP) that capitalizes on advancements in long-read sequencing and RNA-base editing-mediated technologies to simultaneously profile translation and transcription at both the gene and mRNA isoform levels. We also developed the EditsC metric to quantify editing and leverage the single-molecule, full-length transcript information provided by long-read sequencing. Here, we report concordance between gene-level translation profiles obtained with long-read and short-read Ribo-STAMP. We show that LR-Ribo-STAMP successfully profiles translation of mRNA isoforms and links regulatory features, such as upstream open reading frames (uORFs), to translation measurements. We apply LR-Ribo-STAMP to discovering translational differences at both the gene and isoform levels in a triple-negative breast cancer cell line under normoxia and hypoxia and find that LR-Ribo-STAMP effectively delineates orthogonal transcriptional and translation shifts between conditions. We also discover regulatory elements that distinguish translational differences at the isoform level. We highlight GRK6, in which hypoxia is observed to increase expression and translation of a shorter mRNA isoform, giving rise to a truncated protein without the AGC Kinase domain. Overall, LR-Ribo-STAMP is an important advance in our repertoire of methods that measures mRNA translation with isoform sensitivity.
Collapse
Affiliation(s)
- Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92093, USA
| | - Alexandra T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Daniel A Lorenz
- Sanford Laboratories for Innovative Medicine, La Jolla, California 92121, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Kristopher W Brannan
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Cathy J Zhou
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California 92093, USA;
- Sanford Stem Cell Institution Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, California 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, California 92093, USA
- Sanford Laboratories for Innovative Medicine, La Jolla, California 92121, USA
| |
Collapse
|
17
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 PMCID: PMC11572933 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B. Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Assael A. Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Isaac A. Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
18
|
Nakagawa H, Lin A. The translation of oncogenic mRNAs regulated by pseudouridylation: A new player in HCC. Hepatology 2024; 80:1003-1005. [PMID: 38252799 DOI: 10.1097/hep.0000000000000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024]
Affiliation(s)
- Hayato Nakagawa
- Department of Gastroenterology and Hepatology, Mie University, Mie, Japan
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University; Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Hu YX, Diao LT, Hou YR, Lv G, Tao S, Xu WY, Xie SJ, Ren YH, Xiao ZD. Pseudouridine synthase 1 promotes hepatocellular carcinoma through mRNA pseudouridylation to enhance the translation of oncogenic mRNAs. Hepatology 2024; 80:1058-1073. [PMID: 38015993 DOI: 10.1097/hep.0000000000000702] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND AND AIMS Pseudouridine is a prevalent RNA modification and is highly present in the serum and urine of patients with HCC. However, the role of pseudouridylation and its modifiers in HCC remains unknown. We investigated the function and underlying mechanism of pseudouridine synthase 1 (PUS1) in HCC. APPROACH AND RESULTS By analyzing the TCGA data set, PUS1 was found to be significantly upregulated in human HCC specimens and positively correlated with tumor grade and poor prognosis of HCC. Knockdown of PUS1 inhibited cell proliferation and the growth of tumors in a subcutaneous xenograft mouse model. Accordingly, increased cell proliferation and tumor growth were observed in PUS1-overexpressing cells. Furthermore, overexpression of PUS1 significantly accelerates tumor formation in a mouse HCC model established by hydrodynamic tail vein injection, while knockout of PUS1 decreases it. Additionally, PUS1 catalytic activity is required for HCC tumorigenesis. Mechanistically, we profiled the mRNA targets of PUS1 by utilizing surveying targets by apolipoprotein B mRNA-editing enzyme 1 (APOBEC1)-mediated profiling and found that PUS1 incorporated pseudouridine into mRNAs of a set of oncogenes, thereby endowing them with greater translation capacity. CONCLUSIONS Our study highlights the critical role of PUS1 and pseudouridylation in HCC development, and provides new insight that PUS1 enhances the protein levels of a set of oncogenes, including insulin receptor substrate 1 (IRS1) and c-MYC, by means of pseudouridylation-mediated mRNA translation.
Collapse
Affiliation(s)
- Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Guo Lv
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Wan-Yi Xu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Shu-Juan Xie
- Institute of Vaccine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Ya-Han Ren
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
20
|
Ren J, Luo S, Shi H, Wang X. Spatial omics advances for in situ RNA biology. Mol Cell 2024; 84:3737-3757. [PMID: 39270643 PMCID: PMC11455602 DOI: 10.1016/j.molcel.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/07/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
Spatial regulation of RNA plays a critical role in gene expression regulation and cellular function. Understanding spatially resolved RNA dynamics and translation is vital for bringing new insights into biological processes such as embryonic development, neurobiology, and disease pathology. This review explores past studies in subcellular, cellular, and tissue-level spatial RNA biology driven by diverse methodologies, ranging from cell fractionation, in situ and proximity labeling, imaging, spatially indexed next-generation sequencing (NGS) approaches, and spatially informed computational modeling. Particularly, recent advances have been made for near-genome-scale profiling of RNA and multimodal biomolecules at high spatial resolution. These methods enabled new discoveries into RNA's spatiotemporal kinetics, RNA processing, translation status, and RNA-protein interactions in cells and tissues. The evolving landscape of experimental and computational strategies reveals the complexity and heterogeneity of spatial RNA biology with subcellular resolution, heralding new avenues for RNA biology research.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shuchen Luo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hailing Shi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Xiao Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
21
|
Gosztyla ML, Zhan L, Olson S, Wei X, Naritomi J, Nguyen G, Street L, Goda GA, Cavazos FF, Schmok JC, Jain M, Uddin Syed E, Kwon E, Jin W, Kofman E, Tankka AT, Li A, Gonzalez V, Lécuyer E, Dominguez D, Jovanovic M, Graveley BR, Yeo GW. Integrated multi-omics analysis of zinc-finger proteins uncovers roles in RNA regulation. Mol Cell 2024; 84:3826-3842.e8. [PMID: 39303722 PMCID: PMC11633308 DOI: 10.1016/j.molcel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/19/2024] [Accepted: 08/06/2024] [Indexed: 09/22/2024]
Abstract
RNA interactome studies have revealed that hundreds of zinc-finger proteins (ZFPs) are candidate RNA-binding proteins (RBPs), yet their RNA substrates and functional significance remain largely uncharacterized. Here, we present a systematic multi-omics analysis of the DNA- and RNA-binding targets and regulatory roles of more than 100 ZFPs representing 37 zinc-finger families. We show that multiple ZFPs are previously unknown regulators of RNA splicing, alternative polyadenylation, stability, or translation. The examined ZFPs show widespread sequence-specific RNA binding and preferentially bind proximal to transcription start sites. Additionally, several ZFPs associate with their targets at both the DNA and RNA levels. We highlight ZNF277, a C2H2 ZFP that binds thousands of RNA targets and acts as a multi-functional RBP. We also show that ZNF473 is a DNA/RNA-associated protein that regulates the expression and splicing of cell cycle genes. Our results reveal diverse roles for ZFPs in transcriptional and post-transcriptional gene regulation.
