1
|
Engel A, Wagner V, Hahn O, Foltz AG, Atkins M, Beganovic A, Guldner IH, Lu N, Saksena A, Fischer U, Ludwig N, Meese E, Wyss-Coray T, Keller A. A spatio-temporal brain miRNA expression atlas identifies sex-independent age-related microglial driven miR-155-5p increase. Nat Commun 2025; 16:4588. [PMID: 40382330 DOI: 10.1038/s41467-025-59860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
An in-depth understanding of the molecular processes composing aging is crucial to develop therapeutic approaches that decrease aging as a key risk factor for cognitive decline. Herein, we present a spatio-temporal brain atlas (15 different regions) of microRNA expression across the mouse lifespan (7 time points) and two aging interventions. MicroRNAs are promising therapeutic targets, as they silence genes by complementary base-pair binding of messenger RNAs and mediate aging speed. We first established sex- and brain-region-specific microRNA expression patterns in young adult samples. Then we focused on sex-dependent and independent brain-region-specific microRNA expression changes during aging. We identified three sex-independent brain aging microRNAs (miR-146a-5p, miR-155-5p, and miR-5100). For miR-155-5p, we showed that these expression changes are driven by aging microglia and target mTOR signaling pathway components and other cellular communication pathways. In this work, we identify strong sex-brain-region-specific aging microRNAs and microglial miR-155-5p as a promising therapeutic target.
Collapse
Affiliation(s)
- Annika Engel
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Viktoria Wagner
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Calico Life Sciences LLC, San Francisco, CA, USA
| | - Aulden G Foltz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Amila Beganovic
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Ian H Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aryaman Saksena
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Ulrike Fischer
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Nicole Ludwig
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarbrücken, Germany.
- PharmaScienceHub, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
2
|
Butovsky O, Rosenzweig N. Alzheimer's disease and age-related macular degeneration: Shared and distinct immune mechanisms. Immunity 2025; 58:1120-1139. [PMID: 40324382 DOI: 10.1016/j.immuni.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) and age-related macular degeneration (AMD) represent the leading causes of dementia and vision impairment in the elderly, respectively. The retina is an extension of the brain, yet these two central nervous system (CNS) compartments are often studied separately. Despite affecting cognition vs. vision, AD and AMD share neuroinflammatory pathways. By comparing these diseases, we can identify converging immune mechanisms and potential cross-applicable therapies. Here, we review immune mechanisms highlighting the shared and distinct aspects of these two age-related neurodegenerative conditions, focusing on responses to hallmark disease manifestations, the opposite role of overlapping immune risk loci, and potential unified therapeutic approaches. We also discuss unique tissue requirements that may dictate different outcomes of conserved immune mechanisms and how we can reciprocally utilize lessons from AD therapeutics to AMD. Looking forward, we suggest promising directions for research, including the exploration of regenerative medicine, gene therapies, and innovative diagnostics.
Collapse
Affiliation(s)
- Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Kimura K, Subramanian A, Yin Z, Khalilnezhad A, Wu Y, He D, Dixon KO, Chitta UK, Ding X, Adhikari N, Guzchenko I, Zhang X, Tang R, Pertel T, Myers SA, Aastha A, Nomura M, Eskandari-Sedighi G, Singh V, Liu L, Lambden C, Kleemann KL, Gupta N, Barry JL, Durao A, Cheng Y, Silveira S, Zhang H, Suhail A, Delorey T, Rozenblatt-Rosen O, Freeman GJ, Selkoe DJ, Weiner HL, Blurton-Jones M, Cruchaga C, Regev A, Suvà ML, Butovsky O, Kuchroo VK. Immune checkpoint TIM-3 regulates microglia and Alzheimer's disease. Nature 2025; 641:718-731. [PMID: 40205047 PMCID: PMC12079183 DOI: 10.1038/s41586-025-08852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Microglia are the resident immune cells in the brain and have pivotal roles in neurodevelopment and neuroinflammation1,2. This study investigates the function of the immune-checkpoint molecule TIM-3 (encoded by HAVCR2) in microglia. TIM-3 was recently identified as a genetic risk factor for late-onset Alzheimer's disease3, and it can induce T cell exhaustion4. However, its specific function in brain microglia remains unclear. We demonstrate in mouse models that TGFβ signalling induces TIM-3 expression in microglia. In turn, TIM-3 interacts with SMAD2 and TGFBR2 through its carboxy-terminal tail, which enhances TGFβ signalling by promoting TGFBR-mediated SMAD2 phosphorylation, and this process maintains microglial homeostasis. Genetic deletion of Havcr2 in microglia leads to increased phagocytic activity and a gene-expression profile consistent with the neurodegenerative microglial phenotype (MGnD), also referred to as disease-associated microglia (DAM). Furthermore, microglia-targeted deletion of Havcr2 ameliorates cognitive impairment and reduces amyloid-β pathology in 5×FAD mice (a transgenic model of Alzheimer's disease). Single-nucleus RNA sequencing revealed a subpopulation of MGnD microglia in Havcr2-deficient 5×FAD mice characterized by increased pro-phagocytic and anti-inflammatory gene expression alongside reduced pro-inflammatory gene expression. These transcriptomic changes were corroborated by single-cell RNA sequencing data across most microglial clusters in Havcr2-deficient 5×FAD mice. Our findings reveal that TIM-3 mediates microglia homeostasis through TGFβ signalling and highlight the therapeutic potential of targeting microglial TIM-3 in Alzheimer's disease.
Collapse
Affiliation(s)
- Kimitoshi Kimura
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ayshwarya Subramanian
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhuoran Yin
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ahad Khalilnezhad
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yufan Wu
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danyang He
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Karen O Dixon
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Udbhav Kasyap Chitta
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaokai Ding
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niraj Adhikari
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isabell Guzchenko
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Xiaoming Zhang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruihan Tang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas Pertel
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samuel A Myers
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA
| | - Aastha Aastha
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Masashi Nomura
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ghazaleh Eskandari-Sedighi
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | | | - Lei Liu
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Conner Lambden
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kilian L Kleemann
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neha Gupta
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jen-Li Barry
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yiran Cheng
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sebastian Silveira
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Huiyuan Zhang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Aamir Suhail
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni Delorey
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mathew Blurton-Jones
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, MO, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Genentech, South San Francisco, CA, USA
| | - Mario L Suvà
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Joly P, Labsy R, Silvin A. Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:880-888. [PMID: 40073104 DOI: 10.1093/jimmun/vkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/14/2024] [Indexed: 03/14/2025]
Abstract
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration. Monocytes' infiltration and differentiation into monocyte-derived macrophages (MDMs) in the brain contribute to this diversity. Microbiota's role in brain diseases has been recently highlighted, revealing how microbial signals, such as metabolites, influence microglia and MDMs. In this brief review, we describe how these signals can influence microglia through their sensome and shape MDMs from their development in the bone marrow to their differentiation in the brain. Monocytes could then be a crucial player in the constitution of a dysbiotic gut-brain axis in neurodegenerative diseases and aging.
Collapse
Affiliation(s)
- Paul Joly
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Reyhane Labsy
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| | - Aymeric Silvin
- INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France
| |
Collapse
|
5
|
Lopez-Atalaya JP, Bhojwani-Cabrera AM. Type I interferon signalling and interferon-responsive microglia in health and disease. FEBS J 2025. [PMID: 40299722 DOI: 10.1111/febs.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 05/01/2025]
Abstract
Recent evidence suggests that type I interferon (IFN-I) signalling extends beyond its canonical roles in antiviral defence and immunomodulation. Over the past decade, dysregulated IFN-I signalling has been linked to genetic disorders and neurodegenerative diseases, where it may contribute to neurological impairments. Microglia have emerged as key mediators of IFN-I responses in the central nervous system. A distinct transcriptional state responsive to interferons has recently been identified in microglia. The activation of the IFN-I pathway in these cells is now recognised as pivotal in both development and neurodegeneration. This review is divided into two main sections: the first examines the broader role of IFN-I signalling in the central nervous system, particularly its contribution to neurological dysfunction; the second focuses on the specific state of interferon-responsive microglia, exploring its mechanisms and relevance in neurodegenerative conditions. Finally, we discuss how these areas intersect and their implications for both healthy and diseased states.
Collapse
Affiliation(s)
- Jose P Lopez-Atalaya
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| | - Aysha M Bhojwani-Cabrera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Alicante, Spain
| |
Collapse
|
6
|
Dhuppar S, Poller WC, Murugaiyan G. MicroRNAs in the biology and hallmarks of neurodegenerative diseases. Trends Mol Med 2025:S1471-4914(25)00057-7. [PMID: 40199696 DOI: 10.1016/j.molmed.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/24/2025] [Accepted: 03/14/2025] [Indexed: 04/10/2025]
Abstract
A combination of intracellular and extracellular abnormalities of the nervous system, coupled with inflammation and intestinal dysbiosis, form the hallmarks of neurodegenerative diseases (NDDs). While it is difficult to identify the precise order in which these hallmarks manifest in NDDs because of their mutualistic nature, they cumulatively result in nervous or neuronal damage that characterizes neurodegeneration. In this review we discuss the roles of microRNAs (miRNAs) in the maintenance of nervous system homeostasis and their implication for NDDs. We further highlight recent advances in, and limitations of, miRNA therapeutics in NDDs and their future potential.
