1
|
Hodebourg R, Scofield MD, Kalivas PW, Kuhn BN. Nonneuronal contributions to synaptic function. Neuron 2025:S0896-6273(25)00260-0. [PMID: 40311612 DOI: 10.1016/j.neuron.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/09/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Synapses are elegantly integrated signaling hubs containing the canonical synaptic elements, neuronal pre- and postsynapses, along with other components of the neuropil, including perisynaptic astroglia and extracellular matrix proteins, as well as microglia and oligodendrocytes. Signaling within these multipartite hubs is essential for synaptic function and is often disrupted in neuropsychiatric disorders. We review data that have refined our understanding of how environmental stimuli shape signaling and synaptic plasticity within synapses. We propose working models that integrate what is known about how different cell types within the perisynaptic neuropil regulate synaptic functions and dysfunctions that are elicited by addictive drugs. While these working models integrate existing findings, they are constrained by a need for new technology. Accordingly, we propose directions for improving reagents and experimental approaches to better probe how signaling between cell types within perisynaptic ecosystems creates the synaptic plasticity necessary to establish and maintain adaptive and maladaptive behaviors.
Collapse
Affiliation(s)
- Ritchy Hodebourg
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Anesthesiology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson Department of Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | - Brittany N Kuhn
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
Wendt S, Lin AJ, Ebert SN, Brennan DJ, Cai W, Bai Y, Kong DY, Sorrentino S, Groten CJ, Lee C, Frew J, Choi HB, Karamboulas K, Delhaye M, Mackenzie IR, Kaplan DR, Miller FD, MacVicar BA, Nygaard HB. A 3D human iPSC-derived multi-cell type neurosphere system to model cellular responses to chronic amyloidosis. J Neuroinflammation 2025; 22:119. [PMID: 40275379 PMCID: PMC12023538 DOI: 10.1186/s12974-025-03433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive amyloid beta (Aβ) deposition in the brain, with eventual widespread neurodegeneration. While the cell-specific molecular signature of end-stage AD is reasonably well characterized through autopsy material, less is known about the molecular pathways in the human brain involved in the earliest exposure to Aβ. Human model systems that not only replicate the pathological features of AD but also the transcriptional landscape in neurons, astrocytes and microglia are crucial for understanding disease mechanisms and for identifying novel therapeutic targets. METHODS In this study, we used a human 3D iPSC-derived neurosphere model to explore how resident neurons, microglia and astrocytes and their interplay are modified by chronic amyloidosis induced over 3-5 weeks by supplementing media with synthetic Aβ1 - 42 oligomers. Neurospheres under chronic Aβ exposure were grown with or without microglia to investigate the functional roles of microglia. Neuronal activity and oxidative stress were monitored using genetically encoded indicators, including GCaMP6f and roGFP1, respectively. Single nuclei RNA sequencing (snRNA-seq) was performed to profile Aβ and microglia driven transcriptional changes in neurons and astrocytes, providing a comprehensive analysis of cellular responses. RESULTS Microglia efficiently phagocytosed Aβ inside neurospheres and significantly reduced neurotoxicity, mitigating amyloidosis-induced oxidative stress and neurodegeneration following different exposure times to Aβ. The neuroprotective effects conferred by the presence of microglia was associated with unique gene expression profiles in astrocytes and neurons, including several known AD-associated genes such as APOE. These findings reveal how microglia can directly alter the molecular landscape of AD. CONCLUSIONS Our human 3D neurosphere culture system with chronic Aβ exposure reveals how microglia may be essential for the cellular and transcriptional responses in AD pathogenesis. Microglia are not only neuroprotective in neurospheres but also act as key drivers of Aβ-dependent APOE expression suggesting critical roles for microglia in regulating APOE in the AD brain. This novel, well characterized, functional in vitro platform offers unique opportunities to study the roles and responses of microglia to Aβ modelling key aspects of human AD. This tool will help identify new therapeutic targets, accelerating the transition from discovery to clinical applications.
Collapse
Affiliation(s)
- Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Sarah N Ebert
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Declan J Brennan
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Wenji Cai
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Yanyang Bai
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Da Young Kong
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Stefano Sorrentino
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher Lee
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Jonathan Frew
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Opalia Co, Montreal, QC, H2X 3Y7, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Konstantina Karamboulas
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
| | - Mathias Delhaye
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Ian R Mackenzie
- Department of Pathology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - David R Kaplan
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Freda D Miller
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| |
Collapse
|
3
|
Goenaga J, Nanclares C, Hall M, Kofuji P, Mermelstein PG, Araque A. Estradiol Mediates Astrocyte-Neuron Communication in the Hippocampus. Mol Neurobiol 2025:10.1007/s12035-025-04905-6. [PMID: 40208551 DOI: 10.1007/s12035-025-04905-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Accumulating evidence has revealed the existence of functional astrocyte-neuron communication based on the ability of astrocytes to respond to neurotransmitters and release gliotransmitters. However, little is known about how other signaling molecules, such as hormones, impact astrocyte function. Estradiol (E2) is an important hormone known to regulate neuronal activity, synaptic transmission, plasticity, and animal behavior. However, whether E2 specifically signals to astrocytes in situ and the functional consequences on astrocyte-neuron communication remain unknown. Therefore, we investigated the impact of estradiol on astrocyte activity and astrocyte-neuron communication in the mouse hippocampus. Using an RNAscope approach, we determined that estrogen receptors (ERα and ERβ) are expressed in astrocytes in both female and male mice. In both sexes, confocal imaging of hippocampal slices determined that astrocytes respond to locally applied E2 with calcium elevations. In pyramidal neurons, slow inward currents (SICs) are mediated by the activation of extrasynaptic NMDA receptors and indicate gliotransmission. Electrophysiological recordings of hippocampal neurons determined that E2 increases the frequency, but not the amplitude, of SICs. We also recorded excitatory synaptic transmission evoked by Schaffer collateral stimulation. Here, only in females, did E2 produce a reduction in excitatory synaptic transmission. The E2-induced effects on the astrocyte calcium signal and gliotransmission were prevented by the broad estrogen receptor antagonist ICI 182,780. Taken together, these results demonstrate the existence of estradiol-mediated astrocyte-neuron communication in both female and male mice. They reveal that E2 can signal to astrocytes and, through this signaling, E2 may regulate neuronal activity and synaptic transmission.
Collapse
Grants
- NIMH R01MH119355 National Institutes of Health, United States
- NIMH R01MH119355 National Institutes of Health, United States
- NIDA R01HD100007 National Institutes of Health, United States
- NIMH R01MH119355 National Institutes of Health, United States
- NIDA R01HD100007 National Institutes of Health, United States
- NIMH R01MH119355 National Institutes of Health, United States
- W911NF2110328 U.S. Department of Defense, United States
- W911NF2110328 U.S. Department of Defense, United States
- W911NF2110328 U.S. Department of Defense, United States
- W911NF2110328 U.S. Department of Defense, United States
Collapse
Affiliation(s)
- Julianna Goenaga
- Department of Neuroscience, University of Minnesota, 6 - 145 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Carmen Nanclares
- Department of Neuroscience, University of Minnesota, 6 - 145 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Megan Hall
- Department of Neuroscience, University of Minnesota, 6 - 145 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, 6 - 145 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Paul G Mermelstein
- Department of Neuroscience, University of Minnesota, 6 - 145 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, 6 - 145 Jackson Hall, 321 Church Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Wang Y, Wang M, Zhang W, Zheng W, Reitman ME, Huang Y, Wang X, Li L, Deng H, Shi SH, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, accurate, and versatile data analysis platform for the quantification of molecular spatiotemporal signals. Cell 2025:S0092-8674(25)00285-5. [PMID: 40203826 DOI: 10.1016/j.cell.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/13/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce activity quantification and analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine-learning techniques. It decomposes complex live-imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, microscopy techniques, and imaging approaches. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, as well as distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Philipp N Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M S Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, UK
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Weizhan Zhang
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yongkang Huang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Li
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - HanFei Deng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Song-Hai Shi
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Beijing National Research Center for Information Science and Technology, Beijing 100084, China.
| |
Collapse
|
5
|
Vandal M, Institoris A, Reveret L, Korin B, Gunn C, Hirai S, Jiang Y, Lee S, Lee J, Bourassa P, Mishra RC, Peringod G, Arellano F, Belzil C, Tremblay C, Hashem M, Gorzo K, Elias E, Yao J, Meilandt B, Foreman O, Roose-Girma M, Shin S, Muruve D, Nicola W, Körbelin J, Dunn JF, Chen W, Park SK, Braun AP, Bennett DA, Gordon GRJ, Calon F, Shaw AS, Nguyen MD. Loss of endothelial CD2AP causes sex-dependent cerebrovascular dysfunction. Neuron 2025; 113:876-895.e11. [PMID: 39892386 DOI: 10.1016/j.neuron.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 02/03/2025]
Abstract
Polymorphisms in CD2-associated protein (CD2AP) predispose to Alzheimer's disease (AD), but the underlying mechanisms remain unknown. Here, we show that loss of CD2AP in cerebral blood vessels is associated with cognitive decline in AD subjects and that genetic downregulation of CD2AP in brain vascular endothelial cells impairs memory function in male mice. Animals with reduced brain endothelial CD2AP display altered blood flow regulation at rest and during neurovascular coupling, defects in mural cell activity, and an abnormal vascular sex-dependent response to Aβ. Antagonizing endothelin-1 receptor A signaling partly rescues the vascular impairments, but only in male mice. Treatment of CD2AP mutant mice with reelin glycoprotein that mitigates the effects of CD2AP loss function via ApoER2 increases resting cerebral blood flow and even protects male mice against the noxious effect of Aβ. Thus, endothelial CD2AP plays critical roles in cerebrovascular functions and represents a novel target for sex-specific treatment in AD.
