1
|
Hu X, Wu J, Shi L, Wang F, He K, Tan P, Hu Y, Yang Y, Wang D, Ma T, Ding S. The transcription factor MEF2C restrains microglial overactivation by inhibiting kinase CDK2. Immunity 2025; 58:946-960.e10. [PMID: 40139186 DOI: 10.1016/j.immuni.2025.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/14/2024] [Accepted: 02/26/2025] [Indexed: 03/29/2025]
Abstract
Microglial intrinsic immune checkpoints are essential safeguards to maintain immune homeostasis by preventing microglial overactivation, a process that substantially influences neurological disorders such as autism spectrum disorder (ASD). MEF2C is a crucial immune checkpoint that regulates microglial activation, but the mechanism remains unclear. We found that MEF2C-deficient (MEF2C-/-) induced microglia-like cells (iMGLs) derived from human pluripotent stem cells (hPSCs) exhibited overactivation following lipopolysaccharide stimulation, mimicking patterns observed in various neuroinflammatory disorders. High-throughput screening identified BMS265246, a cyclin-dependent kinase 2 (CDK2) inhibitor, which suppressed overactivation of MEF2C-/- iMGLs and normalized their inflammatory responses. Mechanistically, MEF2C transcriptionally upregulated p21 to inhibit CDK2 activation-mediated retinoblastoma protein (RB) degradation, thereby preventing transcription factor nuclear factor κB (NFκB) nuclear translocation and consequent microglial overactivation. BMS265246 treatment substantially ameliorated microglial overactivation and ASD-like behaviors in Mef2c-deficient mice. Our findings identify the MEF2C-p21-CDK2-RB-NFκB axis as a critical pathway to maintain microglial homeostasis and highlight CDK2 as a potential therapeutic target for neuroinflammation.
Collapse
Affiliation(s)
- Xiaodan Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianchen Wu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Shi
- CRE Life Institute, Beijing 100000, China
| | - Folin Wang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Kezhang He
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Pengcheng Tan
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yanyan Hu
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanyuan Yang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Dan Wang
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Sheng Ding
- New Cornerstone Science Laboratory, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
da Silva Siqueira L, Rodrigues FVF, Zanatta Â, Gonçalves JIB, Ghilardi IM, Alcará AM, Becker NB, Pinzetta G, Zanirati G, Becker BMA, Erwig HS, da Costa JC, Marinowic DR. Evaluation of the effects of the Zika Virus-Immunoglobulin G + complex on murine microglial cells. J Neurovirol 2024; 30:477-488. [PMID: 38935226 DOI: 10.1007/s13365-024-01218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
After the Zika virus (ZIKV) epidemic in Brazil, ZIKV infections were linked to damage to the central nervous system (CNS) and congenital anomalies. Due to the virus's ability to cross the placenta and reach brain tissue, its effects become severe, leading to Congenital Zika Syndrome (CZS) and resulting in neuroinflammation, microglial activation, and secretion of neurotoxic factors. The presence of ZIKV triggers an inadequate fetal immune response, as the fetus only has the protection of maternal antibodies of the Immunoglobulin G (IgG) class, which are the only antibodies capable of crossing the placenta. Because of limited understanding regarding the long term consequences of ZIKV infection and the involvement of maternal antibodies, this study sought to assess the impact of the ZIKV + IgG⁺complex on murine microglial cells. The cells were exposed to ZIKV, IgG antibodies, and the ZIKV + IgG⁺complex for 24 and 72 h. Treatment-induced cytotoxic effects were evaluated using the cell viability assay, oxidative stress, and mitochondrial membrane potential. The findings indicated that IgG antibodies exhibit cytotoxic effects on microglia, whether alone or in the presence of ZIKV, leading to compromised cell viability, disrupted mitochondrial membrane potential, and heightened oxidative damage. Our conclusion is that IgG antibodies exert detrimental effects on microglia, triggering their activation and potentially disrupting the creation of a neurotoxic environment. Moreover, the presence of antibodies may correlate with an elevated risk of ZIKV-induced neuroinflammation, contributing to long-term CNS damage.
Collapse
Affiliation(s)
- Laura da Silva Siqueira
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Felipe Valle Fortes Rodrigues
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Ângela Zanatta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - João Ismael Budelon Gonçalves
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Isadora Machado Ghilardi
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Allan Marinho Alcará
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Nicole Bernd Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Giulia Pinzetta
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Gabriele Zanirati
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Bruno Maestri Abrianos Becker
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Helena Scartassini Erwig
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
| | - Jaderson Costa da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga 6690, Porto Alegre, 90610-000, RS, Brazil.
- School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, RS, Brazil.