Collapse
Affiliation(s)
- Shivnarayan Dhuppar
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Wolfram C Poller
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Li H, Xiao Q, Zhu L, Kang J, Zhan Q, Peng W. Targeting ceramide-induced microglial pyroptosis: Icariin is a promising therapy for Alzheimer's disease. J Pharm Anal 2025; 15:101106. [PMID: 40256246 PMCID: PMC12008632 DOI: 10.1016/j.jpha.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD), a progressive dementia, is one of the most common neurodegenerative diseases. Clinical trial results of amyloid-β (Aβ) and tau regulators based on the pretext of straightforward amyloid and tau immunotherapy were disappointing. There are currently no effective strategies for slowing the progression of AD. Herein, we spotlight the dysregulation of lipid metabolism, particularly the elevation of ceramides (Cers), as a critical yet underexplored facet of AD pathogenesis. Our study delineates the role of Cers in promoting microglial pyroptosis, a form of programmed cell death distinct from apoptosis and necroptosis, characterized by cellular swelling, and membrane rupture mediated by the NLRP3 inflammasome pathway. Utilizing both in vivo experiments with amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice and in vitro assays with BV-2 microglial cells, we investigate the activation of microglial pyroptosis by Cers and its inhibition by icariin (ICA), a flavonoid with known antioxidant and anti-inflammatory properties. Our findings reveal a significant increase in Cers levels and pyroptosis markers (NOD-like receptor family, pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase recruitment domain, caspase-1, gasdermin D (gasdermin D (GSDMD)), and interleukin-18 (IL-18)) in the brains of AD model mice, indicating a direct involvement of Cers in AD pathology through the induction of microglial pyroptosis. Conversely, ICA treatment effectively reduces these pyroptotic markers and Cer levels, thereby attenuating microglial pyroptosis and suggesting a novel therapeutic mechanism of action against AD. This study not only advances our understanding of the pathogenic role of Cers in AD but also introduces ICA as a promising candidate for AD therapy, capable of mitigating neuroinflammation and pyroptosis through the cyclooxygenase-2 (COX-2)-NLRP3 inflammasome-gasdermin D (GSDMD) axis. Our results pave the way for further exploration of Cer metabolism disorders in neurodegenerative diseases and highlight the therapeutic potential of targeting microglial pyroptosis in AD.
Collapse
Affiliation(s)
- Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| | - Qiao Xiao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| | - Lemei Zhu
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| | - Jin Kang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Qiong Zhan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- National Clinical Research Center for Metabolic Diseases, Changsha, 410011, China
| |
Collapse
|
8
|
McKinsey GL, Santander N, Zhang X, Kleemann KL, Tran L, Katewa A, Conant K, Barraza M, Waddell K, Lizama CO, La Russa M, Koo JH, Lee H, Mukherjee D, Paidassi H, Anton ES, Atabai K, Sheppard D, Butovsky O, Arnold TD. Radial glia integrin avb8 regulates cell autonomous microglial TGFβ1 signaling that is necessary for microglial identity. Nat Commun 2025; 16:2840. [PMID: 40121230 PMCID: PMC11929771 DOI: 10.1038/s41467-025-57684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
Microglial diversity arises from the interplay between inherent genetic programs and external environmental signals. However, the mechanisms by which these processes develop and interact within the growing brain are not yet fully understood. Here, we show that radial glia-expressed integrin beta 8 (ITGB8) activates microglia-expressed TGFβ1 to drive microglial development. Domain-restricted deletion of Itgb8 in these progenitors results in regionally restricted and developmentally arrested microglia that persist into adulthood. In the absence of autocrine TGFβ1 signaling, microglia adopt a similar phenotype, leading to neuromotor symptoms almost identical to Itgb8 mutant mice. In contrast, microglia lacking the canonical TGFβ signal transducers Smad2 and Smad3 have a less polarized dysmature phenotype and correspondingly less severe neuromotor dysfunction. Our study describes the spatio-temporal regulation of TGFβ activation and signaling in the brain necessary to promote microglial development, and provides evidence for the adoption of microglial developmental signaling pathways in brain injury or disease.
Collapse
Affiliation(s)
- Gabriel L McKinsey
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA.
| | - Nicolas Santander
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Xiaoming Zhang
- Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Kilian L Kleemann
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren Tran
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Aditya Katewa
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Kaylynn Conant
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Matthew Barraza
- Northwestern University, Department of Neuroscience, Chicago, IL, USA
| | - Kian Waddell
- Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Carlos O Lizama
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Marie La Russa
- Stanford University, Department of Bioengineering, Stanford, CA, USA
| | - Ji Hyun Koo
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Hyunji Lee
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Dibyanti Mukherjee
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA
| | - Helena Paidassi
- CIRI Centre International de Recherche en Infectiologie, Univ Lyon Inserm U1111 Université Claude Bernard Lyon 1 CNRS UMR5308 ENS de Lyon, F-69007, Lyon, France
| | - E S Anton
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kamran Atabai
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Dean Sheppard
- University of California San Francisco, Cardiovascular Research Institute, San Francisco, CA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas D Arnold
- University of California San Francisco, Department of Pediatrics and Newborn Brain Research Institute, San Francisco, CA, USA.
| |
Collapse
|
9
|
Engel A, Wagner V, Hahn O, Foltz AG, Atkins M, Beganovic A, Guldner IH, Lu N, Saksena A, Fischer U, Ludwig N, Meese E, Wyss-Coray T, Keller A. A spatio-temporal brain miRNA expression atlas identifies sex-independent age-related microglial driven miR-155-5p increase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.15.643430. [PMID: 40161726 PMCID: PMC11952541 DOI: 10.1101/2025.03.15.643430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
An in-depth understanding of the molecular processes composing aging is crucial to develop therapeutic approaches that decrease aging as a key risk factor for cognitive decline. Herein, we present a spatio-temporal brain atlas (15 different regions) of microRNA (miRNA) expression across the mouse lifespan (7 time points) and two aging interventions composed of 1009 samples. MiRNAs are promising therapeutic targets, as they silence genes by complementary base-pair binding of messenger RNAs and are known to mediate aging speed. We first established sex- and brain-region-specific miRNA expression patterns in young adult samples. Then we focused on sex-dependent and independent brain-region-specific miRNA expression changes during aging. The corpus callosum in males and the choroid plexus in females exhibited strong sex-specific age-related signatures. In this work, we identified three sex-independent brain aging miRNAs (miR-146a-5p, miR-155-5p and miR-5100). We showed for miR-155-5p that these expression changes are driven by aging microglia. MiR-155-5p targets mTOR signaling pathway components and other cellular communication pathways and is hence a promising therapeutic target.
Collapse
Affiliation(s)
- Annika Engel
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Viktoria Wagner
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Calico Life Sciences LLC, San Francisco, CA, USA
| | - Aulden G. Foltz
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Micaiah Atkins
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Amila Beganovic
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
| | - Ian H. Guldner
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Aryaman Saksena
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Ulrike Fischer
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg/Saar, Germany
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Andreas Keller
- Clinical Bioinformatics, Saarland University, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| |
Collapse
|
10
|
Gurow K, Joshi DC, Gwasikoti J, Joshi N. Gut Microbial Control of Neurotransmitters and Their Relation to Neurological Disorders: A Comprehensive Review. Horm Metab Res 2025. [PMID: 40073909 DOI: 10.1055/a-2536-1421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The study explores the vital role of gut microbiota in regulating neurotransmitters and its subsequent effects on brain function and mental health. It aims to unravel the mechanisms by which microbial metabolites influence neurotransmitter synthesis and signaling. The ultimate goal is to identify potential therapeutic strategies targeting gut microbiota for the management and treatment of neurological disorders, such as depression, autism spectrum disorder (ASD), anxiety, and Parkinson's disease. The review synthesizes current research on the gut-brain axis, focusing on the influence of gut microbial metabolites on key neurotransmitters, including dopamine, serotonin, and gamma-aminobutyric acid (GABA). It incorporates a multidisciplinary approach, linking microbiology, neurobiology, and clinical research. Each section presents an in-depth review of scientific studies, clinical trials, and emerging therapeutic strategies. The findings highlight the intricate interplay between gut microbiota and the central nervous system. Gut microbes significantly impact the synthesis and signaling of crucial neurotransmitters, which play a pivotal role in neurological health. Evidence supports the hypothesis that modulating gut microbiota can alter neurotransmitter output and alleviate symptoms associated with neurological disorders. Notable therapeutic potentials include microbiota-targeted interventions for managing depression, ASD, anxiety, and Parkinson's disease. This comprehensive analysis underscores the critical connection between gut microbiota and neurological health. By bridging gaps between microbiology, neurobiology, and clinical practice, the study opens avenues for innovative therapeutic approaches. It provides a valuable resource for researchers, clinicians, and students, emphasizing the need for continued investigation into gut microbiota's role in neurological disorders and its therapeutic potential.
Collapse
Affiliation(s)
- Kajal Gurow
- Gurukul Pharmacy College IPB-13, RIICO Industrial Area, Ranpur, Kota, Rajasthan, India
| | - Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist. Ajmer, Rajasthan, India
| | - Jyoti Gwasikoti
- Department of Pharmacy, Graphic Era Hill University, Bhimtal, India
| | - Nirmal Joshi
- Faculty of Pharmaceutical Sciences, Amrapali University, Haldwani, India
| |
Collapse
|
11
|
Guan J, Wu P, Liu M, Jiang C, Meng X, Wu X, Lu M, Fan Y, Gan L. Egln3 expression in microglia enhances the neuroinflammatory responses in Alzheimer's disease. Brain Behav Immun 2025; 125:21-32. [PMID: 39701332 DOI: 10.1016/j.bbi.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024] Open
Abstract
Alzheimer's disease (AD), characterized by cognitive and behavioral abnormalities, is the most prevalent neurodegenerative disease worldwide. Neuroinflammation, which is induced by microglial activation, resulting in the expression of a multitude of inflammatory factors, is one of the principal characteristics of AD. Herein, we found that Egln3 is differentially expressed in microglia in the brains of AD mice. Egln3 is a member of the Egln family of proline hydroxylases, which regulates a variety of biological processes, including transcription, the cell cycle, and apoptosis, through hydroxylation, ubiquitylation, and participation in glycolysis. To further observe the effects of Egln3 on cognitive function, we utilized APP/PS1 mice as a pathological model of AD to conduct behavioral experiments and assess the expression levels of Aβ and inflammatory factors. The specific mechanisms by which Egln3 affects microglial activation were analyzed using in vitro experiments and transcriptome sequencing. The results of these analyses demonstrated that Egln3 is highly expressed in microglia in AD. Inhibition of Egln3 expression in the brains of APP/PS1 mice improves neuroinflammatory responses and cognitive function, indicating that a high expression of Egln3 promotes AD progression. Furthermore, our findings indicate that Egln3 could activate the MAPK pathway, which in turn contributes to the aggravation of neuroinflammation. Inhibition of the MAPK pathway results in attenuation of the pro-inflammatory state of microglia. Consequently, Egln3 may exacerbate neuroinflammation and promote AD progression via the MAPK pathway in microglia, making it a promising target for AD-related therapies.
