1
|
Yamashita SI, Arai R, Hada H, Padman BS, Lazarou M, Chan DC, Kanki T, Waguri S. The mitophagy receptors BNIP3 and NIX mediate tight attachment and expansion of the isolation membrane to mitochondria. J Cell Biol 2025; 224:e202408166. [PMID: 40358358 PMCID: PMC12071194 DOI: 10.1083/jcb.202408166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 03/24/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand. Artificial tethering of LC3B to mitochondria induced mitophagy that was equally efficient in DKO cells and WT cells. BNIP3 and NIX accumulated at the segregated mitochondrial protrusions via binding with LC3 through their LIR motifs but did not require dimer formation. Finally, the average distance between the IM and the mitochondrial surface in receptor-mediated mitophagy was significantly smaller than that in ubiquitin-mediated mitophagy. Collectively, these results indicate that BNIP3 and NIX are required for the tight attachment and expansion of the IM along the mitochondrial surface during mitophagy.
Collapse
Affiliation(s)
- Shun-ichi Yamashita
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ritsuko Arai
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Division of Biofunctional Sciences, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Hada
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Benjamin Scott Padman
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, Australia
- The University of Western Australia, Crawley, Australia
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - David C. Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Tomotake Kanki
- Department of Cellular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
2
|
Peng K, Zhao G, Zhao H, Noda NN, Zhang H. The autophagy protein ATG-9 regulates lysosome function and integrity. J Cell Biol 2025; 224:e202411092. [PMID: 40202485 PMCID: PMC11980680 DOI: 10.1083/jcb.202411092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
The transmembrane autophagy protein ATG9 has multiple functions essential for autophagosome formation. Here, we uncovered a novel function of ATG-9 in regulating lysosome biogenesis and integrity in Caenorhabditis elegans. Through a genetic screen, we identified that mutations attenuating the lipid scrambling activity of ATG-9 suppress the autophagy defect in epg-5 mutants, in which non-degradative autolysosomes accumulate. The scramblase-attenuated ATG-9 mutants promote lysosome biogenesis and delivery of lysosome-localized hydrolases and also facilitate the maintenance of lysosome integrity. Through manipulation of phospholipid levels, we found that a reduction in phosphatidylethanolamine (PE) also suppresses the autophagy defects and lysosome damage associated with impaired lysosomal degradation. Our results reveal that modulation of phospholipid composition and distribution, e.g., by attenuating the scramblase activity of ATG-9 or reducing the PE level, regulates lysosome function and integrity.
Collapse
Affiliation(s)
- Kangfu Peng
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guoxiu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Hongyu Zhao
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Nobuo N. Noda
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
3
|
Wosnitzka E, Gambarotto L, Nikoletopoulou V. Macroautophagy at the service of synapses. Curr Opin Neurobiol 2025; 93:103054. [PMID: 40414166 DOI: 10.1016/j.conb.2025.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/02/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Post-mitotic and highly polarized neurons are dependent on the fitness of their synapses, which are often found a long distance away from the soma. How the synaptic proteome is maintained, dynamically reshaped, and continuously turned over is a topic of intense investigation. Autophagy, a highly conserved, lysosome-mediated degradation pathway has emerged as a vital component of long-term neuronal maintenance, and now more specifically of synaptic homeostasis. Here, we review the most recent findings on how autophagy undergoes both dynamic and local regulation at the synapse, and how it contributes to pre- and post-synaptic proteostasis and function. We also discuss the insights and open questions that this new evidence brings.
Collapse
Affiliation(s)
- Erin Wosnitzka
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Lisa Gambarotto
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland
| | - Vassiliki Nikoletopoulou
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005, Lausanne, Switzerland.
| |
Collapse
|
4
|
Murley A, Popovici AC, Hu XS, Lund A, Wickham K, Durieux J, Joe L, Koronyo E, Zhang H, Genuth NR, Dillin A. Quiescent cell re-entry is limited by macroautophagy-induced lysosomal damage. Cell 2025; 188:2670-2686.e14. [PMID: 40203825 DOI: 10.1016/j.cell.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
To maintain tissue homeostasis, many cells reside in a quiescent state until prompted to divide. The reactivation of quiescent cells is perturbed with aging and may underlie declining tissue homeostasis and resiliency. The unfolded protein response regulators IRE-1 and XBP-1 are required for the reactivation of quiescent cells in developmentally L1-arrested C. elegans. Utilizing a forward genetic screen in C. elegans, we discovered that macroautophagy targets protein aggregates to lysosomes in quiescent cells, leading to lysosome damage. Genetic inhibition of macroautophagy and stimulation of lysosomes via the overexpression of HLH-30 (TFEB/TFE3) synergistically reduces lysosome damage. Damaged lysosomes require IRE-1/XBP-1 for their repair following prolonged L1 arrest. Protein aggregates are also targeted to lysosomes by macroautophagy in quiescent cultured mammalian cells and are associated with lysosome damage. Thus, lysosome damage is a hallmark of quiescent cells, and limiting lysosome damage by restraining macroautophagy can stimulate their reactivation.
Collapse
Affiliation(s)
- Andrew Murley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ann Catherine Popovici
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Xiwen Sophie Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anina Lund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin Wickham
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Larry Joe
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Etai Koronyo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hanlin Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Naomi R Genuth
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Zhang W, Ji C, Li X, He T, Jiang W, Liu Y, Wu M, Zhao Y, Chen X, Wang X, Li J, Zhang H, Wang J. Autophagy-independent role of ATG9A vesicles as carriers for galectin-9 secretion. Nat Commun 2025; 16:4259. [PMID: 40335523 PMCID: PMC12059159 DOI: 10.1038/s41467-025-59605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/25/2025] [Indexed: 05/09/2025] Open
Abstract
Galectins play vital roles in cellular processes such as adhesion, communication, and survival, yet the mechanisms underlying their unconventional secretion remain poorly understood. This study identifies ATG9A, a core autophagy protein, as a key regulator of galectin-9 secretion via a mechanism independent of classical autophagy, secretory autophagy, or the LC3-dependent extracellular vesicle loading and secretion pathway. ATG9A vesicles function as specialized carriers, with the N-terminus of ATG9A and both carbohydrate recognition domains of galectin-9 being critical for the process. TMED10 mediates the incorporation of galectin-9 into ATG9A vesicles, which then fuse with the plasma membrane via the STX13-SNAP23-VAMP3 SNARE complex. Furthermore, ATG9A regulates the secretion of other proteins, including galectin-4, galectin-8, and annexin A6, but not IL-1β, galectin-3, or FGF2. This mechanism is potentially conserved across other cell types, including monocytic cells, which underscores its broader significance in unconventional protein secretion.
Collapse
Affiliation(s)
- Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Cuicui Ji
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xianghua Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Wei Jiang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yukun Liu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Meiling Wu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Yunpeng Zhao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xuechai Chen
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiaoli Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Haolin Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| |
Collapse
|
6
|
Zheng W, Pu M, Zeng S, Zhang H, Wang Q, Chen T, Zhou T, Chang C, Neculai D, Liu W. S-palmitoylation modulates ATG2-dependent non-vesicular lipid transport during starvation-induced autophagy. EMBO J 2025; 44:2596-2619. [PMID: 40128367 PMCID: PMC12048663 DOI: 10.1038/s44318-025-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/26/2025] Open
Abstract
Lipid transfer proteins mediate the non-vesicular transport of lipids at membrane contact sites to regulate the lipid composition of organelle membranes. Despite significant recent advances in our understanding of the structural basis for lipid transfer, its functional regulation remains unclear. In this study, we report that S-palmitoylation modulates the cellular function of ATG2, a rod-like lipid transfer protein responsible for transporting phospholipids from the endoplasmic reticulum (ER) to phagophores during autophagosome formation. During starvation-induced autophagy, ATG2A undergoes depalmitoylation as the balance between ZDHHC11-mediated palmitoylation and APT1-mediated depalmitoylation. Inhibition of ATG2A depalmitoylation leads to impaired autophagosome formation and disrupted autophagic flux. Further, in cell and in vitro analyses demonstrate that S-palmitoylation at the C-terminus of ATG2A anchors the C-terminus to the ER. Depalmitoylation detaches the C-terminus from the ER membrane, enabling it to interact with phagophores and promoting their growth. These findings elucidate a S-palmitoylation-dependent regulatory mechanism of cellular ATG2, which may represent a broad regulatory strategy for lipid transport mediated by bridge-like transporters within cells.
Collapse
Affiliation(s)
- Wenhui Zheng
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Maomao Pu
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Sai Zeng
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Hongtao Zhang
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qian Wang
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tao Chen
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Tianhua Zhou
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chunmei Chang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China.
| | - Dante Neculai
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
- Department of Ultrasound Medicine and State Key laboratory Implantation Device, The Second Affiliated Hospital of Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Shen H, Xie Y, Wang Y, Xie Y, Wang Y, Su Z, Zhao L, Yao S, Cao X, Liang J, Long J, Zhong R, Tang J, Wang S, Zhang L, Wang X, Stork B, Cui L, Wu W. The ER protein CANX (calnexin)-mediated autophagy protects against alzheimer disease. Autophagy 2025; 21:1096-1115. [PMID: 39813987 PMCID: PMC12013425 DOI: 10.1080/15548627.2024.2447206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
Although the relationship between macroautophagy/autophagy and Alzheimer disease (AD) is widely studied, the underlying mechanisms are poorly understood, especially the regulatory role of the initiation signaling of autophagy on AD. Here, we find that the ER transmembrane protein CANX (calnexin) is a novel interaction partner of the autophagy-inducing kinase ULK1 and is required for ULK1 recruitment to the ER under basal or starved conditions. Loss of CANX results in the inactivity of ULK1 kinase and inhibits autophagy flux. In the brains of people with AD and APP-PSEN1 mice, the interaction of CANX and ULK1 declines. In mice, the lack of CANX in hippocampal neurons causes the accumulation of autophagy receptors and neuron damage, which affects the cognitive function of C57BL/6 mice. Conversely, overexpression of CANX in hippocampal neurons enhances autophagy flux and partially contributes to improving cognitive function of APP-PSEN1 mice, but not the CANX variant lacking the interaction domain with ULK1. These findings reveal a novel role of CANX in autophagy activity and cognitive function by cooperating with ULK1.Abbreviation: AD: Alzheimer disease; APEX: ascorbate peroxidase; APP: amyloid beta precursor protein; APP-PSEN1 mice: amyloid beta precursor protein-presenilin 1 transgenic mice; ATG: autophagy related; Aβ: amyloid-β; BiFC: bimolecular fluorescence complementation; CANX: calnexin; EBSS: Earle's balanced salt solution; EM: electron microscopy; IP: immunopurification; KO: knockout; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MWM: Morris water maze; PLA: proximity ligation assay; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; SQSTM1/p62, sequestosome 1.