Collapse
Affiliation(s)
- Milène Vandal
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Adam Institoris
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Louise Reveret
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ben Korin
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Colin Gunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sotaro Hirai
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Yulan Jiang
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Sukyoung Lee
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Jiyeon Lee
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Philippe Bourassa
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Ramesh C Mishra
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Govind Peringod
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Faye Arellano
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Camille Belzil
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada
| | - Cyntia Tremblay
- Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada
| | - Mada Hashem
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Kelsea Gorzo
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Esteban Elias
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Bill Meilandt
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Oded Foreman
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Meron Roose-Girma
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA
| | - Steven Shin
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Daniel Muruve
- Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wilten Nicola
- Departments of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jeff F Dunn
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada; Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada; Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Wayne Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Sang-Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Andrew P Braun
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - David A Bennett
- Rush Alzheimer's disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Grant R J Gordon
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary AB T2N 4N1, Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Hospitalier Universitaire de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada.
| | - Andrey S Shaw
- Department of Research Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Minh Dang Nguyen
- Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1 Canada.
| |
Collapse
|
6
|
Mongrédien R, Anesio A, Fernandes GJD, Eagle AL, Maldera S, Pham C, Robert S, Bezerra F, Vilette A, Bianchi P, Franco C, Louis F, Gruszczynski C, Niépon ML, Betancur C, Erdozain AM, Robison AJ, Boucard AA, Cruz FC, Li D, Heck N, Gautron S, Vialou V. Astrocytes control cocaine-induced synaptic plasticity and reward through the matricellular protein hevin. Biol Psychiatry 2025:S0006-3223(25)01072-8. [PMID: 40113121 DOI: 10.1016/j.biopsych.2025.02.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Astrocytes in the nucleus accumbens (NAc) play a dynamic role in regulating synaptic plasticity induced by drugs of abuse through modulation of glutamatergic neurotransmission. Astrocyte-secreted factors may also contribute to the reprogramming of brain circuitry leading to drug-seeking behavior. Here we investigated the role of astrocyte Ca2+ signals in vivo and of the astrocyte-secreted protein hevin in the rewarding properties of cocaine. METHODS Ca2+ signals in NAc astrocytes were measured by in vivo fiber photometry during conditioned place preference (CPP) to cocaine. Depletion of Ca2+ and chemogenetic activation were employed to evaluate the contribution of astrocyte Ca2+ signals to cocaine CPP. The effects of cocaine in hevin-null mice and after hevin knockdown in NAc astrocytes were evaluated by imaging of medium spiny neuron spines, electrophysiology and CPP. Hevin secretion was monitored by light-sheet imaging in brain slices. RESULTS Cocaine increased the amplitude of Ca2+ signals in astrocytes during conditioning. Attenuating Ca2+ signals in astrocytes prevented cocaine CPP, whereas augmenting these signals potentiated this conditioning. Astrocyte activation induced a surge in hevin secretion ex vivo. Hevin knockdown in NAc astrocytes led to a decrease in CPP and in structural and synaptic plasticity in medium spiny neurons induced by cocaine. CONCLUSIONS These findings reveal a fine-tuning by cocaine of in vivo Ca2+ signals in NAc astrocytes. Astrocyte Ca2+ signals are sufficient and necessary for the acquisition of cocaine-seeking behavior. Hevin can be released upon astrocyte activation, and is a major effector of the action of cocaine and Ca2+ signals on reward and neuronal plasticity.
Collapse
Affiliation(s)
| | - Augusto Anesio
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Gustavo J D Fernandes
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Steeve Maldera
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Cuong Pham
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Séverine Robert
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Fernando Bezerra
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Adèle Vilette
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Paula Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Clara Franco
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Marie-Laure Niépon
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Amaia M Erdozain
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, University of the Basque Country, UPV/EHU, Bizkaia, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional - CINVESTAV-IPN, Mexico
| | - Fabio C Cruz
- Department of Pharmacology, Universidade Federal de São Paulo - UNIFESP, São Paulo, Brazil
| | - Dongdong Li
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Nicolas Heck
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
7
|
Marymonchyk A, Rodriguez-Aller R, Willis A, Beaupré F, Warsi S, Snapyan M, Clavet-Fournier V, Lavoie-Cardinal F, Kaplan DR, Miller FD, Saghatelyan A. Neural stem cell quiescence and activation dynamics are regulated by feedback input from their progeny under homeostatic and regenerative conditions. Cell Stem Cell 2025; 32:445-462.e9. [PMID: 39919748 DOI: 10.1016/j.stem.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 11/03/2024] [Accepted: 01/02/2025] [Indexed: 02/09/2025]
Abstract
Life-long maintenance of stem cells implies that feedback mechanisms from the niche regulate their quiescence/activation dynamics. Here, in the mouse adult subventricular neural stem cell (NSC) niche, we charted a precise spatiotemporal map of functional responses in NSCs induced by multiple niche cells and used machine learning to predict NSC interactions with specific niche cell types. We revealed a feedback mechanism whereby the NSC proliferative state is directly repressed by transient amplifying cells (TAPs), their rapidly dividing progeny. NSC processes wrap around TAPs and display hotspots of Ca2+ activity at their points of contact, mediated by ephrin (Efn) signaling. The modulation of Efn signaling or TAP ablation altered the Ca2+ signature of NSCs, leading to their activation. In vivo optogenetic modulation of Ca2+ dynamics abrogated NSC activation and prevented niche replenishment. Thus, TAP-to-NSC feedback signaling controls stem cell quiescence and activation, providing a mechanism to maintain stem cell pools throughout life.
Collapse
Affiliation(s)
- Alina Marymonchyk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Université Laval, Quebec City, QC, Canada
| | - Raquel Rodriguez-Aller
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Université Laval, Quebec City, QC, Canada
| | - Ashleigh Willis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Frédéric Beaupré
- Université Laval, Quebec City, QC, Canada; CERVO Brain Research Center, Quebec City, QC, Canada
| | - Sareen Warsi
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Marina Snapyan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Valérie Clavet-Fournier
- Université Laval, Quebec City, QC, Canada; CERVO Brain Research Center, Quebec City, QC, Canada
| | - Flavie Lavoie-Cardinal
- Université Laval, Quebec City, QC, Canada; CERVO Brain Research Center, Quebec City, QC, Canada
| | - David R Kaplan
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Freda D Miller
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Program for Neuroscience and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Armen Saghatelyan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Anding A, Ren B, Padmashri R, Burkovetskaya M, Dunaevsky A. Activity of human-specific Interlaminar Astrocytes in a Chimeric Mouse Model of Fragile X Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640426. [PMID: 40060700 PMCID: PMC11888414 DOI: 10.1101/2025.02.26.640426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Astrocytes, a type of glial cells, have multiple roles in regulating neuronal development and homeostasis. In addition to the typical mammalian astrocytes, in the primate cortex interlaminar astrocytes are located in the superficial layer and project long processes traversing multiple layers of the cerebral cortex. Previously, we described a human stem cell based chimeric mouse model where interlaminar astrocytes develop. Here, we utilized this model to study the calcium signaling properties of interlaminar astrocytes. To determine how interlaminar astrocytes could contribute to neurodevelopmental disorders, we generated a chimeric mouse model for Fragile X syndrome. We report that FXS interlaminar astrocytes exhibit hyperexcitable calcium signaling and cause an increase in dendritic spine dynamics.
Collapse
Affiliation(s)
- Alexandria Anding
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center
| | - Baiyan Ren
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center
| | - Ragunathan Padmashri
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maria Burkovetskaya
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Dunaevsky
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Shen W, Chen F, Tang Y, Zhao Y, Zhu L, Xiang L, Ning L, Zhou W, Chen Y, Wang L, Li J, Huang H, Zeng LH. mGluR5-mediated astrocytes hyperactivity in the anterior cingulate cortex contributes to neuropathic pain in male mice. Commun Biol 2025; 8:266. [PMID: 39979531 PMCID: PMC11842833 DOI: 10.1038/s42003-025-07733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
Astrocytes regulate synaptic transmission in healthy and pathological conditions, but their involvement in modulating synaptic transmission in chronic pain is unknown. Our study demonstrates that astrocytes in the anterior cingulate cortex (ACC) exhibit abnormal calcium signals and induce the release of glutamate in male mice. This leads to an elevation in extracellular glutamate concentration, activation of presynaptic kainate receptors, and an increase in synaptic transmission following neuropathic pain. We discovered that the abnormal calcium signals are caused by the reappearance of metabotropic glutamate receptor type 5 (mGluR5) in astrocytes in male mice. Importantly, when we specifically inhibit the Gq pathway using iβARK and reduce the expression of mGluR5 in astrocytes through shRNA, we observe a restoration of astrocytic calcium activity, normalization of synaptic transmission and extracellular concentration of glutamate, and improvement in mechanical allodynia in male mice. Furthermore, the activation of astrocytes through chemogenetics results in an overabundance of excitatory synaptic transmission, exacerbating mechanical allodynia in mice with neuropathic pain, but not in sham-operated male mice. In summary, our findings suggest that the abnormal calcium signaling in astrocytes, mediated by mGluR5, plays a crucial role in enhancing synaptic transmission in ACC and contributing to mechanical allodynia in male mice.
Collapse
Affiliation(s)
- Weida Shen
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| | - Fujian Chen
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yejiao Tang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University, Hangzhou, China
| | - Yulu Zhao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Linjing Zhu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Liyang Xiang
- School of Medicine, Nankai University, Tianjin, China
| | - Li Ning
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen Zhou
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yiran Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Liangxue Wang
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Li
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Hui Huang
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China
| | - Ling-Hui Zeng
- Anji People's Hospital, Affiliated Anji Hospital, School of Medicine, Hangzhou City University, Hangzhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
10
|
Zonca L, Bellier FC, Milior G, Aymard P, Visser J, Rancillac A, Rouach N, Holcman D. Unveiling the functional connectivity of astrocytic networks with AstroNet, a graph reconstruction algorithm coupled to image processing. Commun Biol 2025; 8:114. [PMID: 39856404 PMCID: PMC11759710 DOI: 10.1038/s42003-024-07390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Astrocytes form extensive networks with diverse calcium activity, yet the organization and connectivity of these networks across brain regions remain largely unknown. To address this, we developed AstroNet, a data-driven algorithm that uses two-photon calcium imaging to map temporal correlations in astrocyte activation. By organizing individual astrocyte activation events chronologically, our method reconstructs functional networks and extracts local astrocyte correlations. We create a graph of the astrocyte network by tallying direct co-activations between pairs of cells along these activation pathways. Applied to the CA1 hippocampus and motor cortex, AstroNet reveals notable differences: astrocytes in the hippocampus display stronger connectivity, while cortical astrocytes form sparser networks. In both regions, smaller, tightly connected sub-networks are embedded within a larger, loosely connected structure. This method not only identifies astrocyte activation paths and connectivity but also reveals distinct, region-specific network patterns, providing new insights into the functional organization of astrocytic networks in the brain.