Collapse
Affiliation(s)
- Jiaxin Guan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Pengfei Wu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China; Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu 233030, China
| | - Meiling Liu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaowei Wu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Meijiao Lu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Ying Fan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China
| | - Lu Gan
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
12
|
Wang Y, Zhang X, Biverstål H, Bazan NG, Tan S, Li N, Ohshima M, Schultzberg M, Li X. Pro-resolving lipid mediator reduces amyloid-β42-induced gene expression in human monocyte-derived microglia. Neural Regen Res 2025; 20:873-886. [PMID: 38886959 PMCID: PMC11433908 DOI: 10.4103/nrr.nrr-d-23-01688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 05/06/2024] [Indexed: 06/20/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-β. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-β42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-β42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-β42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-β42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-β42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiang Zhang
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Biverstål
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Nicolas G. Bazan
- Neuroscience Center of Excellence, Louisiana State University, New Orleans, LA, USA
| | - Shuai Tan
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Nailin Li
- Department of Medicine, Solna, Clinical Pharmacology Group, Karolinska University Hospital, Stockholm, Sweden
| | - Makiko Ohshima
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Li
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Jiang L, Shao M, Song C, Zhou L, Nie W, Yu H, Wang S, Liu Y, Yu L. The Role of Epigenetic Mechanisms in the Development of PM 2.5-Induced Cognitive Impairment. TOXICS 2025; 13:119. [PMID: 39997934 PMCID: PMC11861554 DOI: 10.3390/toxics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
PM2.5 is fine particulate matter with a diameter of less than 2.5 μm. Recent evidence has shown that exposure to PM2.5 markedly elevates the risk of neurodegenerative diseases, neurodevelopmental disorders, and cardiovascular diseases, which may culminate in cognitive impairment. Nevertheless, the precise mechanisms through which PM2.5 affects cognitive function are unclear. Recent studies have demonstrated that PM2.5-induced epigenetic alterations are associated with the development of cognitive impairment. Epigenetic alterations include modifications to DNA methylation, histone modifications, and non-coding RNAs. The underlying mechanisms of epigenetic alterations are related to inflammation, synaptic dysfunction, cardiovascular factors, and alterations in neuronal structure and function. This review reports the latest findings on the relationship between PM2.5-induced epigenetic alterations and the development of cognitive disorders, offering novel insights into the cognitive effects of air pollution.
Collapse
Affiliation(s)
- Lishan Jiang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Mingxia Shao
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Chao Song
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Li Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Wenke Nie
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Hang Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Siqi Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Yongping Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Li Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
14
|
Arif S, Qazi TJ, Quan Z, Ni J, Li Z, Qiu Y, Qing H. Extracellular vesicle-packed microRNAs profiling in Alzheimer's disease: The molecular intermediary between pathology and diagnosis. Ageing Res Rev 2025; 104:102614. [PMID: 39626853 DOI: 10.1016/j.arr.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/13/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs), referring to a type of non-coding RNAs functioning in various biological processes, participate in the pathophysiology of Alzheimer's disease (AD) through increasing amyloid-beta (Aβ) production, enhancing Tau phosphorylation, and inducing neuroinflammation. Meanwhile, extracellular vesicles (EVs) have been suggested as promising carriers of AD biomarkers as they possess the ability to transmit information from cerebral tissue to peripheral blood. Inspired by the above findings, we in this review systematically generalized the roles of miRNAs in AD and explored the potential of EV-packed miRNA as biomarkers for early diagnosis of AD. Through the detailed investigation, this review may highlight the promise of EV-packed miRNAs in advancing our understanding of AD, and underscore the imperative needs of further studies on their diagnostic potential.
Collapse
Affiliation(s)
- Sandila Arif
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Talal Jamil Qazi
- The Department of Biomedical Engineering, Balochistan University of Engineering & Technology, Khuzdar 89120, Pakistan
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhaohan Li
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yunjie Qiu
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
15
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Zheng Y, Wang Q, Jin Z, Zhang T, Huang J, Ye J, Yang X. Label-free miRNA fluorescent biosensors based on duplex-specific nucleases and silver nanoclusters. Analyst 2025; 150:481-488. [PMID: 39775264 DOI: 10.1039/d4an01407c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
MicroRNAs (miRNAs) are considered reliable biomarkers for a variety of diseases. However, their low abundance in organisms and high sequence similarity of homologous miRNAs make their accurate detection challenging. Here, we constructed a novel fluorescent biosensor for the detection of miRNA-155, a potential biomarker of neuroinflammation, based on duplex-specific nuclease (DSN) assisted amplification and DNA-templated silver nanoclusters (DNA-AgNCs) as fluorescence signal probes. DSN-assisted amplification can transform unstable miRNA into stable DNA and amplify the miRNA signal at the same time. Using DNA-AgNCs as fluorescence signal probes for biosensors can avoid complex labeling processes and reduce costs. The biosensor shows excellent selectivity, reproducibility, a wide linear range (1-600 nM) with a detection limit of 0.86 nM, and potentiality for real sample detection. This work provides a potential universal biosensing platform for miRNA detection.
Collapse
Affiliation(s)
- Yuxin Zheng
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Qian Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Zhiying Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Tingting Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Xiurong Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, China.
| |
Collapse
|
17
|
Brandao W, Jain N, Yin Z, Kleemann KL, Carpenter M, Bao X, Serrano JR, Tycksen E, Durao A, Barry JL, Baufeld C, Guneykaya D, Zhang X, Litvinchuk A, Jiang H, Rosenzweig N, Pitts KM, Aronchik M, Yahya T, Cao T, Takahashi MK, Krishnan R, Davtyan H, Ulrich JD, Blurton-Jones M, Ilin I, Weiner HL, Holtzman DM, Butovsky O. Inhaled xenon modulates microglia and ameliorates disease in mouse models of amyloidosis and tauopathy. Sci Transl Med 2025; 17:eadk3690. [PMID: 39813317 DOI: 10.1126/scitranslmed.adk3690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 06/12/2024] [Accepted: 12/16/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Antiamyloid antibody treatments modestly slow disease progression in mild dementia due to AD. Emerging evidence shows that homeostatic dysregulation of the brain immune system, especially that orchestrated by microglia, plays an important role in disease onset and progression. Thus, a major question is how to modulate the phenotype and function of microglia to treat AD. Xenon (Xe) gas is a noble gas used in human patients as an anesthetic and a neuroprotectant used for treating brain injuries. Xe penetrates the blood-brain barrier, which could make it an effective therapeutic. To assess the effect of Xe on microglia and AD pathology, we designed a custom Xe inhalation chamber and treated several mouse models of AD with Xe gas. Xe treatment induced mouse microglia to adopt an intermediate activation state that we have termed pre-neurodegenerative microglia (pre-MGnD). This microglial phenotypic transition was observed in mouse models of acute neurodegeneration and amyloidosis (APP/PS1 and 5xFAD mice) and tauopathy (P301S mice). This microglial state enhanced amyloid plaque compaction and reduced dystrophic neurites in the APP/PS1 and 5xFAD mouse models. Moreover, Xe inhalation reduced brain atrophy and neuroinflammation and improved nest-building behavior in P301S mice. Mechanistically, Xe inhalation induced homeostatic brain microglia toward a pre-MGnD state through IFN-γ signaling that maintained the microglial phagocytic response in APP/PS1 and 5xFAD mice while suppressing the microglial proinflammatory phenotype in P301S mice. These results support the translation of Xe inhalation as an approach for treating AD.
Collapse
Affiliation(s)
- Wesley Brandao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nimansha Jain
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Kilian L Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Madison Carpenter
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xin Bao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Javier R Serrano
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Tycksen
- McDonnell Genome Institute, Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ana Durao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jen-Li Barry
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Baufeld
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dilansu Guneykaya
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoming Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra Litvinchuk
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tian Cao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcelo Kenzo Takahashi
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Rajesh Krishnan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hayk Davtyan
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Jason D Ulrich
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Ilya Ilin
- General Biophysics LLC, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA, USA
| | - David M Holtzman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Zhao Y, Guo Q, Tian J, Liu W, Wang X. TREM2 bridges microglia and extracellular microenvironment: Mechanistic landscape and therapeutical prospects on Alzheimer's disease. Ageing Res Rev 2025; 103:102596. [PMID: 39608728 DOI: 10.1016/j.arr.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Neuroinflammation is closely related to the pathogenesis of Alzheimer's disease (AD). One of its prominent cellular components, microglia, is a potent coordinator of neuroinflammation in interplay with the characteristic AD pathological alterations including Aβ, tau, and neuronal defects, which constitute the AD-unique extracellular microenvironment. Mounting evidence implicates Triggering Receptors Expressed on Myeloid Cells 2 (TREM2) in the center of microglial activation, a vital event in the pathogenesis of AD. TREM2 is a pivotal microglial receptor that interacts with specific elements present in the AD microenvironment and induces microglial intracellular signallings contributing to phagocytosis, migration, cytokine production, metabolism, and survival, which shapes the microglial activation profile. It follows that TREM2 builds up a bridge between microglia and the extracellular microenvironment. This review illustrates how TREM2 modulates microglia to affect AD pathogenesis. Mainly presented facets in the review are i. the development of AD-specific microglial phenotypes (disease-associated microglia, DAM), ii. microglial interactions with major AD pathologies, and iii. the underlying intracellular signallings of microglial activation. Also, outstanding controversies regarding the nature of neuroinflammation are discussed. Through our illustration, we attempt to establish a TREM2-centered network of AD pathogenesis, in the hope as well to provide insights into the potential therapeutic strategies based on the underlying mechanisms.