| |
Collapse
|
3
|
Huang H, He X, Shi L, Yu J, Lu Z, Cao H, Ou J, Chen X, Yan L, Yang J, Zhao W, Liu J, Yu L. Tanreqing injection inhibits dengue virus encephalitis by suppressing the activation of NLRP3 inflammasome. Chin Med 2024; 19:24. [PMID: 38355571 PMCID: PMC10868054 DOI: 10.1186/s13020-024-00893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Encephalitis caused by dengue virus (DENV) is considered a manifestation of severe dengue. Tanreqing injection (TRQ) is a well-known Chinese patented medicine, which has been used to treat brain-related disorders by inhibiting inflammation. Nevertheless, the effects of TRQ on DENV encephalitis have not been studied. The aim of this study was to evaluate the effects of TRQ on DENV encephalitis and to explore its potential mechanisms. METHODS The cytotoxicity of TRQ was examined by MTT assay, and the anti-DENV activities of TRQ in BHK-21 baby hamster kidney fibroblast were evaluated through CCK-8 and plaque assays. The expression levels of NO, IL1B/IL-1β, TNFα and IL6 were measured by qRT‒PCR and ELISA in the BV2 murine microglial cell line. The inhibitory effects of TRQ on NLRP3 inflammasome activation in BV2 cells were examined by Western blotting, qRT‒PCR and ELISA. The effects of TRQ on HT22 mouse hippocampal neuronal cells were examined by CCK-8 assay, morphology observation and flow cytometry. Moreover, a DENV-infected ICR suckling mouse model was developed to investigate the protective role of TRQ in vivo. RESULTS TRQ decreased the release of NO, IL6, TNFα and IL1B from BV2 cells and inhibited the activation of NLRP3. The presence of the NLRP3 agonist nigericin reversed the anti-inflammatory activities of TRQ. Furthermore, TRQ inhibited the death of HT22 cells by decreasing IL1B in DENV-infected BV2 cells. In addition, TRQ significantly attenuated weight loss, reduced clinical scores and extended the survival in DENV-infected ICR suckling mice. Critically, TRQ ameliorated pathological changes in ICR suckling mice brain by inhibiting microglia and NLRP3 activation and decreasing the production of inflammatory factors and the number of dead neurons. CONCLUSION TRQ exerts potent inhibitory effects on dengue encephalitis in vitro and in vivo by reducing DENV-2-induced microglial activation and subsequently decreasing the inflammatory response, thereby protecting neurons. These findings demonstrate the potential of TRQ in the treatment of dengue encephalitis.
Collapse
Affiliation(s)
- Hefei Huang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuemei He
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lingzhu Shi
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jingtao Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zibin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huihui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinying Ou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lijun Yan
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jiabin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Junshan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Linzhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
4
|
Rani A, Ergün S, Karnati S, Jha HC. Understanding the link between neurotropic viruses, BBB permeability, and MS pathogenesis. J Neurovirol 2024; 30:22-38. [PMID: 38189894 DOI: 10.1007/s13365-023-01190-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024]
Abstract
Neurotropic viruses can infiltrate the CNS by crossing the blood-brain barrier (BBB) through various mechanisms including paracellular, transcellular, and "Trojan horse" mechanisms during leukocyte diapedesis. These viruses belong to several families, including retroviruses; human immunodeficiency virus type 1 (HIV-1), flaviviruses; Japanese encephalitis (JEV); and herpesviruses; herpes simplex virus type 1 (HSV-1), Epstein-Barr virus (EBV), and mouse adenovirus 1 (MAV-1). For entering the brain, viral proteins act upon the tight junctions (TJs) between the brain microvascular endothelial cells (BMECs). For instance, HIV-1 proteins, such as glycoprotein 120, Nef, Vpr, and Tat, disrupt the BBB and generate a neurotoxic effect. Recombinant-Tat triggers amendments in the BBB by decreasing expression of the TJ proteins such as claudin-1, claudin-5, and zona occludens-1 (ZO-1). Thus, the breaching of BBB has been reported in myriad of neurological diseases including multiple sclerosis (MS). Neurotropic viruses also exhibit molecular mimicry with several myelin sheath proteins, i.e., antibodies against EBV nuclear antigen 1 (EBNA1) aa411-426 cross-react with MBP and EBNA1 aa385-420 was found to be associated with MS risk haplotype HLA-DRB1*150. Notably, myelin protein epitopes (PLP139-151, MOG35-55, and MBP87-99) are being used to generate model systems for MS such as experimental autoimmune encephalomyelitis (EAE) to understand the disease mechanism and therapeutics. Viruses like Theiler's murine encephalomyelitis virus (TMEV) are also commonly used to generate EAE. Altogether, this review provide insights into the viruses' association with BBB leakiness and MS along with possible mechanistic details which could potentially use for therapeutics.
Collapse
Affiliation(s)
- Annu Rani
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, 97070, Germany
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India.
| |
Collapse
|
5
|
Bastos V, Pacheco V, Rodrigues ÉDL, Moraes CNS, Nóbile AL, Fonseca DLM, Souza KBS, do Vale FYN, Filgueiras IS, Schimke LF, Giil LM, Moll G, Cabral-Miranda G, Ochs HD, Vasconcelos PFDC, de Melo GD, Bourhy H, Casseb LMN, Cabral-Marques O. Neuroimmunology of rabies: New insights into an ancient disease. J Med Virol 2023; 95:e29042. [PMID: 37885152 DOI: 10.1002/jmv.29042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.