Collapse
Affiliation(s)
- L Zonca
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France
- Center for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| | - F C Bellier
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - G Milior
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - P Aymard
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France
| | - J Visser
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - A Rancillac
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - N Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNR UMR 7241, INSERM U1050, PSL, Paris, France
| | - D Holcman
- Applied Mathematics and Computational Biology, IBENS, Ecole Normale Supérieure, PSL University, Paris, France.
| |
Collapse
|
11
|
Tetzlaff SK, Reyhan E, Layer N, Bengtson CP, Heuer A, Schroers J, Faymonville AJ, Langeroudi AP, Drewa N, Keifert E, Wagner J, Soyka SJ, Schubert MC, Sivapalan N, Pramatarov RL, Buchert V, Wageringel T, Grabis E, Wißmann N, Alhalabi OT, Botz M, Bojcevski J, Campos J, Boztepe B, Scheck JG, Conic SH, Puschhof MC, Villa G, Drexler R, Zghaibeh Y, Hausmann F, Hänzelmann S, Karreman MA, Kurz FT, Schröter M, Thier M, Suwala AK, Forsberg-Nilsson K, Acuna C, Saez-Rodriguez J, Abdollahi A, Sahm F, Breckwoldt MO, Suchorska B, Ricklefs FL, Heiland DH, Venkataramani V. Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing. Cell 2025; 188:390-411.e36. [PMID: 39644898 DOI: 10.1016/j.cell.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/16/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Glioblastomas are invasive brain tumors with high therapeutic resistance. Neuron-to-glioma synapses have been shown to promote glioblastoma progression. However, a characterization of tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted retrograde tracing using rabies viruses to investigate and manipulate neuron-tumor networks. Glioblastoma rapidly integrated into neural circuits across the brain, engaging in widespread functional communication, with cholinergic neurons driving glioblastoma invasion. We uncovered patient-specific and tumor-cell-state-dependent differences in synaptogenic gene expression associated with neuron-tumor connectivity and subsequent invasiveness. Importantly, radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn, simultaneous neuronal activity inhibition and radiotherapy showed increased therapeutic effects, indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly, rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression, offering a viral strategy to tackle glioblastoma. Together, this study provides a framework to comprehensively characterize neuron-tumor networks and target glioblastoma.
Collapse
Affiliation(s)
- Svenja K Tetzlaff
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ekin Reyhan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nikolas Layer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - C Peter Bengtson
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, Heidelberg, Germany
| | - Alina Heuer
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julian Schroers
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anton J Faymonville
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Nina Drewa
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elijah Keifert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Julia Wagner
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Stella J Soyka
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Marc C Schubert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Nirosan Sivapalan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Rangel L Pramatarov
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Verena Buchert
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Tim Wageringel
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Elena Grabis
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
| | - Niklas Wißmann
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Obada T Alhalabi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Botz
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jovana Bojcevski
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joaquín Campos
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas G Scheck
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Sascha Henry Conic
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Maria C Puschhof
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Giulia Villa
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yahya Zghaibeh
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Hausmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Hänzelmann
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthia A Karreman
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix T Kurz
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Neuroradiology, University Hospital Geneva, Geneva, Switzerland
| | - Manuel Schröter
- ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland
| | - Marc Thier
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Abigail K Suwala
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Karin Forsberg-Nilsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75185 Uppsala, Sweden
| | - Claudio Acuna
- Chica and Heinz Schaller Foundation, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University, and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael O Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bogdana Suchorska
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Henrik Heiland
- Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany; Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Gazzo DV, Zartman JJ. Calcium Imaging in Drosophila. Methods Mol Biol 2025; 2861:257-271. [PMID: 39395111 DOI: 10.1007/978-1-0716-4164-4_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Ex vivo calcium imaging in Drosophila opens an expansive amount of research avenues for the study of live signal propagation through complex tissue. Here, we describe how to isolate Drosophila organs of interest, like the developing wing imaginal disc and larval brain, culture them for extended periods, up to 10 h, and how to image the calcium dynamics occurring within them using genetically encoded biosensors like GCaMP. This protocol enables the study of complex calcium signaling dynamics, which is conserved throughout biology in such processes as cell differentiation and proliferation, immune reactions, wound healing, and cell-to-cell and organ-to-organ communication, among others. These methods also allow pharmacological compounds to be tested to observe effects on calcium dynamics with the applications of target identification and therapeutic development.
Collapse
Affiliation(s)
- David V Gazzo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
13
|
Dzyubenko E, Hermann DM. Neuroglia and extracellular matrix molecules. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:197-211. [PMID: 40122625 DOI: 10.1016/b978-0-443-19104-6.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
This chapter provides a comprehensive overview of the roles of astrocytes, microglia, and the extracellular matrix (ECM) in regulating neuroplasticity and maintaining brain homeostasis. Astrocytes provide essential metabolic support to neurons, regulate synapse development, support neuroplasticity mechanisms, and modulate neurotransmission. Microglia, the resident immune cells of the brain, play a critical role in neuroinflammatory responses and homeostatic brain regulation by modulating synapse formation and pruning. The extracellular space (ECS) mediates intercellular interactions, provides a highly regulated environment for intercellular communication, and is filled with ECM molecules. Proteoglycans and polysaccharides of the ECM play a vital role not only in brain development but also in brain function throughout life. In the injured brain, neuroplasticity and regeneration can be bidirectionally regulated as a result of the interplay between ECM, astrocytes, and microglia. The modulation of synaptic strength, structural remodeling, and modification of intrinsic neuronal properties are among the central mechanisms that contribute to neuronal plasticity in health and disease. We believe that the understanding of ECM-glia interactions and their role in neuroplasticity regulation is key to the development of novel therapeutic strategies in neurologic disorders.
Collapse
Affiliation(s)
- Egor Dzyubenko
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dirk M Hermann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
14
|
Depaauw-Holt L, Peyrard S, Bosson A, Murphy-Royal C. Functional Evaluation of Astrocytic Responses to Stress. Methods Mol Biol 2025; 2896:243-248. [PMID: 40111611 DOI: 10.1007/978-1-0716-4366-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In order to fully understand the contribution of astrocytes to stress-related psychiatric disorders, functional assays are required. There are numerous approaches that can be used to study astrocyte function including live-cell imaging of surface protein trafficking, patch-clamp recording of glutamate transporter currents, or calcium imaging using inorganic dyes and genetically encoded calcium indicators. Here, we will outline a method to record and analyze calcium activity in astrocytes using virus-mediated expression of the genetically encoded calcium indicator GCaMP. This approach gives insight into specific astrocyte changes in response to stress which could include hyper- or hypo-activity in these cells.
Collapse
Affiliation(s)
- Lewis Depaauw-Holt
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Sarah Peyrard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Anthony Bosson
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ciaran Murphy-Royal
- Département de Neurosciences, Université de Montréal, Montréal, QC, Canada.
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
15
|
Speggiorin M, Chiavegato A, Zonta M, Gómez-Gonzalo M. Characterization of the Astrocyte Calcium Response to Norepinephrine in the Ventral Tegmental Area. Cells 2024; 14:24. [PMID: 39791726 PMCID: PMC11720743 DOI: 10.3390/cells14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Astrocytes from different brain regions respond with Ca2+ elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes. We found that VTA astrocytes from both female and male young adult mice showed a strong Ca2+ response to NE at both soma and processes. Our results revealed that Gq-coupled α1 adrenergic receptors, which elicit the production of IP3, are the main mediators of the astrocyte response. In mice lacking the IP3 receptor type-2 (IP3R2-/- mice), we found that the astrocyte response to NE, even if reduced, is still present. We also found that in IP3R2-/- astrocytes, the residual Ca2+ elevations elicited by NE depend on the release of Ca2+ from the endoplasmic reticulum, through IP3Rs different from IP3R2. In conclusion, our results reveal VTA astrocytes as novel targets of the noradrenergic signaling, opening to new interpretations of the cellular and molecular mechanisms that mediate the NE effects in the VTA.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/drug effects
- Ventral Tegmental Area/metabolism
- Ventral Tegmental Area/drug effects
- Norepinephrine/pharmacology
- Norepinephrine/metabolism
- Calcium/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice
- Male
- Female
- Calcium Signaling/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
Collapse
Affiliation(s)
- Michele Speggiorin
- Department of Biomedical Sciences, Università degli Studi di Padova, 35131 Padova, Italy; (M.S.); (A.C.)
| | - Angela Chiavegato
- Department of Biomedical Sciences, Università degli Studi di Padova, 35131 Padova, Italy; (M.S.); (A.C.)
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy;
| |
Collapse
|
16
|
Coutinho-Budd J, Freeman MR, Ackerman S. Glial Regulation of Circuit Wiring, Firing, and Expiring in the Drosophila Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041347. [PMID: 38565270 PMCID: PMC11513168 DOI: 10.1101/cshperspect.a041347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Molecular genetic approaches in small model organisms like Drosophila have helped to elucidate fundamental principles of neuronal cell biology. Much less is understood about glial cells, although interest in using invertebrate preparations to define their in vivo functions has increased significantly in recent years. This review focuses on our current understanding of the three major neuron-associated glial cell types found in the Drosophila central nervous system (CNS)-astrocytes, cortex glia, and ensheathing glia. Together, these cells act like mammalian astrocytes and microglia; they associate closely with neurons including surrounding neuronal cell bodies and proximal neurites, regulate synapses, and engulf neuronal debris. Exciting recent work has shown critical roles for these CNS glial cells in neural circuit formation, function, plasticity, and pathology. As we gain a more firm molecular and cellular understanding of how Drosophila CNS glial cells interact with neurons, it is clear that they share significant molecular and functional attributes with mammalian glia and will serve as an excellent platform for mechanistic studies of glial function.