Collapse
Affiliation(s)
- Yiheng Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Guo
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jia Tian
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Zhao K, Li Z, Zeng L, Cai Z, Liu R. MiR-25802: a potential target for treating Alzheimer's disease by regulating neuroinflammation. Front Immunol 2024; 15:1524432. [PMID: 39759526 PMCID: PMC11695229 DOI: 10.3389/fimmu.2024.1524432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Affiliation(s)
| | | | | | | | - Rui Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Yin Z, Leonard AK, Porto CM, Xie Z, Silveira S, Culley DJ, Butovsky O, Crosby G. Microglia in the aged brain develop a hypoactive molecular phenotype after surgery. J Neuroinflammation 2024; 21:323. [PMID: 39696348 DOI: 10.1186/s12974-024-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/19/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Microglia, the resident immune cells of the brain, play a crucial role in maintaining homeostasis in the central nervous system (CNS). However, they can also contribute to neurodegeneration through their pro-inflammatory properties and phagocytic functions. Acute post-operative cognitive deficits have been associated with inflammation, and microglia have been implicated primarily based on morphological changes. We investigated the impact of surgery on the microglial transcriptome to test the hypothesis that surgery produces an age-dependent pro-inflammatory phenotype in these cells. METHODS Three-to-five and 20-to-22-month-old C57BL/6 mice were anesthetized with isoflurane for an abdominal laparotomy, followed by sacrifice either 6 or 48 h post-surgery. Age-matched controls were exposed to carrier gas. Cytokine concentrations in plasma and brain tissue were evaluated using enzyme-linked immunosorbent assays (ELISA). Iba1+ cell density and morphology were determined by immunohistochemistry. Microglia from both surgically treated mice and age-matched controls were isolated by a well-established fluorescence-activated cell sorting (FACS) protocol. The microglial transcriptome was then analyzed using quantitative polymerase chain reaction (qPCR) and RNA sequencing (RNAseq). RESULTS Surgery induced an elevation in plasma cytokines in both age groups. Notably, increased CCL2 was observed in the brain post-surgery, with a greater change in old compared to young mice. Age, rather than the surgical procedure, increased Iba1 immunoreactivity and the number of Iba1+ cells in the hippocampus. Both qPCR and RNAseq analysis demonstrated suppression of neuroinflammation at 6 h after surgery in microglia isolated from aged mice. A comparative analysis of differentially expressed genes (DEGs) with previously published neurodegenerative microglia phenotype (MGnD), also referred to disease-associated microglia (DAM), revealed that surgery upregulates genes typically downregulated in the context of neurodegenerative diseases. These surgery-induced changes resolved by 48 h post-surgery and only a few DEGs were detected at that time point, indicating that the hypoactive phenotype of microglia is transient. CONCLUSIONS While anesthesia and surgery induce pro-inflammatory changes in the plasma and brain of mice, microglia adopt a homeostatic molecular phenotype following surgery. This effect seems to be more pronounced in aged mice and is transient. These results challenge the prevailing assumption that surgery activates microglia in the aged brain.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Ophthalmology, Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Anna K Leonard
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carl M Porto
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zhongcong Xie
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | | | - Deborah J Culley
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Crosby
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
22
|
Kadam R, Gupta M, Lazarov O, Prabhakar BS. Brain-immune interactions: implication for cognitive impairments in Alzheimer's disease and autoimmune disorders. J Leukoc Biol 2024; 116:1269-1290. [PMID: 38869088 DOI: 10.1093/jleuko/qiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
Progressive memory loss and cognitive dysfunction, encompassing deficits in learning, memory, problem solving, spatial reasoning, and verbal expression, are characteristics of Alzheimer's disease and related dementia. A wealth of studies has described multiple roles of the immune system in the development or exacerbation of dementia. Individuals with autoimmune disorders can also develop cognitive dysfunction, a phenomenon termed "autoimmune dementia." Together, these findings underscore the pivotal role of the neuroimmune axis in both Alzheimer's disease and related dementia and autoimmune dementia. The dynamic interplay between adaptive and innate immunity, both in and outside the brain, significantly affects the etiology and progression of these conditions. Multidisciplinary research shows that cognitive dysfunction arises from a bidirectional relationship between the nervous and immune systems, though the specific mechanisms that drive cognitive impairments are not fully understood. Intriguingly, this reciprocal regulation occurs at multiple levels, where neuronal signals can modulate immune responses, and immune system-related processes can influence neuronal viability and function. In this review, we consider the implications of autoimmune responses in various autoimmune disorders and Alzheimer's disease and explore their effects on brain function. We also discuss the diverse cellular and molecular crosstalk between the brain and the immune system, as they may shed light on potential triggers of peripheral inflammation, their effect on the integrity of the blood-brain barrier, and brain function. Additionally, we assess challenges and possibilities associated with developing immune-based therapies for the treatment of cognitive decline.
Collapse
Affiliation(s)
- Rashmi Kadam
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, 808 S Wood street, MC 512, Chicago, Chicago, IL 60612, United States
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, 835 S Wolcott street, MC 790, Chicago, Chicago, IL 60612, United States
| |
Collapse
|
23
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
24
|
Yang B, Hu S, Jiang Y, Xu L, Shu S, Zhang H. Advancements in Single-Cell RNA Sequencing Research for Neurological Diseases. Mol Neurobiol 2024; 61:8797-8819. [PMID: 38564138 DOI: 10.1007/s12035-024-04126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Neurological diseases are a major cause of the global burden of disease. Although the mechanisms of the occurrence and development of neurological diseases are not fully clear, most of them are associated with cells mediating neuroinflammation. Yet medications and other therapeutic options to improve treatment are still very limited. Single-cell RNA sequencing (scRNA-seq), as a delightfully potent breakthrough technology, not only identifies various cell types and response states but also uncovers cell-specific gene expression changes, gene regulatory networks, intercellular communication, and cellular movement trajectories, among others, in different cell types. In this review, we describe the technology of scRNA-seq in detail and discuss and summarize the application of scRNA-seq in exploring neurological diseases, elaborating the corresponding specific mechanisms of the diseases as well as providing a reliable basis for new therapeutic approaches. Finally, we affirm that scRNA-seq promotes the development of the neuroscience field and enables us to have a deeper cellular understanding of neurological diseases in the future, which provides strong support for the treatment of neurological diseases and the improvement of patients' prognosis.
Collapse
Affiliation(s)
- Bingjie Yang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Shuqi Hu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiru Jiang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Xu
- Department of Neurology, Zhejiang Rongjun Hospital, Jiaxing, Zhejiang, China
| | - Song Shu
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China
| | - Hao Zhang
- Department of Neurology, The Fourth Clinical School of Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Han J, Ye L, Wang Y. Pyroptosis: An Accomplice in the Induction of Multisystem Complications Triggered by Obstructive Sleep Apnea. Biomolecules 2024; 14:1349. [PMID: 39595526 PMCID: PMC11592050 DOI: 10.3390/biom14111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/05/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a common respiratory disorder, primarily characterized by two pathological features: chronic intermittent hypoxia (CIH) and sleep deprivation (SD). OSA has been identified as a risk factor for numerous diseases, and the inflammatory response related to programmed cell necrosis is believed to play a significant role in the occurrence and progression of multisystem damage induced by OSA, with increasing attention being paid to pyroptosis. Recent studies have indicated that OSA can elevate oxidative stress levels in the body, activating the process of pyroptosis within different tissues, ultimately accelerating organ dysfunction. However, the molecular mechanisms of pyroptosis in the multisystem damage induced by OSA remain unclear. Therefore, this review focuses on four major systems that have received concentrated attention in existing research in order to explore the role of pyroptosis in promoting renal diseases, cardiovascular diseases, neurocognitive diseases, and skin diseases in OSA patients. Furthermore, we provide a comprehensive overview of methods for inhibiting pyroptosis at different molecular levels, with the goal of identifying viable targets and therapeutic strategies for addressing OSA-related complications.
Collapse
Affiliation(s)
- Jingwen Han
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Lisong Ye
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China; (J.H.); (L.Y.)
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Department of Preventive Dentistry, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
| |
Collapse
|
26
|
Fang Q, Cai Y, Chi J, Yang Y, Chen Q, Chen L, Zhang J, Ke J, Wu Y, He X. Silencing miR-155-5p alleviates hippocampal damage in kainic acid-induced epileptic rats via the Dusp14/MAPK pathway. Brain Res Bull 2024; 217:111057. [PMID: 39209069 DOI: 10.1016/j.brainresbull.2024.111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Epilepsy with recurrent seizures is characterized by neuronal damage and glial proliferation induced by brain inflammation. Recurrent seizures can lead to changes in the microRNA (miRNA) spectrum, significantly influencing the inflammatory response of microglia. MiR-155-5p, as a pro-inflammatory miRNA, is increased in the epileptic brain. However, its specific role in acute seizures remains unknown. The study aimed to develop a new strategy for treating epilepsy by investigating how silencing of miR-155-5p initiated its anticonvulsive mechanism. The level of miR-155-5p was up-regulated in the hippocampus of epileptic immature rats induced by kainic acid (KA). The use of antago-miR-155-5p exerted significant beneficial effects on the seizure scores, brain discharges and cognition in immature rats following KA-induced epilepsy. Antago-miR-155-5p also inhibited neuron damage and microglial activation. Moreover, the silencing of miR-155-5p significantly inhibited the Dual-specificity phosphatase 14 (Dusp14)/ mitogen-activated protein kinase (MAPK) axis in vivo. MiR-155-5p interacted with dusp14 to regulate MAPK signaling way expression, verified by a dual-luciferase reporter assay. The results suggested that the silencing of miR-155-5p might reduce hippocampal damage in epileptic immature rats induced by KA via Dusp14/MAPK signaling way. This implied that miR-155-5p could serve as a therapeutic tool to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Yuehao Cai
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiali Chi
- Department of Pediatrics, Ningde Normal University, NingDe, Ningde, Fujian 352000, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China.
| | - Libin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Jiuyun Zhang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Department of Emergency, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian 350001, China; Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian 350001, China
| | - Yanchen Wu
- Department of Pediatrics, Ningde Maternal and Child Health Hospital, Ningde, Fujian 352000, China
| | - Xiaoshuang He
- Department of Pediatrics, Fuzhou First General Hospital with Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
27
|
Sheikh MSA, Salma U. Impact of microRNAs on cardiovascular diseases and aging. J Int Med Res 2024; 52:3000605241279190. [PMID: 39370977 PMCID: PMC11459564 DOI: 10.1177/03000605241279190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/12/2024] [Indexed: 10/08/2024] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality for both men and women among all ethnicities worldwide. Although significant improvements in the management of CVD occurred in the 20th century, non-invasive, universal, early diagnostic biomarkers and newer therapeutic drugs are needed for clinical treatment by physicians. MicroRNAs (miRNAs) are a class of endogenous, non-coding, single-stranded, small RNA molecules that are critically controlled by all human biological processes. Moreover, dysregulated miRNA expression is directly involved in various CVDs, including stable coronary artery disease and acute coronary syndrome. Several miRNAs that are enriched in the plasma of CVD patients have potential as clinical biomarkers, and overexpression or inhibition of specific miRNAs has novel therapeutic significance in the management of CVD. Aging is a multifactorial physiological process that gradually deteriorates tissue and organ function and is considered a non-modifiable major risk factor for CVDs. Recently, several studies established that various miRNAs essentially regulate aging and aging-related disease processes. This narrative review briefly discusses the recently updated molecular involvement of miRNAs in CVDs, their possible diagnostic, prognostic, and therapeutic value, and their relationship to the aging process.
