1
|
Zhao X, Peng S, Hui T, Yu X, Li H, Ni M, Liu X, Chen Y, Zhang J, Zhang H. Optimization on the extraction conditions of flavonoids from Suaeda glauca and the research of its hepatoprotection in mice. Fitoterapia 2025; 184:106606. [PMID: 40348032 DOI: 10.1016/j.fitote.2025.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Liver disease is a serious threat to health worldwide. Flavonoids from Suaeda glauca (SGF) is able to alleviate liver lipid peroxidation. However, it is unclear whether SGF could protect against liver glycogen accumulation, inflammation and fibrosis. In this study, the extraction conditions of SGF were optimized with response surface methodology. The qualitative analysis of components in SGF was carried out by a LC-MS/MS method. Moreover, SGF was administered orally to male mice given 10 % carbon tetrachloride (CCl4) for 4 weeks at doses of 25 and 50 mg/kg once daily for 4 weeks. The optimal extraction conditions of SGF were as follows: the ratio of material to liquid 1:35, the temperature 67 °C, the time 3 h, and the ethanol concentration 89 %. Thirty-five compounds were preliminarily identified in SGF. Furthermore, SGF could significantly improve liver dysfunction, regulate the hepatic protein levels of glucose-6-phosphatase, glycogen synthase, glycogen phosphorylase L, Laforin, interleukin-1β, gasdermin-D, NOD-like receptor (NLR) family, pyrin domain containing 3 inflammasome, α-smooth muscle actin, the hepatic mRNA levels and enzyme activities of matrix metallopeptidase 9, tissue inhibitor of metalloproteinases 1, and collagen 1α1, reduce the liver glycogen accumulation, inflammation and fibrosis in mice induced by CCl4. These results indicated that SGF may be a promising drug for the treatment of liver injury.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China.
| | - Shengjie Peng
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Ting Hui
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xinrong Yu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Haorong Li
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Min Ni
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Xue Liu
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Yu Chen
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Jiankang Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China
| | - Hua Zhang
- School of Pharmacy, Yancheng Teachers University, Yancheng 224007, PR China.
| |
Collapse
|
2
|
Weiskirchen R, Lonardo A. PNPLA3 as a driver of steatotic liver disease: navigating from pathobiology to the clinics via epidemiology. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2024; 8:355-77. [DOI: 10.20517/jtgg.2024.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Steatotic liver disease (SLD), particularly metabolic dysfunction-associated SLD, represents a significant public health concern worldwide. Among the various factors implicated in the development and progression of this condition, the patatin-like phospholipase domain-containing protein 3 (PNPLA3 ) gene has emerged as a critical player. Variants of PNPLA3 are associated with altered lipid metabolism, leading to increased hepatic fat accumulation and subsequent inflammation and fibrosis. Understanding the role of PNPLA3 not only enhances our comprehension of the pathomechanisms driving SLD but also informs potential therapeutic strategies. The molecular mechanisms through which PNPLA3 variants contribute to lipid dysregulation and hepatocyte injury in SLD are critically discussed in the present review article. We extensively analyze clinical cohorts and population-based studies underpinning the association between PNPLA3 polymorphisms and the risk of developing SLD, and its liver-related and protean extrahepatic outcomes, in concert with other risk modifiers, notably including age, sex, and ethnicity in adults and children. We also discuss the increasingly recognized role played by the PNPLA3 gene in liver transplantation, autoimmune hepatitis, and acquired immunodeficiency syndrome. Finally, we examine the clinical implications of PNPLA3 diagnostics regarding risk stratification and targeted therapies for patients affected by SLD in the context of precision medicine approaches.
Collapse
|
3
|
Mohammad N, Oshins R, Gu T, Clark V, Lascano J, Assarzadegan N, Marek G, Brantly M, Khodayari N. Liver Characterization of a Cohort of Alpha-1 Antitrypsin Deficiency Patients with and without Lung Disease. J Clin Transl Hepatol 2024; 12:845-856. [PMID: 39440224 PMCID: PMC11491504 DOI: 10.14218/jcth.2024.00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 10/25/2024] Open
Abstract
Background and Aims Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder characterized by the misfolding and accumulation of the mutant variant of alpha-1 antitrypsin (AAT) within hepatocytes, which limits its access to the circulation and exposes the lungs to protease-mediated tissue damage. This results in progressive liver disease secondary to AAT polymerization and accumulation, and chronic obstructive pulmonary disease (COPD) due to deficient levels of AAT within the lungs. Our goal was to characterize the unique effects of COPD secondary to AATD on liver disease and gene expression. Methods A subcohort of AATD individuals with COPD (n = 33) and AATD individuals without COPD (n = 14) were evaluated in this study from our previously reported cross-sectional cohort. We used immunohistochemistry to assess the AATD liver phenotype, and RNA sequencing to explore liver transcriptomics. We observed a distinct transcriptomic profile in liver tissues from AATD individuals with COPD compared to those without. Results A total of 339 genes were differentially expressed. Canonical pathways related to fibrosis, extracellular matrix remodeling, collagen deposition, hepatocellular damage, and inflammation were significantly upregulated in the livers of AATD individuals with COPD. Histopathological analysis also revealed higher levels of fibrosis and hepatocellular damage in these individuals. Conclusions Our data supports a relationship between the development of COPD and liver disease in AATD and introduces genes and pathways that may play a role in AATD liver disease when COPD is present. We believe addressing lung impairment and airway inflammation may be an approach to managing AATD-related liver disease.
Collapse
Affiliation(s)
- Naweed Mohammad
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Regina Oshins
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research, Bioinformatics Core, University of Florida, Gainesville, FL, USA
| | - Virginia Clark
- Division of Gastroenterology, Hepatology and Nutrition, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jorge Lascano
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Naziheh Assarzadegan
- Division of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - George Marek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Mark Brantly
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Cerbulescu T, Anghel A, Brie DA, Petraşcu FM, Salavat MC, Ardelean AI, Barac IR, Borugă O. The impact of matrix metalloproteinases and their tissue inhibitors in patients with chronic glaucoma - a literature review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:557-565. [PMID: 39957016 PMCID: PMC11924901 DOI: 10.47162/rjme.65.4.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/29/2024] [Indexed: 02/18/2025]
Abstract
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) play an important role in the pathophysiology of chronic glaucoma, as they are involved in extracellular matrix (ECM) remodeling in the trabecular meshwork (TM), affecting its ability to efficiently regulate intraocular pressure (IOP). Ensuring the balance between MMPs and TIMPs helps to maintain homeostasis in ocular tissues, which is essential to avoid glaucomatous lesions. Elevated levels of MMPs and increased degradation of the ECM, ultimately affecting aqueous humor outflow and increasing IOP, characterize glaucoma. In the current literature review, the impact and interactions of MMPs and TIMPs in chronic glaucoma have been emphasized, with multiple but still unelucidated roles in the mentioned pathology including their clinical implications, future research directions, and therapeutic approaches. Research to date indicates that the expression of TIMPs is altered in patients with chronic glaucoma, suggesting a compensatory response to increased MMPs activity. Certain drugs can influence the expression levels of MMPs and TIMPs, therefore therapeutic strategies can be developed to restore the balance between tissue enzymes and their inhibitors. Therefore, understanding the relationship between MMPs and TIMPs is a key factor in the pathogenesis of chronic glaucoma. Understanding the interplay between the two provides interesting insights into ECM remodeling in ocular tissues, highlighting the potential of targeted therapies to restore the balance between proteolytic enzymes and their inhibitors.