Collapse
Affiliation(s)
- Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lijun Zhan
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Sara Olson
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Xintao Wei
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Jack Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Grady Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Lena Street
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Grant A Goda
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Francisco F Cavazos
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jonathan C Schmok
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Manya Jain
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Easin Uddin Syed
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; School of Pharmacy, Brac University, Dhaka 1212, Bangladesh
| | - Eunjeong Kwon
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada
| | - Wenhao Jin
- Sanford Laboratories for Innovative Medicines, La Jolla, CA 92037, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexandra T Tankka
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Allison Li
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Valerie Gonzalez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Eric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada; Division of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Daniel Dominguez
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Brenton R Graveley
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92037, USA; Sanford Stem Cell Institute and UCSD Stem Cell Program, University of California San Diego, La Jolla, CA 92037, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Sanford Laboratories for Innovative Medicines, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
22
|
Onchan W, Attakitbancha C, Uttamapinant C. An expanded molecular and systems toolbox for imaging, mapping, and controlling local translation. Curr Opin Chem Biol 2024; 82:102523. [PMID: 39226865 DOI: 10.1016/j.cbpa.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Localized protein translation occurs through trafficking of mRNAs and protein translation machineries to different compartments of the cell, leading to rapid on-site synthesis of proteins in response to signaling cues. The spatiotemporally precise nature of the local translation process necessitates continual developments of technologies reviewed herein to visualize and map biomolecular components and the translation process with better spatial and temporal resolution and with fewer artifacts. We also discuss approaches to control local translation, which can serve as a design paradigm for subcellular genetic devices for eukaryotic synthetic biology.
Collapse
Affiliation(s)
- Warunya Onchan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chadaporn Attakitbancha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
23
|
Hu J, Yuan J, Shi Q, Guo X, Liu L, Esteban MA, Lv Y. Single-cell profiling identifies LIN28A mRNA targets in the mouse pluripotent-to-2C-like transition and somatic cell reprogramming. J Biol Chem 2024; 300:107824. [PMID: 39343008 PMCID: PMC11584578 DOI: 10.1016/j.jbc.2024.107824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/26/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
RNA-binding proteins (RBPs) regulate totipotency, pluripotency maintenance, and induction. The intricacies of how they modulate these processes through their interaction with RNAs remain to be elucidated. Here we employed Targets of RBPs Identified By Editing (TRIBE) with single-cell resolution (scTRIBE) to profile the mRNA targets of the key pluripotency regulator LIN28A in mouse embryonic stem cells (ESCs), 2-cell embryo-like cells (2CLCs), and somatic cell reprogramming. LIN28A is known to act by controlling the maturation of the let-7 microRNA, but, in addition, it binds to multiple mRNAs and influences their stability and translation efficiency. However, the mRNA targets of LIN28A in 2CLCs and reprogramming are unclear. Through quantitative single-cell analysis of the scTRIBE dataset, we observed a marked increase in the binding of LIN28A to mRNAs of ribosome biogenesis factors and a selected group of totipotency factors in 2CLCs within ESC cultures. Our results suggest that LIN28A extends the half-life of at least some of these mRNAs, providing new insights into its role in the totipotent state. We also uncovered the distinct trajectory-specific LIN28A-mRNA networks in reprogramming, helping explain how LIN28A facilitates the mesenchymal-to-epithelial transition and pluripotency acquisition. Our study not only clarifies the multifunctional role of LIN28A in these processes but also highlights the importance of decoding RNA-protein interactions at the single-cell level.
Collapse
Affiliation(s)
- Jieyi Hu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianwen Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; BGI Research, Shenzhen, China; 3DC STAR Lab, BGI CELL, Shenzhen, China
| | - Quan Shi
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiangpeng Guo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Longqi Liu
- BGI Research, Hangzhou, China; Shanxi Medical University-BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; 3DC STAR Lab, BGI CELL, Shenzhen, China.
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; 3DC STAR Lab, BGI CELL, Shenzhen, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China.
| |
Collapse
|
24
|
Zhou S, Hu J, Du S, Wang F, Fang Y, Zhang R, Wang Y, Zheng L, Gao M, Tang H. RNA-binding proteins potentially regulate alternative splicing of immune/inflammatory-associated genes during the progression of generalized pustular psoriasis. Arch Dermatol Res 2024; 316:538. [PMID: 39158708 DOI: 10.1007/s00403-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Generalized pustular psoriasis (GPP) is a rare but severe form of psoriasis. However, the pathogenesis of GPP has not been fully elucidated. Although RNA-binding proteins (RBPs) and the alternative splicing (AS) process are essential for regulating post-transcriptional gene expression, their roles in GPP are still unclear. We aimed to elucidate the regulatory mechanisms to identify potential new therapeutic targets. Here, We analyzed an RNA sequencing (RNA-seq) dataset (GSE200977) of peripheral blood mononuclear cells (PBMCs) of 24 patients with GPP, psoriasis vulgaris (PV), and healthy controls (HCs) from the Gene Expression Omnibus (GEO) database. We found that the abnormal alternative splicing (AS) events associated with GPP were mainly "alt3p/alt5p", and 15 AS genes were differentially expressed. Notably, the proportions of different immune cell types were correlated with the expression levels of regulatory alternatively spliced genes (RASGs): significant differences were observed in expression levels of DTD2, NDUFAF3, NBPF15, and FBLN7 in B cells and ARFIP1, IPO11, and RP11-326L24.9 in neutrophils in the GPP samples. Furthermore, We identified 32 differentially expressed RNA-binding proteins (RBPs) (18 up-regulated and 14 down-regulated). Co-expression networks between 14 pairs of differentially expressed RBPs and RASGs were subsequently constructed, demonstrating that these differentially expressed RBPs may affect the progression of GPP by regulating the AS of downstream immune/inflammatory-related genes such as LINC00989, ENC1 and MMP25-AS1. Our results were innovative in revealing the involvement of inflammation-related RBPs and RASGs in the development of GPP from the perspective of RBP-regulated AS.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Hu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuli Du
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ying Fang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ranran Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yixiao Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liyun Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Min Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Huayang Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
25
|
Flamand MN, Meyer KD. Simultaneous profiling of the RNA targets of two RNA-binding proteins using TRIBE-STAMP. Methods Enzymol 2024; 705:127-157. [PMID: 39389662 DOI: 10.1016/bs.mie.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are central players in RNA homeostasis and the control of gene expression. The identification of RBP targets, interactions, and the regulatory networks they control is crucial for understanding their cellular functions. Traditional methods for identifying RBP targets across the transcriptome have been insightful but are limited by their focus on a single RBP at a time and their general inability to identify individual RNA molecules that are bound by RBPs of interest. Recently, we overcame these limitations by developing TRIBE-STAMP, a method which enables concurrent identification of the RNA targets of two RBPs of interest with single-molecule resolution. TRIBE-STAMP works by tagging desired RBPs with either the ADAR or APOBEC1 RNA editing enzymes and expressing them in cells, followed by RNA-seq. Subsequent computational identification of A-to-I and C-to-U editing events enables the simultaneous identification of the ADAR- and APOBEC1-fused RBP target RNAs, respectively. Here, we present a detailed protocol for TRIBE-STAMP, including considerations for fusion protein expression in cells and step-by-step computational analysis of sequencing data. TRIBE-STAMP is a simple and highly versatile approach for single-molecule identification of the targets of RBPs which enables unprecedented insights into the biological interplay between RBP pairs in cells.