Collapse
Affiliation(s)
- Victor Bastos
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Vinicius Pacheco
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Érika D L Rodrigues
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Cássia N S Moraes
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Adriel L Nóbile
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo, São Paulo, Brazil
| | - Kamilla B S Souza
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Fernando Y N do Vale
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
| | - Igor S Filgueiras
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lena F Schimke
- Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | | | - Hans D Ochs
- School of Medicine and Seattle Children's Research Institute, University of Washington, Seattle, Washington, USA
| | - Pedro F da Costa Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
- Department of Pathology, University of the State of Pará, Belem, Brazil
| | - Guilherme D de Melo
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, Paris, France
| | - Livia M N Casseb
- Department of Arbovirology and Hemorrhagic Fevers, PAHO Collaborating Centre for Emerging and Reemerging Arboviruses and other Zoonotic Viruses, Evandro Chagas Institute, Ananindeua, Brazil
| | - Otavio Cabral-Marques
- Department of Pharmaceutical Sciences, Postgraduate Program of Physiopathology and Toxicology, University of São Paulo, São Paulo, Brazil
- Department of Immunology, University of São Paulo, São Paulo, Brazil
- Network of Immunity in Infection, Malignancy, Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), São Paulo, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Xian X, Yang S, Shi Y, Chen Q. Comparison of endocytosis pathways of Duck Tembusu virus in BHK-21 and duck embryo fibroblasts. Poult Sci 2023; 102:102891. [PMID: 37454644 PMCID: PMC10384660 DOI: 10.1016/j.psj.2023.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/10/2023] [Accepted: 06/17/2023] [Indexed: 07/18/2023] Open
Abstract
The Duck Tembusu virus (DTMUV) is a zoonotic flavivirus characterized by nonsuppurative encephalitis and decreasing egg production that has adversely affected the poultry industry. While the way of invasion of DTMUV into different host cells, especially primary cells, remains elusive. In the present study, the ultrastructural pathological characteristics showed that DTMUV underwent a typical maturation and replication process: progeny virus particles gathered in rough endoplasmic reticulum (RER) cisternae, reached the cell membrane via Golgi body's endocrine channel, then were released in the infected baby hamster kidney-21 (BHK-21) and duck embryo fibroblast (DEF). Endoplasmic reticulum vesicles in BHK-21 were short rods and densely arranged like honeycombs, whereas vesicles in DEF were round and dispersed. Further study showed that the virus replication peak in mammalian BHK-21 cells was at 48 hpi, whereas in avian DEF cells was at 24 hpi. DTMUV entry into BHK-21 and DEF cells was blocked by clathrin inhibitor, chlorpromazine (CPZ), indicating that the flavivirus DTMUV enters BHK-21 and DEF both via a clathrin-mediated endocytosis (CME) pathway rather than caveola-mediated endocytosis or micropinocytosis. The endocytic difference in DTMUV entry into BHK-21 and DEF cells might provide insight into understanding the underlying virulence difference between passaged cells and cultured cells.
Collapse
Affiliation(s)
- Xuemei Xian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Sheng Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yonghong Shi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qiusheng Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.
| |
Collapse
|
7
|
Zhang Q, Jiu Y. The regulation of host cytoskeleton during SARS-CoV-2 infection in the nervous system. BRAIN SCIENCE ADVANCES 2023. [DOI: 10.26599/bsa.2023.9050004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
The global economy and public health are currently under enormous pressure since the outbreak of COVID-19. Apart from respiratory discomfort, a subpopulation of COVID-19 patients exhibits neurological symptoms such as headache, myalgia, and loss of smell. Some have even shown encephalitis and necrotizing hemorrhagic encephalopathy. The cytoskeleton of nerve cells changes drastically in these pathologies, indicating that the cytoskeleton and its related proteins are closely related to the pathogenesis of nervous system diseases. In this review, we present the up-to-date association between host cytoskeleton and coronavirus infection in the context of the nervous system. We systematically summarize cytoskeleton-related pathogen-host interactions in both the peripheral and central nervous systems, hoping to contribute to the development of clinical treatment in COVID-19 patients.
Collapse
Affiliation(s)
- Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaming Jiu
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Differential Infectivity of Human Neural Cell Lines by a Dengue Virus Serotype-3 Genotype-III with a Distinct Nonstructural Protein 2A (NS2A) Amino Acid Substitution Isolated from the Cerebrospinal Fluid of a Dengue Encephalitis Patient. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:2635383. [PMID: 36704099 PMCID: PMC9873433 DOI: 10.1155/2023/2635383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/27/2022] [Accepted: 11/12/2022] [Indexed: 01/19/2023]
Abstract
Dengue encephalitis is considered as a severe but unusual clinical presentation of dengue infection. Limited molecular information is available on the neurotropism of dengue virus (DENV), highlighting the need for further research. During a dengue outbreak in Vietnam in 2013, two DENV-3 strains were isolated, in which one was isolated from cerebrospinal fluid (CSF) samples from a dengue encephalitis patient and another strain was isolated from a patient with classical dengue fever in Hai Phong, Vietnam. DENV serotype-3 (DENV-3) isolated from these samples belonged to genotype III, marking the first report of this genotype in the country at that time. Genetic variation between both strains was elucidated by using a full genome sequencing by next-generation sequencing (NGS). The infectivity of the isolated DENV-3 strains was further characterized using human and mouse neuronal cell lines. Phylogenetic analysis of the isolates demonstrated high homogeneity between the CSF-derived and serum-derived DENV-3, in which the full genome sequences of the CSF-derived DENV-3 presented a Thr-1339-Ile mutation in the nonstructural 2A (NS2A) protein. The CSF-derived DENV-3 isolate grew preferentially in human neuronal cells, with a significant proportion of cells that were positive for nonstructural 1 (NS1), nonstructural 4B (NS4B), and nonstructural 5 (NS5) antigens. These results suggest that NS2A may be a crucial region in the neuropathogenesis of DENV-3 and its growth in human neuronal cells. Taken together, our results demonstrate that a CSF-derived DENV-3 has unique infectivity characteristics for human neuronal cells, which might play a crucial role in the neuropathogenesis of DENV infection.
Collapse
|
9
|
Xing Y, Zhang Q, Jiu Y. Coronavirus and the Cytoskeleton of Virus-Infected Cells. Subcell Biochem 2023; 106:333-364. [PMID: 38159233 DOI: 10.1007/978-3-031-40086-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The cytoskeleton, which includes actin filaments, microtubules, and intermediate filaments, is one of the most important networks in the cell and undertakes many fundamental life activities. Among them, actin filaments are mainly responsible for maintaining cell shape and mediating cell movement, microtubules are in charge of coordinating all cargo transport within the cell, and intermediate filaments are mainly thought to guard against external mechanical pressure. In addition to this, cytoskeleton networks are also found to play an essential role in multiple viral infections. Due to the COVID-19 epidemic, including SARS-CoV-2, SARS-CoV and MERS-CoV, so many variants have caused wide public concern, that any virus infection can potentially bring great harm to human beings and society. Therefore, it is of great importance to study coronavirus infection and develop antiviral drugs and vaccines. In this chapter, we summarize in detail how the cytoskeleton responds and participates in coronavirus infection by analyzing the possibility of the cytoskeleton and its related proteins as antiviral targets, thereby providing ideas for finding more effective treatments.