Collapse
Affiliation(s)
- Md Sayed Ali Sheikh
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| | - Umme Salma
- Department of Gynecology and Obstetrics, College of Medicine, Jouf University, Sakaka, Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Rosenzweig N, Kleemann KL, Rust T, Carpenter M, Grucci M, Aronchik M, Brouwer N, Valenbreder I, Cooper-Hohn J, Iyer M, Krishnan RK, Sivanathan KN, Brandão W, Yahya T, Durao A, Yin Z, Chadarevian JP, Properzi MJ, Nowarski R, Davtyan H, Weiner HL, Blurton-Jones M, Yang HS, Eggen BJL, Sperling RA, Butovsky O. Sex-dependent APOE4 neutrophil-microglia interactions drive cognitive impairment in Alzheimer's disease. Nat Med 2024; 30:2990-3003. [PMID: 38961225 DOI: 10.1038/s41591-024-03122-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 06/11/2024] [Indexed: 07/05/2024]
Abstract
APOE4 is the strongest genetic risk factor for Alzheimer's disease (AD), with increased odds ratios in female carriers. Targeting amyloid plaques shows modest improvement in male non-APOE4 carriers. Leveraging single-cell transcriptomics across APOE variants in both sexes, multiplex flow cytometry and validation in two independent cohorts of APOE4 female carriers with AD, we identify a new subset of neutrophils interacting with microglia associated with cognitive impairment. This phenotype is defined by increased interleukin (IL)-17 and IL-1 coexpressed gene modules in blood neutrophils and in microglia of cognitively impaired female APOE ε4 carriers, showing increased infiltration to the AD brain. APOE4 female IL-17+ neutrophils upregulated the immunosuppressive cytokines IL-10 and TGFβ and immune checkpoints, including LAG3 and PD-1, associated with accelerated immune aging. Deletion of APOE4 in neutrophils reduced this immunosuppressive phenotype and restored the microglial response to neurodegeneration, limiting plaque pathology in AD mice. Mechanistically, IL-17F upregulated in APOE4 neutrophils interacts with microglial IL-17RA to suppress the induction of the neurodegenerative phenotype, and blocking this axis supported cognitive improvement in AD mice. These findings provide a translational basis to target IL-17F in APOE ε4 female carriers with cognitive impairment.
Collapse
Affiliation(s)
- Neta Rosenzweig
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian L Kleemann
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Rust
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Madison Carpenter
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Madeline Grucci
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nieske Brouwer
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabel Valenbreder
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joya Cooper-Hohn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Malvika Iyer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kisha N Sivanathan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Wesley Brandão
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Paul Chadarevian
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Michael J Properzi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roni Nowarski
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hayk Davtyan
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mathew Blurton-Jones
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Hyun-Sik Yang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Mass General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Jung J, Lee J, Kang H, Park K, Kim YS, Ha J, So S, Sung S, Yun JH, Jang JH, Choi SJ, Choung YH. miR-409-3p Regulates IFNG and p16 Signaling in the Human Blood of Aging-Related Hearing Loss. Cells 2024; 13:1595. [PMID: 39329776 PMCID: PMC11429563 DOI: 10.3390/cells13181595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Presbycusis, also referred to as age-related hearing loss (ARHL), is a multifaceted condition caused by the natural aging process affecting the auditory system. Genome-wide association studies (GWAS) in human populations can identify potential genes linked to ARHL. Despite this, our knowledge of the biochemical and molecular mechanisms behind the condition remains incomplete. This study aims to evaluate a potential protective tool for ARHL treatment by comparing human blood-based target gene-miRNA associations regulated in ARHL. To identify promising target genes for ARHL, we utilized an mRNA assay. To determine the role of miRNA in ARHL, we investigated the expression profile of miRNA in whole blood in ARHL patients with real-time polymerase chain reaction (RT-qPCR). A reporter gene assay was performed to confirm the regulation of candidate genes by microRNA. Through RT-qPCR validation analysis, we finally confirmed the relationship between ARHL and the role of the interferon-gamma (IFNG) gene. This gene can be regarded as an age-related gene. Through gene ontology (GO) analysis, it has been found that these genes are enriched in pathways related to apoptosis. Among them, IFNG induces an inflammatory response, apoptotic cell death, and cellular senescence. We found that miR-409-3p downregulates the expression of the IFNG in vitro. In addition, the downregulation of the IFNG by miRNA 409-3p promoted cell apoptosis and suppressed proliferation. In conclusion, our study produced gene signatures and associated microRNA regulation that could be a protective key for ARHL patients. IFNG genes and miR-409-3p should be investigated for their usefulness as a new biomarker for treatment modality.
Collapse
Affiliation(s)
- Junseo Jung
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jeongmin Lee
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
- Department of Biomedical Science, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hyunsook Kang
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Kyeongjin Park
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Young Sun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Seongjun So
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hyeon Yun
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| | - Jeong Hun Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
| | - Seong Jun Choi
- Department of Otolaryngology-Head and Neck Surgery, Cheonan Hospital, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea; (J.J.); (J.L.); (H.K.); (K.P.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (Y.S.K.); (J.H.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Graduate School of Medicine, Ajou University, Suwon 16499, Republic of Korea; (S.S.); (J.H.Y.)
| |
Collapse
|
30
|
Liu J, Lei F, Yan B, Cui N, Sharma J, Correa V, Roach L, Nicolaou S, Pitts K, Chodosh J, Maidana DE, Vavvas D, Margeta MA, Zhang H, Weitz D, Mostoslavsky R, Paschalis EI. Epigenetic adaptation drives monocyte differentiation into microglia-like cells upon engraftment into the retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612126. [PMID: 39314467 PMCID: PMC11419019 DOI: 10.1101/2024.09.09.612126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The identification of specific markers for microglia has been a long-standing challenge. Recently, markers such as P2ry12, TMEM119, and Fcrls have been proposed as microglia-specific and widely used to explore microglial functions within various central nervous system (CNS) contexts. The specificity of these markers was based on the assumption that circulating monocytes retain their distinct signatures even after infiltrating the CNS. However, recent findings reveal that infiltrating monocytes can adopt microglia-like characteristics while maintaining a pro-inflammatory profile upon permanent engraftment in the CNS.In this study, we utilize bone marrow chimeras, single-cell RNA sequencing, ATAC-seq, flow cytometry, and immunohistochemistry to demonstrate that engrafted monocytes acquire expression of established microglia markers-P2ry12, TMEM119, Fcrls-and the pan-myeloid marker Iba1, which has been commonly mischaracterized as microglia-specific. These changes are accompanied by alterations in chromatin accessibility and shifts in chromatin binding motifs that are indicative of microglial identity. Moreover, we show that engrafted monocytes dynamically regulate the expression of CX3CR1, CCR2, Ly6C, and transcription factors PU.1, CTCF, RUNX, AP-1, CEBP, and IRF2, all of which are crucial for shaping microglial identity. This study is the first to illustrate that engrafted monocytes in the retina undergo both epigenetic and transcriptional changes, enabling them to express microglia-like signatures. These findings highlight the need for future research to account for these changes when assessing the roles of monocytes and microglia in CNS pathology.
Collapse
Affiliation(s)
- Jie Liu
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Fengyang Lei
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Bin Yan
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410011, China
| | - Naiwen Cui
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
| | - Jyoti Sharma
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Victor Correa
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Lara Roach
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Savvas Nicolaou
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Kristen Pitts
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - James Chodosh
- Department of Ophthalmology and Visual Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Daniel E. Maidana
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL
| | - Demetrios Vavvas
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Milica A Margeta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Huidan Zhang
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
| | - David Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
| | - Raul Mostoslavsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Eleftherios I. Paschalis
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
31
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
32
|
Lin L, Huang L, Huang S, Chen W, Huang H, Chi L, Su F, Liu X, Yuan K, Jiang Q, Li C, Smith WW, Fu Q, Pei Z. MSC-Derived Extracellular Vesicles Alleviate NLRP3/GSDMD-Mediated Neuroinflammation in Mouse Model of Sporadic Alzheimer's Disease. Mol Neurobiol 2024; 61:5494-5509. [PMID: 38200351 DOI: 10.1007/s12035-024-03914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, with sporadic form being the predominant type. Neuroinflammation plays a critical role in accelerating pathogenic processes in AD. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) regulate inflammatory responses and show great promise for treating AD. Induced pluripotent stem cell (iPSC)-derived MSCs are similar to MSCs and exhibit low immunogenicity and heterogeneity, making them promising cell sources for clinical applications. This study examined the anti-inflammatory effects of MSC-sEVs in a streptozotocin-induced sporadic mouse model of AD (sAD). The intracisternal administration of iPSC-MSC-sEVs alleviated NLRP3/GSDMD-mediated neuroinflammation, decreased amyloid deposition and neuronal apoptosis, and mitigated cognitive dysfunction. Furthermore, it explored the role of miR-223-3p in the iPSC-MSC-sEVs-mediated anti-inflammatory effects in vitro. miR-223-3p directly targeted NLRP3, whereas inhibiting miR-223-3p almost completely reversed the suppression of NLRP3 by MSC-sEVs, suggesting that miR-223-3p may, at least partially, account for MSC-sEVs-mediated anti-inflammation. Results obtained suggest that intracisternal administration of iPSC-MSC-sEVs can reduce cognitive impairment by inhibiting NLRP3/GSDMD neuroinflammation in a sAD mouse model. Therefore, the present study provides a proof-of-principle for applying iPSC-MSC-sEVs to target neuroinflammation in sAD.