Collapse
Affiliation(s)
- Teodor Cerbulescu
- Department of Biochemistry, Faculty of Medicine, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania;
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Malik MNH, Abid I, Ismail S, Anjum I, Qadir H, Maqbool T, Najam K, Ibenmoussa S, Bourhia M, Salamatullah AM, Wondmie GF. Exploring the hepatoprotective properties of citronellol: In vitro and in silico studies on ethanol-induced damage in HepG2 cells. Open Life Sci 2024; 19:20220950. [PMID: 39290493 PMCID: PMC11406226 DOI: 10.1515/biol-2022-0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Citronellol (CT) is a monoterpene alcohol present in the essential oil of plants of the genus Cymbopogon and exhibits diverse pharmacological activities. The aim of the current study was to investigate the hepatoprotective potential of CT against ethanol-induced toxicity in HepG2 cell lines. Silymarin (SIL) was used as a standard drug. MTT, crystal violet assay, DAPI, and PI staining were carried out to assess the effect of ethanol and CT on cell viability. RT-PCR determined the molecular mechanisms of hepatoprotective action of CT. CT ameliorated cell viability and restricted ethanol-induced cell death. DAPI and PI staining showed distinct differences in cell number and morphology. Less cell viability was observed in the diseased group obviously from strong PI staining when compared to the CT- and SIL-treated group. Moreover, CT showed downregulation of interleukin (IL-6), transforming growth factor-beta 1 (TGF-β1), collagen type 1 A 1 (COL1A1), matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and glutathione peroxidase-7 (GPX-7) levels. Molecular docking studies supported the biochemical findings. It is concluded that the cytoprotective activity of CT against ethanol-induced toxicity might be explained by its anti-inflammatory, immunomodulatory, and collagen-regulating effects.
Collapse
Affiliation(s)
| | - Iqra Abid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sana Ismail
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Halima Qadir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
6
|
Banerjee A, Farci P. Fibrosis and Hepatocarcinogenesis: Role of Gene-Environment Interactions in Liver Disease Progression. Int J Mol Sci 2024; 25:8641. [PMID: 39201329 PMCID: PMC11354981 DOI: 10.3390/ijms25168641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The liver is a complex organ that performs vital functions in the body. Despite its extraordinary regenerative capacity compared to other organs, exposure to chemical, infectious, metabolic and immunologic insults and toxins renders the liver vulnerable to inflammation, degeneration and fibrosis. Abnormal wound healing response mediated by aberrant signaling pathways causes chronic activation of hepatic stellate cells (HSCs) and excessive accumulation of extracellular matrix (ECM), leading to hepatic fibrosis and cirrhosis. Fibrosis plays a key role in liver carcinogenesis. Once thought to be irreversible, recent clinical studies show that hepatic fibrosis can be reversed, even in the advanced stage. Experimental evidence shows that removal of the insult or injury can inactivate HSCs and reduce the inflammatory response, eventually leading to activation of fibrolysis and degradation of ECM. Thus, it is critical to understand the role of gene-environment interactions in the context of liver fibrosis progression and regression in order to identify specific therapeutic targets for optimized treatment to induce fibrosis regression, prevent HCC development and, ultimately, improve the clinical outcome.
Collapse
Affiliation(s)
- Anindita Banerjee
- Department of Transfusion Transmitted Diseases, ICMR-National Institute of Immunohaematology, Mumbai 400012, Maharashtra, India;
| | - Patrizia Farci
- Hepatic Pathogenesis Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Tagliaferro M, Marino M, Basile V, Pocino K, Rapaccini GL, Ciasca G, Basile U, Carnazzo V. New Biomarkers in Liver Fibrosis: A Pass through the Quicksand? J Pers Med 2024; 14:798. [PMID: 39201990 PMCID: PMC11355846 DOI: 10.3390/jpm14080798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic liver diseases (CLD) stem from various causes and lead to a gradual progression that ultimately may result in fibrosis and eventually cirrhosis. This process is typically prolonged and asymptomatic, characterized by the complex interplay among various cell types, signaling pathways, extracellular matrix components, and immune responses. With the prevalence of CLD increasing, diagnoses are often delayed, which leads to poor prognoses and in some cases, the need for liver transplants. Consequently, there is an urgent need for the development of novel, non-invasive methods for the diagnosis and monitoring of CLD. In this context, serum biomarkers-safer, repeatable, and more acceptable alternatives to tissue biopsies-are attracting significant research interest, although their clinical implementation is not yet widespread. This review summarizes the latest advancements in serum biomarkers for detecting hepatic fibrogenesis and advocates for concerted efforts to consolidate current knowledge, thereby providing patients with early, effective, and accessible diagnoses that facilitate personalized therapeutic strategies.
Collapse
Affiliation(s)
- Marzia Tagliaferro
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Valerio Basile
- Clinical Pathology Unit and Cancer Biobank, Department of Research and Advanced Technologies, I.R.C.C.S. Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Krizia Pocino
- Clinical Pathology Unit, San Pietro Fatebenefratelli Hospital, 00189 Rome, Italy;
| | - Gian Ludovico Rapaccini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (M.M.); (G.L.R.)
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Umberto Basile
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| | - Valeria Carnazzo
- Dipartimento di Patologia Clinica, Ospedale Santa Maria Goretti, A.U.S.L. Latina, 04100 Latina, Italy; (M.T.); (V.C.)
| |
Collapse
|
8
|
Shawky HA, Ahmed NM, Essawy MM, Basha SM. Histological and Biochemical Evaluation of Silibinin in Treatment of Periodontitis Induced in Rats with Liver Cirrhosis. J Contemp Dent Pract 2024; 25:631-638. [PMID: 39533932 DOI: 10.5005/jp-journals-10024-3725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
AIM This study aimed to evaluate the impact of silibinin as a therapeutic agent on ligature-induced periodontitis in rats with liver cirrhosis. MATERIALS AND METHODS Twenty-five Wistar rats were enrolled in this study. Group A (Control) included eight rats. The other 17 rats received CCl4 to develop cirrhosis, which was confirmed by sacrificing one of the rats and performing a histological examination of its liver tissue. Periodontitis was induced in the remaining 16 rats then they were allocated into (n = 8) group B-periodontitis with cirrhosis and group C-silibinin-treated group, 5 times/week starting from week 11 till week 14. Animals of the three groups were euthanized, and biochemical analysis comprising of liver functions assessment (serum levels of glutamate-pyruvate transaminase, serum levels of glutamate-oxalate transaminase, TIMP1) and oxidative stress index [MDA, nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT)] and histological examination were conducted by the end of week 14. RESULTS Group C revealed a more organized orientation of the periodontal ligament (PDL) collagen fibers with a marked regain of the alveolar bone height compared to group B. Biochemical analysis confirmed the potent therapeutic effect of silibinin manifested by a significant improvement in the biochemical parameters: tissue inhibitor of metalloproteinase-1, MDA, NO levels, and antioxidant enzymes. CONCLUSION Group B was associated with the most unfavorable biochemical findings and the maximum periodontal destruction. Group C demonstrated a positive osteogenic capacity and a noteworthy improvement in biochemical findings, which were comparable to those of group A, which displayed normal and healthy findings. CLINICAL SIGNIFICANCE The study highlights the potential use of silibinin as a natural remedy with minimal side effects for treating periodontitis in rats with liver cirrhosis. The findings could be translated to human clinical trials, which may lead to new treatment strategies using silibinin as a targeted therapy or as adjunctive therapy to conventional periodontal treatment for patients with liver cirrhosis who are more susceptible to periodontitis. How to cite this article: Shawky HA, Ahmed NM, Essawy MM, et al. Histological and Biochemical Evaluation of Silibinin in Treatment of Periodontitis Induced in Rats with Liver Cirrhosis. J Contemp Dent Pract 2024;25(7):631-638.