Collapse
Affiliation(s)
- Mathieu N Flamand
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, Québec, QC, Canada; Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States; Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
26
|
Liang Q, Yu T, Kofman E, Jagannatha P, Rhine K, Yee BA, Corbett KD, Yeo GW. High-sensitivity in situ capture of endogenous RNA-protein interactions in fixed cells and primary tissues. Nat Commun 2024; 15:7067. [PMID: 39152130 PMCID: PMC11329496 DOI: 10.1038/s41467-024-50363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/09/2024] [Indexed: 08/19/2024] Open
Abstract
RNA-binding proteins (RBPs) have pivotal functions in RNA metabolism, but current methods are limited in retrieving RBP-RNA interactions within endogenous biological contexts. Here, we develop INSCRIBE (IN situ Sensitive Capture of RNA-protein Interactions in Biological Environments), circumventing the challenges through in situ RNA labeling by precisely directing a purified APOBEC1-nanobody fusion to the RBP of interest. This method enables highly specific RNA-binding site identification across a diverse range of fixed biological samples such as HEK293T cells and mouse brain tissue and accurately identifies the canonical binding motifs of RBFOX2 (UGCAUG) and TDP-43 (UGUGUG) in native cellular environments. Applicable to any RBP with available primary antibodies, INSCRIBE enables sensitive capture of RBP-RNA interactions from ultra-low input equivalent to ~5 cells. The robust, versatile, and sensitive INSCRIBE workflow is particularly beneficial for precious tissues such as clinical samples, empowering the exploration of genuine RBP-RNA interactions in RNA-related disease contexts.
Collapse
Affiliation(s)
- Qishan Liang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kevin D Corbett
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| | - Gene W Yeo
- Center for RNA Technologies and Therapeutics, University of California San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
27
|
Tang Z, Li J, Li C. Post-Transcriptional Regulator RBM47 Stabilizes FBXO2 mRNA to Advance Osteoarthritis Development: WGCNA Analysis and Experimental Validation. Biochem Genet 2024; 62:3092-3110. [PMID: 38070024 DOI: 10.1007/s10528-023-10590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 07/31/2024]
Abstract
Osteoarthritis (OA) is a common chronic joint degenerative disease and a major cause of disability in the elderly. However, the current intervention strategies cannot effectively improve OA, and the pathogenesis of OA remains elusive. The present study identified RNA binding motif protein 47 (RBM47) as an upstream modulator of key dysregulation gene co-expression module based on weighted gene co-expression network analysis (WGCNA) analysis and least absolute shrinkage and selection operator (Lasso) modeling. Subsequently, data from real-time quantitative PCR and western blot analysis revealed that RBM47 was upregulated in OA models in vivo and in vitro compared with normal controls. Functional analysis results from the MTT assay, flow cytometry, evaluation of LDH activities and inflammatory mediators, and western blot analysis of extracellular matrix (ECM) proteins, showed that RBM47 knockdown significantly alleviated inflammation, apoptosis, and ECM degradation in interleukin 1β (IL-1β)-treated chondrocytes. Mechanistically, RBM47 bound to F box only protein 2 (FBXO2) and stabilized FBXO2 messenger RNA (mRNA) to promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in chondrocytes. Results from the recovery assay showed that the re-activation of STAT3 signaling by overexpressing FBXO2 or STAT3 counteracted the alleviating effect of RBM47 downregulation on IL-1β-induced inflammation, apoptosis, and ECM degradation. Altogether, our findings illustrate that RBM47 stabilizes FBXO2 mRNA to advance OA development by activating STAT3 signaling, which enhances our understanding of the molecular regulatory mechanisms underlying the development of OA.
Collapse
Affiliation(s)
- Zhifang Tang
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Jingyuan Li
- Clinical Medical College of Dali University, Dali, 671000, China
| | - Chuan Li
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force, PLA, No.212 Daguan Road, Xishan District, Kunming, 650000, Yunnan, China.
| |
Collapse
|
28
|
Sekar V, Mármol-Sánchez E, Kalogeropoulos P, Stanicek L, Sagredo EA, Widmark A, Doukoumopoulos E, Bonath F, Biryukova I, Friedländer MR. Detection of transcriptome-wide microRNA-target interactions in single cells with agoTRIBE. Nat Biotechnol 2024; 42:1296-1302. [PMID: 37735263 PMCID: PMC11324520 DOI: 10.1038/s41587-023-01951-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/15/2023] [Indexed: 09/23/2023]
Abstract
MicroRNAs (miRNAs) exert their gene regulatory effects on numerous biological processes based on their selection of target transcripts. Current experimental methods available to identify miRNA targets are laborious and require millions of cells. Here we have overcome these limitations by fusing the miRNA effector protein Argonaute2 to the RNA editing domain of ADAR2, allowing the detection of miRNA targets transcriptome-wide in single cells. miRNAs guide the fusion protein to their natural target transcripts, causing them to undergo A>I editing, which can be detected by sensitive single-cell RNA sequencing. We show that agoTRIBE identifies functional miRNA targets, which are supported by evolutionary sequence conservation. In one application of the method we study microRNA interactions in single cells and identify substantial differential targeting across the cell cycle. AgoTRIBE also provides transcriptome-wide measurements of RNA abundance and allows the deconvolution of miRNA targeting in complex tissues at the single-cell level.