Collapse
Affiliation(s)
- Hongtao Shen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yuying Xie
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yan Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yusheng Xie
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongxiang Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Rehabilitation Medicine, Pingshan General Hospital, Southern Medical University, Shenzhen, China
- Department of Rehabilitation Medicine, Pingshan District Peoples’ Hospital of Shenzhen, Shenzhen, China
| | - Zhenyan Su
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Laixi Zhao
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shi Yao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaoling Cao
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinglan Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Junrui Long
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Rimei Zhong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinfeng Tang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sijie Wang
- Clinical Research and Experimental Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liangqing Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaojing Wang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Wenxian Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
8
|
Xun J, Tan JX. Lysosomal Repair in Health and Disease. J Cell Physiol 2025; 240:e70044. [PMID: 40349217 PMCID: PMC12066097 DOI: 10.1002/jcp.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025]
Abstract
Lysosomes are essential organelles degrading a wide range of substrates, maintaining cellular homeostasis, and regulating cell growth through nutrient and metabolic signaling. A key vulnerability of lysosomes is their membrane permeabilization (LMP), a process tightly linked to diseases including aging, neurodegeneration, lysosomal storage disorders, and cardiovascular disease. Research progress in the past few years has greatly improved our understanding of lysosomal repair mechanisms. Upon LMP, cells activate multiple membrane remodeling processes to restore lysosomal integrity, such as membrane invagination, tubulation, lipid patching, and membrane stabilization. These repair pathways are critical in preserving cellular stress tolerance and preventing deleterious inflammation and cell death triggered by lysosomal damage. This review focuses on the expanding mechanistic insights of lysosomal repair, highlighting its crucial role in maintaining cellular health and the implications for disease pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Jinrui Xun
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
9
|
Zheng X, Fang D, Shan H, Xiao B, Wei D, Ouyang Y, Huo L, Zhang Z, Wu Y, Zhang R, Kang T, Gao Y. The assembly of RAB22A/TMEM33/RTN4 initiates a secretory ER-phagy pathway. Cell Discov 2025; 11:41. [PMID: 40301304 PMCID: PMC12041605 DOI: 10.1038/s41421-025-00792-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/11/2025] [Indexed: 05/01/2025] Open
Abstract
Rafeesome, a newly identified multivesicular body (MVB)-like organelle, forms through the fusion of RAB22A-mediated ER-derived noncanonical autophagosomes with RAB22A-positive early endosomes. However, the mechanism underlying the formation of RAB22A-mediated noncanonical autophagosomes remains unclear. Herein, we report a secretory ER-phagy pathway in which the assembly of RAB22A/TMEM33/RTN4 induces the clustering of high-molecular-weight RTN4 oligomers, leading to ER membrane remodeling. This remodeling drives the biogenesis of ER-derived RTN4-positive noncanonical autophagosomes, which are ultimately secreted as TMEM33-marked RAB22A-induced extracellular vesicles (R-EVs) via Rafeesome. Specifically, RAB22A interacts with the tubular ER membrane protein TMEM33, which binds to the TM2 domain of the ER-shaping protein RTN4, promoting RTN4 homo-oligomerization and thereby generating RTN4-enriched microdomains. Consequently, the RTN4 microdomains may induce high curvature of the ER, facilitating the bud scission of RTN4-positive vesicles. These vesicles are transported by ATG9A and develop into isolation membranes (IMs), which are then anchored by LC3-II, a process catalyzed by the ATG12-ATG5-ATG16L1 complex, allowing them to grow into sealed RTN4 noncanonical autophagosome. While being packaged into these ER-derived intermediate compartments, ER cargoes bypass lysosomal degradation and are directed to secretory autophagy via the Rafeesome-R-EV route. Our findings reveal a secretory ER-phagy pathway initiated by the assembly of RAB22A/TMEM33/RTN4, providing new insights into the connection between ER-phagy and extracellular vesicles.
Collapse
Affiliation(s)
- Xueping Zheng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Dongmei Fang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Hao Shan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Beibei Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Denghui Wei
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yingyi Ouyang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Lanqing Huo
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Zhonghan Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Yuanzhong Wu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Ruhua Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China.
| | - Ying Gao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Chen C, Liu G, Xu K, Chen A, Cheng Z, Yan X, Zhang T, Sun Y, Yu T, Wang J, Luo S, Zhou W, Deng S, Liu Y, Yang Y. ATG9 inhibits Rickettsia binding to the host cell surface by blocking the rOmpB-XRCC6/KU70 interaction. Autophagy 2025:1-17. [PMID: 40259479 DOI: 10.1080/15548627.2025.2496363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025] Open
Abstract
ickettsiae are tick-borne pathogens that infect human hosts through poorly characterized mechanisms. Herein, we report that ATG9 (autophagy related 9) plays a previously unrecognized role in inhibiting Rickettsia binding to the host cell surface. Unexpectedly, this new function of ATG9 is likely independent of macroautophagy/autophagy. Instead, ATG9 acts as a host defending factor by binding to XRCC6/KU70, a receptor of the Rickettsia outer-membrane protein rOmpB. Both ATG9 and rOmpB bind to the DNA-binding domain of XRCC6, suggesting a competitive role for ATG9 occupying the binding site of rOmpB to abrogate Rickettsia binding. Furthermore, we show that rapamycin transcriptionally activates ATG9 and inhibits rOmpB-mediated infection in a mouse model. Collectively, our study reveals a novel innate mechanism regulating Rickettsia infection and suggests that agonists of ATG9 May be useful for developing therapeutic strategies for the intervention of rickettsial diseases.Abbreviation: APEX2: apurinic/apyrimidinic endodeoxyribonuclease 2; ATG: autophagy related; BafA1: bafilomycin A1; CQ: chloroquine; E. coli: Escherichia coli; GST: glutathione S-transferase; ICM: immunofluorescence confocal microscopy; IP-Mass: immunoprecipitation-mass spectrometry; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; rOmpB: rickettsial outer membrane protein B; SAP: SAF-A/B, Acinus, and PIAS; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; VWA: von Willebrand factor A; XRCC6/KU70: X-ray repair cross complementing 6.
Collapse
Affiliation(s)
- Chen Chen
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guoxu Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kehan Xu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Aibao Chen
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Ziyang Cheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xueping Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ting Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, USA
| | - Yan Sun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tian Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiayao Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuangshuang Luo
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiting Zhou
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengqun Deng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanan Yang
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Song JZ, Li H, Yang H, Liu R, Zhang W, He T, Xie MX, Chen C, Cui L, Wu S, Rong Y, Pan LF, Zhu J, Gong Q, Wang J, Qin Z, Xie Z. Recruitment of Atg1 to the phagophore by Atg8 orchestrates autophagy machineries. Nat Struct Mol Biol 2025:10.1038/s41594-025-01546-0. [PMID: 40295771 DOI: 10.1038/s41594-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Autophagy-related (Atg) proteins catalyze autophagosome formation at the phagophore assembly site (PAS). The assembly of Atg proteins at the PAS follows a semihierarchical order, in which Atg8 is thought to be quite downstream but still able to control the size of autophagosomes. Yet, how Atg8 coordinates multiple branches of autophagy machinery to regulate autophagosomal size is not clear. Here, we show that, in yeast, Atg8 positively regulates the autophagy-specific phosphatidylinositol 3-OH kinase complex and the retrograde trafficking of Atg9 vesicles through interaction with Atg1. Mechanistically, Atg8 does not enhance the kinase activity of Atg1; instead, it recruits Atg1 to the surface of the phagophore likely to orient Atg1's activity toward select substrates, leading to efficient phagophore expansion. Artificial tethering of Atg1 kinase domains to Atg8s enhanced autophagy in yeast, human and plant cells and improved muscle performance in worms. We propose that Atg8-mediated relocation of Atg1 from the PAS scaffold to the phagophore is a critical step in positive autophagy regulation.