Collapse
Affiliation(s)
- Lishan Lin
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Longxin Huang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Sen Huang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Weineng Chen
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Heng Huang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Li Chi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Institute of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Fengjuan Su
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xiaoqing Liu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kang Yuan
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiuhong Jiang
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Changu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wanli W Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Zhong Pei
- Department of Neurology, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases; National Key Clinical Department and Key Discipline of Neurology, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
33
|
Kedia S, Ji H, Feng R, Androvic P, Spieth L, Liu L, Franz J, Zdiarstek H, Anderson KP, Kaboglu C, Liu Q, Mattugini N, Cherif F, Prtvar D, Cantuti-Castelvetri L, Liesz A, Schifferer M, Stadelmann C, Tahirovic S, Gokce O, Simons M. T cell-mediated microglial activation triggers myelin pathology in a mouse model of amyloidosis. Nat Neurosci 2024; 27:1468-1474. [PMID: 38937583 PMCID: PMC11303250 DOI: 10.1038/s41593-024-01682-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Age-related myelin damage induces inflammatory responses, yet its involvement in Alzheimer's disease remains uncertain, despite age being a major risk factor. Using a mouse model of Alzheimer's disease, we found that amyloidosis itself triggers age-related oligodendrocyte and myelin damage. Mechanistically, CD8+ T cells promote the progressive accumulation of abnormally interferon-activated microglia that display myelin-damaging activity. Thus, our data suggest that immune responses against myelinating oligodendrocytes may contribute to neurodegenerative diseases with amyloidosis.
Collapse
Affiliation(s)
- Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hao Ji
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ruoqing Feng
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Androvic
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lu Liu
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Jonas Franz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Hanna Zdiarstek
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Perez Anderson
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Cem Kaboglu
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Qian Liu
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Nicola Mattugini
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Fatma Cherif
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Danilo Prtvar
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ludovico Cantuti-Castelvetri
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
34
|
Sun Z, Zhang X, So KF, Jiang W, Chiu K. Targeting Microglia in Alzheimer's Disease: Pathogenesis and Potential Therapeutic Strategies. Biomolecules 2024; 14:833. [PMID: 39062547 PMCID: PMC11274940 DOI: 10.3390/biom14070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, as resident macrophages in the central nervous system, play a multifunctional role in the pathogenesis of Alzheimer's disease (AD). Their clustering around amyloid-β (Aβ) deposits is a core pathological feature of AD. Recent advances in single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) have revealed dynamic changes in microglial phenotypes over time and across different brain regions during aging and AD progression. As AD advances, microglia primarily exhibit impaired phagocytosis of Aβ and tau, along with the release of pro-inflammatory cytokines that damage synapses and neurons. Targeting microglia has emerged as a potential therapeutic approach for AD. Treatment strategies involving microglia can be broadly categorized into two aspects: (1) enhancing microglial function: This involves augmenting their phagocytic ability against Aβ and cellular debris and (2) mitigating neuroinflammation: Strategies include inhibiting TNF-α signaling to reduce the neuroinflammatory response triggered by microglia. Clinical trials exploring microglia-related approaches for AD treatment have garnered attention. Additionally, natural products show promise in enhancing beneficial effects and suppressing inflammatory responses. Clarifying microglial dynamics, understanding their roles, and exploring novel therapeutic approaches will advance our fight against AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Zhang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kwok-Fai So
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou 510632, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical Medicine, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- State Key Lab of Brain and Cognitive Sciences, Li Kai Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Psychology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
35
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
36
|
Jang JH, Jun HJ, Lee C, Sohn E, Kwon O, Kang DH, Umar M, Jung IC, Jeong SJ. Therapeutic Potential of Combined Herbal Medicine and Electroacupuncture in Mild Cognitive Impairment Through Cytokine Modulation: An Observational Study. Neuropsychiatr Dis Treat 2024; 20:1331-1344. [PMID: 38919562 PMCID: PMC11198010 DOI: 10.2147/ndt.s465650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Purpose We aimed to investigate the efficacy of a combined herbal formula and electroacupuncture (EA) for mild cognitive impairment (MCI), a neurodegenerative disease leading to dementia, and its underlying mechanisms of action. Patients and Methods This was a prospective open-label observational pilot study at Daejeon Korean Medicine Hospital of Daejeon University in South Korea from March 2022 to March 2023. We included six Korean patients (50% male) aged ≥ 45 years and < 85 years with MCI, a clinical dementia rating score of 0.5, and a Montreal Cognitive Assessment-Korea (MoCA-K) score ≤ 22. The exclusion criterion was impaired cognitive function. Patients received combined therapy, including a herbal formula and EA, for 12-24 weeks. We prescribed the herbal formulas Gamiguibi-tang, Yukmijihwang-tang, and Banhasasim-tang to the patients for at least 70% of the treatment period, in combination with EA. Moreover, we investigated changes in cognitive and cognition-related symptoms and cytokine expression in the blood following combined traditional medicine therapy. At baseline and after 12 and 24 weeks, we administered the MoCA-K and cognitive-related questionnaires. We analyzed network pharmacology to reflect the herbal formula intervention mechanism comprehensively. Results The median score [interquartile range] of MoCA-K at baseline was 19.5 [16.0, 22.0], which improved significantly (24.5 [24.0, 26.0], p < 0.01) over 24 weeks following combined therapy. We obtained no significant conclusion regarding cytokine changes due to the small sample size. In network pharmacology, we analyzed the brain, head, heart, peripheral nerves, peripheral nervous system, and pancreas as the enriched organs from the common targets of the three herbal formulas. Conclusion Combined herbal medicine and EA improved cognitive function in patients with MCI. We assume the underlying mechanism of herbal formulas to be antioxidative and anti-inflammatory changes in cytokine expression. Combined traditional medicine has potential therapeutic application in preventing MCI progression to dementia.
Collapse
Affiliation(s)
- Jung-Hee Jang
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyeong Joon Jun
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - ChaYoung Lee
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Eunjin Sohn
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ojin Kwon
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Dong-Hoon Kang
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Muhammad Umar
- Korean Medicine Data Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
- Korean Convergence Medical Science, University of Science and Technology, Daejeon, Republic of Korea
| | - In Chul Jung
- Department of Oriental Neuropsychiatry, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Soo-Jin Jeong
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
37
|
Woo MS, Bal LC, Winschel I, Manca E, Walkenhorst M, Sevgili B, Sonner JK, Di Liberto G, Mayer C, Binkle-Ladisch L, Rothammer N, Unger L, Raich L, Hadjilaou A, Noli B, Manai AL, Vieira V, Meurs N, Wagner I, Pless O, Cocco C, Stephens SB, Glatzel M, Merkler D, Friese MA. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis. J Clin Invest 2024; 134:e177692. [PMID: 39145444 PMCID: PMC11324305 DOI: 10.1172/jci177692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias Manca
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bachar Sevgili
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Barbara Noli
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio L. Manai
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Samuel B. Stephens
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Zhang Y, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol 2024; 224:116218. [PMID: 38643906 DOI: 10.1016/j.bcp.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
Non-coding RNAs (ncRNAs) are an assorted collection of transcripts that are not translated into proteins. Since their discovery, ncRNAs have gained prominence as crucial regulators of various biological functions across diverse cell types and tissues, and their abnormal functioning has been implicated in disease. Notably, extensive research has focused on the relationship between microRNAs (miRNAs) and human cancers, although other types of ncRNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are also emerging as significant contributors to human disease. In this review, we provide a comprehensive summary of our current knowledge regarding the roles of miRNAs, lncRNAs, and circRNAs in cancer and other major human diseases, particularly cancer, cardiovascular, neurological, and infectious diseases. Moreover, we discuss the potential utilization of ncRNAs as disease biomarkers and as targets for therapeutic interventions.
Collapse
Affiliation(s)
- YanJun Zhang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Lijuan Zhan
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China
| | - Xue Jiang
- College of Pharmacy and Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, 223005, China.
| | - Xiaozhu Tang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
39
|
Papadopoulos KI, Papadopoulou A, Aw TC. Anexelekto (AXL) no more: microRNA-155 (miR-155) controls the "Uncontrolled" in SARS-CoV-2. Hum Cell 2024; 37:582-592. [PMID: 38472734 DOI: 10.1007/s13577-024-01041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
AXL is the gene that encodes the Anexelekto (AXL) receptor tyrosine kinase that demonstrates significant roles in various cellular processes, including cell growth, survival, and migration. Anexelekto is a Greek word meaning excessive and uncontrolled, semantically implying the crucial involvement of AXL in cancer and immune biology, and in promoting cancer metastasis. AXL overexpression appears to drive epithelial to mesenchymal transition, tumor angiogenesis, decreased antitumor immune response, and resistance to therapeutic agents. Recently, AXL has been reported to play important roles in several viral infections, including SARS-CoV-2. We have previously outlined the importance of microRNAs (miRNAs, miRs) and especially miR-155 in SARS-CoV-2 pathophysiology through regulation of the Renin-Angiotensin Aldosterone System (RAAS) and influence on several aspects of host innate immunity. MiRNAs are negative regulators of gene expression, decreasing the stability of target RNAs or limiting their translation and, enthrallingly, miR-155 is also involved in AXL homeostasis-both endogenously and pharmaceutically using repurposed drugs (e.g., metformin)-highlighting thrifty evolutionary host innate immunity mechanisms that successfully can thwart viral entry and replication. Cancer, infections, and immune system disturbances will increasingly involve miRNA diagnostics and therapeutics in the future.