Collapse
Affiliation(s)
- Vaishnovi Sekar
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Centre for Palaeogenetics, Stockholm, Sweden
| | - Panagiotis Kalogeropoulos
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Laura Stanicek
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Eduardo A Sagredo
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
29
|
Yang Y, Lu Y, Wang Y, Wen X, Qi C, Piao W, Jin H. Current progress in strategies to profile transcriptomic m 6A modifications. Front Cell Dev Biol 2024; 12:1392159. [PMID: 39055651 PMCID: PMC11269109 DOI: 10.3389/fcell.2024.1392159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Various methods have been developed so far for detecting N 6-methyladenosine (m6A). The total m6A level or the m6A status at individual positions on mRNA can be detected and quantified through some sequencing-independent biochemical methods, such as LC/MS, SCARLET, SELECT, and m6A-ELISA. However, the m6A-detection techniques relying on high-throughput sequencing have more effectively advanced the understanding about biological significance of m6A-containing mRNA and m6A pathway at a transcriptomic level over the past decade. Various SGS-based (Second Generation Sequencing-based) methods with different detection principles have been widely employed for this purpose. These principles include m6A-enrichment using antibodies, discrimination of m6A from unmodified A-base by nucleases, a fusion protein strategy relying on RNA-editing enzymes, and marking m6A with chemical/biochemical reactions. Recently, TGS-based (Third Generation Sequencing-based) methods have brought a new trend by direct m6A-detection. This review first gives a brief introduction of current knowledge about m6A biogenesis and function, and then comprehensively describes m6A-profiling strategies including their principles, procedures, and features. This will guide users to pick appropriate methods according to research goals, give insights for developing novel techniques in varying areas, and continue to expand our boundary of knowledge on m6A.
Collapse
Affiliation(s)
- Yuening Yang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanming Lu
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Wang
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianghui Wen
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Changhai Qi
- Department of Pathology, Aerospace Center Hospital, Beijing, China
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| | - Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and Biotherapy, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
- Advanced Technology Research Institute, Beijing Institute of Technology, Jinan, China
| |
Collapse
|
30
|
Li S, Deng X, Pathak D, Basavaraj R, Sun L, Cheng Y, Li JR, Burke M, Britz GW, Cheng C, Gao Y, Weng YL. Deficiency of m 6 A RNA methylation promotes ZBP1-mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601251. [PMID: 38979320 PMCID: PMC11230363 DOI: 10.1101/2024.06.29.601251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
m 6 A RNA methylation suppresses the immunostimulatory potential of endogenous RNA. Deficiency of m 6 A provokes inflammatory responses and cell death, but the underlying mechanisms remain elusive. Here we showed that the noncoding RNA 7SK gains immunostimulatory potential upon m 6 A depletion and subsequently activates the RIG-I/MAVS axis to spark interferon (IFN) signaling cascades. Concomitant excess of IFN and m 6 A deficiency synergistically facilitate the formation of RNA G-quadruplexes (rG4) to promote ZBP1-mediated necroptotic cell death. Collectively, our findings delineate a hitherto uncharacterized mechanism that links m 6 A dysregulation with ZBP1 activity in triggering inflammatory cell death.
Collapse
|
31
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
32
|
Jin H, Li C, Jia Y, Qi Y, Piao W. Revealing the hidden RBP-RNA interactions with RNA modification enzyme-based strategies. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1863. [PMID: 39392204 PMCID: PMC11469752 DOI: 10.1002/wrna.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 10/12/2024]
Abstract
RNA-binding proteins (RBPs) are powerful and versatile regulators in living creatures, playing fundamental roles in organismal development, metabolism, and various diseases by the regulation of gene expression at multiple levels. The requirements of deep research on RBP function have promoted the rapid development of RBP-RNA interplay detection methods. Recently, the detection method of fusing RNA modification enzymes (RME) with RBP of interest has become a hot topic. Here, we reviewed RNA modification enzymes in adenosine deaminases that act on RNA (ADAR), terminal nucleotidyl transferase (TENT), and activation-induced cytosine deaminase/ApoB mRNA editing enzyme catalytic polypeptide-like (AID/APOBEC) protein family, regarding the biological function, biochemical activity, and substrate specificity originated from enzyme selves, their domains and partner proteins. In addition, we discussed the RME activity screening system, and the RME mutations with engineered enzyme activity. Furthermore, we provided a systematic overview of the basic principles, advantages, disadvantages, and applications of the RME-based and cross-linking and immunopurification (CLIP)-based RBP target profiling strategies, including targets of RNA-binding proteins identified by editing (TRIBE), RNA tagging, surveying targets by APOBEC-mediated profiling (STAMP), CLIP-seq, and their derivative technology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hua Jin
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| | - Chong Li
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yunxiao Jia
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
| | - Yuxuan Qi
- Faculty of ScienceUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Weilan Piao
- Laboratory of Genetics and Disorders, Key Laboratory of Molecular Medicine and BiotherapyAerospace Center Hospital, School of Life Science, Beijing Institute of TechnologyBeijingPeople's Republic of China
- Advanced Technology Research Institute, Beijing Institute of TechnologyJinanPeople's Republic of China
| |
Collapse
|
33
|
Wedler A, Bley N, Glaß M, Müller S, Rausch A, Lederer M, Urbainski J, Schian L, Obika KB, Simon T, Peters L, Misiak C, Fuchs T, Köhn M, Jacob R, Gutschner T, Ihling C, Sinz A, Hüttelmaier S. RAVER1 hinders lethal EMT and modulates miR/RISC activity by the control of alternative splicing. Nucleic Acids Res 2024; 52:3971-3988. [PMID: 38300787 PMCID: PMC11039986 DOI: 10.1093/nar/gkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/24/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
The RAVER1 protein serves as a co-factor in guiding the polypyrimidine tract-binding protein (PTBP)-dependent control of alternative splicing (AS). Whether RAVER1 solely acts in concert with PTBPs and how it affects cancer cell fate remained elusive. Here, we provide the first comprehensive investigation of RAVER1-controlled AS in cancer cell models. This reveals a pro-oncogenic role of RAVER1 in modulating tumor growth and epithelial-mesenchymal-transition (EMT). Splicing analyses and protein-association studies indicate that RAVER1 guides AS in association with other splicing regulators, including PTBPs and SRSFs. In cancer cells, one major function of RAVER1 is the stimulation of proliferation and restriction of apoptosis. This involves the modulation of AS events within the miR/RISC pathway. Disturbance of RAVER1 impairs miR/RISC activity resulting in severely deregulated gene expression, which promotes lethal TGFB-driven EMT. Among others, RAVER1-modulated splicing events affect the insertion of protein interaction modules in factors guiding miR/RISC-dependent gene silencing. Most prominently, in all three human TNRC6 proteins, RAVER1 controls AS of GW-enriched motifs, which are essential for AGO2-binding and the formation of active miR/RISC complexes. We propose, that RAVER1 is a key modulator of AS events in the miR/RISC pathway ensuring proper abundance and composition of miR/RISC effectors. This ensures balanced expression of TGFB signaling effectors and limits TGFB induced lethal EMT.