Collapse
Affiliation(s)
- Jing-Zhen Song
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rui Liu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenting Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Tianlong He
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Meng-Xi Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cui
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shian Wu
- School of Life Sciences, Nankai University, Tianjin, China
| | - Yueguang Rong
- School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Feng Pan
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Juan Wang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| | - Zhao Qin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
12
|
Trouvé P, Férec C. p.Phe508del-CFTR Trafficking: A Protein Quality Control Perspective Through UPR, UPS, and Autophagy. Int J Mol Sci 2025; 26:3623. [PMID: 40332143 PMCID: PMC12026709 DOI: 10.3390/ijms26083623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.Phe508del-CFTR) with an altered transport to the membrane of the cells via the conventional protein secretion (CPS) pathway. Nevertheless, it can use unconventional protein secretion (UPS). Indeed, p.Phe508del-CFTR forms a complex with GRASP55 to assist its direct trafficking from the endoplasmic reticulum to the plasma membrane. While GRASP55 is a key player of UPS, it is also a key player of stress-induced autophagy. In parallel, the unfolded protein response (UPR), which is activated in the presence of misfolded proteins, is tightly linked to UPS and autophagy through the key effectors IRE1, PERK, and ATF6. A better understanding of how UPS, UPR, and stress-induced autophagy interact to manage protein trafficking in CF and other conditions could lead to novel therapeutic strategies. By enhancing or modulating these pathways, it may be possible to increase p.Phe508del-CFTR surface expression. In summary, this review highlights the critical roles of UPS- and UPR-induced autophagy in managing protein transport, offering new perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Pascal Trouvé
- Univ Brest, Inserm, EFS, UMR 1078, 22 Avenue Camille Desmoulins, F-29200 Brest, France;
| | | |
Collapse
|
13
|
Campisi D, Hawkins N, Bonjour K, Wollert T. The Role of WIPI2, ATG16L1 and ATG12-ATG5 in Selective and Nonselective Autophagy. J Mol Biol 2025:169138. [PMID: 40221132 DOI: 10.1016/j.jmb.2025.169138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/24/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Autophagy is a conserved cellular recycling pathway that delivers damaged or superfluous cytoplasmic material to lysosomes for degradation. In response to cytotoxic stress or starvation, autophagy can also sequester bulk cytoplasm and deliver it to lysosomes to regenerate building blocks. In macroautophagy, a membrane cisterna termed phagophore that encloses autophagic cargo is generated. The formation of the phagophore depends on a conserved machinery of autophagy related proteins. The phosphatidylinositol(3)-phosphate binding protein WIPI2 facilitates the transition from phagophore initiation to phagophore expansion by recruiting the ATG12-ATG5-ATG16L1 complex to phagophores. This complex functions as an E3-ligase to conjugate ubiquitin-like ATG8 proteins to phagophore membranes, which promotes tethering of cargo to phagophore membranes, phagophore expansion, maturation and the fusion of autophagosomes with lysosomes. ATG16L1 also has important functions independently of ATG12-ATG5 in autophagy and beyond. In this review, we will summarize the functions of WIPI2 and ATG16L1 in selective and nonselective autophagy.
Collapse
Affiliation(s)
- Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - N'Toia Hawkins
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Kennedy Bonjour
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
14
|
Gao J, Franzkoch R, Rocha-Roa C, Psathaki OE, Hensel M, Vanni S, Ungermann C. Any1 is a phospholipid scramblase involved in endosome biogenesis. J Cell Biol 2025; 224:e202410013. [PMID: 40047640 PMCID: PMC11893163 DOI: 10.1083/jcb.202410013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/17/2024] [Accepted: 01/22/2025] [Indexed: 03/12/2025] Open
Abstract
Endosomes are central organelles in the recycling and degradation of receptors and membrane proteins. Once endocytosed, such proteins are sorted at endosomes into intraluminal vesicles (ILVs). The resulting multivesicular bodies (MVBs) then fuse with the lysosomes, leading to the degradation of ILVs and recycling of the resulting monomers. However, the biogenesis of MVBs requires a constant lipid supply for efficient ILV formation. An ER-endosome membrane contact site has been suggested to play a critical role in MVB biogenesis. Here, we identify Any1 as a novel phospholipid scramblase, which functions with the lipid transfer protein Vps13 in MVB biogenesis. We uncover that Any1 cycles between the early endosomes and the Golgi and colocalizes with Vps13, possibly at a here-discovered potential contact site between lipid droplets (LDs) and endosomes. Strikingly, both Any1 and Vps13 are required for MVB formation, presumably to couple lipid flux with membrane homeostasis during ILV formation and endosome maturation.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Rico Franzkoch
- Department of Biology/Chemistry, Division of Microbiology, Osnabrück University, Osnabrück, Germany
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | | | - Olympia Ekaterini Psathaki
- Integrated Bioimaging Facility, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Michael Hensel
- Department of Biology/Chemistry, Division of Microbiology, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss National Center for Competence in Research Bio-Inspired Materials, University of Fribourg, Fribourg, Switzerland
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
15
|
Schwabl SI, Siegmann KA, Teis D. Lipid juggling: Any1 scrambles membranes for endosome biogenesis. J Cell Biol 2025; 224:e202502158. [PMID: 40094457 PMCID: PMC11912935 DOI: 10.1083/jcb.202502158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025] Open
Abstract
Multivesicular bodies (MVBs) are crucial for membrane protein degradation and lipid homeostasis. A recent study by Gao and colleagues (https://doi.org/10.1083/jcb.202410013) identifies Any1 as a phospholipid scramblase that plays an important role in MVB biogenesis by coordinating membrane remodeling with lipid transfer through Vps13 at organelle contact sites.
Collapse
Affiliation(s)
- Sinead Iduna Schwabl
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - David Teis
- Institute of Molecular Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Fesenko M, Moore DJ, Ewbank P, Courthold E, Royle SJ. ATG9A vesicles are a subtype of intracellular nanovesicle. J Cell Sci 2025; 138:jcs263852. [PMID: 40067248 PMCID: PMC12045599 DOI: 10.1242/jcs.263852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Cells are filled with thousands of vesicles, which mediate protein transport and ensure homeostasis of the endomembrane system. Distinguishing these vesicles functionally and molecularly represents a major challenge. Intracellular nanovesicles (INVs) are a large class of transport vesicles that likely comprise multiple subtypes. Here, we define the INV proteome and find that it is molecularly heterogeneous and enriched for transmembrane cargo molecules, including integrins, transporters and ATG9A, a lipid scramblase associated with autophagy. ATG9A is known to reside in 'ATG9A vesicles' - small vesicles that contribute to autophagosome formation. Here, using in-cell vesicle capture assays, we found that ATG9A, as well as other ATG9A vesicle cargoes, are in INVs. Quantitative analysis showed that virtually all ATG9A vesicles are INVs, but that only ∼20% of INVs are ATG9A vesicles, suggesting that ATG9A vesicles are in fact a subtype of INV, which we term ATG9A-flavor INVs. Finally, we show that perturbing ATG9A-flavor INVs impairs the autophagy response induced by starvation.
Collapse
Affiliation(s)
- Mary Fesenko
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel J. Moore
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Peyton Ewbank
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Elizabeth Courthold
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Stephen J. Royle
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
17
|
Scavone F, Lian S, Eskelinen EL, Cohen RE, Yao T. Trafficking of K63-polyubiquitin-modified membrane proteins in a macroautophagy-independent pathway is linked to ATG9A. Mol Biol Cell 2025; 36:ar42. [PMID: 39969968 PMCID: PMC12005115 DOI: 10.1091/mbc.e24-12-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Cytoplasmic K63-linked polyubiquitin signals have well-established roles in endocytosis and selective autophagy. However, how these signals help to direct different cargos to different intracellular trafficking routes is unclear. Here we report that, when the K63-polyubiquitin signal is blocked by intracellular expression of a high-affinity sensor (named Vx3), many proteins originating from the plasma membrane are found trapped in clusters of small vesicles that colocalize with ATG9A, a transmembrane protein that plays an essential role in autophagy. Importantly, whereas ATG9A is required for cluster formation, other core autophagy machinery as well as selective autophagy cargo receptors are not required. Although the cargos are sequestered in the vesicular clusters in an ATG9-dependent manner, additional signals are needed to induce LC3 conjugation. Upon removal of the Vx3 block, K63-polyubiquitylated cargos are rapidly delivered to lysosomes. These observations suggest that ATG9A plays an unexpected role in the trafficking of K63-polyubiquitin-modified membrane proteins.
Collapse
Affiliation(s)
- Francesco Scavone
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Sharon Lian
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Eeva-Liisa Eskelinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, 00014, Finland
- Institute of Biomedicine, University of Turku, Turku, FI-20520, Finland
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
18
|
Neuman SD, Thakur RS, Gratz SJ, O'Connor-Giles KM, Bashirullah A. Neurodegenerative and Neurodevelopmental Roles for Bulk Lipid Transporters VPS13A and BLTP2. Mov Disord 2025. [PMID: 40152532 DOI: 10.1002/mds.30178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood. OBJECTIVE The objective of this study was to determine tissue-specific and aging-dependent roles for VPS13A and BLTP2 using Drosophila models. METHODS We generated tissue-specific knockdowns of the VPS13A ortholog (Vps13) and the BLTP2 ortholog (hobbit) in neurons and muscles of Drosophila. We analyzed age-dependent locomotor behavior, neurodegeneration, and synapse development and function. RESULTS Neuron-specific loss of the VPS13A ortholog caused neurodegeneration followed by aging-dependent movement deficits and reduced lifespan, whereas muscle-specific loss affected only lifespan. In contrast, neuronal loss of the BLTP2 ortholog resulted in severe early-onset locomotor defects without neurodegeneration, whereas muscle loss impaired synaptogenesis and neurotransmission at the neuromuscular junction. CONCLUSIONS VPS13A maintains neuronal survival, whereas BLTP2 orchestrates synaptic development. The phenotypic specificity of BLTP function provides mechanistic insights into distinct disease trajectories for BLTP-associated disorders. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Rajan S Thakur
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Scott J Gratz
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Kate M O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Fuller DM, Wu Y, Schueder F, Rasool B, Nag S, Korfhage JL, Garcia-Milian R, Melnyk KD, Bewersdorf J, De Camilli P, Melia TJ. ATG2A engages Rab1a and ARFGAP1 positive membranes during autophagosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645038. [PMID: 40196537 PMCID: PMC11974814 DOI: 10.1101/2025.03.24.645038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Autophagosomes form from seed membranes that expand through bulk-lipid transport via the bridge-like lipid transporter ATG2. The origins of the seed membranes and their relationship to the lipid transport machinery are poorly understood. Using proximity labeling and a variety of fluorescence microscopy techniques, we show that ATG2A localizes to extra-Golgi ARFGAP1 puncta during autophagosome biogenesis. ARFGAP1 itself is dispensable during macroautophagy, but among other proteins associating to these membranes, we find that Rab1 is essential. ATG2A co-immunoprecipitates strongly with Rab1a, and siRNA-mediated depletion of Rab1 blocks autophagy downstream of LC3B lipidation, similar to ATG2A depletion. Further, when either autophagosome formation or the early secretory pathway is perturbed, ARFGAP1 and Rab1a accumulate at ectopic locations with autophagic machinery. Our results suggest that ATG2A engages a Rab1a complex on select early secretory membranes at an early stage in autophagosome biogenesis.