Collapse
Affiliation(s)
- Jaeda Coutinho-Budd
- Department of Neuroscience, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, Virginia 22903, USA
| | - Marc R Freeman
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Sarah Ackerman
- Department of Pathology and Immunology, Brain Immunology and Glia Center, and Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| |
Collapse
|
17
|
Zhou Z, Bai Y, Gu X, Ren H, Xi W, Wang Y, Bian L, Liu X, Shen L, Xiang X, Huang W, Luo Z, Han B, Yao H. Membrane Associated RNA-Containing Vesicles Regulate Cortical Astrocytic Microdomain Calcium Transients in Awake Ischemic Stroke Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404391. [PMID: 39444078 PMCID: PMC11633488 DOI: 10.1002/advs.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/01/2024] [Indexed: 10/25/2024]
Abstract
Astrocytic processes minutely regulate neuronal activity via tripartite synaptic structures. The precision-tuning of the function of astrocytic processes is garnering increasing attention because of its significance in promoting brain repair following ischemic stroke. Microdomain calcium (Ca2+) transients in astrocytic processes are pivotal for the functional regulation of these processes. However, the understanding of the alterations and regulatory mechanism of microdomain Ca2+ transients during stroke remains limited. In the present study, a fast high-resolution, miniaturized two-photon microscopy is used to show that the levels of astrocytic microdomain Ca2+ transients are significantly reduced in the peri-infarct area of awake ischemic stroke mice. This finding correlated with the behavioral deficits shown by these mice under freely-moving conditions. Mitochondrial Ca2+ activity is an important factor driving the microdomain Ca2+ transients. DEAD Box 1 (DDX1) bound to circSCMH1 (a circular RNA involved in vascular post-stroke repair) facilitates the formation of membrane-associated RNA-containing vesicles (MARVs) and enhances the activity of astrocytic microdomain Ca2+ transients, thereby promoting behavioral recovery. These results show that targeting astrocytic microdomain Ca2+ transients is a potential therapeutic approach in stroke intervention.
Collapse
Affiliation(s)
- Zhongqiu Zhou
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ying Bai
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xiaochun Gu
- Jiangsu Key Laboratory of Molecular and Functional ImagingDepartment of RadiologyZhongda HospitalMedical School of Southeast UniversityNanjing210009China
| | - Hui Ren
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Wen Xi
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Yu Wang
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Liang Bian
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xue Liu
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Ling Shen
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Wenhui Huang
- Department of Molecular PhysiologyCenter for Integrative Physiology and Molecular MedicineUniversity of Saarland66421HomburgGermany
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human DiseaseSchool of Life Science and TechnologySoutheast UniversityNanjing210096China
| | - Bing Han
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
| | - Honghong Yao
- Department of PharmacologyJiangsu Provincial Key Laboratory of Critical Care MedicineSchool of MedicineSoutheast UniversityNanjing210009China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Institute of Life SciencesKey Laboratory of Developmental Genes and Human DiseaseSoutheast UniversityNanjing210096China
| |
Collapse
|
18
|
Li H, Zhao Y, Dai R, Geng P, Weng D, Wu W, Yu F, Lin R, Wu Z, Li Y, Luo M. Astrocytes release ATP/ADP and glutamate in flashes via vesicular exocytosis. Mol Psychiatry 2024:10.1038/s41380-024-02851-8. [PMID: 39578520 DOI: 10.1038/s41380-024-02851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Astrocytes regulate brain functions through gliotransmitters like ATP/ADP and glutamate, but their release patterns and mechanisms remain controversial. Here, we visualized ATP/ADP and glutamate response following astrocyte activation and investigated their mechanisms in vivo. Employing cOpn5-mediated optogenetic stimulation, genetically encoded fluorescent sensors, and two-photon imaging, we observed ATP/ADP released as temporally prolonged and spatially extended flashes that later converted to adenosine. This release occurs via Ca2+ and VNUT-dependent vesicular exocytosis. Additionally, astrocytes also release glutamate in flashes through TeNT-sensitive exocytosis, independent of ATP/ADP release. ATP/ADP released by astrocytes triggers further ATP/ADP release from microglia through P2Y12- and VNUT-dependent mechanisms. VNUT in astrocytes and microglia also contributes to ATP/ADP release under LPS-induced brain inflammation. These findings establish Ca2+-dependent vesicular exocytosis as a key mode of action, reveal intricate astrocyte-microglia interactions, and suggest a role for gliotransmission in brain inflammation. Furthermore, the methodologies may provide valuable tools for deciphering glial physiology and pathophysiology.
Collapse
Affiliation(s)
- Heng Li
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Yuqing Zhao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Ruicheng Dai
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Peiyao Geng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Danwei Weng
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
| | - Wenting Wu
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Fengting Yu
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China
| | - Rui Lin
- National Institute of Biological Sciences (NIBS), Beijing, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research (TIMBR), 102206, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, 100871, Beijing, China
- New Cornerstone Science Laboratory, 518054, Shenzhen, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing, 102206, Beijing, China.
- New Cornerstone Science Laboratory, 518054, Shenzhen, China.
- Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 100005, Beijing, China.
- Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, 102206, Beijing, China.
| |
Collapse
|
19
|
Bai Y, Zhou Z, Han B, Xiang X, Huang W, Yao H. Revisiting astrocytic calcium signaling in the brain. FUNDAMENTAL RESEARCH 2024; 4:1365-1374. [PMID: 39734522 PMCID: PMC11670731 DOI: 10.1016/j.fmre.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/31/2024] Open
Abstract
Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca2+) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca2+ have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete. In recent years, with the advancement of Ca2+ labeling, imaging, and analysis techniques, Ca2+ signals have been found to exhibit high specificity at different spatial locations within the intricate structure of astrocytes. This has ushered the study of Ca2+ signaling in astrocytes into a new phase, leading to several groundbreaking research achievements. Despite this, the comprehensive understanding of astrocytic Ca2+ signaling and their implications remains challenging area for future research.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongqiu Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenhui Huang
- Molecular Physiology, CIPMM, University of Saarland, Homburg 66421, Germany
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjig Medical University, Nanjing 211166, China
| |
Collapse
|
20
|
Bhattarai A, Meyer J, Petersilie L, Shah SI, Neu LA, Rose CR, Ullah G. Deep-Learning-Based Segmentation of Cells and Analysis (DL-SCAN). Biomolecules 2024; 14:1348. [PMID: 39595525 PMCID: PMC11592042 DOI: 10.3390/biom14111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
With the recent surge in the development of highly selective probes, fluorescence microscopy has become one of the most widely used approaches to studying cellular properties and signaling in living cells and tissues. Traditionally, microscopy image analysis heavily relies on manufacturer-supplied software, which often demands extensive training and lacks automation capabilities for handling diverse datasets. A critical challenge arises if the fluorophores employed exhibit low brightness and a low signal-to-noise ratio (SNR). Consequently, manual intervention may become a necessity, introducing variability in the analysis outcomes even for identical samples when analyzed by different users. This leads to the incorporation of blinded analysis, which ensures that the outcome is free from user bias to a certain extent but is extremely time-consuming. To overcome these issues, we developed a tool called DL-SCAN that automatically segments and analyzes fluorophore-stained regions of interest such as cell bodies in fluorescence microscopy images using deep learning. We demonstrate the program's ability to automate cell identification and study cellular ion dynamics using synthetic image stacks with varying SNR. This is followed by its application to experimental Na+ and Ca2+ imaging data from neurons and astrocytes in mouse brain tissue slices exposed to transient chemical ischemia. The results from DL-SCAN are consistent, reproducible, and free from user bias, allowing efficient and rapid analysis of experimental data in an objective manner. The open-source nature of the tool also provides room for modification and extension to analyze other forms of microscopy images specific to the dynamics of different ions in other cell types.
Collapse
Affiliation(s)
- Alok Bhattarai
- Department of Physics, University of South Florida, Tampa, FL 33647, USA; (A.B.); (S.I.S.)
| | - Jan Meyer
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.M.); (L.P.); (L.A.N.); (C.R.R.)
| | - Laura Petersilie
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.M.); (L.P.); (L.A.N.); (C.R.R.)
| | - Syed I. Shah
- Department of Physics, University of South Florida, Tampa, FL 33647, USA; (A.B.); (S.I.S.)
| | - Louis A. Neu
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.M.); (L.P.); (L.A.N.); (C.R.R.)
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-University, 40225 Düsseldorf, Germany; (J.M.); (L.P.); (L.A.N.); (C.R.R.)