Collapse
Affiliation(s)
- Heba A Shawky
- Department of Preventive Dental Sciences, Periodontics Division, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, ORCID: https://orcid.org/0000-0002-0202-1505
| | - Nevien M Ahmed
- Department of Oral Biology-Biochemistry, Faculty of Dentistry, Pharos University in Alexandria, Egypt, ORCID: https://orcid.org/0000-0002-2761-1042
| | - Marwa M Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt, ORCID: https://orcid.org/0000-0002-4781-4293
| | - Soha M Basha
- Department of Basic Dental Sciences, Oral Diagnostic Sciences Division, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia, Phone: +966 532420015, e-mail: , ORCID: https://orcid.org/0000-0001-8249-5315
| |
Collapse
|
9
|
Petrenko O, Königshofer P, Brusilovskaya K, Hofer BS, Bareiner K, Simbrunner B, Jühling F, Baumert TF, Lupberger J, Trauner M, Kauschke SG, Pfisterer L, Simon E, Rendeiro AF, de Rooij LP, Schwabl P, Reiberger T. Transcriptomic signatures of progressive and regressive liver fibrosis and portal hypertension. iScience 2024; 27:109301. [PMID: 38469563 PMCID: PMC10926212 DOI: 10.1016/j.isci.2024.109301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Persistent liver injury triggers a fibrogenic program that causes pathologic remodeling of the hepatic microenvironment (i.e., liver fibrosis) and portal hypertension. The dynamics of gene regulation during liver disease progression and early regression remain understudied. Here, we generated hepatic transcriptome profiles in two well-established liver disease models at peak fibrosis and during spontaneous regression after the removal of the inducing agents. We linked the dynamics of key disease readouts, such as portal pressure, collagen area, and transaminase levels, to differentially expressed genes, enabling the identification of transcriptomic signatures of progressive vs. regressive liver fibrosis and portal hypertension. These candidate biomarkers (e.g., Tcf4, Mmp7, Trem2, Spp1, Scube1, Islr) were validated in RNA sequencing datasets of patients with cirrhosis and portal hypertension, and those cured from hepatitis C infection. Finally, deconvolution identified major cell types and suggested an association of macrophage and portal hepatocyte signatures with portal hypertension and fibrosis area.
Collapse
Affiliation(s)
- Oleksandr Petrenko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Königshofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Ksenia Brusilovskaya
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Benedikt S. Hofer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Katharina Bareiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Joachim Lupberger
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg 67000, France
- Service d’hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg 67000, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
| | - Stefan G. Kauschke
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Larissa Pfisterer
- Department of CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - Eric Simon
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co.KG, 88397 Biberach an der Riss, Germany
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Laura P.M.H. de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna 1090, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
10
|
Thilakarathna WPDW, Rupasinghe HPV. Proanthocyanidins-Based Synbiotics as a Novel Strategy for Nonalcoholic Fatty Liver Disease (NAFLD) Risk Reduction. Molecules 2024; 29:709. [PMID: 38338453 PMCID: PMC10856248 DOI: 10.3390/molecules29030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common liver disease worldwide, is a spectrum of liver abnormalities ranging from steatosis to nonalcoholic steatohepatitis (NASH) characterized by excessive lipid accumulation. The prevalence of NAFLD is predicted to increase rapidly, demanding novel approaches to reduce the global NAFLD burden. Flavonoids, the most abundant dietary polyphenols, can reduce the risk of NAFLD. The majority of dietary flavonoids are proanthocyanidins (PACs), which are oligomers and polymers of the flavonoid sub-group flavan-3-ols. The efficacy of PAC in reducing the NAFLD risk can be significantly hindered by low bioavailability. The development of synbiotics by combining PAC with probiotics may increase effectiveness against NAFLD by biotransforming PAC into bioavailable metabolites. PAC and probiotic bacteria are capable of mitigating steatosis primarily through suppressing de novo lipogenesis and promoting fatty acid β-oxidation. PAC and probiotic bacteria can reduce the progression of steatosis to NASH mainly through ameliorating hepatic damage and inflammation induced by hepatic oxidative stress, endoplasmic reticulum stress, and gut microbiota dysbiosis. Synbiotics of PAC are superior in reducing the risk of NAFLD compared to independent administration of PAC and probiotics. The development of PAC-based synbiotics can be a novel strategy to mitigate the increasing incidence of NAFLD.
Collapse
Affiliation(s)
- Wasitha P. D. W. Thilakarathna
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4H7, Canada
| |
Collapse
|
11
|
Perramón M, Navalón-López M, Fernández-Varo G, Moreno-Lanceta A, García-Pérez R, Faneca J, López-Moya M, Fornaguera C, García-Villoria J, Morales-Ruiz M, Melgar-Lesmes P, Borrós S, Jiménez W. Liver-targeted nanoparticles delivering nitric oxide reduce portal hypertension in cirrhotic rats. Biomed Pharmacother 2024; 171:116143. [PMID: 38219387 DOI: 10.1016/j.biopha.2024.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024] Open
Abstract
Nitric oxide (NO) is a small vasodilator playing a key role in the pathogenesis of portal hypertension. Here, we assessed the potential therapeutic effect of a NO donor targeted to the liver by poly(beta-amino ester) nanoparticles (pBAE NPs) in experimental cirrhosis. Retinol-functionalized NO donor pBAE NPs (Ret pBAE NPs) were synthetized with the aim of actively targeting the liver. Administration of Ret pBAE NPs resulted in uptake and transfection by the liver and spleen. NPs were not found in other organs or the systemic circulation. Treatment with NO donor Ret pBAE NPs (30 mg/ kg body weight) significantly decreased aspartate aminotransferase, lactate dehydrogenase and portal pressure (9.75 ± 0.64 mmHg) compared to control NPs (13.4 ± 0.53 mmHg) in cirrhotic rats. There were no effects on mean arterial pressure and cardiac output. Liver-targeted NO donor NPs reduced collagen fibers and steatosis, activation of hepatic stellate cells and mRNA expression of profibrogenic and proinflammatory genes. Finally, Ret pBAE NPs displayed efficient transfection in human liver slices. Overall, liver-specific NO donor NPs effectively target the liver and mitigated inflammation and portal hypertension in cirrhotic rats. The use of Ret pBAE may prove to be an effective therapeutic strategy to treat advanced liver disease.
Collapse
Affiliation(s)
- Meritxell Perramón
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.
| | - María Navalón-López
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Guillermo Fernández-Varo
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alazne Moreno-Lanceta
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Rocío García-Pérez
- Hepatopancreatobiliary Surgery & Transplantation, General & Digestive Surgery Service, Digestive & Metabolic Disease Institute (ICMDM) of Hospital Clínic of Barcelona, Barcelona, Spain. Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Joana Faneca
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mario López-Moya
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Judith García-Villoria
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, USA
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (Gemat), Institut Químic de Sarrià (IQS), Universitat Ramon Llull (URL), Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Service, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Department of Biomedicine, University of Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Borrello MT, Mann D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br J Pharmacol 2023; 180:2880-2897. [PMID: 35393658 DOI: 10.1111/bph.15853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic liver diseases comprise a broad spectrum of burdensome diseases that still lack effective pharmacological therapies. Our research group focuses on fibrosis, which is a major precursor of liver cirrhosis. Fibrosis consists in a progressive disturbance of liver sinusoidal architecture characterised by connective tissue deposition as a reparative response to tissue injury. Multifactorial events and several types of cells participate in fibrosis initiation and progression, and the process still needs to be completely understood. The development of experimental models of liver fibrosis alongside the identification of critical factors progressing fibrosis to cirrhosis will facilitate the development of more effective therapeutic approaches for such condition. This review provides an overlook of the main process leading to hepatic fibrosis and therapeutic approaches that have emerged from a deep knowledge of the molecular regulation of fibrogenesis in the liver. LINKED ARTICLES: This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Sychugov GV, Azizova TV, Zhuntova GV, Grigoryeva ES, Loffredo CA, Hamada N, Kazachkov EL. Immunohistochemical Analysis of Lung Adenocarcinoma in Russian Mayak Nuclear Workers. Cancer Invest 2023; 41:686-698. [PMID: 37291892 DOI: 10.1080/07357907.2023.2218489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Specimens of lung adenocarcinoma (AdCa) from Russian nuclear workers (n = 54) exposed to alpha particles and gamma rays and from individuals non-exposed to radiation (n = 21) were examined using immunohistochemistry. Estimated significant associations with alpha dose were negative for Ki-67 and collagen IV in AdCa. Associations with gamma-ray dose were negative for tissue inhibitor of matrix metalloproteinase 2 and caspase 3 and positive for matrix metalloproteinase 2 and leukemia inhibiting factor in AdCa. The findings provide some evidence supporting alterations in apoptosis, cell proliferation and extracellular matrix in lung tissues affected by chronic radiation exposure that can contribute to radiogenic cancerogenesis.