Collapse
Affiliation(s)
- Devin M. Fuller
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
| | - Yumei Wu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
- Department of Neuroscience, Yale University School of Medicine, New Haven CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Florian Schueder
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Burha Rasool
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Shanta Nag
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Justin L. Korfhage
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Rolando Garcia-Milian
- Bioinformatics Support Hub, Yale Medical Library, Yale School of Medicine, 333 Cedar St, New Haven, CT 06510
| | - Katerina D. Melnyk
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | - Pietro De Camilli
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
- Department of Neuroscience, Yale University School of Medicine, New Haven CT
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
- Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, 20 MD
| |
Collapse
|
20
|
Cunningham JL, Liu HY, Francisco J, Frietze KK, Corbalan JJ, Nickels JT. The sterol-regulating human ARV1 binds cholesterol and phospholipids through its conserved ARV1 homology domain. J Biol Chem 2025; 301:108306. [PMID: 39952408 PMCID: PMC11952846 DOI: 10.1016/j.jbc.2025.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Evidence suggests that ARV1 regulates sterol movement within the cell. Saccharomyces cerevisiae cells lacking ScArv1 have defects in sterol trafficking, distribution, and biosynthesis. HepG2 cells treated with hARV1 antisense oligonucleotides accumulate cholesterol in the endoplasmic reticulum. Mice lacking Arv1 have a lean phenotype when fed a high fat diet and show no signs of liver triglyceride or cholesterol accumulation, suggesting a role for Arv1 in lipid transport. Here, we explored the direct lipid-binding activity of recombinant human ARV1 using in vitro lipid-binding assays. ARV1 lipid-binding activity was observed within the first N-terminal 98 amino acids containing the conserved ARV1 homology domain (AHD). The zinc-binding domain and conserved cysteine clusters within the AHD were necessary for lipid binding. Both full-length ARV1 and the AHD bound cholesterol, several phospholipids, and phosphoinositides with high affinity. The AHD showed the highest binding affinity for monophosphorylated phosphoinositides. Several conserved amino acids within the AHD were necessary for phospholipid binding. Biochemical studies suggested that ARV1 exists as a dimer in cells, with oligomerization being critical for ARV1 function, as amino acid mutations predicted to have a negative effect on dimerization caused weakened or complete loss of lipid binding. Our results show for the first time that human ARV1 can directly bind cholesterol and phospholipids. How this activity may function to regulate lipid binding and maintain proper lipid trafficking and/or transport in cells requires further studies.
Collapse
Affiliation(s)
- Jessie Lee Cunningham
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Hamilton, New Jersey, USA
| | - Hsing-Yin Liu
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Hamilton, New Jersey, USA
| | - Jamie Francisco
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Hamilton, New Jersey, USA
| | - Karla K Frietze
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Hamilton, New Jersey, USA
| | - J Jose Corbalan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Hamilton, New Jersey, USA
| | - Joseph T Nickels
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Hamilton, New Jersey, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey, USA.
| |
Collapse
|
21
|
Xu P, Zhang T, Yu F, Guo L, Yang Y. ATG9 promotes autophagosome formation through interaction with LC3. Biochem Biophys Res Commun 2025; 747:151254. [PMID: 39787789 DOI: 10.1016/j.bbrc.2024.151254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
The autophagosome is a double-membrane organelle that executes macroautophagy. Previous studies have shown that the autophagosome formation is driven by autophagy-related genes, among which ATG9 is the only conserved transmembrane protein and has been shown to play a critical role in the autophagosome formation. However, how ATG9 binds to the growing autophagosome membrane has remained uncertain. Herein, we report that ATG9 binds to LC3, an essential membrane component of the autophagosome, thereby allowing ATG9 to incorporate into the autophagosome membrane. Mechanistically, we show that ATG9 interacts with LC3 through its UIM motives, which bind to the UDS site of LC3. Interrupting such UIM-UDS interaction abolishes the autophagosome association of ATG9 and suppresses the autophagosome formation. Collectively, our findings reveal a novel mechanism regulating autophagosome biogenesis and suggest that the interaction of ATG9 with LC3 is critical for ATG9 binding to the growing autophagosome membrane.
Collapse
Affiliation(s)
- Peiqi Xu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ting Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Fangfang Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Lixia Guo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Yanan Yang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
22
|
Smith EM, Coughlan ML, Maday S. Turning garbage into gold: Autophagy in synaptic function. Curr Opin Neurobiol 2025; 90:102937. [PMID: 39667255 PMCID: PMC11903044 DOI: 10.1016/j.conb.2024.102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024]
Abstract
Trillions of synapses in the human brain enable thought and behavior. Synaptic connections must be established and maintained, while retaining dynamic flexibility to respond to experiences. These processes require active remodeling of the synapse to control the composition and integrity of proteins and organelles. Macroautophagy (hereafter, autophagy) provides a mechanism to edit and prune the synaptic proteome. Canonically, autophagy has been viewed as a homeostatic process, which eliminates aged and damaged proteins to maintain neuronal survival. However, accumulating evidence suggests that autophagy also degrades specific cargoes in response to neuronal activity to impact neuronal transmission, excitability, and synaptic plasticity. Here, we will discuss the diverse roles, regulation, and mechanisms of neuronal autophagy in synaptic function and contributions from glial autophagy in these processes.
Collapse
Affiliation(s)
- Erin Marie Smith
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maeve Louise Coughlan
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Broadbent DG, McEwan CM, Jayatunge D, Kaminsky EG, Tsang TM, Poole DM, Naylor BC, Price JC, Schmidt JC, Andersen JL. Ubiquitin-mediated recruitment of the ATG9A-ATG2 lipid transfer complex drives clearance of phosphorylated p62 aggregates. Mol Biol Cell 2025; 36:ar20. [PMID: 39718773 PMCID: PMC11809316 DOI: 10.1091/mbc.e24-03-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024] Open
Abstract
Autophagy is an essential cellular recycling process that maintains protein and organelle homeostasis. ATG9A vesicle recruitment is a critical early step in autophagy to initiate autophagosome biogenesis. The mechanisms of ATG9A vesicle recruitment are best understood in the context of starvation-induced nonselective autophagy, whereas less is known about the signals driving ATG9A vesicle recruitment to autophagy initiation sites in the absence of nutrient stress. Here we demonstrate that loss of ATG9A, or the lipid transfer protein ATG2, leads to the accumulation of phosphorylated p62 aggregates in nutrient replete conditions. Furthermore, we show that p62 degradation requires the lipid scramblase activity of ATG9A. Last, we present evidence that polyubiquitin is an essential signal that recruits ATG9A and mediates autophagy foci assembly in nutrient replete cells. Together, our data support a ubiquitin-driven model of ATG9A recruitment and autophagosome formation during basal autophagy.
Collapse
Affiliation(s)
- David G Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - Colten M McEwan
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Dasun Jayatunge
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Emily G Kaminsky
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
| | - Tsz-Min Tsang
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Daniel M Poole
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Bradley C Naylor
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI 48824
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI 48824
| | - Josh L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| |
Collapse
|
24
|
Wang Z, Zhang H. Phase-separated Condensates in Autophagosome Formation and Autophagy Regulation. J Mol Biol 2025:168964. [PMID: 39880155 DOI: 10.1016/j.jmb.2025.168964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/13/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Biomacromolecules partition into numerous types of biological condensates or membrane-less organelles via liquid-liquid phase separation (LLPS). Newly formed liquid-like condensates may further undergo phase transition to convert into other material states, such as gel or solid states. Different biological condensates possess distinct material properties to fulfil their physiological functions in diverse cellular pathways and processes. Phase separation and condensates are extensively involved in the autophagy pathway. The autophagosome formation sites in both yeast and multicellular organisms are assembled as phase-separated condensates. TORC1, one of the core regulators of the autophagy-lysosome pathway, is subject to nonconventional regulation by multiple biological condensates. TFEB, the master transcription factor of the autophagy-lysosome pathway, phase separates to assemble liquid-like condensates involved in transcription of autophagic and lysosomal genes. The behaviors and transcriptional activity of TFEB condensates are governed by their material properties, thus suggesting novel autophagy intervention strategies. The phase separation process and the resulting condensates are emerging therapeutic targets for autophagy-related diseases.
Collapse
Affiliation(s)
- Zheng Wang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006 PR China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006 PR China; Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang 330031 PR China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049 PR China.
| |
Collapse
|
25
|
Kalugotla G, Marmerstein V, Schriefer LA, Wang L, Morrison S, Perez LC, Schedl T, Pak SC, Baldridge MT. ATG-3 limits Orsay virus infection in C. elegans through regulation of collagen pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632696. [PMID: 39868230 PMCID: PMC11761658 DOI: 10.1101/2025.01.13.632696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autophagy is an essential cellular process which functions to maintain homeostasis in response to stressors such as starvation or infection. Here, we report that a subset of autophagy factors including ATG-3 play an antiviral role in Orsay virus infection of Caenorhabditis elegans. Orsay virus infection does not modulate autophagic flux, and re-feeding after starvation limits Orsay virus infection and blocks autophagic flux, suggesting that the role of ATG-3 in Orsay virus susceptibility is independent of its role in maintaining autophagic flux. atg-3 mutants phenocopy rde-1 mutants, which have a defect in RNA interference (RNAi), in susceptibility to Orsay virus infection and transcriptional response to infection. However, atg-3 mutants do not exhibit defects in RNAi. Additionally, atg-3 limits viral infection at a post-entry step, similar to rde-1 mutants. Differential expression analysis using RNA sequencing revealed that antiviral sqt-2, which encodes a collagen trimer protein, is depleted in naïve and infected atg-3 mutants, as well as in infected WT animals, as are numerous other collagen genes. These data suggest that ATG-3 has a role in collagen organization pathways that function in antiviral defense in C. elegans.