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33647, USA; (A.B.); (S.I.S.)
| |
Collapse
|
21
|
Ahrens MB, Khakh BS, Poskanzer KE. Astrocyte Calcium Signaling. Cold Spring Harb Perspect Biol 2024; 16:a041353. [PMID: 38768971 PMCID: PMC11444304 DOI: 10.1101/cshperspect.a041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca2+ signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca2+ signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca2+ signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca2+ signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
22
|
Wu Y, Dai Y, Lefton KB, Holy TE, Papouin T. STARDUST: A pipeline for the unbiased analysis of astrocyte regional calcium dynamics. STAR Protoc 2024; 5:103305. [PMID: 39276355 PMCID: PMC11417172 DOI: 10.1016/j.xpro.2024.103305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024] Open
Abstract
Calcium imaging has become a popular way to probe astrocyte activity, but few techniques holistically capture discrete calcium signals occurring across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the spatio-temporal analysis of regional dynamics and unbiased sorting of transients from fluorescence recordings of astrocytes. We describe steps for installing software, detecting active pixel patches, obtaining region of activity (ROA) maps, and extracting time series from ROAs. We then detail procedures for extracting signal features using custom-made code.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanchao Dai
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katheryn B Lefton
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy E Holy
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas Papouin
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Péter M, Héja L. FluoAnalysis: An Open-Source MATLAB Toolbox for Analysis of Calcium Imaging Measurements of Oscillatory Astrocytic and Neuronal Networks. Brain Sci 2024; 14:830. [PMID: 39199521 PMCID: PMC11353153 DOI: 10.3390/brainsci14080830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Calcium imaging, especially two-photon imaging, has become essential in neuroscience for studying neuronal and astrocytic activity under in vivo and in vitro conditions. Current advances in the development of calcium sensors as well as imaging hardware enable high-frequency measurements of calcium signals in hundreds of cells simultaneously. The analysis of these large datasets requires special tools and usually a certain level of programming experience. Despite advancements in calcium imaging analysis software development, significant gaps remain, particularly for data acquired at a high sampling rate that would allow for the spectral analysis of calcium signals. The FluoAnalysis MATLAB toolbox addresses these gaps by offering a comprehensive solution for analyzing simultaneously measured calcium imaging and electrophysiological data. It features both GUI-based and command-line approaches, emphasizing frequency domain analysis to reveal network-level oscillatory signals linked to single-cell activity. In addition, the toolbox puts special emphasis on differentiating between astrocytes and neurons, revealing the interactions between the network activity of the two major cell types of the brain. It facilitates a streamlined workflow for data loading, ROI identification, cell classification, fluorescence intensity calculation, spectral analysis, and report generation, supporting both manual and automated high-throughput analysis. This versatile platform enables the comprehensive analysis of large imaging datasets. In conclusion, the FluoAnalysis MATLAB toolbox provides a robust and versatile platform for the integrated analysis of calcium imaging and electrophysiological data, supporting diverse neuroscience research applications.
Collapse
Affiliation(s)
- Márton Péter
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - László Héja
- Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117 Budapest, Hungary;
| |
Collapse
|
24
|
Ayala DA, Matarazzo A, Seaberg BL, Patel M, Tijerina E, Matthews C, Bizi G, Brown A, Ta A, Rimer M, Srinivasan R. Heterogeneous brain region-specific responses to astrocytic mitochondrial DNA damage in mice. Sci Rep 2024; 14:18586. [PMID: 39127716 PMCID: PMC11316820 DOI: 10.1038/s41598-024-69499-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes display context-specific diversity in their functions and respond to noxious stimuli between brain regions. Astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on ATP generation and Ca2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca2+ signaling in astrocytes, the extent of this regulation in astrocytes from different brain regions remains unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for astrocyte function, however, possible diverse responses to this noxious stimulus between brain areas were not reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI expressing the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two brain regions, the dorsolateral striatum and dentate gyrus, and we show that Mito-PstI induces astrocytic mtDNA loss in vivo, but with remarkable brain-region-dependent differences on mitochondrial dynamics, Ca2+ fluxes, and astrocytic and microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca2+ signaling in a brain-region-selective manner.
Collapse
Affiliation(s)
- Daniela A Ayala
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
- Graduate Program in Medical Sciences, Texas A&M University, Bryan, TX, 77843, USA
| | - Anthony Matarazzo
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
- Graduate Program in Genetics and Genomics, Texas A&M University, Bryan, TX, 77843, USA
| | - Bonnie L Seaberg
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Misha Patel
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Eliana Tijerina
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Camryn Matthews
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Gabriel Bizi
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Ashton Brown
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Alan Ta
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA
| | - Mendell Rimer
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA.
- Graduate Program in Genetics and Genomics, Texas A&M University, Bryan, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, 77843, USA.
| | - Rahul Srinivasan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University, Bryan, TX, 77843, USA.
- Graduate Program in Medical Sciences, Texas A&M University, Bryan, TX, 77843, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, Bryan, TX, 77843, USA.
| |
Collapse
|
25
|
Chen Y, Luan P, Liu J, Wei Y, Wang C, Wu R, Wu Z, Jing M. Spatiotemporally selective astrocytic ATP dynamics encode injury information sensed by microglia following brain injury in mice. Nat Neurosci 2024; 27:1522-1533. [PMID: 38862791 DOI: 10.1038/s41593-024-01680-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024]
Abstract
Injuries to the brain result in tunable cell responses paired with stimulus properties, suggesting the existence of intrinsic processes that encode and transmit injury information; however, the molecular mechanism of injury information encoding is unclear. Here, using ATP fluorescent indicators, we identify injury-evoked spatiotemporally selective ATP dynamics, Inflares, in adult mice of both sexes. Inflares are actively released from astrocytes and act as the internal representations of injury. Inflares encode injury intensity and position at their population level through frequency changes and are further decoded by microglia, driving changes in their activation state. Mismatches between Inflares and injury severity lead to microglia dysfunction and worsening of injury outcome. Blocking Inflares in ischemic stroke in mice reduces secondary damage and improves recovery of function. Our results suggest that astrocytic ATP dynamics encode injury information and are sensed by microglia.
Collapse
Affiliation(s)
- Yue Chen
- Chinese Institute for Brain Research, Beijing, China
| | - Pengwei Luan
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Liu
- Chinese Institute for Brain Research, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yelan Wei
- Chinese Institute for Brain Research, Beijing, China
- Department of College of Physical Education and Sport, Beijing Normal University, Beijing, China
| | - Chenyu Wang
- Chinese Institute for Brain Research, Beijing, China
- Capital Medical University, Basic Medical Sciences, Beijing, China
| | - Rui Wu
- Chinese Institute for Brain Research, Beijing, China
- China Agricultural University, Beijing, China
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
26
|
Li D, Pan Q, Xiao Y, Hu K. Advances in the study of phencyclidine-induced schizophrenia-like animal models and the underlying neural mechanisms. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:65. [PMID: 39039065 PMCID: PMC11263595 DOI: 10.1038/s41537-024-00485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
Schizophrenia (SZ) is a chronic, severe mental disorder with heterogeneous clinical manifestations and unknown etiology. Research on SZ has long been limited by the low reliability of and ambiguous pathogenesis in schizophrenia animal models. Phencyclidine (PCP), a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist, rapidly induces both positive and negative symptoms of SZ as well as stable SZ-related cognitive impairment in rodents. However, the neural mechanism underlying PCP-induced SZ-like symptoms is not fully understood. Nondopaminergic pathophysiology, particularly excessive glutamate release induced by NMDAR hypofunction in the prefrontal cortex (PFC), may play a key role in the development of PCP-induced SZ-like symptoms. In this review, we summarize studies on the behavioral and metabolic effects of PCP and the cellular and circuitary targets of PCP in the PFC and hippocampus (HIP). PCP is thought to target the ventral HIP-PFC pathway more strongly than the PFC-VTA pathway and thalamocortical pathway. Systemic PCP administration might preferentially inhibit gamma-aminobutyric acid (GABA) neurons in the vHIP and in turn lead to hippocampal pyramidal cell disinhibition. Excitatory inputs from the HIP may trigger sustained, excessive and pathological PFC pyramidal neuron activation to mediate various SZ-like symptoms. In addition, astrocyte and microglial activation and oxidative stress in the cerebral cortex or hippocampus have been observed in PCP-induced models of SZ. These findings perfect the hypoglutamatergic hypothesis of schizophrenia. However, whether these effects direct the consequences of PCP administration and how about the relationships between these changes induced by PCP remain further elucidation through rigorous, causal and direct experimental evidence.
Collapse
Affiliation(s)
- Dabing Li
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China.
| | - Qiangwen Pan
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Yewei Xiao
- Department of Physiology, School of Basic Medical Sciences, Southwestern Medical University, LuZhou, 646000, China
| | - Kehui Hu
- Department of rehabilitation Medicine, SuiNing Central Hospital, The Affiliated Hospital of Chongqing Medical University, SuiNing, 629000, China.
| |
Collapse
|
27
|
Baldwin KT, Murai KK, Khakh BS. Astrocyte morphology. Trends Cell Biol 2024; 34:547-565. [PMID: 38180380 PMCID: PMC11590062 DOI: 10.1016/j.tcb.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system (CNS). A cardinal feature of astrocytes is their complex and visually enchanting morphology, referred to as bushy, spongy, and star-like. A central precept of this review is that such complex morphological shapes evolved to allow astrocytes to contact and signal with diverse cells at a range of distances in order to sample, regulate, and contribute to the extracellular milieu, and thus participate widely in cell-cell signaling during physiology and disease. The recent use of improved imaging methods and cell-specific molecular evaluations has revealed new information on the structural organization and molecular underpinnings of astrocyte morphology, the mechanisms of astrocyte morphogenesis, and the contributions to disease states of reduced morphology. These insights have reignited interest in astrocyte morphological complexity as a cornerstone of fundamental glial biology and as a critical substrate for multicellular spatial and physiological interactions in the CNS.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA.
| |
Collapse
|
28
|
Wu Y, Dai Y, Lefton KB, Holy TE, Papouin T. STARDUST: a pipeline for the unbiased analysis of astrocyte regional calcium dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588196. [PMID: 38645020 PMCID: PMC11030233 DOI: 10.1101/2024.04.04.588196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Calcium imaging has become a popular way to probe astrocyte activity, but few analysis methods holistically capture discrete calcium signals that occur across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the Spatio-Temporal Analysis of Regional Dynamics & Unbiased Sorting of Transients from fluorescence recordings of astrocytes, and provide step-by-step guidelines. STARDUST yields fluorescence time-series from data-defined regions of activity and performs systematic signal detection and feature extraction, enabling the in-depth and unbiased study of astrocyte calcium signals.