Collapse
Affiliation(s)
- Yifan Xing
- Shanghai Institute of Immunity and Infection (Formerly Institut Pasteur of Shanghai), Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhang
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- Shanghai Institute of Immunity and Infection (Formerly Institut Pasteur of Shanghai), Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Unit of Cell Biology and Imaging Study of Pathogen Host Interaction, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
10
|
Bi M, Zheng F, Wang F, Chen T, Cui Y. Application of Microbial Degradation Technology in Oil Pollution Control. INTERNATIONAL JOURNAL OF INFORMATION SYSTEMS AND SUPPLY CHAIN MANAGEMENT 2022. [DOI: 10.4018/ijisscm.304826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oil pollution is still a problem that is very difficult to control. To this end, this study investigates the application effect of microbial degradation technology in oil pollution control. First, the degradation microbial strains and substrates were determined according to the type of microorganisms. Then, ultraviolet spectrophotometry was used to determine the concentration of crude oil in the culture medium. After that, the authors designed the flow chart of crude oil standard curve, extracted organic phase, determined the residual oil composition in the culture medium, and calculated the degradation rate of mixed bacteria to crude oil. By studying the degradation mechanism of aerobic bacteria, anaerobic bacteria, and fungi, the degradation products were confirmed and the treatment of oil pollution on the water surface was carried out. It can be seen from the experimental results that the microbial degradation technology is effective in solving the problem of oil pollution.
Collapse
Affiliation(s)
- Mingjuan Bi
- LaiWu Vocational and Technical College, China
| | | | | | | | | |
Collapse
|
11
|
Innate Immune Response to Dengue Virus: Toll-like Receptors and Antiviral Response. Viruses 2022; 14:v14050992. [PMID: 35632732 PMCID: PMC9147118 DOI: 10.3390/v14050992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV1-4). The clinical manifestations range from asymptomatic to life-threatening dengue hemorrhagic fever (DHF) and/or Dengue Shock Syndrome (DSS). Viral and host factors are related to the clinical outcome of dengue, although the disease pathogenesis remains uncertain. The innate antiviral response to DENV is implemented by a variety of immune cells and inflammatory mediators. Blood monocytes, dendritic cells (DCs) and tissue macrophages are the main target cells of DENV infection. These cells recognize pathogen-associated molecular patterns (PAMPs) through pattern recognition receptors (PRRs). Pathogen recognition is a critical step in eliciting the innate immune response. Toll-like receptors (TLRs) are responsible for the innate recognition of pathogens and represent an essential component of the innate and adaptive immune response. Ten different TLRs are described in humans, which are expressed in many different immune cells. The engagement of TLRs with viral PAMPs triggers downstream signaling pathways leading to the production of inflammatory cytokines, interferons (IFNs) and other molecules essential for the prevention of viral replication. Here, we summarize the crucial TLRs’ roles in the antiviral innate immune response to DENV and their association with viral pathogenesis.
Collapse
|
12
|
Bohmwald K, Andrade CA, Gálvez NMS, Mora VP, Muñoz JT, Kalergis AM. The Causes and Long-Term Consequences of Viral Encephalitis. Front Cell Neurosci 2021; 15:755875. [PMID: 34916908 PMCID: PMC8668867 DOI: 10.3389/fncel.2021.755875] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Reports regarding brain inflammation, known as encephalitis, have shown an increasing frequency during the past years. Encephalitis is a relevant concern to public health due to its high morbidity and mortality. Infectious or autoimmune diseases are the most common cause of encephalitis. The clinical symptoms of this pathology can vary depending on the brain zone affected, with mild ones such as fever, headache, confusion, and stiff neck, or severe ones, such as seizures, weakness, hallucinations, and coma, among others. Encephalitis can affect individuals of all ages, but it is frequently observed in pediatric and elderly populations, and the most common causes are viral infections. Several viral agents have been described to induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses, retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others. Once a neurotropic virus reaches the brain parenchyma, the resident cells such as neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-inflammatory molecules and the subsequent immune cell infiltration that leads to brain damage. After resolving the viral infection, the local immune response can remain active, contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and degenerative diseases. In this article, we will discuss how viruses can reach the brain, the impact of viral encephalitis on brain function, and we will focus especially on the neurocognitive sequelae reported even after viral clearance.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás M S Gálvez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina P Mora
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñoz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Jhan MK, Chen CL, Shen TJ, Tseng PC, Wang YT, Satria RD, Yu CY, Lin CF. Polarization of Type 1 Macrophages Is Associated with the Severity of Viral Encephalitis Caused by Japanese Encephalitis Virus and Dengue Virus. Cells 2021; 10:3181. [PMID: 34831405 PMCID: PMC8621422 DOI: 10.3390/cells10113181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/20/2022] Open
Abstract
Infection with flaviviruses causes mild to severe diseases, including viral hemorrhagic fever, vascular shock syndrome, and viral encephalitis. Several animal models explore the pathogenesis of viral encephalitis, as shown by neuron destruction due to neurotoxicity after viral infection. While neuronal cells are injuries caused by inflammatory cytokine production following microglial/macrophage activation, the blockade of inflammatory cytokines can reduce neurotoxicity to improve the survival rate. This study investigated the involvement of macrophage phenotypes in facilitating CNS inflammation and neurotoxicity during flavivirus infection, including the Japanese encephalitis virus, dengue virus (DENV), and Zika virus. Mice infected with different flaviviruses presented encephalitis-like symptoms, including limbic seizure and paralysis. Histology indicated that brain lesions were identified in the hippocampus and surrounded by mononuclear cells. In those regions, both the infiltrated macrophages and resident microglia were significantly increased. RNA-seq analysis showed the gene profile shifting toward type 1 macrophage (M1) polarization, while M1 markers validated this phenomenon. Pharmacologically blocking C-C chemokine receptor 2 and tumor necrosis factor-α partly retarded DENV-induced M1 polarization. In summary, flavivirus infection, such as JEV and DENV, promoted type 1 macrophage polarization in the brain associated with encephalitic severity.