Collapse
Affiliation(s)
- K I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd, Wangthonglang, Bangkok, 10310, Thailand.
| | - A Papadopoulou
- Feelgood Lund, Occupational and Environmental Health Services, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - T C Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
40
|
Xia Y, Xu Z, Zhang Y, Jiang D, Zhu Y, Liang X, Sun R. Circulating cytokines and vascular dementia: A bi-directional Mendelian randomization study. Exp Gerontol 2024; 189:112394. [PMID: 38452989 DOI: 10.1016/j.exger.2024.112394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Inflammatory responses are associated with the development of vascular dementia (VaD). Circulating cytokines modulate the inflammatory response and are important for the immune system. To further elucidate the role of the immune system in VaD, we used Mendelian randomization (MR) to comprehensively and bi-directionally assess the role of circulating cytokines in VaD. Using state-of-the-art genome-wide association studies, we primarily assessed whether different genetic levels of 41 circulating cytokines affect the risk of developing VaD and, in turn, whether the genetic risk of VaD affects these circulating cytokines. We used inverse variance weighting (IVW) and several other MR methods to assess the bidirectional causality between circulating cytokines and VaD, and performed sensitivity analyses. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was inversely associated with VaD risk [odds ratio (OR): 0.74, 95 % confidence interval (CI): 0.60-0.92, P = 0.007, 0.007]. VaD was associated with seven circulating cytokines: macrophage inflammatory protein 1b (MIP-1 beta) [OR: 1.05, 95 % CI: 1.01-1.08, P = 0.009], Interleukin-12p70 (IL-12) [OR: 1.04, 95 % CI: 1.00-1.08, P = 0.047], Interleukin-17 (IL-17) [OR: 1.04, 95 % CI: 1.00-1.07, P = 0.038], Interleukin-7 (IL-7) [OR: 1.07, 95 % CI: 1.02-1.12, P = 0.009], Interferon gamma (IFN-γ) [OR: 1.03, 95 % CI: 1.00-1.07, P = 0.046], Granulocyte-colony stimulating factor (GCSF) [OR: 1.06, 95 % CI: 1.02-1.09, P = 0.001], Fibroblast growth factor (FGF) [P = 0.001], and Fibroblast growth factor (FGF) [P = 0.001]. Fibroblast growth factor basic (FGF-Basic) [OR: 1.04, 95 % CI: 1.01-1.08, P = 0.02] were positively correlated. Circulating cytokines are associated with VaD, and further studies are needed to determine whether they are effective targets for intervention to prevent or treat VaD.
Collapse
Affiliation(s)
- Yuge Xia
- The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Zhirui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, China
| | - Yicong Zhang
- China Academy of Chinese Medical Sciences, Guang'anmen Hospital, Beijing 100055, China
| | - Dongli Jiang
- Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China
| | - Yunyi Zhu
- Suzhou Hospital of Traditional Chinese Medicine, Suzhou, Jiangsu 215000, China.
| | - Xiaolun Liang
- The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, China.
| | - Rui Sun
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui 230000, China.
| |
Collapse
|
41
|
Zhang C, Tan R, Zhou X, Wang R, Wang X, Ma R, Chu F, Li Y, Yin T, Liu Z. Transcranial Magneto-Acoustic Stimulation Protects Synaptic Rehabilitation from Amyloid-Beta Plaques via Regulation of Microglial Functions. Int J Mol Sci 2024; 25:4651. [PMID: 38731870 PMCID: PMC11083601 DOI: 10.3390/ijms25094651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aβ) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aβ. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aβ plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Chunlan Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Ruxin Tan
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Xiaoqing Zhou
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Ruru Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Xin Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Ren Ma
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Fangxuan Chu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Ying Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, 236# Baidi Road, Tianjin 300192, China; (C.Z.); (R.T.); (X.Z.); (R.W.); (X.W.); (R.M.); (F.C.); (T.Y.)
| |
Collapse
|
42
|
Lane RM, Darreh-Shori T, Junge C, Li D, Yang Q, Edwards AL, Graham DL, Moore K, Mummery CJ. Onset of Alzheimer disease in apolipoprotein ɛ4 carriers is earlier in butyrylcholinesterase K variant carriers. BMC Neurol 2024; 24:116. [PMID: 38594621 PMCID: PMC11003149 DOI: 10.1186/s12883-024-03611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The authors sought to examine the impact of the K-variant of butyrylcholinesterase (BCHE-K) carrier status on age-at-diagnosis of Alzheimer disease (AD) in APOE4 carriers. METHODS Patients aged 50-74 years with cerebrospinal fluid (CSF) biomarker-confirmed AD, were recruited to clinical trial (NCT03186989 since June 14, 2017). Baseline demographics, disease characteristics, and biomarkers were evaluated in 45 patients according to BCHE-K and APOE4 allelic status in this post-hoc study. RESULTS In APOE4 carriers (N = 33), the mean age-at-diagnosis of AD in BCHE-K carriers (n = 11) was 6.4 years earlier than in BCHE-K noncarriers (n = 22, P < .001, ANOVA). In APOE4 noncarriers (N = 12) there was no observed influence of BCHE-K. APOE4 carriers with BCHE-K also exhibited slightly higher amyloid and tau accumulations compared to BCHE-K noncarriers. A predominantly amyloid, limited tau, and limbic-amnestic phenotype was exemplified by APOE4 homozygotes with BCHE-K. In the overall population, multiple regression analyses demonstrated an association of amyloid accumulation with APOE4 carrier status (P < .029), larger total brain ventricle volume (P < .021), less synaptic injury (Ng, P < .001), and less tau pathophysiology (p-tau181, P < .005). In contrast, tau pathophysiology was associated with more neuroaxonal damage (NfL, P = .002), more synaptic injury (Ng, P < .001), and higher levels of glial activation (YKL-40, P = .01). CONCLUSION These findings have implications for the genetic architecture of prognosis in early AD, not the genetics of susceptibility to AD. In patients with early AD aged less than 75 years, the mean age-at-diagnosis of AD in APOE4 carriers was reduced by over 6 years in BCHE-K carriers versus noncarriers. The functional status of glia may explain many of the effects of APOE4 and BCHE-K on the early AD phenotype. TRIAL REGISTRATION NCT03186989 since June 14, 2017.
Collapse
Affiliation(s)
- Roger M Lane
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA.
| | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatric, Karolinska Institutet, Stockholm, Sweden
| | - Candice Junge
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Dan Li
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Qingqing Yang
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | | | | - Katrina Moore
- Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | | |
Collapse
|
43
|
Wang J, Zhen Y, Yang J, Yang S, Zhu G. Recognizing Alzheimer's disease from perspective of oligodendrocytes: Phenomena or pathogenesis? CNS Neurosci Ther 2024; 30:e14688. [PMID: 38516808 PMCID: PMC10958408 DOI: 10.1111/cns.14688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Accumulation of amyloid beta, tau hyperphosphorylation, and microglia activation are the three highly acknowledged pathological factors of Alzheimer's disease (AD). However, oligodendrocytes (OLs) were also widely investigated in the pathogenesis and treatment for AD. AIMS We aimed to update the regulatory targets of the differentiation and maturation of OLs, and emphasized the key role of OLs in the occurrence and treatment of AD. METHODS This review first concluded the targets of OL differentiation and maturation with AD pathogenesis, and then advanced the key role of OLs in the pathogenesis of AD based on both clinic and basic experiments. Later, we extensively discussed the possible application of the current progress in the diagnosis and treatment of this complex disease. RESULTS Molecules involving in OLs' differentiation or maturation, including various transcriptional factors, cholesterol homeostasis regulators, and microRNAs could also participate in the pathogenesis of AD. Clinical data point towards the impairment of OLs in AD patients. Basic research further supports the central role of OLs in the regulation of AD pathologies. Additionally, classic drugs, including donepezil, edaravone, fluoxetine, and clemastine demonstrate their potential in remedying OL impairment in AD models, and new therapeutics from the perspective of OLs is constantly being developed. CONCLUSIONS We believe that OL dysfunction is one important pathogenesis of AD. Factors regulating OLs might be biomarkers for early diagnosis and agents stimulating OLs warrant the development of anti-AD drugs.
Collapse
Affiliation(s)
- Jingji Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui ProvinceThe Second Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Yilan Zhen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Jun Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
- The First Affiliation Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Shaojie Yang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, and Key Laboratory of Molecular Biology (Brain Diseases)Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
44
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
45
|
Wu K, Bu F, Wu Y, Zhang G, Wang X, He S, Liu MF, Chen R, Yuan H. Exploring noncoding variants in genetic diseases: from detection to functional insights. J Genet Genomics 2024; 51:111-132. [PMID: 38181897 DOI: 10.1016/j.jgg.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/26/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
Previous studies on genetic diseases predominantly focused on protein-coding variations, overlooking the vast noncoding regions in the human genome. The development of high-throughput sequencing technologies and functional genomics tools has enabled the systematic identification of functional noncoding variants. These variants can impact gene expression, regulation, and chromatin conformation, thereby contributing to disease pathogenesis. Understanding the mechanisms that underlie the impact of noncoding variants on genetic diseases is indispensable for the development of precisely targeted therapies and the implementation of personalized medicine strategies. The intricacies of noncoding regions introduce a multitude of challenges and research opportunities. In this review, we introduce a spectrum of noncoding variants involved in genetic diseases, along with research strategies and advanced technologies for their precise identification and in-depth understanding of the complexity of the noncoding genome. We will delve into the research challenges and propose potential solutions for unraveling the genetic basis of rare and complex diseases.