Collapse
Affiliation(s)
- Yifan Wu
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
- Technical contact
| | - Yanchao Dai
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
| | - Katheryn B. Lefton
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
| | - Timothy E. Holy
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
| | - Thomas Papouin
- Washington University in St. Louis, Department of Neuroscience, St. Louis, MO 63110 USA
- Lead contact
| |
Collapse
|
29
|
Mi X, Chen ABY, Duarte D, Carey E, Taylor CR, Braaker PN, Bright M, Almeida RG, Lim JX, Ruetten VMS, Zheng W, Wang M, Reitman ME, Wang Y, Poskanzer KE, Lyons DA, Nimmerjahn A, Ahrens MB, Yu G. Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592259. [PMID: 38766026 PMCID: PMC11100599 DOI: 10.1101/2024.05.02.592259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Optical recording of intricate molecular dynamics is becoming an indispensable technique for biological studies, accelerated by the development of new or improved biosensors and microscopy technology. This creates major computational challenges to extract and quantify biologically meaningful spatiotemporal patterns embedded within complex and rich data sources, many of which cannot be captured with existing methods. Here, we introduce Activity Quantification and Analysis (AQuA2), a fast, accurate, and versatile data analysis platform built upon advanced machine learning techniques. It decomposes complex live imaging-based datasets into elementary signaling events, allowing accurate and unbiased quantification of molecular activities and identification of consensus functional units. We demonstrate applications across a wide range of biosensors, cell types, organs, animal models, and imaging modalities. As exemplar findings, we show how AQuA2 identified drug-dependent interactions between neurons and astroglia, and distinct sensorimotor signal propagation patterns in the mouse spinal cord.
Collapse
Affiliation(s)
- Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
- These authors contributed equally
| | - Alex Bo-Yuan Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Graduate Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
- These authors contributed equally
| | - Daniela Duarte
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Erin Carey
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Charlotte R. Taylor
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Philipp N. Braaker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Mark Bright
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Jing-Xuan Lim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Virginia M. S. Ruetten
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
- Gatsby Computational Neuroscience Unit, UCL, London W1T 4JG, USA
| | - Wei Zheng
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Mengfan Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Michael E. Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Yizhi Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Kira E. Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4SB, UK
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing 100084, China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
- Lead contact
| |
Collapse
|
30
|
Ayala DA, Matarazzo A, Seaberg BL, Patel M, Tijerina E, Matthews C, Bizi G, Brown A, Ta A, Rimer M, Srinivasan R. Heterogeneous brain region-specific responses to astrocytic mitochondrial DNA damage in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596517. [PMID: 38853966 PMCID: PMC11160752 DOI: 10.1101/2024.05.29.596517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Astrocytes use Ca 2+ signals to regulate multiple aspects of normal and pathological brain function. Astrocytes display context-specific diversity in their functions, and in their response to noxious stimuli between brain regions. Indeed, astrocytic mitochondria have emerged as key players in governing astrocytic functional heterogeneity, given their ability to dynamically adapt their morphology to regional demands on their ATP generation and Ca 2+ buffering functions. Although there is reciprocal regulation between mitochondrial dynamics and mitochondrial Ca 2+ signaling in astrocytes, the extent of this regulation into the rich diversity of astrocytes in different brain regions remains largely unexplored. Brain-wide, experimentally induced mitochondrial DNA (mtDNA) loss in astrocytes showed that mtDNA integrity is critical for proper astrocyte function, however, few insights into possible diverse responses to this noxious stimulus from astrocytes in different brain areas were reported in these experiments. To selectively damage mtDNA in astrocytes in a brain-region-specific manner, we developed a novel adeno-associated virus (AAV)-based tool, Mito-PstI, which expresses the restriction enzyme PstI, specifically in astrocytic mitochondria. Here, we applied Mito-PstI to two distinct brain regions, the dorsolateral striatum, and the hippocampal dentate gyrus, and we show that Mito-PstI can induce astrocytic mtDNA loss in vivo , but with remarkable brain-region-dependent differences on mitochondrial dynamics, spontaneous Ca 2+ fluxes and astrocytic as well as microglial reactivity. Thus, AAV-Mito-PstI is a novel tool to explore the relationship between astrocytic mitochondrial network dynamics and astrocytic mitochondrial Ca 2+ signaling in a brain-region-selective manner.
Collapse
|
31
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Rupprecht P, Duss SN, Becker D, Lewis CM, Bohacek J, Helmchen F. Centripetal integration of past events in hippocampal astrocytes regulated by locus coeruleus. Nat Neurosci 2024; 27:927-939. [PMID: 38570661 PMCID: PMC11089000 DOI: 10.1038/s41593-024-01612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/26/2024] [Indexed: 04/05/2024]
Abstract
An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events.
Collapse
Affiliation(s)
- Peter Rupprecht
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland.
| | - Sian N Duss
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Denise Becker
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland
| | - Christopher M Lewis
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zürich, Switzerland.
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
33
|
Cahill MK, Collard M, Tse V, Reitman ME, Etchenique R, Kirst C, Poskanzer KE. Network-level encoding of local neurotransmitters in cortical astrocytes. Nature 2024; 629:146-153. [PMID: 38632406 PMCID: PMC11062919 DOI: 10.1038/s41586-024-07311-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
Astrocytes, the most abundant non-neuronal cell type in the mammalian brain, are crucial circuit components that respond to and modulate neuronal activity through calcium (Ca2+) signalling1-7. Astrocyte Ca2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales-from fast, subcellular activity3,4 to slow, synchronized activity across connected astrocyte networks8-10-to influence many processes5,7,11. However, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon astrocyte imaging while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca2+ activity-propagative activity-differentiates astrocyte network responses to these two main neurotransmitters, and may influence responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over a minutes-long time course, contributing to accumulating evidence that substantial astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales12-14. These findings will enable future studies to investigate the link between specific astrocyte Ca2+ activity and specific functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.
Collapse
Affiliation(s)
- Michelle K Cahill
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Max Collard
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Vincent Tse
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
| | - Michael E Reitman
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Christoph Kirst
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, San Francisco, CA, USA.
| |
Collapse
|
34
|
Kellner V, Parker P, Mi X, Yu G, Saher G, Bergles DE. Conservation of neuron-astrocyte coordinated activity among sensory processing centers of the developing brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589519. [PMID: 38659917 PMCID: PMC11042386 DOI: 10.1101/2024.04.15.589519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Afferent neurons in developing sensory organs exhibit a prolonged period of burst firing prior to the onset of sensory experience. This intrinsically generated activity propagates from the periphery through central processing centers to promote the survival and physiological maturation of neurons and refine their synaptic connectivity. Recent studies in the auditory system indicate that these bursts of action potentials also trigger metabotropic glutamate receptor-mediated calcium increases within astrocytes that are spatially and temporally correlated with neuronal events; however, it is not known if this phenomenon occurs in other sensory modalities. Here we show using in vivo simultaneous imaging of neuronal and astrocyte calcium activity in awake mouse pups that waves of retinal ganglion cell activity induce spatially and temporally correlated waves of astrocyte activity in the superior colliculus that depend on metabotropic glutamate receptors mGluR5 and mGluR3. Astrocyte calcium transients reliably occurred with each neuronal wave, but peaked more than one second after neuronal events. Despite differences in the temporal features of spontaneous activity in auditory and visual processing regions, individual astrocytes exhibited similar overall calcium activity patterns, providing a conserved mechanism to synchronize neuronal and astrocyte maturation within discrete sensory domains.
Collapse
|
35
|
Deng F, Wan J, Li G, Dong H, Xia X, Wang Y, Li X, Zhuang C, Zheng Y, Liu L, Yan Y, Feng J, Zhao Y, Xie H, Li Y. Improved green and red GRAB sensors for monitoring spatiotemporal serotonin release in vivo. Nat Methods 2024; 21:692-702. [PMID: 38443508 PMCID: PMC11377854 DOI: 10.1038/s41592-024-02188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.
Collapse
Affiliation(s)
- Fei Deng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Guochuan Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hui Dong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Chaowei Zhuang
- Department of Automation, Tsinghua University, Beijing, China
| | - Yu Zheng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Laixin Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuqi Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Yulin Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China.
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
36
|
Montalant A, Kiehn O, Perrier JF. Dopamine and noradrenaline activate spinal astrocyte endfeet via D1-like receptors. Eur J Neurosci 2024; 59:1278-1295. [PMID: 38052454 DOI: 10.1111/ejn.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system, respond to a wide variety of neurotransmitters binding to metabotropic receptors. Here, we investigated the intracellular calcium responses of spinal cord astrocytes to dopamine and noradrenaline, two catecholamines released by specific descending pathways. In a slice preparation from the spinal cord of neonatal mice, puff application of dopamine resulted in intracellular calcium responses that remained in the endfeet. Noradrenaline induced stronger responses that also started in the endfeet but spread to neighbouring compartments. The intracellular calcium responses were unaffected by blocking neuronal activity or inhibiting various neurotransmitter receptors, suggesting a direct effect of dopamine and noradrenaline on astrocytes. The intracellular calcium responses induced by noradrenaline and dopamine were inhibited by the D1 receptor antagonist SCH 23390. We assessed the functional consequences of these astrocytic responses by examining changes in arteriole diameter. Puff application of dopamine or noradrenaline resulted in vasoconstriction of spinal arterioles. However, blocking D1 receptors or manipulating astrocytic intracellular calcium levels did not abolish the vasoconstrictions, indicating that the observed intracellular calcium responses in astrocyte endfeet were not responsible for the vascular changes. Our findings demonstrate a compartmentalized response of spinal cord astrocytes to catecholamines and expand our understanding of astrocyte-neurotransmitter interactions and their potential roles in the physiology of the central nervous system.