Collapse
MESH Headings
- Animals
- Animals, Suckling
- Cell Line
- Cell Polarity
- Dengue Virus/physiology
- Disease Models, Animal
- Encephalitis Virus, Japanese/physiology
- Encephalitis, Japanese/immunology
- Encephalitis, Japanese/pathology
- Encephalitis, Japanese/virology
- Encephalitis, Viral/immunology
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Hippocampus/pathology
- Inflammation/pathology
- Macrophages/pathology
- Mice, Inbred ICR
- Neurotoxins/toxicity
- Receptors, CCR2/metabolism
- Severity of Illness Index
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Ming-Kai Jhan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-K.J.); (T.-J.S.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Ting-Jing Shen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-K.J.); (T.-J.S.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Ting Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
| | - Rahmat Dani Satria
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Laboratory Medicine, Department of Clinical Pathology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.-K.J.); (T.-J.S.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (P.-C.T.); (Y.-T.W.); (R.D.S.)
- Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
14
|
Gern OL, Mulenge F, Pavlou A, Ghita L, Steffen I, Stangel M, Kalinke U. Toll-like Receptors in Viral Encephalitis. Viruses 2021; 13:v13102065. [PMID: 34696494 PMCID: PMC8540543 DOI: 10.3390/v13102065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Viral encephalitis is a rare but serious syndrome. In addition to DNA-encoded herpes viruses, such as herpes simplex virus and varicella zoster virus, RNA-encoded viruses from the families of Flaviviridae, Rhabdoviridae and Paramyxoviridae are important neurotropic viruses. Whereas in the periphery, the role of Toll-like receptors (TLR) during immune stimulation is well understood, TLR functions within the CNS are less clear. On one hand, TLRs can affect the physiology of neurons during neuronal progenitor cell differentiation and neurite outgrowth, whereas under conditions of infection, the complex interplay between TLR stimulated neurons, astrocytes and microglia is just on the verge of being understood. In this review, we summarize the current knowledge about which TLRs are expressed by cell subsets of the CNS. Furthermore, we specifically highlight functional implications of TLR stimulation in neurons, astrocytes and microglia. After briefly illuminating some examples of viral evasion strategies from TLR signaling, we report on the current knowledge of primary immunodeficiencies in TLR signaling and their consequences for viral encephalitis. Finally, we provide an outlook with examples of TLR agonist mediated intervention strategies and potentiation of vaccine responses against neurotropic virus infections.
Collapse
Affiliation(s)
- Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Correspondence:
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Luca Ghita
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Division of Infectious Diseases and Geographic Medicine, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Imke Steffen
- Department of Biochemistry and Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Martin Stangel
- Translational Medicine, Novartis Institute for Biomedical Research (NIBR), 4056 Basel, Switzerland;
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625 Hannover, Germany; (F.M.); (A.P.); (L.G.); (U.K.)
- Cluster of Excellence—Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
15
|
Ferreira FR, de Paula GC, de Carvalho RJV, Ribeiro-Barbosa ER, Spini VBMG. Impact of Season of Birth on Psychiatric Disorder Susceptibility and Drug Abuse Incidence in a Population from the Köppen Tropical Savanna Region of Brazil. Neuropsychobiology 2020; 79:131-140. [PMID: 31574505 DOI: 10.1159/000503069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Despite much evidence that season of birth (SOB) my influence the vulnerability to psychiatric disorders, divergence has been reported, in particular between populations born in the northern and southern hemispheres. We analyzed the potential modified risk by SOB to psychiatric disorder or drug addiction comorbidity in a population born in the Triângulo Mineiro region, a southern hemisphere Köppen tropical savanna region in Brazil. METHOD We accessed the records of 98,457 of patients and healthy controls of the National Datacenter of Medical Promptuary to evaluate the influence of SOB as a modifying factor on the occurrence of mental disorders and drug abuse conditions among individuals born from the year 2000 to 2016. RESULTS The data revealed significant modification of the relative incidence of major depressive disorder (MDD) (F11, 72 = 2.898; p = 0.003; eta-squared, ES = 0.313; ⍺ = 0.97), anxiety-related disorder (ARD) (F11, 81 =2.389; p = 0.013; ES = 0.241; ⍺ = 0.932), and schizophrenia (SZ) (F11, 83 = 2.764; p = 0.005; ES = 0.303; α = 0.963), while there was no increase in the number of healthy controls born in any month of the year (F11, 71 = 1.469; p = 0.163). Post hoc analyses indicated a significant higher vulnerability to MDD or ARD if the patient was born in August, or October to December, respectively. A relative increase in the incidence of SZ was also observed in patients born from August to October, compared to patients born from November to January. CONCLUSIONS SOB may influence the risk for psychiatric disorders in the TMR population. Regional particularities associated with the climatic regime may account for the apparent divergence between studies.