Collapse
Affiliation(s)
- Gowri Kalugotla
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivien Marmerstein
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A. Schriefer
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Leran Wang
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephanie Morrison
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Luis Casorla Perez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen C. Pak
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Xu TT, Deng YY, Yu XY, Li M, Fu YY. Natural autophagy modulators in non-communicable diseases: from autophagy mechanisms to therapeutic potential. Acta Pharmacol Sin 2025; 46:8-32. [PMID: 39090393 PMCID: PMC11697321 DOI: 10.1038/s41401-024-01356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024]
Abstract
Non-communicable diseases (NCDs) are defined as a kind of diseases closely related to bad behaviors and lifestyles, e.g., cardiovascular diseases, cancer, and diabetes. Driven by population growth and aging, NCDs have become the biggest disease burden in the world, and it is urgent to prevent and control these chronic diseases. Autophagy is an evolutionarily conserved process that degrade cellular senescent or malfunctioning organelles in lysosomes. Mounting evidence has demonstrated a major role of autophagy in the pathogenesis of cardiovascular diseases, cancer, and other major human diseases, suggesting that autophagy could be a candidate therapeutic target for NCDs. Natural products/phytochemicals are important resources for drugs against a wide variety of diseases. Recently, compounds from natural plants, such as resveratrol, curcumin, and ursolic acid, have been recognized as promising autophagy modulators. In this review, we address recent advances and the current status of the development of natural autophagy modulators in NCDs and provide an update of the latest in vitro and in vivo experiments that pave the way to clinical studies. Specifically, we focus on the relationship between natural autophagy modulators and NCDs, with an intent to identify natural autophagy modulators with therapeutic potential.
Collapse
Affiliation(s)
- Ting-Ting Xu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Yi Deng
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Min Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuan-Yuan Fu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
27
|
FUJIOKA Y, N. NODA N. Mechanisms of autophagosome formation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:32-40. [PMID: 39805588 PMCID: PMC11808202 DOI: 10.2183/pjab.101.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/25/2024] [Indexed: 01/16/2025]
Abstract
The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum. This process is driven by the collaboration of lipid transfer (Atg2) and scrambling (Atg9) proteins. The IM assumes a cup shaped morphology and undergoes closure, resulting in the formation of a double membrane-bound autophagosome. The Atg8 lipidation system is hypothesized to be a pivotal factor in this process. This review presents an overview of the current understanding of these processes and discusses the basic mechanisms of autophagosome formation.
Collapse
Affiliation(s)
- Yuko FUJIOKA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Nobuo N. NODA
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
28
|
Wang Y, Dahmane S, Ti R, Mai X, Zhu L, Carlson LA, Stjepanovic G. Structural basis for lipid transfer by the ATG2A-ATG9A complex. Nat Struct Mol Biol 2025; 32:35-47. [PMID: 39174844 DOI: 10.1038/s41594-024-01376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes. Autophagy-related proteins (ATGs) 2A and 9A have an essential role in autophagy by mediating lipid transfer and re-equilibration between membranes for autophagosome formation. Here we report the cryo-electron microscopy structures of human ATG2A in complex with WD-repeat protein interacting with phosphoinositides 4 (WIPI4) at 3.2 Å and the ATG2A-WIPI4-ATG9A complex at 7 Å global resolution. On the basis of molecular dynamics simulations, we propose a mechanism of lipid extraction from the donor membranes. Our analysis revealed 3:1 stoichiometry of the ATG9A-ATG2A complex, directly aligning the ATG9A lateral pore with ATG2A lipid transfer cavity, and an interaction of the ATG9A trimer with both the N-terminal and the C-terminal tip of rod-shaped ATG2A. Cryo-electron tomography of ATG2A liposome-binding states showed that ATG2A tethers lipid vesicles at different orientations. In summary, this study provides a molecular basis for the growth of the phagophore membrane and lends structural insights into spatially coupled lipid transport and re-equilibration during autophagosome formation.
Collapse
Affiliation(s)
- Yang Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Selma Dahmane
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Rujuan Ti
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Xinyi Mai
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| | - Lars-Anders Carlson
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden.
| | - Goran Stjepanovic
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
| |
Collapse
|
29
|
Li X, Zheng J, Su J, Wang L, Luan L, Wang T, Bai F, Zhong Q, Gong Q. Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. Autophagy 2025; 21:141-159. [PMID: 39177202 DOI: 10.1080/15548627.2024.2394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Zheng
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jing Su
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
30
|
Neuman SD, Thakur RS, Gratz SJ, O'Connor-Giles KM, Bashirullah A. Neurodegenerative and neurodevelopmental roles for bulk lipid transporters VPS13A and BLTP2 in movement disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630795. [PMID: 39803515 PMCID: PMC11722402 DOI: 10.1101/2024.12.30.630795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Background Bridge-like lipid transfer proteins (BLTPs) mediate bulk lipid transport at membrane contact sites. Mutations in BLTPs are linked to both early-onset neurodevelopmental and later-onset neurodegenerative diseases, including movement disorders. The tissue specificity and temporal requirements of BLTPs in disease pathogenesis remain poorly understood. Objectives To determine the age-of-onset and tissue-specific roles of VPS13A and BLTP2 in movement disorder pathogenesis using Drosophila models. Methods We generated tissue-specific knockdowns of the VPS13A ortholog ( Vps13 ) and the BLTP2 ortholog ( hobbit ) in neurons and muscles of Drosophila . We analyzed age-dependent locomotor behavior, neurodegeneration, and synapse development and function. Results Neuron-specific loss of the VPS13A ortholog caused neurodegeneration followed by age- onset movement deficits and reduced lifespan, while muscle-specific loss affected only lifespan, revealing neurodegeneration and myopathy as independent comorbidities in VPS13A disease. In contrast, neuronal loss of the BLTP2 ortholog resulted in severe early-onset locomotor defects without neurodegeneration, while muscle loss impaired synaptogenesis and neurotransmission at the neuromuscular junction (NMJ). Conclusions VPS13A maintains neuronal survival, while BLTP2 orchestrates synaptic development. VPS13A function in muscle does not play a role in movement defects. The phenotypic specificity of BLTP function provides mechanistic insights into distinct disease trajectories for BLTP-associated movement disorders.
Collapse
|
31
|
Singh A, Perez ML, Kirsanov O, Padilla-Banks E, Guardia CM. Autophagy in reproduction and pregnancy-associated diseases. iScience 2024; 27:111268. [PMID: 39628569 PMCID: PMC11613427 DOI: 10.1016/j.isci.2024.111268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Abstract
As advantageous as sexual reproduction is during progeny generation, it is also an expensive and treacherous reproductive strategy. The viviparous eukaryote has evolved to survive stress before, during, and after pregnancy. An important and conserved intracellular pathway for the control of metabolic stress is autophagy. The autophagy process occurs in multiple stages through the coordinated action of autophagy-related genes. This review summarizes the evidence that autophagy is an integral component of reproduction. Additionally, we discuss emerging in vitro techniques that will enable cellular and molecular studies of autophagy and its associated pathways in reproduction. Finally, we discuss the role of autophagy in the pathogenesis and progression of several pregnancy-related disorders such as preterm birth, preeclampsia, and intra-uterine growth restriction, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Asmita Singh
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Maira L. Perez
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Oleksandr Kirsanov
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Elizabeth Padilla-Banks
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Carlos M. Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| |
Collapse
|
32
|
Lee M, Son S, Lim HJ, Song H. The differential expression patterns of Atg9a and Atg9b in cells of the reproductive organs. Clin Exp Reprod Med 2024; 51:301-308. [PMID: 38757275 PMCID: PMC11617914 DOI: 10.5653/cerm.2023.06737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE Autophagy is a major intracellular catabolic pathway governed by the sequential actions of proteins encoded by autophagy-related genes (Atg). ATG9, the only transmembrane protein involved in this process, regulates phospholipid translocation to autophagosomes during the early phases of autophagy. In mammals, two Atg9 isoforms have been reported: Atg9a and Atg9b. In this study, we examined whether the molecular and cellular characteristics of these two isoforms differed in mice. METHODS Whole uteri were collected on days 1, 4, and 8 of pregnancy and from ovariectomized mice injected with vehicle, progesterone, or 17β-estradiol. Cells from reproductive tissues, such as granulosa cells, uterine epithelial cells (UECs), uterine stromal cells (USCs), and oocytes were collected. Two human uterine cell lines were also used in this analysis. Reverse transcription-polymerase chain reaction tests, Western blotting, and immunofluorescence staining were performed. Serum starvation conditions were used to induce autophagy in primary cells. RESULTS Atg9a and Atg9b were expressed in multiple mouse tissues and reproductive cells. Neither Atg9A nor Atg9B significantly changed in response to steroid hormones. Immunofluorescence staining of the UECs and USCs showed that ATG9A was distributed in a punctate-like pattern, whereas ATG9B exhibited a pattern of elongated tubular shapes in the cytoplasm. In human cancer cell lines, ATG9B was undetectable, whereas ATG9A was found in all cell types examined. CONCLUSION The Atg9 isoforms exhibited distinct subcellular localizations in UECs and may play different roles in autophagy. Notably, human uterine cells exhibited reduced ATG9B expression, suggesting that this suppression may be due to epigenetic regulation.