Collapse
Affiliation(s)
- Gleb V Sychugov
- South Ural State Medical University, Ministry of Health, Chelyabinsk, Russia
| | - Tamara V Azizova
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Galina V Zhuntova
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Evgeniy L Kazachkov
- South Ural State Medical University, Ministry of Health, Chelyabinsk, Russia
| |
Collapse
|
14
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
15
|
Shu J, Shi J, Gu Y, Deng L, Zhao C, Wu C, Zhao J, Wang H, Jin L. Levocarnitine regulates the growth of angiotensin II-induced myocardial fibrosis cells via TIMP-1. Open Life Sci 2023; 18:20220554. [PMID: 36816804 PMCID: PMC9922061 DOI: 10.1515/biol-2022-0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 02/11/2023] Open
Abstract
This study aimed to explore the effects of tissue inhibitor of metalloproteinases-1 (TIMP-1) on levocarnitine (LC)-mediated regulation of angiotensin II (AngII)-induced myocardial fibrosis (MF) and its underlying mechanisms. H9C2 cells were treated with AngII for 24 h to induce fibrosis. The cells were then treated with LC or transfected with TIMP-1-OE plasmid/si‑TIMP-1. Cell apoptosis, viability, migration, and related gene expression were analyzed. AngII treatment significantly upregulated Axl, α-SMA, and MMP3 expression (P < 0.05) and downregulated STAT4 and TIMP1 expression (P < 0.05) relative to the control levels. After transfection, cells with TIMP-1 overexpression/knockdown were successfully established. Compared with that of the control, AngII significantly inhibited cell viability and cell migration while promoting cell apoptosis (P < 0.05). LC and TIMP-1-OE transfection further suppressed cell viability and migration induced by Ang II and upregulated apoptosis, whereas si-TIMP-1 had the opposite effect. Furthermore, LC and TIMP-1-OE transfection downregulated Axl, AT1R, α-SMA, collagen III, Bcl-2, and MMP3 expression caused by AngII and upregulated caspase 3, p53, and STAT4 expression, whereas si-TIMP-1 had the opposite effect. TIMP-1 is therefore a potential therapeutic target for delaying MF progression.
Collapse
Affiliation(s)
- Jin Shu
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Jue Shi
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Yiwen Gu
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Lei Deng
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Chen Zhao
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Chun Wu
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Jiachen Zhao
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| | - Haiya Wang
- Department of Gerontology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200023, China
| | - Li Jin
- Department of Gerontology, Shibei Hospital of Jing’an District, Shanghai, 200443, China
| |
Collapse
|
16
|
El-Shawi OE, El-Nashar HAS, Abd El-Rahman SS, Eldahshan OA, Singab ANB. Protective effect of acrocarpus fraxinifolius extract against hepatic fibrosis induced by Gamma irradiation and carbon tetrachloride in albino rats. Int J Radiat Biol 2023; 99:270-280. [PMID: 35675546 DOI: 10.1080/09553002.2022.2087926] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Liver fibrosis is considered as one of the ultimate outcomes of chronic liver disorders, characterized by outrageous cell proliferation and abnormal deposition of extracellular matrix, resulting in sever pathological distortions in the architecture and performance of liver tissues. The present study aimed to investigate the protective properties of aqueous methanol extract of Acrocarpus fraxinifolius leaves (AFL) against liver fibrosis induced by dual toxicity of γ-irradiation and carbon tetrachloride (CCl4) in rats. METHODS The animals were exposed to 2 Gy irradiation once/week concurrently with intraperitoneal administration of CCl4 (0.2 mL/100 g body weight) for seven weeks. Afterwards, liver toxicity and fibrosis were assessed biochemically at cellular and molecular as well as histopathological levels. RESULTS The livers of intoxicated rats showed distinct structural and functional changes, compared with the normal rats. The administration of AFL (500 mg/kg, p.o) significantly ameliorated the histopathological manifestations of fibrotic liver evidenced by mitigated steatosis progression, necrosis, fibrotic septa, apoptotic bodies, and immunochistochemical studies of alpha-smooth muscle actin. Also, AFL increased the final body weight, total protein, albumin levels and albumin/globulin ratio. While, the absolute liver weight, liver enzymes, total cholesterol and triglycerides were reduced. A significant modulation was observed in hydroxyproline, transforming growth factor-β and collagen-1expression. Furthermore, AFL exerted a direct effect on liver fibrosis by promoting extracellular matrix degradation via overexpression of the tissue inhibitor metalloproteinase-1, coupled with decease of metalloproteinase-9 activity. CONCLUSIONS Our findings suggested that AFL effectively improved the architecture of fibrotic liver and modified the biochemical markers of liver fibrosis.
Collapse
Affiliation(s)
- Omama E El-Shawi
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt.,Center for Drug Discovery Research and Development, Ain Shams University, Egypt
| |
Collapse
|
17
|
Turner CT, Pawluk M, Bolsoni J, Zeglinski MR, Shen Y, Zhao H, Ponomarev T, Richardson KC, West CR, Papp A, Granville DJ. Sulfaphenazole reduces thermal and pressure injury severity through rapid restoration of tissue perfusion. Sci Rep 2022; 12:12622. [PMID: 35871073 PMCID: PMC9308818 DOI: 10.1038/s41598-022-16512-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Pressure injuries, also known as pressure ulcers, are regions of localized damage to the skin and/or underlying tissue. Repeated rounds of ischemia-reperfusion (I/R) have a major causative role for tissue damage in pressure injury. Ischemia prevents oxygen/nutrient supply, and restoration of blood flow induces a burst of reactive oxygen species that damages blood vessels, surrounding tissues and can halt blood flow return. Minimizing the consequences of repeated I/R is expected to provide a protective effect against pressure injury. Sulfaphenazole (SP), an off patent sulfonamide antibiotic, is a potent CYP 2C6 and CYP 2C9 inhibitor, functioning to decrease post-ischemic vascular dysfunction and increase blood flow. The therapeutic effect of SP on pressure injury was therefore investigated in apolipoprotein E knockout mice, a model of aging susceptible to ischemic injury, which were subjected to repeated rounds of I/R-induced skin injury. SP reduced overall severity, improved wound closure and increased wound tensile strength compared to vehicle-treated controls. Saliently, SP restored tissue perfusion in and around the wound rapidly to pre-injury levels, decreased tissue hypoxia, and reduced both inflammation and fibrosis. SP also demonstrated bactericidal activity through enhanced M1 macrophage activity. The efficacy of SP in reducing thermal injury severity was also demonstrated. SP is therefore a potential therapeutic option for pressure injury and other ischemic skin injuries.