Collapse
Affiliation(s)
| | - Gustavo C de Paula
- Clinical Hospital of the Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Erika R Ribeiro-Barbosa
- Physiology Department, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| | - Vanessa B M G Spini
- Physiology Department, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
16
|
Stonedahl S, Clarke P, Tyler KL. The Role of Microglia during West Nile Virus Infection of the Central Nervous System. Vaccines (Basel) 2020; 8:E485. [PMID: 32872152 PMCID: PMC7563127 DOI: 10.3390/vaccines8030485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Encephalitis resulting from viral infections is a major cause of hospitalization and death worldwide. West Nile Virus (WNV) is a substantial health concern as it is one of the leading causes of viral encephalitis in the United States today. WNV infiltrates the central nervous system (CNS), where it directly infects neurons and induces neuronal cell death, in part, via activation of caspase 3-mediated apoptosis. WNV infection also induces neuroinflammation characterized by activation of innate immune cells, including microglia and astrocytes, production of inflammatory cytokines, breakdown of the blood-brain barrier, and infiltration of peripheral leukocytes. Microglia are the resident immune cells of the brain and monitor the CNS for signs of injury or pathogens. Following infection with WNV, microglia exhibit a change in morphology consistent with activation and are associated with increased expression of proinflammatory cytokines. Recent research has focused on deciphering the role of microglia during WNV encephalitis. Microglia play a protective role during infections by limiting viral growth and reducing mortality in mice. However, it also appears that activated microglia are triggered by T cells to mediate synaptic elimination at late times during infection, which may contribute to long-term neurological deficits following a neuroinvasive WNV infection. This review will discuss the important role of microglia in the pathogenesis of a neuroinvasive WNV infection. Knowledge of the precise role of microglia during a WNV infection may lead to a greater ability to treat and manage WNV encephalitis.
Collapse
Affiliation(s)
- Sarah Stonedahl
- Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Penny Clarke
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L. Tyler
- Department of Immunology and Microbiology, Infectious Disease, Medicine and Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Veterans Affairs, Aurora, CO 80045, USA
| |
Collapse
|
17
|
Hincapie V, Gallego-Gómez JC. TRANSICIÓN EPITELIO-MESÉNQUIMA INDUCIDA POR VIRUS. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.79358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La Transición Epitelio-Mesénquima (EMT) es un proceso de dediferenciación altamente conservado en vertebrados. Este ocurre en células epiteliales con la activación progresiva de la pérdida de la polaridad, la adquisición de motilidad individual y la capacidad invasiva a otros tejidos. La EMT es un proceso normal durante el desarrollo; no obstante, en condiciones patológicas está relacionada con la inducción de metástasis, lo cual representa una vía alterna al desarrollo de procesos oncogénicos tempranos. Aunque la EMT es activada principalmente por factores de crecimiento, también se puede desencadenar por infecciones de patógenos intracelulares mediante la activación de rutas moleculares inductoras de este proceso. Por lo tanto, una infección bacteriana o viral pueda generar predisposición al desarrollo de tumores. Nuestro interés está enfocado principalmente encaracterizar la relación virus-hospedero, y en el caso de los virus, varios ya se han descrito como inductores de la EMT. En este artículo de revisión se describenelfenómeno de la plasticidad celular y la ocurrencia detallada del proceso de EMT, los patógenos virales reportados como inductores, los mecanismos moleculares usados para ello y las vías de regulación mediante miRNAs. Por último, se discute cómo esta relación virus-hospedero puede explicar la patogénesis de la enfermedad causada por Dengue virus, favoreciendo la identificación de blancos moleculares para terapia, estrategia conocida como Antivirales dirigidos a blancos celulares o HTA (Host-targeting antivirals).
Collapse
|
18
|
Hazra B, Chakraborty S, Bhaskar M, Mukherjee S, Mahadevan A, Basu A. miR-301a Regulates Inflammatory Response to Japanese Encephalitis Virus Infection via Suppression of NKRF Activity. THE JOURNAL OF IMMUNOLOGY 2019; 203:2222-2238. [PMID: 31527198 DOI: 10.4049/jimmunol.1900003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Microglia being the resident macrophage of brain provides neuroprotection following diverse microbial infections. Japanese encephalitis virus (JEV) invades the CNS, resulting in neuroinflammation, which turns the neuroprotective role of microglia detrimental as characterized by increased microglial activation and neuronal death. Several host factors, including microRNAs, play vital roles in regulating virus-induced inflammation. In the current study, we demonstrate that the expression of miR-301a is increased in JEV-infected microglial cells and human brain. Overexpression of miR-301a augments the JEV-induced inflammatory response, whereas inhibition of miR-301a completely reverses the effects. Mechanistically, NF-κB-repressing factor (NKRF) functioning as inhibitor of NF-κB activation is identified as a potential target of miR-301a in JEV infection. Consequently, miR-301a-mediated inhibition of NKRF enhances nuclear translocation of NF-κB, which, in turn, resulted in amplified inflammatory response. Conversely, NKRF overexpression in miR-301a-inhibited condition restores nuclear accumulation of NF-κB to a basal level. We also observed that JEV infection induces classical activation (M1) of microglia that drives the production of proinflammatory cytokines while suppressing alternative activation (M2) that could serve to dampen the inflammatory response. Furthermore, in vivo neutralization of miR-301a in mouse brain restores NKRF expression, thereby reducing inflammatory response, microglial activation, and neuronal apoptosis. Thus, our study suggests that the JEV-induced expression of miR-301a positively regulates inflammatory response by suppressing NKRF production, which might be targeted to manage viral-induced neuroinflammation.