Collapse
Affiliation(s)
- Minseo Lee
- Department of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sujin Son
- Department of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyunjung J. Lim
- Department of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
33
|
Zhou YT, Li S, Du SL, Zhao JH, Cai YQ, Zhang ZQ. The multifaceted role of macrophage mitophagy in SiO 2-induced pulmonary fibrosis: A brief review. J Appl Toxicol 2024; 44:1854-1867. [PMID: 38644760 DOI: 10.1002/jat.4612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/23/2024]
Abstract
Prolonged exposure to environments with high concentrations of crystalline silica (CS) can lead to silicosis. Macrophages play a crucial role in the pathogenesis of silicosis. In the process of silicosis, silica (SiO2) invades alveolar macrophages (AMs) and induces mitophagy which usually exists in three states: normal, excessive, and/or deficiency. Different mitophagy states lead to corresponding toxic responses, including successful macrophage repair, injury, necrosis, apoptosis, and even pulmonary fibrosis. This is a complex process accompanied by various cytokines. Unfortunately, the details have not been fully systematically summarized. Therefore, it is necessary to elucidate the role of macrophage mitophagy in SiO2-induced pulmonary fibrosis by systematic analysis on the literature reports. In this review, we first summarized the current data on the macrophage mitophagy in the development of SiO2-induced pulmonary fibrosis. Then, we introduce the molecular mechanism on how SiO2-induced mitophagy causes pulmonary fibrosis. Finally, we focus on introducing new therapies based on newly developed mitophagy-inducing strategies. We conclude that macrophage mitophagy plays a multifaceted role in the progression of SiO2-induced pulmonary fibrosis, and reprogramming the macrophage mitophagy state accordingly may be a potential means of preventing and treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yu-Ting Zhou
- Department of Public Health, Shandong First Medical University, Jinan, China
- Department of Public Health, Jining Medical University, Jining, China
| | - Shuang Li
- Department of Public Health, Jining Medical University, Jining, China
| | - Shu-Ling Du
- Department of Public Health, Jining Medical University, Jining, China
| | - Jia-Hui Zhao
- Department of Public Health, Jining Medical University, Jining, China
| | | | - Zhao-Qiang Zhang
- Department of Public Health, Jining Medical University, Jining, China
| |
Collapse
|
34
|
Sebinelli HG, Syska C, Čopič A, Lenoir G. Established and emerging players in phospholipid scrambling: A structural perspective. Biochimie 2024; 227:111-122. [PMID: 39304020 DOI: 10.1016/j.biochi.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
The maintenance of a diverse and non-homogeneous lipid composition in cell membranes is crucial for a multitude of cellular processes. One important example is transbilayer lipid asymmetry, which refers to a difference in lipid composition between the two leaflets of a cellular membrane. Transbilayer asymmetry is especially pronounced at the plasma membrane, where at resting state, negatively-charged phospholipids such as phosphatidylserine (PS) are almost exclusively restricted to the cytosolic leaflet, whereas sphingolipids are mostly found in the exoplasmic leaflet. Transbilayer movement of lipids is inherently slow, and for a fast cellular response, for example during apoptosis, transmembrane proteins termed scramblases facilitate the movement of polar/charged lipid headgroups through the membrane interior. In recent years, an expanding number of proteins from diverse families have been suggested to possess a lipid scramblase activity. Members of TMEM16 and XKR proteins have been implicated in blood clotting and apoptosis, whereas the scrambling activity of ATG9 and TMEM41B/VMP1 proteins contributes to the synthesis of autophagosomal membrane during autophagy. Structural studies, in vitro reconstitution of lipid scrambling, and molecular dynamics simulations have significantly advanced our understanding of the molecular mechanisms of lipid scrambling and helped delineate potential lipid transport pathways through the membrane. A number of examples also suggest that lipid scrambling activity can be combined with another activity, as is the case for TMEM16 proteins, which also function as ion channels, rhodopsin in the photoreceptor membrane, and possibly other G-protein coupled receptors.
Collapse
Affiliation(s)
- Heitor Gobbi Sebinelli
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France
| | - Camille Syska
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, Cedex 05, France
| | - Alenka Čopič
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, CNRS, 34293, Montpellier, Cedex 05, France
| | - Guillaume Lenoir
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, Gif-sur-Yvette, France.
| |
Collapse
|
35
|
Lyu J, Zhang H, Wang C, Pan M. New insight in treating autoimmune diseases by targeting autophagy. Autoimmunity 2024; 57:2351872. [PMID: 38739691 DOI: 10.1080/08916934.2024.2351872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.
Collapse
Affiliation(s)
- Jiao Lyu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongqian Zhang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chaoyang Wang
- The Key Medical Laboratory for Chemical Poison Detection of Henan Province, The Third People's Hospital of Henan Province, Zhengzhou, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Ahmad F, Ahmad S, Srivastav AK, Upadhyay TK, Husain A, Khubaib M, Kang S, Park MN, Kim B, Sharma R. "β-glucan signalling stimulates NOX-2 dependent autophagy and LC-3 associated autophagy (LAP) pathway". Int J Biol Macromol 2024; 282:136520. [PMID: 39401634 DOI: 10.1016/j.ijbiomac.2024.136520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/19/2024]
Abstract
β-Glucan, a complex polysaccharide derived from fungal and yeast cell walls, plays a crucial role in modulating immune responses through their interaction with receptors such as Dectin-1 and Complement receptor 3 (CR-3). This review provides an in-depth analysis of the molecular mechanisms by which β-glucans activate receptor-mediated signalling pathways, focusing particularly on the LC3-associated phagocytosis (LAP) and autophagy pathways. Hence, we explore how β-glucan receptor engagement stimulates NADPH oxidase 2 (NOX-2), leading to the intracellular production of significant level of reactive oxygen species (ROS) essential for both conventional autophagy and LAP. While significant progress has been made in elucidation of downstream signaling by glucans, the regulation of phago-lysosomal maturation and antigen presentation during LAP induction still remains less explored. This review aims to provide a comprehensive overview of these pathways and their regulation by β-glucans. By consolidating the current knowledge, we seek to highlight how these mechanisms can be leveraged for therapeutic applications, particularly in the context of tuberculosis (TB) management, where β-glucans could serve as host-directed adjuvant therapies to combat drug-resistant strains. Despite major advancements in this field, currently key research gaps still persist, including detailed molecular interactions between β-glucan receptors and NOX-2 and the translation of these findings to in-vivo models and clinical investigations. This review underscores the need for further research to explore the therapeutic potential of β-glucans in managing not only tuberculosis but also other diseases such as cancer, cardiovascular conditions, and metabolic disorders.
Collapse
Affiliation(s)
- Firoz Ahmad
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Physiological Sciences, Oklahoma Centre for Respiratory and Infectious Diseases, Oklahoma State University, OK 74074, United States of America
| | - Shad Ahmad
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, Uttar Pradesh, India
| | - Anurag Kumar Srivastav
- Department of Clinical Immunology & Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| | - Tarun Kumar Upadhyay
- Department of Life Sciences, Parul Institute of Applied Sciences & Research and Development Cell, Parul University, Vadodara 391760, Gujarat, India
| | - Adil Husain
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India; Department of Biochemistry, Babu Banarasi Das [BBD] College of Dental Sciences BBD University, Lucknow 226028, Uttar Pradesh, India
| | - Mohd Khubaib
- Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, the Republic of Korea.
| | - Rolee Sharma
- Department of Life Sciences & Biotechnology, CSJM University, Kanpur 228024, Uttar Pradesh, India.
| |
Collapse
|
37
|
Liu T, Zheng Y, Zhou S, Wang Y, Lei X, Xie L, Lin Q, Chang C, Xiao S, Qiu R, Qi H. 14-3-3 proteins inhibit autophagy by regulating SINAT-mediated proteolysis of ATG6 in Arabidopsis. BMC PLANT BIOLOGY 2024; 24:1148. [PMID: 39609744 PMCID: PMC11605875 DOI: 10.1186/s12870-024-05854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Autophagy is a conserved cellular process crucial for recycling cytoplasmic components and maintaining cellular homeostasis in eukaryotes. During autophagy, the formation of a protein complex involving AUTOPHAGY-RELATED PROTEIN 6 (ATG6) and phosphatidylinositol 3-kinase is pivotal for recruiting proteins involved in phagophore expansion. However, the intricate molecular mechanism regulating this protein complex in plants remains elusive. RESULTS Here, we aimed to unravel the molecular regulation of autophagy dynamics in Arabidopsis thaliana by investigating the involvement of the scaffold proteins 14-3-3λ and 14-3-3κ in regulating the proteolysis of ATG6. Phenotypic analyses revealed that 14-3-3λ and 14-3-3κ overexpression lines exhibited increased sensitivity to nutrient starvation, premature leaf senescence, and a decrease in starvation-induced autophagic vesicles, resembling the phenotypes of autophagy-defective mutants, suggesting the potential roles of 14-3-3 proteins in regulating autophagy in plants. Furthermore, our investigation unveiled the involvement of 14-3-3λ and 14-3-3κ in the RING finger E3 ligase SINAT1-mediated ubiquitination and destabilization of ATG6 in vivo. We also observed repressed turnover of ATG6 and translocation of GFP-ATG6 to mCherry-ATG8a-labelled punctate structures in the autophagy-defective mutant, which suggesting that ATG6 is probably a target of autophagy. Additionally, 14-3-3λ and 14-3-3κ interacted with Tumor necrosis factor Receptor Associated Factor 1a (TRAF1a) to promote the stability of TRAF1a in vivo under nutrient-rich conditions, suggesting a feedback regulation of autophagy. These findings demonstrate that 14-3-3λ and 14-3-3κ serve as scaffold proteins to regulate autophagy by facilitating the SINAT1-mediated proteolysis of ATG6, involving both direct and indirect mechanisms, in plants. CONCLUSIONS 14-3-3 proteins regulate autophagy by directly or indirectly binding to ATG6 and SINAT1 to promote ubiquitination and degradation of ATG6. 14-3-3 proteins are involved in modulating autophagy dynamics by facilitating SINAT1-mediated ubiquitination and degradation of ATG6.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yuping Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shunkang Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Yao Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xue Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lijuan Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Changqing Chang
- Guangdong Provincial Key Laboratory of Microbial Signals and Disease Control, Integrate Microbiology Research Center, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Hua Qi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
38
|
Wei Z, Hu X, Wu Y, Zhou L, Zhao M, Lin Q. Molecular Mechanisms Underlying Initiation and Activation of Autophagy. Biomolecules 2024; 14:1517. [PMID: 39766224 PMCID: PMC11673044 DOI: 10.3390/biom14121517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Autophagy is an important catabolic process to maintain cellular homeostasis and antagonize cellular stresses. The initiation and activation are two of the most important aspects of the autophagic process. This review focuses on mechanisms underlying autophagy initiation and activation and signaling pathways regulating the activation of autophagy found in recent years. These findings include autophagy initiation by liquid-liquid phase separation (LLPS), autophagy initiation in the endoplasmic reticulum (ER) and Golgi apparatus, and the signaling pathways mediated by the ULK1 complex, the mTOR complex, the AMPK complex, and the PI3KC3 complex. Through the review, we attempt to present current research progress in autophagy regulation and forward our understanding of the regulatory mechanisms and signaling pathways of autophagy initiation and activation.