Collapse
Affiliation(s)
- Alexia Montalant
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
38
|
Lachance GP, Gauvreau D, Boisselier É, Boukadoum M, Miled A. Breaking Barriers: Exploring Neurotransmitters through In Vivo vs. In Vitro Rivalry. SENSORS (BASEL, SWITZERLAND) 2024; 24:647. [PMID: 38276338 PMCID: PMC11154401 DOI: 10.3390/s24020647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Neurotransmitter analysis plays a pivotal role in diagnosing and managing neurodegenerative diseases, often characterized by disturbances in neurotransmitter systems. However, prevailing methods for quantifying neurotransmitters involve invasive procedures or require bulky imaging equipment, therefore restricting accessibility and posing potential risks to patients. The innovation of compact, in vivo instruments for neurotransmission analysis holds the potential to reshape disease management. This innovation can facilitate non-invasive and uninterrupted monitoring of neurotransmitter levels and their activity. Recent strides in microfabrication have led to the emergence of diminutive instruments that also find applicability in in vitro investigations. By harnessing the synergistic potential of microfluidics, micro-optics, and microelectronics, this nascent realm of research holds substantial promise. This review offers an overarching view of the current neurotransmitter sensing techniques, the advances towards in vitro microsensors tailored for monitoring neurotransmission, and the state-of-the-art fabrication techniques that can be used to fabricate those microsensors.
Collapse
Affiliation(s)
| | - Dominic Gauvreau
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| | - Élodie Boisselier
- Department Ophthalmology and Otolaryngology—Head and Neck Surgery, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Mounir Boukadoum
- Department Computer Science, Université du Québec à Montréal, Montréal, QC H2L 2C4, Canada;
| | - Amine Miled
- Department Electrical Engineering, Université Laval, Québec, QC G1V 0A6, Canada; (G.P.L.); (D.G.)
| |
Collapse
|
39
|
Maas DA, Manot-Saillet B, Bun P, Habermacher C, Poilbout C, Rusconi F, Angulo MC. Versatile and automated workflow for the analysis of oligodendroglial calcium signals. Cell Mol Life Sci 2024; 81:15. [PMID: 38194116 PMCID: PMC11073395 DOI: 10.1007/s00018-023-05065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Abstract
Although intracellular Ca2+ signals of oligodendroglia, the myelin-forming cells of the central nervous system, regulate vital cellular processes including myelination, few studies on oligodendroglia Ca2+ signal dynamics have been carried out and existing software solutions are not adapted to the analysis of the complex Ca2+ signal characteristics of these cells. Here, we provide a comprehensive solution to analyze oligodendroglia Ca2+ imaging data at the population and single-cell levels. We describe a new analytical pipeline containing two free, open source and cross-platform software programs, Occam and post-prOccam, that enable the fully automated analysis of one- and two-photon Ca2+ imaging datasets from oligodendroglia obtained by either ex vivo or in vivo Ca2+ imaging techniques. Easily configurable, our software solution is optimized to obtain unbiased results from large datasets acquired with different imaging techniques. Compared to other recent software, our solution proved to be fast, low memory demanding and faithful in the analysis of oligodendroglial Ca2+ signals in all tested imaging conditions. Our versatile and accessible Ca2+ imaging data analysis tool will facilitate the elucidation of Ca2+-mediated mechanisms in oligodendroglia. Its configurability should also ensure its suitability with new use cases such as other glial cell types or even cells outside the CNS.
Collapse
Affiliation(s)
- Dorien A Maas
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Blandine Manot-Saillet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "NeurImag Platform", 75014, Paris, France
| | - Chloé Habermacher
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
- SynapCell, Bâtiment Synergy Zac Isiparc, 38330, Saint Ismier, France
| | - Corinne Poilbout
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France
| | - Filippo Rusconi
- IDEEV, GQE, Université Paris-Saclay, CNRS, INRAE, AgroParisTech, 12, Route 128, 91272, Gif-sur-Yvette, France
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, 75006, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, "Team: Interactions Between Neurons and Oligodendroglia in Myelination and Myelin Repair", 75014, Paris, France.
- GHU PARIS Psychiatrie and Neurosciences, 75014, Paris, France.
| |
Collapse
|
40
|
Wang J, Cheng P, Qu Y, Zhu G. Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders. Curr Neuropharmacol 2024; 22:2217-2239. [PMID: 38288836 PMCID: PMC11337689 DOI: 10.2174/1570159x22666240128102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 08/23/2024] Open
Abstract
Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Cheng
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Qu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
41
|
Cahill MK, Collard M, Tse V, Reitman ME, Etchenique R, Kirst C, Poskanzer KE. Network-level encoding of local neurotransmitters in cortical astrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.568932. [PMID: 38106119 PMCID: PMC10723263 DOI: 10.1101/2023.12.01.568932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Astrocytes-the most abundant non-neuronal cell type in the mammalian brain-are crucial circuit components that respond to and modulate neuronal activity via calcium (Ca 2+ ) signaling 1-8 . Astrocyte Ca 2+ activity is highly heterogeneous and occurs across multiple spatiotemporal scales: from fast, subcellular activity 3,4 to slow, synchronized activity that travels across connected astrocyte networks 9-11 . Furthermore, astrocyte network activity has been shown to influence a wide range of processes 5,8,12 . While astrocyte network activity has important implications for neuronal circuit function, the inputs that drive astrocyte network dynamics remain unclear. Here we used ex vivo and in vivo two-photon Ca 2+ imaging of astrocytes while mimicking neuronal neurotransmitter inputs at multiple spatiotemporal scales. We find that brief, subcellular inputs of GABA and glutamate lead to widespread, long-lasting astrocyte Ca 2+ responses beyond an individual stimulated cell. Further, we find that a key subset of Ca 2+ activity-propagative events-differentiates astrocyte network responses to these two major neurotransmitters, and gates responses to future inputs. Together, our results demonstrate that local, transient neurotransmitter inputs are encoded by broad cortical astrocyte networks over the course of minutes, contributing to accumulating evidence across multiple model organisms that significant astrocyte-neuron communication occurs across slow, network-level spatiotemporal scales 13-15 . We anticipate that this study will be a starting point for future studies investigating the link between specific astrocyte Ca 2+ activity and specific astrocyte functional outputs, which could build a consistent framework for astrocytic modulation of neuronal activity.
Collapse
|
42
|
Qiu H, Li G, Yuan J, Yang D, Ma Y, Wang F, Dai Y, Chang X. Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers. Cell Rep 2023; 42:113340. [PMID: 37906593 DOI: 10.1016/j.celrep.2023.113340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a severe genetic disease caused by the loss of the dystrophin protein. Exon skipping is a promising strategy to treat DMD by restoring truncated dystrophin. Here, we demonstrate that base editors (e.g., targeted AID-mediated mutagenesis [TAM]) are able to efficiently induce exon skipping by disrupting functional redundant exonic splicing enhancers (ESEs). By developing an unbiased and high-throughput screening to interrogate exonic sequences, we successfully identify novel ESEs in DMD exons 51 and 53. TAM-CBE (cytidine base editor) induces near-complete skipping of the respective exons by targeting these ESEs in patients' induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Combined with strategies to disrupt splice sites, we identify suitable single guide RNAs (sgRNAs) with TAM-CBE to efficiently skip most DMD hotspot exons without substantial double-stranded breaks. Our study thus expands the repertoire of potential targets for CBE-mediated exon skipping in treating DMD and other RNA mis-splicing diseases.
Collapse
Affiliation(s)
- Han Qiu
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China; Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Geng Li
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Juanjuan Yuan
- Shunde Hospital, Southern Medical University, Foshan 528308, Guangdong, China
| | - Dian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yunqing Ma
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Feng Wang
- Department of Laboratory Medicine, Ningbo Medical Center Lihuili Hospital, Ningbo 315040, Zhejiang, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Xing Chang
- Research Center for Industries of the Future, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
43
|
Ikegami A, Kato D, Wake H. Microglial process dynamics depend on astrocyte and synaptic activity. NAGOYA JOURNAL OF MEDICAL SCIENCE 2023; 85:772-778. [PMID: 38155622 PMCID: PMC10751488 DOI: 10.18999/nagjms.85.4.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 12/30/2023]
Abstract
Microglial processes survey the brain parenchyma, but it is unknown whether this process is influenced by the cell activity of nearby microglia under physiological conditions. Herein, we showed that microglial process dynamics differ when facilitated by astrocytic activity and pre-synaptic activity. The results revealed distinct microglial process dynamics associated with the activity of other brain cells.
Collapse
Affiliation(s)
- Ako Ikegami
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
44
|
Stopper G, Caudal LC, Rieder P, Gobbo D, Stopper L, Felix L, Everaerts K, Bai X, Rose CR, Scheller A, Kirchhoff F. Novel algorithms for improved detection and analysis of fluorescent signal fluctuations. Pflugers Arch 2023; 475:1283-1300. [PMID: 37700120 PMCID: PMC10567899 DOI: 10.1007/s00424-023-02855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. Using advanced imaging technologies, fluorescence indicators are a prerequisite for the analysis of physiological molecular signaling. Automated detection and analysis of fluorescence signals require to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection, and extraction of events themselves as well as proper segmentation of neighboring events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. Here, we present two algorithms (PBasE and CoRoDe) for accurate baseline estimation and automated detection and segmentation of fluorescence fluctuations.
Collapse
Affiliation(s)
- Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany.
| |
Collapse
|
45
|
de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA, Savtchouk I, Vitali I, Ranjak A, Congiu M, Canonica T, Wisden W, Harris K, Mameli M, Mercuri N, Telley L, Volterra A. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 2023; 622:120-129. [PMID: 37674083 PMCID: PMC10550825 DOI: 10.1038/s41586-023-06502-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.
Collapse
Affiliation(s)
- Roberta de Ceglia
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Ada Ledonne
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - David Gregory Litvin
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland
| | - Barbara Lykke Lind
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Carriero
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Erika Bindocci
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Iaroslav Savtchouk
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Ilaria Vitali
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Anurag Ranjak
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Mauro Congiu
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Tara Canonica
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, London, UK
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Nicola Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ludovic Telley
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland.
| |
Collapse
|
46
|
Lu TY, Hanumaihgari P, Hsu ET, Agarwal A, Kawaguchi R, Calabresi PA, Bergles DE. Norepinephrine modulates calcium dynamics in cortical oligodendrocyte precursor cells promoting proliferation during arousal in mice. Nat Neurosci 2023; 26:1739-1750. [PMID: 37697112 PMCID: PMC10630072 DOI: 10.1038/s41593-023-01426-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system (CNS), are generated from oligodendrocyte precursor cells (OPCs) that express neurotransmitter receptors. However, the mechanisms that affect OPC activity in vivo and the physiological roles of neurotransmitter signaling in OPCs are unclear. In this study, we generated a transgenic mouse line that expresses membrane-anchored GCaMP6s in OPCs and used longitudinal two-photon microscopy to monitor OPC calcium (Ca2+) dynamics in the cerebral cortex. OPCs exhibit focal and transient Ca2+ increases within their processes that are enhanced during locomotion-induced increases in arousal. The Ca2+ transients occur independently of excitatory neuron activity, rapidly decline when OPCs differentiate and are inhibited by anesthesia, sedative agents or noradrenergic receptor antagonists. Conditional knockout of α1A adrenergic receptors in OPCs suppresses spontaneous and locomotion-induced Ca2+ increases and reduces OPC proliferation. Our results demonstrate that OPCs are directly modulated by norepinephrine in vivo to enhance Ca2+ dynamics and promote population homeostasis.