Collapse
Affiliation(s)
- Alice Wedler
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Simon Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- New York Genome Center, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
| | - Alexander Rausch
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Julia Urbainski
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Laura Schian
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Kingsley-Benjamin Obika
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Theresa Simon
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Lara Meret Peters
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Claudia Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tommy Fuchs
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Marcel Köhn
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Roland Jacob
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Tony Gutschner
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
34
|
Horner SM, Thompson MG. Challenges to mapping and defining m 6A function in viral RNA. RNA (NEW YORK, N.Y.) 2024; 30:482-490. [PMID: 38531643 PMCID: PMC11019751 DOI: 10.1261/rna.079959.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Viral RNA molecules contain multiple layers of regulatory information. This includes features beyond the primary sequence, such as RNA structures and RNA modifications, including N6-methyladenosine (m6A). Many recent studies have identified the presence and location of m6A in viral RNA and have found diverse regulatory roles for this modification during viral infection. However, to date, viral m6A mapping strategies have limitations that prevent a complete understanding of the function of m6A on individual viral RNA molecules. While m6A sites have been profiled on bulk RNA from many viruses, the resulting m6A maps of viral RNAs described to date present a composite picture of m6A across viral RNA molecules in the infected cell. Thus, for most viruses, it is unknown if unique viral m6A profiles exist throughout infection, nor if they regulate specific viral life cycle stages. Here, we describe several challenges to defining the function of m6A in viral RNA molecules and provide a framework for future studies to help in the understanding of how m6A regulates viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina 27710, USA
| |
Collapse
|
35
|
Fiorentino J, Armaos A, Colantoni A, Tartaglia G. Prediction of protein-RNA interactions from single-cell transcriptomic data. Nucleic Acids Res 2024; 52:e31. [PMID: 38364867 PMCID: PMC11014251 DOI: 10.1093/nar/gkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
Proteins are crucial in regulating every aspect of RNA life, yet understanding their interactions with coding and noncoding RNAs remains limited. Experimental studies are typically restricted to a small number of cell lines and a limited set of RNA-binding proteins (RBPs). Although computational methods based on physico-chemical principles can predict protein-RNA interactions accurately, they often lack the ability to consider cell-type-specific gene expression and the broader context of gene regulatory networks (GRNs). Here, we assess the performance of several GRN inference algorithms in predicting protein-RNA interactions from single-cell transcriptomic data, and propose a pipeline, called scRAPID (single-cell transcriptomic-based RnA Protein Interaction Detection), that integrates these methods with the catRAPID algorithm, which can identify direct physical interactions between RBPs and RNA molecules. Our approach demonstrates that RBP-RNA interactions can be predicted from single-cell transcriptomic data, with performances comparable or superior to those achieved for the well-established task of inferring transcription factor-target interactions. The incorporation of catRAPID significantly enhances the accuracy of identifying interactions, particularly with long noncoding RNAs, and enables the identification of hub RBPs and RNAs. Additionally, we show that interactions between RBPs can be detected based on their inferred RNA targets. The software is freely available at https://github.com/tartaglialabIIT/scRAPID.
Collapse
Affiliation(s)
- Jonathan Fiorentino
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Alexandros Armaos
- Centre for Human Technologies (CHT), RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Alessio Colantoni
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Gian Gaetano Tartaglia
- Center for Life Nano- and Neuro-Science, RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
- Centre for Human Technologies (CHT), RNA Systems Biology Lab, Fondazione Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| |
Collapse
|
36
|
Lewinski M, Brüggemann M, Köster T, Reichel M, Bergelt T, Meyer K, König J, Zarnack K, Staiger D. Mapping protein-RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2). Nat Protoc 2024; 19:1183-1234. [PMID: 38278964 DOI: 10.1038/s41596-023-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Despite crucial roles of RNA-binding proteins (RBPs) in plant physiology and development, methods for determining their transcriptome-wide binding landscape are less developed than those used in other model organisms. Cross-linking and immunoprecipitation (CLIP) methods (based on UV-mediated generation of covalent bonds between RNAs and cognate RBPs in vivo, purification of the cross-linked complexes and identification of the co-purified RNAs by high-throughput sequencing) have been applied mainly in mammalian cells growing in monolayers or in translucent tissue. We have developed plant iCLIP2, an efficient protocol for performing individual-nucleotide-resolution CLIP (iCLIP) in plants, tailored to overcome the experimental hurdles posed by plant tissue. We optimized the UV dosage to efficiently cross-link RNA and proteins in plants and expressed epitope-tagged RBPs under the control of their native promoters in loss-of-function mutants. We select epitopes for which nanobodies are available, allowing stringent conditions for immunopurification of the RNA-protein complexes to be established. To overcome the inherently high RNase content of plant cells, RNase inhibitors are added and the limited RNA fragmentation step is modified. We combine the optimized isolation of RBP-bound RNAs with iCLIP2, a streamlined protocol that greatly enhances the efficiency of library preparation for high-throughput sequencing. Plant researchers with experience in molecular biology and handling of RNA can complete this iCLIP2 protocol in ~5 d. Finally, we describe a bioinformatics workflow to determine targets of Arabidopsis RBPs from iCLIP data, covering all steps from downloading sequencing reads to identifying cross-linking events ( https://github.com/malewins/Plant-iCLIPseq ), and present the R/Bioconductor package BindingSiteFinder to extract reproducible binding sites ( https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html ).
Collapse
Affiliation(s)
- Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Thorsten Bergelt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
37
|
Fan S, Zhang Y, Zhu S, Shen L. Plant RNA-binding proteins: Phase separation dynamics and functional mechanisms underlying plant development and stress responses. MOLECULAR PLANT 2024; 17:531-551. [PMID: 38419328 DOI: 10.1016/j.molp.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
RNA-binding proteins (RBPs) accompany RNA from synthesis to decay, mediating every aspect of RNA metabolism and impacting diverse cellular and developmental processes in eukaryotes. Many RBPs undergo phase separation along with their bound RNA to form and function in dynamic membraneless biomolecular condensates for spatiotemporal coordination or regulation of RNA metabolism. Increasing evidence suggests that phase-separating RBPs with RNA-binding domains and intrinsically disordered regions play important roles in plant development and stress adaptation. Here, we summarize the current knowledge about how dynamic partitioning of RBPs into condensates controls plant development and enables sensing of experimental changes to confer growth plasticity under stress conditions, with a focus on the dynamics and functional mechanisms of RBP-rich nuclear condensates and cytoplasmic granules in mediating RNA metabolism. We also discuss roles of multiple factors, such as environmental signals, protein modifications, and N6-methyladenosine RNA methylation, in modulating the phase separation behaviors of RBPs, and highlight the prospects and challenges for future research on phase-separating RBPs in crops.