Collapse
Affiliation(s)
- Christopher T. Turner
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Megan Pawluk
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Juliana Bolsoni
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Matthew R. Zeglinski
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Yue Shen
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Hongyan Zhao
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Tatjana Ponomarev
- grid.17091.3e0000 0001 2288 9830Centre for Heart Lung Innovation, St. Paul’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Katlyn C. Richardson
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada
| | - Christopher R. West
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Cell and Physiological Sciences, University of British Columbia, Vancouver, BC Canada
| | - Anthony Papp
- grid.17091.3e0000 0001 2288 9830Department of Surgery, University of British Columbia, Vancouver, BC Canada
| | - David J. Granville
- grid.17091.3e0000 0001 2288 9830International Collaboration on Repair Discoveries (ICORD) Centre, Blusson Spinal Cord Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Rm 4470, 818 West 10th Ave., Vancouver, BC V5Z 1M9 Canada ,grid.17091.3e0000 0001 2288 9830Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC Canada ,grid.417243.70000 0004 0384 4428British Columbia Professional Firefighters’ Burn and Wound Healing Laboratory, Vancouver Coastal Health Research Institute, Vancouver, BC Canada
| |
Collapse
|
18
|
Liu QW, Ying YM, Zhou JX, Zhang WJ, Liu ZX, Jia BB, Gu HC, Zhao CY, Guan XH, Deng KY, Xin HB. Human amniotic mesenchymal stem cells-derived IGFBP-3, DKK-3, and DKK-1 attenuate liver fibrosis through inhibiting hepatic stellate cell activation by blocking Wnt/β-catenin signaling pathway in mice. Stem Cell Res Ther 2022; 13:224. [PMID: 35659360 PMCID: PMC9166579 DOI: 10.1186/s13287-022-02906-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Background Liver fibrosis is an outcome of restoring process in chronic liver injury. Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammatory potential which makes them suitable for treating liver fibrosis. This study aimed to explore the effect and mechanism of hAMSCs on liver fibrosis. Methods hAMSCs were transplanted into carbon tetrachloride (CCl4)-induced liver fibrosis mice via tail vein, and the effects of hAMSCs on hepatic fibrosis were assessed. The effects of hAMSCs and hAMSCs conditional medium (CM) on the activation of hepatic stellate cells (HSCs) were investigated in vivo and in vitro. Antibody array assay was used to identify the cytokines secreted by hAMSCs that may inhibit the activation of HSCs. Finally, the underlying mechanisms were explored by assessing IGF-1R/PI3K/AKT and GSK3β/β-catenin signaling pathways in the activated HSCs (LX-2) with hAMSCs and hAMSCs transfected with corresponding siRNAs. Results Our results showed that hAMSCs possessed the characterizations of mesenchymal stem cells. hAMSCs significantly reduced liver fibrosis and improved liver function in mice by inhibiting HSCs activation in vivo. Both hAMSCs and hAMSC-CM remarkably inhibited the collagen deposition and activation of LX-2 cells in vitro. Antibody array assay showed that insulin-like growth factor binding protein-3 (IGFBP-3), Dickkopf-3 (DKK-3), and Dickkopf-1 (DKK-1) were highly expressed in the co-culture group and hAMSC-CM group compared with LX-2 group. Western blot assay demonstrated that IGFBP-3, DKK-3, and DKK-1 derived from hAMSCs inhibit LX-2 cell activation through blocking canonical Wnt signaling pathway. Conclusions Our results demonstrated that IGFBP-3, Dkk3, and DKK-1 secreted by hAMSCs attenuated liver fibrosis in mice through inhibiting HSCs activation via depression of Wnt/β-catenin signaling pathway, suggesting that hAMSCs or hAMSC-CM provides an alternative therapeutic approach for the treatment of liver fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02906-z.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China.,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.,Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yan-Min Ying
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Jia-Xin Zhou
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Wen-Jie Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Zhao-Xiao Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Bing-Bing Jia
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, People's Republic of China
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China.,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Chu-Yu Zhao
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China. .,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, No. 1299 Xuefu Road, Honggutan District, Nanchang, 330031, Jiangxi Province, People's Republic of China. .,School of Life and Science, Nanchang University, Nanchang, 330031, People's Republic of China.
| |
Collapse
|
19
|
Gwag T, Ma E, Zhou C, Wang S. Anti-CD47 antibody treatment attenuates liver inflammation and fibrosis in experimental non-alcoholic steatohepatitis models. Liver Int 2022; 42:829-841. [PMID: 35129307 PMCID: PMC9101015 DOI: 10.1111/liv.15182] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS With the epidemic burden of obesity and metabolic diseases, nonalcoholic fatty liver disease (NAFLD) including steatohepatitis (NASH) has become the most common chronic liver disease in the western world. NASH may progress to cirrhosis and hepatocellular carcinoma. Currently, no treatment is available for NASH. Therefore, finding a therapy for NAFLD/NASH is in urgent need. Previously we have demonstrated that mice lacking CD47 or its ligand thrombospondin1 (TSP1) are protected from obesity-associated NALFD. This suggests that CD47 blockade might be a novel treatment for obesity-associated metabolic disease. Thus, in this study, the therapeutic potential of an anti-CD47 antibody in NAFLD progression was determined. METHODS Both diet-induced NASH mouse model and human NASH organoid model were utilized in this study. NASH was induced in mice by feeding with diet enriched with fat, fructose and cholesterol (AMLN diet) for 20 weeks and then treated with anti-CD47 antibody or control IgG for 4 weeks. Body weight, body composition and liver phenotype were analysed. RESULTS We found that anti-CD47 antibody treatment did not affect mice body weight, fat mass or liver steatosis. However, liver immune cell infiltration, inflammation and fibrosis were significantly reduced by anti-CD47 antibody treatment. In vitro data further showed that CD47 blockade prevented hepatic stellate cell activation and NASH progression in a human NASH organoid model. CONCLUSION Collectively, these data suggest that anti-CD47 antibody might be a new therapeutic option for obesity-associated NASH and liver fibrosis.
Collapse
Affiliation(s)
- Taesik Gwag
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, and Lexington VA Medical Center, Lexington KY 40502
| | - Eric Ma
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, and Lexington VA Medical Center, Lexington KY 40502
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, and Lexington VA Medical Center, Lexington KY 40502.,To whom correspondence should be addressed: Shuxia Wang, MD, PhD, Department of Pharmacology and Nutritional Sciences, University of Kentucky, Wethington Bldg. Room 583, 900 S. Limestone Street, Lexington, KY 40536. Tel: 859-218-1367, Fax: 859-257-3646,
| |
Collapse
|
20
|
Mirshahi F, Aqbi HF, Isbell M, Manjili SH, Guo C, Saneshaw M, Dozmorov M, Khosla A, Wack K, Carrasco-Zevallos OM, Idowu MO, Wang XY, Sanyal AJ, Manjili MH, Bandyopadhyay D. Distinct hepatic immunological patterns are associated with the progression or inhibition of hepatocellular carcinoma. Cell Rep 2022; 38:110454. [PMID: 35235789 PMCID: PMC9028248 DOI: 10.1016/j.celrep.2022.110454] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/27/2022] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
To discover distinct immune responses promoting or inhibiting hepatocellular carcinoma (HCC), we perform a three-dimensional analysis of the immune cells, correlating immune cell types, interactions, and changes over time in an animal model displaying gender disparity in nonalcoholic fatty liver disease (NAFLD)-associated HCC. In response to a Western diet (WD), animals mount acute and chronic patterns of inflammatory cytokines, respectively. Tumor progression in males and females is associated with a predominant CD8+ > CD4+, Th1 > Th17 > Th2, NKT > NK, M1 > M2 pattern in the liver. A complete rescue of females from HCC is associated with an equilibrium Th1 = Th17 = Th2, NKT = NK, M1 = M2 pattern, while a partial rescue of males from HCC is associated with an equilibrium CD8+ = CD4+, NKT = NK and a semi-equilibrium Th1 = Th17 > Th2 but a sustained M1 > M2 pattern in the liver. Our data suggest that immunological pattern-recognition can explain immunobiology of HCC and guide immune modulatory interventions for the treatment of HCC in a gender-specific manner. Mirshahi et al. performed a three-dimensional analysis of hepatic and splenic immune cells, correlating the immune cell types, their interactions and proportions, and changes over time. They discover gender-associated immunological patterns determining tumor progression, as well as partial or complete inhibition of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Hussein F Aqbi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Madison Isbell
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Saeed H Manjili
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
| | - Chunqing Guo
- Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA 23298, USA
| | - Mulugeta Saneshaw
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA
| | - Mikhail Dozmorov
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | - Michael O Idowu
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
| | - Xiang-Yang Wang
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Human & Molecular Genetics, VCU School of Medicine, Richmond, VA 23298, USA; Hunter Holmes McGuire VA Medical Center, Richmond, VA 23298, USA
| | - Arun J Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA.