Collapse
Affiliation(s)
| | | | | | | | | | - Qiong Lin
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.W.); (X.H.); (Y.W.); (L.Z.); (M.Z.)
| |
Collapse
|
39
|
Kolli S, Kline CJ, Rad KM, Wehman AM. Phagolysosomes break down the membrane of a non-apoptotic corpse independent of macroautophagy. PLoS One 2024; 19:e0306435. [PMID: 39570954 PMCID: PMC11581207 DOI: 10.1371/journal.pone.0306435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/02/2024] [Indexed: 11/24/2024] Open
Abstract
Cell corpses must be cleared in an efficient manner to maintain tissue homeostasis and regulate immune responses. Ubiquitin-like Atg8/LC3 family proteins promote the degradation of membranes and internal cargo during both macroautophagy and corpse clearance, raising the question how macroautophagy contributes to corpse clearance. Studying the clearance of non-apoptotic dying polar bodies in Caenorhabditis elegans embryos, we show that the LC3 ortholog LGG-2 is enriched inside the polar body phagolysosome independent of autophagosome formation. We demonstrate that ATG-16.1 and ATG-16.2, which promote membrane association of lipidated Atg8/LC3 proteins, redundantly promote polar body membrane breakdown in phagolysosomes independent of their role in macroautophagy. We also show that the lipid scramblase ATG-9 is needed for autophagosome formation in early embryos but is dispensable for timely polar body membrane breakdown or protein cargo degradation. These findings demonstrate that macroautophagy is not required to promote polar body degradation, in contrast to recent findings with apoptotic corpse clearance in C. elegans embryos. Determining how factors regulating Atg8/LC3 promote the breakdown of different types of cell corpses in distinct cell types or metabolic states is likely to give insights into the mechanisms of immunoregulation during normal development, physiology, and disease.
Collapse
Affiliation(s)
- Shruti Kolli
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Cassidy J. Kline
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Kimya M. Rad
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| | - Ann M. Wehman
- Department of Biological Sciences, University of Denver, Denver, Colorado, United States of America
| |
Collapse
|
40
|
Choi J, Jang H, Xuan Z, Park D. Emerging roles of ATG9/ATG9A in autophagy: implications for cell and neurobiology. Autophagy 2024; 20:2373-2387. [PMID: 39099167 PMCID: PMC11572220 DOI: 10.1080/15548627.2024.2384349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
Atg9, the only transmembrane protein among many autophagy-related proteins, was first identified in the year 2000 in yeast. Two homologs of Atg9, ATG9A and ATG9B, have been found in mammals. While ATG9B shows a tissue-specific expression pattern, such as in the placenta and pituitary gland, ATG9A is ubiquitously expressed. Additionally, ATG9A deficiency leads to severe defects not only at the molecular and cellular levels but also at the organismal level, suggesting key and fundamental roles for ATG9A. The subcellular localization of ATG9A on small vesicles and its functional relevance to autophagy have suggested a potential role for ATG9A in the lipid supply during autophagosome biogenesis. Nevertheless, the precise role of ATG9A in the autophagic process has remained a long-standing mystery, especially in neurons. Recent findings, however, including structural, proteomic, and biochemical analyses, have provided new insights into its function in the expansion of the phagophore membrane. In this review, we aim to understand various aspects of ATG9 (in invertebrates and plants)/ATG9A (in mammals), including its localization, trafficking, and other functions, in nonneuronal cells and neurons by comparing recent discoveries related to ATG9/ATG9A and proposing directions for future research.Abbreviation: AP-4: adaptor protein complex 4; ATG: autophagy related; cKO: conditional knockout; CLA-1: CLArinet (functional homolog of cytomatrix at the active zone proteins piccolo and fife); cryo-EM: cryogenic electron microscopy; ER: endoplasmic reticulum; KO: knockout; PAS: phagophore assembly site; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SV: synaptic vesicle; TGN: trans-Golgi network; ULK: unc-51 like autophagy activating kinase; WIPI2: WD repeat domain, phosphoinositide interacting 2.
Collapse
Affiliation(s)
- Jiyoung Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| | - Haeun Jang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
| | - Zhao Xuan
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Daehun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, South Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| |
Collapse
|
41
|
Gestal-Mato U, Herhaus L. Autophagy-dependent regulation of MHC-I molecule presentation. J Cell Biochem 2024; 125:e30416. [PMID: 37126231 DOI: 10.1002/jcb.30416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/03/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
The major histocompatibility complex (MHC) class I molecules present peptide antigens to MHC class I-restricted CD8+ T lymphocytes to elicit an effective immune response. The conventional antigen-processing pathway for MHC-I presentation depends on proteasome-mediated peptide generation and peptide loading in the endoplasmic reticulum by members of the peptide loading complex. Recent discoveries in this field highlight the role of alternative MHC-I peptide loading and presentation pathways, one of them being autophagy. Autophagy is a cell-intrinsic degradative pathway that ensures cellular homoeostasis and plays critical roles in cellular immunity. In this review article, we discuss the role of autophagy in MHC class I-restricted antigen presentation, elucidating new findings on the crosstalk of autophagy and ER-mediated MHC-I peptide presentation, dendritic cell-mediated cross-presentation and also mechanisms governing immune evasion. A detailed molecular understanding of the key drivers of autophagy-mediated MHC-I modulation holds promising targets to devise effective measures to improve T cell immunotherapies.
Collapse
Affiliation(s)
- Uxia Gestal-Mato
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| | - Lina Herhaus
- Goethe University School of Medicine, Institute of Biochemistry II, Frankfurt am Main, Germany
| |
Collapse
|
42
|
Norell PN, Campisi D, Mohan J, Wollert T. Biogenesis of omegasomes and autophagosomes in mammalian autophagy. Biochem Soc Trans 2024; 52:2145-2155. [PMID: 39392358 PMCID: PMC11555699 DOI: 10.1042/bst20240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Autophagy is a highly conserved catabolic pathway that maintains cellular homeostasis by promoting the degradation of damaged or superfluous cytoplasmic material. A hallmark of autophagy is the generation of membrane cisternae that sequester autophagic cargo. Expansion of these structures allows cargo to be engulfed in a highly selective and exclusive manner. Cytotoxic stress or starvation induces the formation of autophagosomes that sequester bulk cytoplasm instead of selected cargo. This rather nonselective pathway is essential for maintaining vital cellular functions during adverse conditions and is thus a major stress response pathway. Both selective and nonselective autophagy rely on the same molecular machinery. However, due to the different nature of cargo to be sequestered, the involved molecular mechanisms are fundamentally different. Although intense research over the past decades has advanced our understanding of autophagy, fundamental questions remain to be addressed. This review will focus on molecular principles and open questions regarding the formation of omegasomes and phagophores in nonselective mammalian autophagy.
Collapse
Affiliation(s)
- Puck N. Norell
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Daniele Campisi
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Jagan Mohan
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| | - Thomas Wollert
- Membrane Biochemistry and Transport, Institut Pasteur, Université de Paris, UMR3691 CNRS, 75015 Paris, France
| |
Collapse
|
43
|
Braun MM, Sheehan BK, Shapiro SL, Ding Y, Rubinstein CD, Lehman BP, Puglielli L. Ca +2 and Nε-lysine acetylation regulate the CALR-ATG9A interaction in the lumen of the endoplasmic reticulum. Sci Rep 2024; 14:25532. [PMID: 39462136 PMCID: PMC11513142 DOI: 10.1038/s41598-024-76854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The acetylation of autophagy protein 9 A (ATG9A) in the lumen of the endoplasmic reticulum (ER) by ATase1 and ATase2 regulates the induction of reticulophagy. Analysis of the ER-specific ATG9A interactome identified calreticulin (CALR), an ER luminal Ca+2-binding chaperone, as key for ATG9A activity. Specifically, if acetylated, ATG9A is sequestered by CALR and prevented from engaging FAM134B and SEC62. Under this condition, ATG9A is unable to activate the autophagy core machinery. In contrast, when non-acetylated, ATG9A is released by CALR and able to engage FAM134B and SEC62. In this study, we report that Ca+2 dynamics across the ER membrane regulate the ATG9A-CALR interaction as well as the ability of ATG9A to trigger reticulophagy. We show that the Ca+2-binding sites situated on the C-domain of CALR are essential for the ATG9A-CALR interaction. Finally, we show that K359 and K363 on ATG9A can influence the ATG9A-CALR interaction. Collectively, our results disclose a previously unidentified aspect of the complex mechanisms that regulate ATG9A activity. They also offer a possible area of intersection between Ca+2 metabolism, acetyl-CoA metabolism, and ER proteostasis.
Collapse
Affiliation(s)
- Megan M Braun
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brendan K Sheehan
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
- Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Samantha L Shapiro
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Yun Ding
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Lilly Oncology, San Diego, CA, 92121, USA
| | - C Dustin Rubinstein
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brent P Lehman
- Biotechnology Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Luigi Puglielli
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
44
|
Qin Y, Zhou G, Jiao F, Cheng C, Meng C, Wang L, Wu S, Fan C, Li J, Zhou B, Chu Y, Jiao H. Brucella mediates autophagy, inflammation, and apoptosis to escape host killing. Front Cell Infect Microbiol 2024; 14:1408407. [PMID: 39507949 PMCID: PMC11537862 DOI: 10.3389/fcimb.2024.1408407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/26/2024] [Indexed: 11/08/2024] Open
Abstract
Brucellosis is a serious zoonosis caused by Brucella spp. infection, which not only seriously jeopardizes the health of humans and mammals, but also causes huge economic losses to the livestock industry. Brucella is a Gram-negative intracellular bacterium that relies primarily on its virulence factors and a variety of evolved survival strategies to replicate and proliferate within cells. Currently, the mechanisms of autophagy, inflammation, and apoptosis in Brucella-infected hosts are not fully understood and require further research and discussion. This review focuses on the relationship between Brucella and autophagy, inflammation, and apoptosis to provide the scientific basis for revealing the pathogenesis of Brucella.