Collapse
Affiliation(s)
- Sheng Fan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Yu Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Shaobo Zhu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 1 Research Link, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
38
|
Witzenberger M, Schwartz S. Directing RNA-modifying machineries towards endogenous RNAs: opportunities and challenges. Trends Genet 2024; 40:313-325. [PMID: 38350740 DOI: 10.1016/j.tig.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
Over 170 chemical modifications can be naturally installed on RNA, all of which are catalyzed by dedicated machineries. These modifications can alter RNA sequence structure, stability, and translation as well as serving as quality control marks that record aspects of RNA processing. The diverse roles played by RNAs within cells has motivated endeavors to exogenously introduce RNA modifications at target sites for diverse purposes ranging from recording RNA:protein interactions to therapeutic applications. Here, we discuss these applications and the approaches that have been employed to engineer RNA-modifying machineries, and highlight persisting challenges and perspectives.
Collapse
Affiliation(s)
- Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7630031, Israel.
| |
Collapse
|
39
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 PMCID: PMC11896630 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
40
|
Ghashghaei M, Liu Y, Ettles J, Bombaci G, Ramkumar N, Liu Z, Escano L, Miko SS, Kim Y, Waldron JA, Do K, MacPherson K, Yuen KA, Taibi T, Yue M, Arsalan A, Jin Z, Edin G, Karsan A, Morin GB, Kuchenbauer F, Perna F, Bushell M, Vu LP. Translation efficiency driven by CNOT3 subunit of the CCR4-NOT complex promotes leukemogenesis. Nat Commun 2024; 15:2340. [PMID: 38491013 PMCID: PMC10943099 DOI: 10.1038/s41467-024-46665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Protein synthesis is frequently deregulated during tumorigenesis. However, the precise contexts of selective translational control and the regulators of such mechanisms in cancer is poorly understood. Here, we uncovered CNOT3, a subunit of the CCR4-NOT complex, as an essential modulator of translation in myeloid leukemia. Elevated CNOT3 expression correlates with unfavorable outcomes in patients with acute myeloid leukemia (AML). CNOT3 depletion induces differentiation and apoptosis and delayed leukemogenesis. Transcriptomic and proteomic profiling uncovers c-MYC as a critical downstream target which is translationally regulated by CNOT3. Global analysis of mRNA features demonstrates that CNOT3 selectively influences expression of target genes in a codon usage dependent manner. Furthermore, CNOT3 associates with the protein network largely consisting of ribosomal proteins and translation elongation factors in leukemia cells. Overall, our work elicits the direct requirement for translation efficiency in tumorigenesis and propose targeting the post-transcriptional circuitry via CNOT3 as a therapeutic vulnerability in AML.
Collapse
Affiliation(s)
- Maryam Ghashghaei
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Yilin Liu
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, Canada
| | - James Ettles
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Giuseppe Bombaci
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Niveditha Ramkumar
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Zongmin Liu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Leo Escano
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Sandra Spencer Miko
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Yerin Kim
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
- Bioinformatics program, University of British Columbia, Vancouver, Canada
| | - Joseph A Waldron
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kim Do
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyle MacPherson
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Katie A Yuen
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Thilelli Taibi
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Marty Yue
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Aaremish Arsalan
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Zhen Jin
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Glenn Edin
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Aly Karsan
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
| | - Gregg B Morin
- Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada
| | - Fabiana Perna
- Department of Medicine, Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffit Cancer Center, Tampa, FL, USA
| | - Martin Bushell
- CRUK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ly P Vu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
- Terry Fox Laboratory, British Columbia Cancer Research Centre Vancouver, Vancouver, Canada.
| |
Collapse
|
41
|
Loeser J, Bauer J, Janßen K, Rockenbach K, Wachter A. A transient in planta editing assay identifies specific binding of the splicing regulator PTB as a prerequisite for cassette exon inclusion. PLANT MOLECULAR BIOLOGY 2024; 114:22. [PMID: 38443687 PMCID: PMC10914923 DOI: 10.1007/s11103-024-01414-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/31/2023] [Indexed: 03/07/2024]
Abstract
The dynamic interaction of RNA-binding proteins (RBPs) with their target RNAs contributes to the diversity of ribonucleoprotein (RNP) complexes that are involved in a myriad of biological processes. Identifying the RNP components at high resolution and defining their interactions are key to understanding their regulation and function. Expressing fusions between an RBP of interest and an RNA editing enzyme can result in nucleobase changes in target RNAs, representing a recent addition to experimental approaches for profiling RBP/RNA interactions. Here, we have used the MS2 protein/RNA interaction to test four RNA editing proteins for their suitability to detect target RNAs of RBPs in planta. We have established a transient test system for fast and simple quantification of editing events and identified the hyperactive version of the catalytic domain of an adenosine deaminase (hADARcd) as the most suitable editing enzyme. Examining fusions between homologs of polypyrimidine tract binding proteins (PTBs) from Arabidopsis thaliana and hADARcd allowed determining target RNAs with high sensitivity and specificity. Moreover, almost complete editing of a splicing intermediate provided insight into the order of splicing reactions and PTB dependency of this particular splicing event. Addition of sequences for nuclear localisation of the fusion protein increased the editing efficiency, highlighting this approach's potential to identify RBP targets in a compartment-specific manner. Our studies have established the editing-based analysis of interactions between RBPs and their RNA targets in a fast and straightforward assay, offering a new system to study the intricate composition and functions of plant RNPs in vivo.