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA 23298, USA; VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA.
| | - Dipankar Bandyopadhyay
- VCU Massey Cancer Center, 401 College Street, Richmond, VA 23298, USA; Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Fibroblast Growth Factor 21 (FGF21) Administration Sex-Specifically Affects Blood Insulin Levels and Liver Steatosis in Obese Ay Mice. Cells 2021; 10:cells10123440. [PMID: 34943946 PMCID: PMC8700098 DOI: 10.3390/cells10123440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
FGF21 is a promising candidate for treating obesity, diabetes, and NAFLD; however, some of its pharmacological effects are sex-specific in mice with the Ay mutation that evokes melanocortin receptor 4 blockade, obesity, and hepatosteatosis. This suggests that the ability of FGF21 to correct melanocortin obesity may depend on sex. This study compares FGF21 action on food intake, locomotor activity, gene expression, metabolic characteristics, and liver state in obese Ay males and females. Ay mice were administered FGF21 for seven days, and metabolic parameters and gene expression in different tissues were assessed. Placebo-treated females were more obese than males and had lower levels of blood insulin and liver triglycerides, and higher expression of genes for insulin signaling in the liver, white adipose tissue (WAT) and muscles, and pro-inflammatory cytokines in the liver. FGF21 administration did not affect body weight, and increased food intake, locomotor activity, expression of Fgf21 and Ucp1 in brown fat and genes related to lipolysis and insulin action in WAT regardless of sex; however, it decreased hyperinsulinemia and hepatic lipid accumulation and increased muscle expression of Cpt1 and Irs1 only in males. Thus, FGF21’s beneficial effects on metabolic disorders associated with melanocortin obesity are more pronounced in males.
Collapse
|
22
|
Schyman P, Printz RL, Pannala VR, AbdulHameed MDM, Estes SK, Shiota C, Boyd KL, Shiota M, Wallqvist A. Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat. Toxicol Appl Pharmacol 2021; 430:115713. [PMID: 34492290 PMCID: PMC8511347 DOI: 10.1016/j.taap.2021.115713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.
Collapse
Affiliation(s)
- Patric Schyman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli Lynn Boyd
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
23
|
Wang T, Huang XY, Zheng SJ, Liu YY, Chen SS, Ren F, Lu J, Duan ZP, Liu M. Serum Anti-14-3-3 Zeta Autoantibody as a Biomarker for Predicting Hepatocarcinogenesis. Front Oncol 2021; 11:733680. [PMID: 34722278 PMCID: PMC8555665 DOI: 10.3389/fonc.2021.733680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy worldwide. Alpha-fetoprotein (AFP) is still the only serum biomarker widely used in clinical settings. However, approximately 40% of HCC patients exhibit normal AFP levels, including very early HCC and AFP-negative HCC; for these patients, serum AFP is not applicable as a biomarker of early detection. Thus, there is an urgent need to identify novel biomarkers for patients for whom disease cannot be diagnosed early. In this study, we screened and identified novel proteins in AFP-negative HCC and evaluated the feasibility of using autoantibodies to those protein to predict hepatocarcinogenesis. First, we screened and identified differentially expressed proteins between AFP-negative HCC tissue and adjacent non-tumor liver tissue using SWATH-MS proteome technology. In total, 2,506 proteins were identified with a global false discovery rate of 1%, of which 592 proteins were expressed differentially with 175 upregulated and 417 downregulated (adjusted p-value <0.05, fold-change FC ≥1.5 or ≤0.67) between the tumor and matched benign samples, including 14-3-3 zeta protein. For further serological verification, autoantibodies against 14-3-3 zeta in serum were evaluated using enzyme-linked immunosorbent, Western blotting, and indirect immunofluorescence assays. Five serial serum samples from one patient with AFP-negative HCC showed anti-14-3-3 zeta autoantibody in sera 9 months before the diagnosis of HCC, which gradually increased with an increase in the size of the nodule. Based on these findings, we detected the prevalence of serum anti-14-3-3 zeta autoantibody in liver cirrhosis (LC) patients, which is commonly considered a premalignant liver disease of HCC. We found that the prevalence of autoantibodies against 14-3-3 zeta protein was 16.1% (15/93) in LC patient sera, which was significantly higher than that in patients with chronic hepatitis (0/75, p = 0.000) and normal human sera (1/60, 1.7%, p = 0.01). Therefore, we suggest that anti-14-3-3 zeta autoantibody might be a biomarker for predicting hepatocarcinogenesis. Further follow-up and research of patients with positive autoantibodies will be continued to confirm the relationship between anti-14-3-3 zeta autoantibody and hepatocarcinogenesis.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory and Infectious Diseases, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Xue-ying Huang
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Su-jun Zheng
- First Department of Hepatology Center, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Ye-ying Liu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Si-si Chen
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Zhong-ping Duan
- Fourth Department of Hepatology Center, Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Mei Liu
- Department of Oncology, Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Quenum AJI, Shukla A, Rexhepi F, Cloutier M, Ghosh A, Kufer TA, Ramanathan S, Ilangumaran S. NLRC5 Deficiency Deregulates Hepatic Inflammatory Response but Does Not Aggravate Carbon Tetrachloride-Induced Liver Fibrosis. Front Immunol 2021; 12:749646. [PMID: 34712238 PMCID: PMC8546206 DOI: 10.3389/fimmu.2021.749646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
The nucleotide-binding leucine-rich repeat-containing receptor (NLR) family protein-5 (NLRC5) controls NF-κB activation and production of inflammatory cytokines in certain cell types. NLRC5 is considered a potential regulator of hepatic fibrogenic response due to its ability to inhibit hepatic stellate activation in vitro. To test whether NLRC5 is critical to control liver fibrosis, we treated wildtype and NLRC5-deficient mice with carbon tetrachloride (CCl4) and assessed pathological changes in the liver. Serum alanine transaminase levels and histopathology examination of liver sections revealed that NLRC5 deficiency did not exacerbate CCl4-induced liver damage or inflammatory cell infiltration. Sirius red staining of collagen fibers and hydroxyproline content showed comparable levels of liver fibrosis in CCl4-treated NLRC5-deficient and control mice. Myofibroblast differentiation and induction of collagen genes were similarly increased in both groups. Strikingly, the fibrotic livers of NLRC5-deficient mice showed reduced expression of matrix metalloproteinase-3 (Mmp3) and tissue inhibitor of MMPs-1 (Timp1) but not Mmp2 or Timp2. Fibrotic livers of NLRC5-deficient mice had increased expression of TNF but similar induction of TGFβ compared to wildtype mice. CCl4-treated control and NLRC5-deficient mice displayed similar upregulation of Cx3cr1, a monocyte chemoattractant receptor gene, and the Cd68 macrophage marker. However, the fibrotic livers of NLRC5-deficient mice showed increased expression of F4/80 (Adgre1), a marker of tissue-resident macrophages. NLRC5-deficient livers showed increased phosphorylation of the NF-κB subunit p65 that remained elevated following fibrosis induction. Taken together, NLRC5 deficiency deregulates hepatic inflammatory response following chemical injury but does not significantly aggravate the fibrogenic response, showing that NLRC5 is not a critical regulator of liver fibrosis pathogenesis.