Collapse
Affiliation(s)
- Yaqiong Qin
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Gengxu Zhou
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Fengyuan Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chuan Cheng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chi Meng
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lingjie Wang
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Shengping Wu
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Cailiang Fan
- The College of Veterinary Medicine, Southwest University, Chongqing, China
- Animal Epidemic Prevention and Control Center of Rongchang, Chongqing, China
| | - Jixiang Li
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Bo Zhou
- Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Hanwei Jiao
- The College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Thaprawat P, Zhang Z, Rentchler EC, Wang F, Chalasani S, Giuliano CJ, Lourido S, Di Cristina M, Klionsky DJ, Carruthers VB. TgATG9 is required for autophagosome biogenesis and maintenance of chronic infection in Toxoplasma gondii. AUTOPHAGY REPORTS 2024; 3:2418256. [PMID: 39600488 PMCID: PMC11588310 DOI: 10.1080/27694127.2024.2418256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024]
Abstract
Toxoplasma gondii is a ubiquitous protozoan parasite that can reside long-term within hosts as intracellular tissue cysts comprised of chronic stage bradyzoites. To perturb chronic infection requires a better understanding of the cellular processes that mediate parasite persistence. Macroautophagy/autophagy is a catabolic and homeostatic pathway that is required for T. gondii chronic infection, although the molecular details of this process remain poorly understood. A key step in autophagy is the initial formation of the phagophore that sequesters cytoplasmic components and matures into a double-membraned autophagosome for delivery of the cargo to a cell's digestive organelle for degradative recycling. While T. gondii appears to have a reduced repertoire of autophagy proteins, it possesses a putative phospholipid scramblase, TgATG9. Through structural modeling and complementation assays, we show herein that TgATG9 can partially rescue bulk autophagy in atg9Δ yeast. We demonstrated the importance of TgATG9 for proper autophagosome dynamics at the subcellular level using three-dimensional live cell lattice light sheet microscopy. Conditional knockdown of TgATG9 in T. gondii after bradyzoite differentiation resulted in markedly reduced parasite viability. Together, our findings provide insights into the molecular dynamics of autophagosome biogenesis within an early-branching eukaryote and pinpoint the indispensable role of autophagy in maintaining T. gondii chronic infection.
Collapse
Affiliation(s)
- Pariyamon Thaprawat
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhihai Zhang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eric C. Rentchler
- Biomedical Research Core Facilities, Microscopy Core, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fengrong Wang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shreya Chalasani
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher J. Giuliano
- Whitehead Institute, Cambridge, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Sebastian Lourido
- Whitehead Institute, Cambridge, USA
- Biology Department, Massachusetts Institute of Technology, Cambridge, USA
| | - Manlio Di Cristina
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
46
|
Mohammed WH, Sulaiman GM, Abomughaid MM, Klionsky DJ, Abu-Alghayth MH. The dual role of autophagy in suppressing and promoting hepatocellular carcinoma. Front Cell Dev Biol 2024; 12:1472574. [PMID: 39463763 PMCID: PMC11502961 DOI: 10.3389/fcell.2024.1472574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
The 5-year survival rate for hepatocellular carcinoma (HCC), a deadly form of liver cancer, is quite low. Although drug therapy is successful, patients with advanced liver cancer frequently develop resistance because of the significant phenotypic and genetic heterogeneity of these cells. The overexpression of drug efflux transporters, downstream adaptive responses, malfunctioning DNA damage repair, epigenetic modification, the tumor microenvironment, and the extracellular matrix can all be linked to drug resistance. The evolutionary process of autophagy, which is in charge of intracellular breakdown, is intimately linked to medication resistance in HCC. Autophagy is involved in both the promotion and suppression of cancer by influencing treatment resistance, metastasis, carcinogenesis, and the viability of stem cells. Certain autophagy regulators are employed in anticancer treatment; however, because of the dual functions of autophagy, their use is restricted, and therapeutic failure is increased. By focusing on autophagy, it is possible to reduce HCC expansion and metastasis, and enhance tumor cell reactivity to treatment. Macroautophagy, the best-characterized type of autophagy, involves the formation of a sequestering compartment termed a phagophore, which surrounds and encloses aberrant or superfluous components. The phagophore matures into a double-membrane autophagosome that delivers the cargo to the lysosome; lysosomes and autophagosomes fuse to degrade and recycle the cargo. Macroautophagy plays dual functions in both promoting and suppressing cancer in a variety of cancer types.
Collapse
Affiliation(s)
- Wasnaa H. Mohammed
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M. Sulaiman
- Department of Biotechnology, College of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Mosleh M. Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mohammed H. Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
47
|
Han J, Zheng D, Liu PS, Wang S, Xie X. Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis. Cell Commun Signal 2024; 22:475. [PMID: 39367496 PMCID: PMC11451054 DOI: 10.1186/s12964-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jiwei Han
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
48
|
Feng Z, Alvarenga OE, Accardi A. Structural basis of closed groove scrambling by a TMEM16 protein. Nat Struct Mol Biol 2024; 31:1468-1481. [PMID: 38684930 DOI: 10.1038/s41594-024-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
Activation of Ca2+-dependent TMEM16 scramblases induces phosphatidylserine externalization, a key step in multiple signaling processes. Current models suggest that the TMEM16s scramble lipids by deforming the membrane near a hydrophilic groove and that Ca2+ dependence arises from the different association of lipids with an open or closed groove. However, the molecular rearrangements underlying groove opening and how lipids reorganize outside the closed groove remain unknown. Here we directly visualize how lipids associate at the closed groove of Ca2+-bound fungal nhTMEM16 in nanodiscs using cryo-EM. Functional experiments pinpoint lipid-protein interaction sites critical for closed groove scrambling. Structural and functional analyses suggest groove opening entails the sequential appearance of two π-helical turns in the groove-lining TM6 helix and identify critical rearrangements. Finally, we show that the choice of scaffold protein and lipids affects the conformations of nhTMEM16 and their distribution, highlighting a key role of these factors in cryo-EM structure determination.
Collapse
Affiliation(s)
- Zhang Feng
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA
| | - Omar E Alvarenga
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medical College, New York, NY, USA
| | - Alessio Accardi
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, USA.
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA.
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
49
|
Filali-Mouncef Y, Leytens A, Vargas Duarte P, Zampieri M, Dengjel J, Reggiori F. An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast Saccharomyces cerevisiae. Autophagy 2024; 20:2323-2337. [PMID: 38958087 PMCID: PMC11423678 DOI: 10.1080/15548627.2024.2366749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Autophagosome biogenesis is a complex process orchestrated by dynamic interactions between Atg (autophagy-related) proteins and characterized by the turnover of specific cargoes, which can differ over time and depending on how autophagy is stimulated. Proteomic analyses are central to uncover protein-protein interaction networks and when combined with proximity-dependent biotinylation or proximity labeling (PL) approaches, they also permit to detect transient and weak interactions. However, current PL procedures for yeast Saccharomyces cerevisiae, one of the leading models for the study of autophagy, do not allow to keep temporal specificity and thus identify interactions and cargoes at a precise time point upon autophagy induction. Here, we present a new ascorbate peroxidase 2 (APEX2)-based PL protocol adapted to yeast that preserves temporal specificity and allows uncovering neighbor proteins by either western blot or proteomics. As a proof of concept, we applied this new method to identify Atg8 and Atg9 interactors and detected known binding partners as well as potential uncharacterized ones in rich and nitrogen starvation conditions. Also, as a proof of concept, we confirmed the spatial proximity interaction between Atg8 and Faa1. We believe that this protocol will be a new important experimental tool for all those researchers studying the mechanism and roles of autophagy in yeast, but also other cellular pathways in this model organism.Abbreviations: APEX2, ascorbate peroxidase 2, Atg, autophagy-related; BP, biotin phenol; Cvt, cytoplasm-to-vacuole targeting; ER, endoplasmic reticulum; LN2, liquid nitrogen; MS, mass spectrometry; PAS, phagophore assembly site; PL, proximity labeling; PE, phosphatidylethanolamine; PPINs, protein-protein interaction networks; PPIs, protein-protein interactions; RT, room temperature; SARs, selective autophagy receptors; WT, wild-type.
Collapse
Affiliation(s)
- Yasmina Filali-Mouncef
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, AV, The Netherlands
| | - Alexandre Leytens
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Mattia Zampieri
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, AV, The Netherlands
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus C, Denmark
| |
Collapse
|
50
|
Rockenfeller P. Phospholipid Scramblase Activity of VDAC Dimers: New Implications for Cell Death, Autophagy and Ageing. Biomolecules 2024; 14:1218. [PMID: 39456151 PMCID: PMC11506367 DOI: 10.3390/biom14101218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Voltage-dependent anion channels (VDACs) are important proteins of the outer mitochondrial membrane (OMM). Their beta-barrel structure allows for efficient metabolite exchange between the cytosol and mitochondria. VDACs have further been implicated in the control of regulated cell death. Historically, VDACs have been pictured as part of the mitochondrial permeability transition pore (MPTP). New concepts of regulated cell death involving VDACs include its oligomerisation to form a large pore complex in the OMM; however, alternative VDAC localisation to the plasma membrane has been suggested in the literature and will be discussed regarding its potential role during cell death. Very recently, a phospholipid scramblase activity has been attributed to VDAC dimers, which explains the manifold lipidomic changes observed in VDAC-deficient yeast strains. In this review, I highlight the recent advances regarding VDAC's phospholipid scramblase function and discuss how this new insight sheds new light on VDAC's implication in regulated cell death, autophagy, and ageing.
Collapse
Affiliation(s)
- Patrick Rockenfeller
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke (UW/H), Stockumer Str. 10, 58453 Witten, Germany
| |
Collapse
|