Collapse
Affiliation(s)
- Jorinde Loeser
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Julia Bauer
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Kim Janßen
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Kevin Rockenbach
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
| |
Collapse
|
42
|
Zhang J, Xiang F, Ding Y, Hu W, Wang H, Zhang X, Lei Z, Li T, Wang P, Kang X. Identification and validation of RNA-binding protein SLC3A2 regulates melanocyte ferroptosis in vitiligo by integrated analysis of single-cell and bulk RNA-sequencing. BMC Genomics 2024; 25:236. [PMID: 38438962 PMCID: PMC10910712 DOI: 10.1186/s12864-024-10147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The pathogenesis of vitiligo remains unclear. The genes encoding vitiligo-related RNA-binding proteins (RBPs) and their underlying pathogenic mechanism have not been determined. RESULTS Single-cell transcriptome sequencing (scRNA-seq) data from the CNCB database was obtained to identify distinct cell types and subpopulations and the relative proportion changes in vitiligo and healthy samples. We identified 14 different cell types and 28 cell subpopulations. The proportion of each cell subpopulation significantly differed between the patients with vitiligo and healthy groups. Using RBP genes for unsupervised clustering, we obtained the specific RBP genes of different cell types in vitiligo and healthy groups. The RBP gene expression was highly heterogeneous; there were significant differences in some cell types, such as keratinocytes, Langerhans, and melanocytes, while there were no significant differences in other cells, such as T cells and fibroblasts, in the two groups. The melanocyte-specific RBP genes were enriched in the apoptosis and immune-related pathways in the patients with vitiligo. Combined with the bulk RNA-seq data of melanocytes, key RBP genes related to melanocytes were identified, including eight upregulated RBP genes (CDKN2A, HLA-A, RPL12, RPL29, RPL31, RPS19, RPS21, and RPS28) and one downregulated RBP gene (SLC3A2). Cell experiments were conducted to explore the role of the key RBP gene SLC3A2 in vitiligo. Cell experiments confirmed that melanocyte proliferation decreased, whereas apoptosis increased, after SLC3A2 knockdown. SLC3A2 knockdown in melanocytes also decreased the SOD activity and melanin content; increased the Fe2+, ROS, and MDA content; significantly increased the expression levels of TYR and COX2; and decreased the expression levels of glutathione and GPX4. CONCLUSION We identified the RBP genes of different cell subsets in patients with vitiligo and confirmed that downregulating SLC3A2 can promote ferroptosis in melanocytes. These findings provide new insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Wen Hu
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiangyue Zhang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Zixian Lei
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Tingting Li
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Peng Wang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology and Venereology, People's Hospital of Xinjiang Uygur Autonomous Region, Ürümqi, China.
- Xinjiang Clinical Research Center for Dermatology and Venereology, Xinjiang, China.
- Xinjiang Key Laboratory of Dermatology Research, Xinjiang, China.
| |
Collapse
|
43
|
Dodel M, Guiducci G, Dermit M, Krishnamurthy S, Alard EL, Capraro F, Rekad Z, Stojic L, Mardakheh FK. TREX reveals proteins that bind to specific RNA regions in living cells. Nat Methods 2024; 21:423-434. [PMID: 38374261 PMCID: PMC10927567 DOI: 10.1038/s41592-024-02181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024]
Abstract
Different regions of RNA molecules can often engage in specific interactions with distinct RNA-binding proteins (RBPs), giving rise to diverse modalities of RNA regulation and function. However, there are currently no methods for unbiased identification of RBPs that interact with specific RNA regions in living cells and under endogenous settings. Here we introduce TREX (targeted RNase H-mediated extraction of crosslinked RBPs)-a highly sensitive approach for identifying proteins that directly bind to specific RNA regions in living cells. We demonstrate that TREX outperforms existing methods in identifying known interactors of U1 snRNA, and reveals endogenous region-specific interactors of NORAD long noncoding RNA. Using TREX, we generated a comprehensive region-by-region interactome for 45S rRNA, uncovering both established and previously unknown interactions that regulate ribosome biogenesis. With its applicability to different cell types, TREX is an RNA-centric tool for unbiased positional mapping of endogenous RNA-protein interactions in living cells.
Collapse
Affiliation(s)
- Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Giulia Guiducci
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Sneha Krishnamurthy
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Emilie L Alard
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Federica Capraro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Zeinab Rekad
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lovorka Stojic
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
44
|
Xiao Y, Chen YM, Zou Z, Ye C, Dou X, Wu J, Liu C, Liu S, Yan H, Wang P, Zeng TB, Liu Q, Fei J, Tang W, He C. Profiling of RNA-binding protein binding sites by in situ reverse transcription-based sequencing. Nat Methods 2024; 21:247-258. [PMID: 38200227 PMCID: PMC10864177 DOI: 10.1038/s41592-023-02146-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
RNA-binding proteins (RBPs) regulate diverse cellular processes by dynamically interacting with RNA targets. However, effective methods to capture both stable and transient interactions between RBPs and their RNA targets are still lacking, especially when the interaction is dynamic or samples are limited. Here we present an assay of reverse transcription-based RBP binding site sequencing (ARTR-seq), which relies on in situ reverse transcription of RBP-bound RNAs guided by antibodies to identify RBP binding sites. ARTR-seq avoids ultraviolet crosslinking and immunoprecipitation, allowing for efficient and specific identification of RBP binding sites from as few as 20 cells or a tissue section. Taking advantage of rapid formaldehyde fixation, ARTR-seq enables capturing the dynamic RNA binding by RBPs over a short period of time, as demonstrated by the profiling of dynamic RNA binding of G3BP1 during stress granule assembly on a timescale as short as 10 minutes.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Yan-Ming Chen
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Xiaoyang Dou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Jinjun Wu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chang Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Hao Yan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Tie-Bo Zeng
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Qinzhe Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
- Howard Hughes Medical Institute, Chicago, IL, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, Chicago, IL, USA.
| |
Collapse
|
45
|
Medina-Munoz HC, Kofman E, Jagannatha P, Boyle EA, Yu T, Jones KL, Mueller JR, Lykins GD, Doudna AT, Park SS, Blue SM, Ranzau BL, Kohli RM, Komor AC, Yeo GW. Expanded palette of RNA base editors for comprehensive RBP-RNA interactome studies. Nat Commun 2024; 15:875. [PMID: 38287010 PMCID: PMC10825223 DOI: 10.1038/s41467-024-45009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.
Collapse
Affiliation(s)
- Hugo C Medina-Munoz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eric Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pratibha Jagannatha
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Evan A Boyle
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tao Yu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten L Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Grace D Lykins
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew T Doudna
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel S Park
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Brodie L Ranzau
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexis C Komor
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
46
|
Luo H, Cortés-López M, Tam CL, Xiao M, Wakiro I, Chu KL, Pierson A, Chan M, Chang K, Yang X, Fecko D, Han G, Ahn EYE, Morris QD, Landau DA, Kharas MG. SON is an essential m 6A target for hematopoietic stem cell fate. Cell Stem Cell 2023; 30:1658-1673.e10. [PMID: 38065069 PMCID: PMC10752439 DOI: 10.1016/j.stem.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/23/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
Stem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. m6A RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential m6A target required for murine HSC self-renewal, symmetric commitment, and inflammation control. Global profiling of m6A identified that m6A mRNA methylation of Son increases during HSC commitment. Upon m6A depletion, Son mRNA increases, but its protein is depleted. Reintroduction of SON rescues defects in HSC symmetric commitment divisions and engraftment. Conversely, Son deletion results in a loss of HSC fitness, while overexpression of SON improves mouse and human HSC engraftment potential by increasing quiescence. Mechanistically, we found that SON rescues MYC and suppresses the METTL3-HSC inflammatory gene expression program, including CCL5, through transcriptional regulation. Thus, our findings define a m6A-SON-CCL5 axis that controls inflammation and HSC fate.