Collapse
Affiliation(s)
- Bibhabasu Hazra
- National Brain Research Centre, Manesar, Haryana 122052, India; and
| | | | | | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India; and
| |
Collapse
|
19
|
Hijacking the Host Immune Cells by Dengue Virus: Molecular Interplay of Receptors and Dengue Virus Envelope. Microorganisms 2019; 7:microorganisms7090323. [PMID: 31489877 PMCID: PMC6780243 DOI: 10.3390/microorganisms7090323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Dengue virus (DENV) is one of the lethal pathogens in the hot climatic regions of the world and has been extensively studied to decipher its mechanism of pathogenesis and the missing links of its life cycle. With respect to the entry of DENV, multiple receptors have been recognized in different cells of the human body. However, scientists still argue whether these identified receptors are the exclusive entry mediators for the virus. Adding to the complexity, DENV has been reported to be infecting multiple organ types in its human host. Also, more than one receptor in a particular cell has been discerned to take part in mediating the ingress of DENV. In this review, we aim to discuss the different cells of the human immune system that support DENV infection and their corresponding receptors that DENV deploy to gain access to the cells.
Collapse
|
20
|
Calderón-Peláez MA, Velandia-Romero ML, Bastidas-Legarda LY, Beltrán EO, Camacho-Ortega SJ, Castellanos JE. Dengue Virus Infection of Blood-Brain Barrier Cells: Consequences of Severe Disease. Front Microbiol 2019; 10:1435. [PMID: 31293558 PMCID: PMC6606788 DOI: 10.3389/fmicb.2019.01435] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 01/10/2023] Open
Abstract
More than 500 million people worldwide are infected each year by any of the four-dengue virus (DENV) serotypes. The clinical spectrum caused during these infections is wide and some patients may develop neurological alterations during or after the infection, which could be explained by the cryptic neurotropic and neurovirulent features of flaviviruses like DENV. Using in vivo and in vitro models, researchers have demonstrated that DENV can affect the cells from the blood-brain barrier (BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be compromised during infection; however, it is not clear whether the damage is due to the infection per se or to the local and/or systemic inflammatory response established or activated by the BBB cells. Similarly, the kinetics and cascade of events that trigger tissue damage, and the cells that initiate it, are unknown. This review presents evidence of the BBB cell infection with DENV and the response established toward it by these cells; it also describes the consequences of this response on the nervous tissue, compares these evidence with the one reported with neurotropic viruses of the Flaviviridae family, and shows the complexity and unpredictability of dengue and the neurological alterations induced by it. Clinical evidence and in vitro and in vivo models suggest that this virus uses the bloodstream to enter nerve tissue where it infects the different cells of the neurovascular unit. Each of the cell populations respond individually and collectively and control infection and inflammation, in other cases this response exacerbates the damage leaving irreversible sequelae or causing death. This information will allow us to understand more about the complex disease known as dengue, and its impact on a specialized and delicate tissue like is the nervous tissue.
Collapse
|
21
|
Mishra R, Sood V, Banerjea AC. Dengue NS5 modulates expression of miR-590 to regulate ubiquitin-specific peptidase 42 in human microglia. FASEB Bioadv 2019; 1:265-278. [PMID: 32123831 PMCID: PMC6996368 DOI: 10.1096/fba.2018-00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Dengue virus (DENV), a member of Flaviviridae family, has become neurovirulent in humans after rapid geographical expansion. Host proteasomal machinery contains both ubiquitin ligases as well as deubiquitinases (DUBs), known to influence key cellular and biological functions. MicroRNA-mediated modulations of DUBs in case of DENV infections have not been explored yet. DENV propagation, MiRNA overexpression, miRNA knockdown, transfection, RT-PCR, luciferase assay, and western blotting have been used in this study to establish the interaction of miR-590 and USP42. DENV infection in human microglial cells resulted in downregulation of host DUB-USP42 in a dose-dependent manner and DENV-NS5 gene alone was found to be sufficient for this downregulation. miR-590 was upregulated upon NS5 overexpression in a dose-dependent manner. Downregulation of USP42 was observed with miR-590 overexpression. The specificity of this regulation was confirmed by miR-590 mimic and anti-miR transfections in microglial cells. miR-590 overexpression and knockdown affected the expression level of TRAF6 in indirect manner in microglial cells. The luciferase assay demonstrated the direct regulatory interaction between miR-590 and 3'UTR of USP42. These findings establish that DENV-NS5 protein can potentially modulate the host deubiquitinase protein USP42 expression via altering cellular miR-590 levels in human microglial cells.
Collapse
Affiliation(s)
- Ritu Mishra
- Laboratory of VirologyNational Institute of ImmunologyNew DelhiIndia
| | - Vikas Sood
- Jamia Hamdard, deemed UniversityNew DelhiIndia
| | - Akhil C. Banerjea
- Laboratory of VirologyNational Institute of ImmunologyNew DelhiIndia
| |
Collapse
|
22
|
Zhang Y, Gao W, Li J, Wu W, Jiu Y. The Role of Host Cytoskeleton in Flavivirus Infection. Virol Sin 2019; 34:30-41. [PMID: 30725318 DOI: 10.1007/s12250-019-00086-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 01/07/2023] Open
Abstract
The family of flaviviruses is one of the most medically important groups of emerging arthropod-borne viruses. Host cell cytoskeletons have been reported to have close contact with flaviviruses during virus entry, intracellular transport, replication, and egress process, although many detailed mechanisms are still unclear. This article provides a brief overview of the function of the most prominent flaviviruses-induced or -hijacked cytoskeletal structures including actin, microtubules and intermediate filaments, mainly focus on infection by dengue virus, Zika virus and West Nile virus. We suggest that virus interaction with host cytoskeleton to be an interesting area of future research.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Gao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Li
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Weihua Wu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaming Jiu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Signaling of Macrophage Inflammatory Protein (MIP)-3β Facilitates Dengue Virus-Induced Microglial Cell Migration. Viruses 2018; 10:v10120690. [PMID: 30563082 PMCID: PMC6316022 DOI: 10.3390/v10120690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 11/25/2022] Open
Abstract
The infection by dengue virus (DENV) of microglia causes cell activation and migration via a mechanism involving viral entry, RNA release, and Toll-like receptor 3 signaling. In this study, we demonstrated that secreted chemotactic factors present in microglial conditioned medium (MCM) facilitated cell motility in the murine BV2 microglial cells. The pharmacological disruption of lipid rafts/caveolae reduced DENV- and ultraviolet (UV)-inactivated MCM-induced microglial cell migration. An antibody-based cytokine/chemokine array showed an increase in macrophage inflammatory protein (MIP)-3β in MCM produced using DENV-infected cells. The pharmacological inhibition of c-Jun N-terminal kinase (JNK) retarded UV-MCM-induced microglial cell migration. These results demonstrate that secreted MIP-3β and its effect on the JNK signaling pathways mediates DENV-induced BV2 microglial cell migration.