Collapse
Affiliation(s)
- Akouavi Julite I. Quenum
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Amit Ghosh
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Thomas A. Kufer
- Department of Immunology (180b), Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), Sherbrooke, Canada
| |
Collapse
|
25
|
Lee K, Yu H, Shouse S, Kong B, Lee J, Lee SH, Ko KS. RNA-Seq Reveals Different Gene Expression in Liver-Specific Prohibitin 1 Knock-Out Mice. Front Physiol 2021; 12:717911. [PMID: 34539442 PMCID: PMC8446661 DOI: 10.3389/fphys.2021.717911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prohibitin 1 (PHB1) is an evolutionarily conserved and ubiquitously expressed protein that stabilizes mitochondrial chaperone. Our previous studies showed that liver-specific Phb1 deficiency induced liver injuries and aggravated lipopolysaccharide (LPS)-induced innate immune responses. In this study, we performed RNA-sequencing (RNA-seq) analysis with liver tissues to investigate global gene expression among liver-specific Phb1−/−, Phb1+/−, and WT mice, focusing on the differentially expressed (DE) genes between Phb1+/− and WT. When 78 DE genes were analyzed for biological functions, using ingenuity pathway analysis (IPA) tool, lipid metabolism-related genes, including insulin receptor (Insr), sterol regulatory element-binding transcription factor 1 (Srebf1), Srebf2, and SREBP cleavage-activating protein (Scap) appeared to be downregulated in liver-specific Phb1+/− compared with WT. Diseases and biofunctions analyses conducted by IPA verified that hepatic system diseases, including liver fibrosis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death, which may be caused by hepatotoxicity, were highly associated with liver-specific Phb1 deficiency in mice. Interestingly, of liver disease-related 5 DE genes between Phb1+/− and WT, the mRNA expressions of forkhead box M1 (Foxm1) and TIMP inhibitor of metalloproteinase (Timp1) were matched with validation for RNA-seq in liver tissues and AML12 cells transfected with Phb1 siRNA. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with hepatic Phb1.
Collapse
Affiliation(s)
- Kyuwon Lee
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Hyeonju Yu
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Stephanie Shouse
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Jihye Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Beverly Hills, CA, United States
| |
Collapse
|
26
|
Zhu B, Chan SL, Li J, Li K, Wu H, Cui K, Chen H. Non-alcoholic Steatohepatitis Pathogenesis, Diagnosis, and Treatment. Front Cardiovasc Med 2021; 8:742382. [PMID: 34557535 PMCID: PMC8452937 DOI: 10.3389/fcvm.2021.742382] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
There has been a rise in the prevalence of non-alcohol fatty liver disease (NAFLD) due to the popularity of western diets and sedentary lifestyles. One quarter of NAFLD patients is diagnosed with non-alcoholic steatohepatitis (NASH), with histological evidence not only of fat accumulation in hepatocytes but also of liver cell injury and death due to long-term inflammation. Severe NASH patients have increased risks of cirrhosis and liver cancer. In this review, we discuss the pathogenesis and current methods of diagnosis for NASH, and current status of drug development for this life-threatening liver disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
27
|
Murray JK, Long J, Liu L, Singh S, Pruitt D, Ollmann M, Swearingen E, Hardy M, Homann O, Wu B, Holder JR, Sham K, Herberich B, Lo MC, Dou H, Shkumatov A, Florio M, Rulifson IC. Identification and Optimization of a Minor Allele-Specific Small Interfering RNA to Prevent PNPLA3 I148M-Driven Nonalcoholic Fatty Liver Disease. Nucleic Acid Ther 2021; 31:324-340. [PMID: 34297902 DOI: 10.1089/nat.2021.0026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human genome wide association studies confirm the association of the rs738409 single nucleotide polymorphism (SNP) in the gene encoding protein patatin like phospholipase domain containing 3 (PNPLA3) with nonalcoholic fatty liver disease (NAFLD); the presence of the resulting mutant PNPLA3 I148M protein is a driver of nonalcoholic steatohepatitis (NASH). While Pnpla3-deficient mice do not display an adverse phenotype, the safety of knocking down endogenous wild type PNPLA3 in humans remains unknown. To expand the scope of a potential targeted NAFLD therapeutic to both homozygous and heterozygous PNPLA3 rs738409 populations, we sought to identify a minor allele-specific small interfering RNA (siRNA). Limiting our search to SNP-spanning triggers, a series of chemically modified siRNA were tested in vitro for activity and selectivity toward PNPLA3 rs738409 mRNA. Conjugation of the siRNA to a triantennary N-acetylgalactosamine (GalNAc) ligand enabled in vivo screening using adeno-associated virus to overexpress human PNPLA3I148M versus human PNPLA3I148I in mouse livers. Structure-activity relationship optimization yielded potent and minor allele-specific compounds that achieved high levels of mRNA and protein knockdown of human PNPLA3I148M but not PNPLA3I148I. Testing of the minor allele-specific siRNA in PNPLA3I148M-expressing mice fed a NASH-inducing diet prevented PNPLA3I148M-driven disease phenotypes, thus demonstrating the potential of a precision medicine approach to treating NAFLD.