Collapse
Affiliation(s)
- Ke Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Fengxiao Bu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Gen Zhang
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xin Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Shunmin He
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China; State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Huijun Yuan
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
46
|
Yi W, Lv D, Sun Y, Mu J, Lu X. Role of APOE in glaucoma. Biochem Biophys Res Commun 2024; 694:149414. [PMID: 38145596 DOI: 10.1016/j.bbrc.2023.149414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Glaucoma is a chronic blinding eye disease caused by the progressive loss of retinal ganglion cells (RGCs). Currently, no clinically approved treatment can directly improve the survival rate of RGCs. The Apolipoprotein E (APOE) gene is closely related to the genetic risk of numerous neurodegenerative diseases and has become a hot topic in the field of neurodegenerative disease research in recent years. The optic nerve and retina are extensions of the brain's nervous system. The pathogenesis of retinal degenerative diseases is closely related to the degenerative diseases of the nerves in the brain. APOE consists of three alleles, ε4, ε3, and ε2, in a single locus. They have varying degrees of risk for glaucoma. APOE4 and the APOE gene deletion (APOE-/-) can reduce RGC loss. By contrast, APOE3 and the overall presence of APOE genes (APOE+/+) result in significant loss of RGC bodies and axons, increasing the risk of glaucoma RGCs death. Currently, there is no clear literature indicating that APOE2 is beneficial or harmful to glaucoma. This study summarises the mechanism of different APOE genes in glaucoma and speculates that APOE targeted intervention may be a promising method for protecting against RGCs loss in glaucoma.
Collapse
Affiliation(s)
- Wenhua Yi
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - De Lv
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, China.
| | - Yue Sun
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China.
| | - Xuejing Lu
- Eye School of Chengdu University of TCM, Chengdu City, Sichuan province, China; Ineye Hospital of Chengdu University of TCM, Chengdu City, Sichuan province, China; Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu City, Sichuan province, China; Retinal Image Technology and Chronic Vascular Disease Prevention&Control and Collaborative Innovation Center, Chengdu City, Sichuan province, China.
| |
Collapse
|
47
|
Adiga D, Eswaran S, Srinath S, Khan NG, Kumar D, Kabekkodu SP. Noncoding RNAs in Alzheimer's Disease: Overview of Functional and Therapeutic Significance. Curr Top Med Chem 2024; 24:1615-1634. [PMID: 38616763 DOI: 10.2174/0115680266293212240405042540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disorder resulting from the complex interaction between genetic, epigenetic, and environmental factors. It represents an impending epidemic and lacks effective pharmacological interventions. The emergence of high throughput sequencing techniques and comprehensive genome evaluation has uncovered a diverse spectrum of noncoding RNA (ncRNA) families. ncRNAs are the critical modulators of an eclectic array of biological processes and are now transpiring as imperative players in diagnosing and treating various diseases, including neurodegenerative disorders. Several ncRNAs are explicitly augmented in the brain, wherein they potentially regulate cognitive abilities and other functions of the central nervous system. Growing evidence suggests the substantial role of ncRNAs as modulators of tau phosphorylation, Aβ production, neuroinflammation, and neuronal survival. It indicates their therapeutic relevance as a biomarker and druggable targets against AD. The current review summarizes the existing literature on the functional significance of ncRNAs in AD pathogenesis and its imminent implications in clinics.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune, 411038, Maharashtra, India
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, One Shields Avenue, Davis, CA95616, USA
| | - Shama P Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| |
Collapse
|
48
|
Shi J, Huang S. Comparative Insight into Microglia/Macrophages-Associated Pathways in Glioblastoma and Alzheimer's Disease. Int J Mol Sci 2023; 25:16. [PMID: 38203185 PMCID: PMC10778632 DOI: 10.3390/ijms25010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Microglia and macrophages are pivotal to the brain's innate immune response and have garnered considerable attention in the context of glioblastoma (GBM) and Alzheimer's disease (AD) research. This review delineates the complex roles of these cells within the neuropathological landscape, focusing on a range of signaling pathways-namely, NF-κB, microRNAs (miRNAs), and TREM2-that regulate the behavior of tumor-associated macrophages (TAMs) in GBM and disease-associated microglia (DAMs) in AD. These pathways are critical to the processes of neuroinflammation, angiogenesis, and apoptosis, which are hallmarks of GBM and AD. We concentrate on the multifaceted regulation of TAMs by NF-κB signaling in GBM, the influence of TREM2 on DAMs' responses to amyloid-beta deposition, and the modulation of both TAMs and DAMs by GBM- and AD-related miRNAs. Incorporating recent advancements in molecular biology, immunology, and AI techniques, through a detailed exploration of these molecular mechanisms, we aim to shed light on their distinct and overlapping regulatory functions in GBM and AD. The review culminates with a discussion on how insights into NF-κB, miRNAs, and TREM2 signaling may inform novel therapeutic approaches targeting microglia and macrophages in these neurodegenerative and neoplastic conditions. This comparative analysis underscores the potential for new, targeted treatments, offering a roadmap for future research aimed at mitigating the progression of these complex diseases.
Collapse
Affiliation(s)
- Jian Shi
- Department of Neurology, Department of Veterans Affairs Medical Center, University of California, San Francisco, CA 94121, USA
| | - Shiwei Huang
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
49
|
Yang Y, Wang J, Ni H, Ding H, Wei L, Ke ZJ. Genetic model of selective COX2 inhibition improve learning and memory ability and brain pathological changes in 5xFAD mouse. Brain Res 2023; 1821:148566. [PMID: 37683778 DOI: 10.1016/j.brainres.2023.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that leads to dementia. Its pathogenesis is very complex, and inflammation is one of the main pathophysiological mechanisms of AD. Non-steroidal anti-inflammatory drugs (NSAIDs), which mainly target cyclooxygenase (COX) activity, are used to reduce the risk of AD, but several side effects limit their application. Here we assess the effect of Cyclooxygenase-2 (COX2) catalytic activity on learning ability and AD pathology using 5x Familial Alzheimer's Disease (FAD) mice with COX2 inhibition (5xFAD/COX2 KO), 5xFAD mice with cyclooxygenase inactivation of COX2 (5xFAD/COX2 Y385F), and 5xFAD mice with peroxidase (POX) inactivation of COX2 (5xFAD/COX2) H374Y), respectively. Our results indicate that learning ability of COX2 KO and mutants is improved compared to 5xFAD mice, further investigations show that Aβ depositions are reduced, microglia and astrocytes homeostasis are changed in COX2 KO and mutants. Especially, there is more responsive microglia in the brain of 5xFAD/COX2 Y385F mice, and Aβ depositions are more effectively cleaned at old age. Taken together, these results identify a role of COX2 Y385F in regulating microglia function and may have important implications for future treatment of AD.
Collapse
Affiliation(s)
- Yang Yang
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Wang
- Endocrinology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Hong Ni
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Hanqing Ding
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Luyao Wei
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Zun-Ji Ke
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
50
|
Yin Z, Rosenzweig N, Kleemann KL, Zhang X, Brandão W, Margeta MA, Schroeder C, Sivanathan KN, Silveira S, Gauthier C, Mallah D, Pitts KM, Durao A, Herron S, Shorey H, Cheng Y, Barry JL, Krishnan RK, Wakelin S, Rhee J, Yung A, Aronchik M, Wang C, Jain N, Bao X, Gerrits E, Brouwer N, Deik A, Tenen DG, Ikezu T, Santander NG, McKinsey GL, Baufeld C, Sheppard D, Krasemann S, Nowarski R, Eggen BJL, Clish C, Tanzi RE, Madore C, Arnold TD, Holtzman DM, Butovsky O. APOE4 impairs the microglial response in Alzheimer's disease by inducing TGFβ-mediated checkpoints. Nat Immunol 2023; 24:1839-1853. [PMID: 37749326 PMCID: PMC10863749 DOI: 10.1038/s41590-023-01627-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
The APOE4 allele is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). The contribution of microglial APOE4 to AD pathogenesis is unknown, although APOE has the most enriched gene expression in neurodegenerative microglia (MGnD). Here, we show in mice and humans a negative role of microglial APOE4 in the induction of the MGnD response to neurodegeneration. Deletion of microglial APOE4 restores the MGnD phenotype associated with neuroprotection in P301S tau transgenic mice and decreases pathology in APP/PS1 mice. MGnD-astrocyte cross-talk associated with β-amyloid (Aβ) plaque encapsulation and clearance are mediated via LGALS3 signaling following microglial APOE4 deletion. In the brains of AD donors carrying the APOE4 allele, we found a sex-dependent reciprocal induction of AD risk factors associated with suppression of MGnD genes in females, including LGALS3, compared to individuals homozygous for the APOE3 allele. Mechanistically, APOE4-mediated induction of ITGB8-transforming growth factor-β (TGFβ) signaling impairs the MGnD response via upregulation of microglial homeostatic checkpoints, including Inpp5d, in mice. Deletion of Inpp5d in microglia restores MGnD-astrocyte cross-talk and facilitates plaque clearance in APP/PS1 mice. We identify the microglial APOE4-ITGB8-TGFβ pathway as a negative regulator of microglial response to AD pathology, and restoring the MGnD phenotype via blocking ITGB8-TGFβ signaling provides a promising therapeutic intervention for AD.
Collapse
Affiliation(s)
- Zhuoran Yin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian L Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- School of Computing, University of Portsmouth, Portsmouth, UK
| | - Xiaoming Zhang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wesley Brandão
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Milica A Margeta
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Caitlin Schroeder
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kisha N Sivanathan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian Silveira
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Gauthier
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dania Mallah
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristen M Pitts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Ana Durao
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shawn Herron
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hannah Shorey
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yiran Cheng
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jen-Li Barry
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh K Krishnan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sam Wakelin
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jared Rhee
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anthony Yung
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael Aronchik
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Chao Wang
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| | - Nimansha Jain
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Bao
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Emma Gerrits
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
- Cancer Science Institute, National University of Singapore, Singapore, Singapore
| | - Tsuneya Ikezu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Nicolas G Santander
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
- Instituto de Ciencias de la Salud, Universidad de O´Higgins, Rancagua, Chile
| | - Gabriel L McKinsey
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Caroline Baufeld
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean Sheppard
- Department of Medicine, Cardiovascular Research Center, University of California, San Francisco, San Francisco, CA, USA
| | - Susanne Krasemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf UKE, Hamburg, Germany
| | - Roni Nowarski
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Charlotte Madore
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratoire NutriNeuro, UMR1286, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France
| | - Thomas D Arnold
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|