Collapse
|
24
|
Abstract
Endothelins were discovered more than thirty years ago as potent vasoactive compounds. Beyond their well-documented cardiovascular properties, however, the contributions of the endothelin pathway have been demonstrated in several neuroinflammatory processes and the peptides have been reported as clinically relevant biomarkers in neurodegenerative diseases. Several studies report that endothelin-1 significantly contributes to the progression of neuroinflammatory processes, particularly during infections in the central nervous system (CNS), and is associated with a loss of endothelial integrity at the blood brain barrier level. Because of the paucity of clinical trials with endothelin-1 antagonists in several infectious and non-infectious neuroinflammatory diseases, it remains an open question whether the 21 amino acid peptide is a mediator/modulator rather than a biomarker of the progression of neurodegeneration. This review focuses on the potential roles of endothelins in the pathology of neuroinflammatory processes, including infectious diseases of viral, bacterial or parasitic origin in which the synthesis of endothelins or its pharmacology have been investigated from the cell to the bedside in several cases, as well as in non-infectious inflammatory processes such as neurodegenerative disorders like Alzheimers Disease or central nervous system vasculitis.
Collapse
|
25
|
Kräter M, Sapudom J, Bilz NC, Pompe T, Guck J, Claus C. Alterations in Cell Mechanics by Actin Cytoskeletal Changes Correlate with Strain-Specific Rubella Virus Phenotypes for Cell Migration and Induction of Apoptosis. Cells 2018; 7:E136. [PMID: 30217036 PMCID: PMC6162683 DOI: 10.3390/cells7090136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023] Open
Abstract
The cellular cytoskeleton is central for key cellular functions, and as such is a marker for diseased and infected cell states. Here we analyzed infection with rubella virus (RV) strains with respect to phenotypes in cellular mechanical properties, cell movement, and viral cytopathogenicity. Real-time deformability cytometry (RT-DC), as a high-throughput platform for the assessment of cell mechanics, revealed a correlation of an increase in cortical filamentous-actin (F-actin) with a higher cellular stiffness. The additional reduction of stress fibers noted for only some RV strains as the most severe actin rearrangement lowered cell stiffness. Furthermore, a reduced collective and single cell migration speed in a wound healing assay was detected in addition to severe changes in cell morphology. The latter was followed by activation of caspase 3/7 as a sign for induction of apoptosis. Our study emphasizes RT-DC technology as a sensitive means to characterize viral cell populations and to implicate alterations of cell mechanical properties with cell functions. These interdependent events are not only promising options to elucidate viral spread and to understand viral pathologies within the infected host. They also contribute to any diseased cell state, as exemplified by RV as a representative agent for cytoskeletal alterations involved in a cytopathological outcome.
Collapse
Affiliation(s)
- Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Jiranuwat Sapudom
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
- Department of Dermatology, Venerology and Allergology, University Clinic of Leipzig, 04103 Leipzig, Germany.
| | | | - Tilo Pompe
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany.
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Claudia Claus
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
26
|
Lannes N, Eppler E, Etemad S, Yotovski P, Filgueira L. Microglia at center stage: a comprehensive review about the versatile and unique residential macrophages of the central nervous system. Oncotarget 2017; 8:114393-114413. [PMID: 29371994 PMCID: PMC5768411 DOI: 10.18632/oncotarget.23106] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023] Open
Abstract
Microglia cells are the unique residential macrophages of the central nervous system (CNS). They have a special origin, as they derive from the embryonic yolk sac and enter the developing CNS at a very early stage. They play an important role during CNS development and adult homeostasis. They have a major contribution to adult neurogenesis and neuroinflammation. Thus, they participate in the pathogenesis of neurodegenerative diseases and contribute to aging. They play an important role in sustaining and breaking the blood-brain barrier. As innate immune cells, they contribute substantially to the immune response against infectious agents affecting the CNS. They play also a major role in the growth of tumours of the CNS. Microglia are consequently the key cell population linking the nervous and the immune system. This review covers all different aspects of microglia biology and pathology in a comprehensive way.
Collapse
Affiliation(s)
- Nils Lannes
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Elisabeth Eppler
- Pestalozzistrasse Zo, Department of BioMedicine, University of Basel, CH-4056 Basel, Switzerland
| | - Samar Etemad
- Building 71/218 RBWH Herston, Centre for Clinical Research, The University of Queensland, QLD 4029 Brisbane, Australia
| | - Peter Yotovski
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Luis Filgueira
- Albert Gockel, Anatomy, Department of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
27
|
Interplay between dengue virus and Toll-like receptors, RIG-I/MDA5 and microRNAs: Implications for pathogenesis. Antiviral Res 2017; 147:47-57. [DOI: 10.1016/j.antiviral.2017.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
|