Collapse
Affiliation(s)
- Tsai-Yi Lu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Priyanka Hanumaihgari
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Eric T Hsu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Amit Agarwal
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Riki Kawaguchi
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter A Calabresi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Division of Neuroimmunology and Neurological Infections, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
47
|
González-Arias C, Sánchez-Ruiz A, Esparza J, Sánchez-Puelles C, Arancibia L, Ramírez-Franco J, Gobbo D, Kirchhoff F, Perea G. Dysfunctional serotonergic neuron-astrocyte signaling in depressive-like states. Mol Psychiatry 2023; 28:3856-3873. [PMID: 37773446 PMCID: PMC10730416 DOI: 10.1038/s41380-023-02269-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
Astrocytes play crucial roles in brain homeostasis and are regulatory elements of neuronal and synaptic physiology. Astrocytic alterations have been found in Major Depressive Disorder (MDD) patients; however, the consequences of astrocyte Ca2+ signaling in MDD are poorly understood. Here, we found that corticosterone-treated juvenile mice (Cort-mice) showed altered astrocytic Ca2+ dynamics in mPFC both in resting conditions and during social interactions, in line with altered mice behavior. Additionally, Cort-mice displayed reduced serotonin (5-HT)-mediated Ca2+ signaling in mPFC astrocytes, and aberrant 5-HT-driven synaptic plasticity in layer 2/3 mPFC neurons. Downregulation of astrocyte Ca2+ signaling in naïve animals mimicked the synaptic deficits found in Cort-mice. Remarkably, boosting astrocyte Ca2+ signaling with Gq-DREADDS restored to the control levels mood and cognitive abilities in Cort-mice. This study highlights the important role of astrocyte Ca2+ signaling for homeostatic control of brain circuits and behavior, but also reveals its potential therapeutic value for depressive-like states.
Collapse
Affiliation(s)
- Candela González-Arias
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | - Andrea Sánchez-Ruiz
- Cajal Institute, CSIC, 28002, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University-Cajal Institute, Madrid, 28029, Spain
| | | | | | | | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, 66421, Homburg, Germany
| | | |
Collapse
|
48
|
Watanabe A, Guo C, Sjöström PJ. The developmental profile of visual cortex astrocytes. iScience 2023; 26:106828. [PMID: 37250801 PMCID: PMC10212985 DOI: 10.1016/j.isci.2023.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/08/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
We investigated how astrocytes in layer 5 mouse visual cortex mature over postnatal days (P) 3-50. Across this age range, resting membrane potential increased, input resistance decreased, and membrane responses became more passive with age. Two-photon (2p) and confocal imaging of dye-loaded cells revealed that gap-junction coupling increased starting ∼P7. Morphological reconstructions revealed increased branch density but shorter branches after P20, suggesting that astrocyte branches may get pruned as tiling is established. Finally, we visualized spontaneous Ca2+ transients with 2p microscopy and found that Ca2+ events decorrelated, became more frequent and briefer with age. As astrocytes mature, spontaneous Ca2+ activity thus changes from relatively cell-wide, synchronous waves to local transients. Several astrocyte properties were stably mature from ∼P15, coinciding with eye opening, although morphology continued to develop. Our findings provide a descriptive foundation of astrocyte maturation, useful for the study of astrocytic impact on visual cortex critical period plasticity.
Collapse
Affiliation(s)
- Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Integrated Program in Neuroscience, Irving Ludmer Building, McGill University, 1033 Pine Avenue West, Montreal, QC H3A 1A1, Canada
| | - Connie Guo
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
- Department of Anatomy and Cell Biology, Faculty of Science, McGill University, Strathcona Anatomy and Dentistry Building, 3640 University Street, Montreal, QC H3A 0C7, Canada
| | - Per Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| |
Collapse
|
49
|
Mackay JP, Smith-Dijak AI, Koch ET, Zhang P, Fung E, Nassrallah WB, Buren C, Schmidt M, Hayden MR, Raymond LA. Axonal ER Ca 2+ Release Selectively Enhances Activity-Independent Glutamate Release in a Huntington Disease Model. J Neurosci 2023; 43:3743-3763. [PMID: 36944490 PMCID: PMC10198457 DOI: 10.1523/jneurosci.1593-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Action potential (AP)-independent (miniature) neurotransmission occurs at all chemical synapses but remains poorly understood, particularly in pathologic contexts. Axonal endoplasmic reticulum (ER) Ca2+ stores are thought to influence miniature neurotransmission, and aberrant ER Ca2+ handling is implicated in progression of Huntington disease (HD). Here, we report elevated mEPSC frequencies in recordings from YAC128 mouse (HD-model) neurons (from cortical cultures and striatum-containing brain slices, both from male and female animals). Pharmacological experiments suggest that this is mediated indirectly by enhanced tonic ER Ca2+ release. Calcium imaging, using an axon-localized sensor, revealed slow AP-independent ER Ca2+ release waves in both YAC128 and WT cultures. These Ca2+ waves occurred at similar frequencies in both genotypes but spread less extensively and were of lower amplitude in YAC128 axons, consistent with axonal ER Ca2+ store depletion. Surprisingly, basal cytosolic Ca2+ levels were lower in YAC128 boutons and YAC128 mEPSCs were less sensitive to intracellular Ca2+ chelation. Together, these data suggest that elevated miniature glutamate release in YAC128 cultures is associated with axonal ER Ca2+ depletion but not directly mediated by ER Ca2+ release into the cytoplasm. In contrast to increased mEPSC frequencies, cultured YAC128 cortical neurons showed less frequent AP-dependent (spontaneous) Ca2+ events in soma and axons, although evoked glutamate release detected by an intensity-based glutamate-sensing fluorescence reporter in brain slices was similar between genotypes. Our results indicate that axonal ER dysfunction selectively elevates miniature glutamate release from cortical terminals in HD. This, together with reduced spontaneous cortical neuron firing, may cause a shift from activity-dependent to -independent glutamate release in HD, with potential implications for fidelity and plasticity of cortical excitatory signaling.SIGNIFICANCE STATEMENT Miniature neurotransmitter release persists at all chemical neuronal synapses in the absence of action potential firing but remains poorly understood, particularly in disease states. We show enhanced miniature glutamate release from cortical neurons in the YAC128 mouse Huntington disease model. This effect is mediated by axonal ER Ca2+ store depletion, but is not obviously due to elevated ER-to-cytosol Ca2+ release. Conversely, YAC128 cortical pyramidal neurons fired fewer action potentials and evoked cortical glutamate release was similar between WT an YAC128 preparations, indicating axonal ER depletion selectively enhances miniature glutamate release in YAC128 mice. These results extend our understanding of action potential independent neurotransmission and highlight a potential involvement of elevated miniature glutamate release in Huntington disease pathology.
Collapse
Affiliation(s)
- James P Mackay
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
| | - Amy I Smith-Dijak
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
- Graduate Program in Neuroscience
| | - Ellen T Koch
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
- Graduate Program in Neuroscience
| | - Peng Zhang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Evan Fung
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
| | - Wissam B Nassrallah
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
- MD/PhD Program
| | - Caodu Buren
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
- Graduate Program in Neuroscience
| | - Mandi Schmidt
- Graduate Program in Neuroscience
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health
| |
Collapse
|
50
|
Phillips B, Clark J, Martineau É, Rungta RL. Orai, RyR, and IP 3R channels cooperatively regulate calcium signaling in brain mid-capillary pericytes. Commun Biol 2023; 6:493. [PMID: 37149720 PMCID: PMC10164186 DOI: 10.1038/s42003-023-04858-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Pericytes are multifunctional cells of the vasculature that are vital to brain homeostasis, yet many of their fundamental physiological properties, such as Ca2+ signaling pathways, remain unexplored. We performed pharmacological and ion substitution experiments to investigate the mechanisms underlying pericyte Ca2+ signaling in acute cortical brain slices of PDGFRβ-Cre::GCaMP6f mice. We report that mid-capillary pericyte Ca2+ signalling differs from ensheathing type pericytes in that it is largely independent of L- and T-type voltage-gated calcium channels. Instead, Ca2+ signals in mid-capillary pericytes were inhibited by multiple Orai channel blockers, which also inhibited Ca2+ entry triggered by endoplasmic reticulum (ER) store depletion. An investigation into store release pathways indicated that Ca2+ transients in mid-capillary pericytes occur through a combination of IP3R and RyR activation, and that Orai store-operated calcium entry (SOCE) is required to sustain and amplify intracellular Ca2+ increases evoked by the GqGPCR agonist endothelin-1. These results suggest that Ca2+ influx via Orai channels reciprocally regulates IP3R and RyR release pathways in the ER, which together generate spontaneous Ca2+ transients and amplify Gq-coupled Ca2+ elevations in mid-capillary pericytes. Thus, SOCE is a major regulator of pericyte Ca2+ and a target for manipulating their function in health and disease.
Collapse
Affiliation(s)
- Braxton Phillips
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Jenna Clark
- Department of Neuroscience, Université de Montréal, Montréal, QC, Canada
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Éric Martineau
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada
| | - Ravi L Rungta
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, H3C3J7, Canada.
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|