Collapse
Affiliation(s)
- Hanzhi Luo
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mariela Cortés-López
- New York Genome Center, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Cyrus L Tam
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Xiao
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isaac Wakiro
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen L Chu
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell School of Medical Sciences, New York, NY, USA
| | - Aspen Pierson
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mandy Chan
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Chang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuejing Yang
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Fecko
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grace Han
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eun-Young Erin Ahn
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quaid D Morris
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA; Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
47
|
Lin Y, Kwok S, Hein AE, Thai BQ, Alabi Y, Ostrowski MS, Wu K, Floor SN. RNA molecular recording with an engineered RNA deaminase. Nat Methods 2023; 20:1887-1899. [PMID: 37857907 PMCID: PMC11497829 DOI: 10.1038/s41592-023-02046-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
RNA deaminases are powerful tools for base editing and RNA molecular recording. However, the enzymes used in currently available RNA molecular recorders such as TRIBE, DART or STAMP have limitations due to RNA structure and sequence dependence. We designed a platform for directed evolution of RNA molecular recorders. We engineered an RNA A-to-I deaminase (an RNA adenosine base editor, rABE) that has high activity, low bias and low background. Using rABE, we present REMORA (RNA-encoded molecular recording in adenosines), wherein deamination by rABE writes a molecular record of RNA-protein interactions. By combining rABE with the C-to-U deaminase APOBEC1 and long-read RNA sequencing, we measured binding by two RNA-binding proteins on single messenger RNAs. Orthogonal RNA molecular recording of mammalian Pumilio proteins PUM1 and PUM2 shows that PUM1 competes with PUM2 for a subset of sites in cells. Furthermore, we identify transcript isoform-specific RNA-protein interactions driven by isoform changes distal to the binding site. The genetically encodable RNA deaminase rABE enables single-molecule identification of RNA-protein interactions with cell type specificity.
Collapse
Affiliation(s)
- Yizhu Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Samentha Kwok
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
| | - Abigail E Hein
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Bao Quoc Thai
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA
- MSTP Program, University of Arizona, Tuscon, AZ, USA
| | - Yewande Alabi
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Megan S Ostrowski
- Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, USA
| | - Ke Wu
- Gladstone Institute for Data Science and Biotechnology, San Francisco, CA, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Seo KW, Kleiner RE. Profiling dynamic RNA-protein interactions using small-molecule-induced RNA editing. Nat Chem Biol 2023; 19:1361-1371. [PMID: 37349582 PMCID: PMC11048738 DOI: 10.1038/s41589-023-01372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
RNA-binding proteins (RBPs) play an important role in biology, and characterizing dynamic RNA-protein interactions is essential for understanding RBP function. In this study, we developed targets of RBPs identified by editing induced through dimerization (TRIBE-ID), a facile strategy for quantifying state-specific RNA-protein interactions upon rapamycin-mediated chemically induced dimerization and RNA editing. We performed TRIBE-ID with G3BP1 and YBX1 to study RNA-protein interactions during normal conditions and upon oxidative stress-induced biomolecular condensate formation. We quantified editing kinetics to infer interaction persistence and show that stress granule formation strengthens pre-existing RNA-protein interactions and induces new RNA-protein binding events. Furthermore, we demonstrate that G3BP1 stabilizes its targets under normal and oxidative stress conditions independent of stress granule formation. Finally, we apply our method to characterize small-molecule modulators of G3BP1-RNA binding. Taken together, our work provides a general approach to profile dynamic RNA-protein interactions in cellular contexts with temporal control.
Collapse
Affiliation(s)
- Kyung W Seo
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Ralph E Kleiner
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
49
|
Mulligan MR, Bicknell LS. The molecular genetics of nELAVL in brain development and disease. Eur J Hum Genet 2023; 31:1209-1217. [PMID: 37697079 PMCID: PMC10620143 DOI: 10.1038/s41431-023-01456-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embryonic development requires tight control of gene expression levels, activity, and localisation. This control is coordinated by multiple levels of regulation on DNA, RNA and protein. RNA-binding proteins (RBPs) are recognised as key regulators of post-transcriptional gene regulation, where their binding controls splicing, polyadenylation, nuclear export, mRNA stability, translation rate and decay. In brain development, the ELAVL family of RNA binding proteins undertake essential functions across spatiotemporal windows to help regulate and specify transcriptomic programmes for cell specialisation. Despite their recognised importance in neural tissues, their molecular roles and connections to pathology are less explored. Here we provide an overview of the neuronal ELAVL family, noting commonalities and differences amongst different species, their molecular characteristics, and roles in the cell. We bring together the available molecular genetics evidence to link different ELAVL proteins to phenotypes and disease, in both the brain and beyond, including ELAVL2, which is the least studied ELAVL family member. We find that ELAVL-related pathology shares a common neurological theme, but different ELAVL proteins are more strongly connected to different phenotypes, reflecting their specialised expression across time and space.
Collapse
Affiliation(s)
- Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
50
|
Abe Y, Kofman ER, Almeida M, Ouyang Z, Ponte F, Mueller JR, Cruz-Becerra G, Sakai M, Prohaska TA, Spann NJ, Resende-Coelho A, Seidman JS, Stender JD, Taylor H, Fan W, Link VM, Cobo I, Schlachetzki JCM, Hamakubo T, Jepsen K, Sakai J, Downes M, Evans RM, Yeo GW, Kadonaga JT, Manolagas SC, Rosenfeld MG, Glass CK. RANK ligand converts the NCoR/HDAC3 co-repressor to a PGC1β- and RNA-dependent co-activator of osteoclast gene expression. Mol Cell 2023; 83:3421-3437.e11. [PMID: 37751740 PMCID: PMC10591845 DOI: 10.1016/j.molcel.2023.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/17/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1β with the NCoR/HDAC3 complex, resulting in the activation of PGC1β and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.
Collapse
Affiliation(s)
- Yohei Abe
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Maria Almeida
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Filipa Ponte
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Grisel Cruz-Becerra
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Biochemistry and Molecular Biology, Nippon Medical School Hospital, Tokyo 113-8602, Japan
| | - Thomas A Prohaska
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nathanael J Spann
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ana Resende-Coelho
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Jason S Seidman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Joshua D Stender
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Havilah Taylor
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Weiwei Fan
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Faculty of Biology, Department II, Ludwig-Maximilians Universität München, Planegg-Martinsried 82152, Germany
| | - Isidoro Cobo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ronald M Evans
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Stem Cell Program, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - James T Kadonaga
- Department of Molecular Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Stavros C Manolagas
- Division of Endocrinology and Metabolism, Center for Osteoporosis and Metabolic Bone Diseases, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Department of Orthopedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|