Collapse
Affiliation(s)
- Justin K Murray
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jason Long
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Lei Liu
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Shivani Singh
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Danielle Pruitt
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| | - Michael Ollmann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Elissa Swearingen
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Miki Hardy
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Oliver Homann
- Genome Analysis Unit, Amgen Research, South San Francisco, California, USA
| | - Bin Wu
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Jerry Ryan Holder
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Kelvin Sham
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Brad Herberich
- Therapeutic Discovery, Amgen Research, Thousand Oaks, California, USA
| | - Mei-Chu Lo
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Hui Dou
- Therapeutic Discovery, Amgen Research, South San Francisco, California, USA
| | - Artem Shkumatov
- Translational Safety and Bioanalytical Sciences, Amgen Research, South San Francisco, California, USA
| | - Monica Florio
- Cardiometabolic Disorders, Amgen Research, Thousand Oaks, California, USA
| | - Ingrid C Rulifson
- Cardiometabolic Disorders, Amgen Research, South San Francisco, California, USA
| |
Collapse
|
28
|
Bao YL, Wang L, Pan HT, Zhang TR, Chen YH, Xu SJ, Mao XL, Li SW. Animal and Organoid Models of Liver Fibrosis. Front Physiol 2021; 12:666138. [PMID: 34122138 PMCID: PMC8187919 DOI: 10.3389/fphys.2021.666138] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis refers to the process underlying the development of chronic liver diseases, wherein liver cells are repeatedly destroyed and regenerated, which leads to an excessive deposition and abnormal distribution of the extracellular matrix such as collagen, glycoprotein and proteoglycan in the liver. Liver fibrosis thus constitutes the pathological repair response of the liver to chronic injury. Hepatic fibrosis is a key step in the progression of chronic liver disease to cirrhosis and an important factor affecting the prognosis of chronic liver disease. Further development of liver fibrosis may lead to structural disorders of the liver, nodular regeneration of hepatocytes and the formation of cirrhosis. Hepatic fibrosis is histologically reversible if treated aggressively during this period, but when fibrosis progresses to the stage of cirrhosis, reversal is very difficult, resulting in a poor prognosis. There are many causes of liver fibrosis, including liver injury caused by drugs, viral hepatitis, alcoholic liver, fatty liver and autoimmune disease. The mechanism underlying hepatic fibrosis differs among etiologies. The establishment of an appropriate animal model of liver fibrosis is not only an important basis for the in-depth study of the pathogenesis of liver fibrosis but also an important means for clinical experts to select drugs for the prevention and treatment of liver fibrosis. The present study focused on the modeling methods and fibrosis characteristics of different animal models of liver fibrosis, such as a chemical-induced liver fibrosis model, autoimmune liver fibrosis model, cholestatic liver fibrosis model, alcoholic liver fibrosis model and non-alcoholic liver fibrosis model. In addition, we also summarize the research and application prospects concerning new organoids in liver fibrosis models proposed in recent years. A suitable animal model of liver fibrosis and organoid fibrosis model that closely resemble the physiological state of the human body will provide bases for the in-depth study of the pathogenesis of liver fibrosis and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Yu-long Bao
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Li Wang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hai-ting Pan
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Tai-ran Zhang
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shan-jing Xu
- School of Medicine, Shaoxing University, Shaoxing, Chian
| | - Xin-li Mao
- School of Medicine, Shaoxing University, Shaoxing, Chian
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-wei Li
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
29
|
Rodríguez-Rodríguez DR, Lozano-Sepulveda SA, Delgado-Montemayor C, Waksman N, Cordero-Perez P, Rivas-Estilla AM. Turnera diffusa extract attenuates profibrotic, extracellular matrix and mitochondrial markers in activated human hepatic stellate cells (HSC). Ann Hepatol 2021; 22:100281. [PMID: 33220464 DOI: 10.1016/j.aohep.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatic fibrosis is characterized by the accumulation of extracellular matrix which includes the accumulation of α-smooth muscle actin (α-SMA), collagen type I (COL1α1), as well as remodeling induced by metalloproteinases and tissue inhibitor of metalloproteinase (TIMPs), where hepatic stellate cells (HSCs) play a central role. In addition, the transcription factor SNAI1 (which participates in epithelial-mesenchymal transition, EMT) and mitofusin 2 (MFN2, a mitochondrial marker) plays an important role in chronic liver disease. Turnera diffusa (TD), a Mexican endemic plant, has been shown to possess antioxidant and hepatoprotective activity in vitro. We treated human HSC (LX2 cells) with a methanolic extract of Turnera diffusa (METD) to evaluate the mechanism involved in its hepatoprotective effect measured as fibrosis modulation, EMT, and mitochondrial markers. MATERIALS AND METHODS HSC LX-2 cells were treated with METD (100 and 200ng/mL) alone or combined with TGF-β (10ng/mL) at different time points (24, 48, and 72h). α-SMA, COL1α1, MMP2, TIMP1, SNAI1, and MFN2 mRNAs and protein levels were determined by real-time quantitative PCR and Western Blot analysis. RESULTS We found that METD decreases COL1α1-mRNA, α-SMA, and TIMP1 protein expression in LX2 cells treated with and TGF-β. This treatment also decreases MFN2 and TIMP1 protein expression and induces overexpression of MMP2-mRNA. CONCLUSIONS Our results suggest that a methanolic extract of Turnera diffusa is associated with an antifibrotic effect by decreasing profibrotic and mitochondrial markers together with the possible induction of apoptosis through SNAI1 expression in activated HSC cells.
Collapse
Affiliation(s)
- Diana Raquel Rodríguez-Rodríguez
- Universidad Autonoma de Nuevo Leon, Deptartment of Biochemistry and Molecular Medicine, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Sonia Amelia Lozano-Sepulveda
- Universidad Autonoma de Nuevo Leon, Deptartment of Biochemistry and Molecular Medicine, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Cecilia Delgado-Montemayor
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Noemí Waksman
- Universidad Autonoma de Nuevo Leon, Department of Analytical Chemistry, School of Medicine, Monterrey, Nuevo León, Mexico
| | - Paula Cordero-Perez
- Universidad Autonoma de Nuevo Leon, Liver Unit, Department of Internal Medicine, University Hospital "Dr. José E. González", Monterrey, Nuevo León, Mexico
| | - Ana María Rivas-Estilla
- Universidad Autonoma de Nuevo Leon, Deptartment of Biochemistry and Molecular Medicine, School of Medicine, Monterrey, Nuevo León, Mexico.
| |
Collapse
|
30
|
Targeting Cancer Associated Fibroblasts in Liver Fibrosis and Liver Cancer Using Nanocarriers. Cells 2020; 9:cells9092027. [PMID: 32899119 PMCID: PMC7563527 DOI: 10.3390/cells9092027] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer associated fibroblasts (CAF) and the extracellular matrix (ECM) produced by them have been recognized as key players in cancer biology and emerged as important targets for cancer treatment and drug discovery. Apart from their presence in stroma rich tumors, such as biliary, pancreatic and subtypes of hepatocellular cancer (HCC), both CAF and certain ECM components are also present in cancers without an overt intra-tumoral desmoplastic reaction. They support cancer development, growth, metastasis and resistance to chemo- or checkpoint inhibitor therapy by a multitude of mechanisms, including angiogenesis, ECM remodeling and active immunosuppression by secretion of tumor promoting and immune suppressive cytokines, chemokines and growth factors. CAF resemble activated hepatic stellate cells (HSC)/myofibroblasts, expressing α-smooth muscle actin and especially fibroblast activation protein (FAP). Apart from FAP, CAF also upregulate other functional cell surface proteins like platelet-derived growth factor receptor β (PDGFRβ) or the insulin-like growth factor receptor II (IGFRII). Notably, if formulated with adequate size and zeta potential, injected nanoparticles home preferentially to the liver. Several nanoparticular formulations were tested successfully to deliver dugs to activated HSC/myofibroblasts. Thus, surface modified nanocarriers with a cyclic peptide binding to the PDGFRβ or with mannose-6-phosphate binding to the IGFRII, effectively directed drug delivery to activated HSC/CAF in vivo. Even unguided nanohydrogel particles and lipoplexes loaded with siRNA demonstrated a high in vivo uptake and functional siRNA delivery in activated HSC, indicating that liver CAF/HSC are also addressed specifically by well-devised nanocarriers with optimized physicochemical properties. Therefore, CAF have become an attractive target for the development of stroma-based cancer therapies, especially in the liver.
Collapse
|
31
|
Salah NY. Vascular endothelial growth factor (VEGF), tissue inhibitors of metalloproteinase-1 (TIMP-1) and nail fold capillaroscopy changes in children and adolescents with Gaucher disease; relation to residual disease severity. Cytokine 2020; 133:155120. [DOI: 10.1016/j.cyto.2020.155120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
|
32
|
Ibrahim SA, Mohamed MZ, El-Tahawy NF, Abdelrahman AM. Antifibrotic effects of bezafibrate and pioglitazone against thioacetamide-induced liver fibrosis in albino rats. Can J Physiol Pharmacol 2020; 99:313-320. [PMID: 32721217 DOI: 10.1139/cjpp-2020-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of hepatic stellate cells is a central event in hepatic fibrogenesis that offers multiple potential sites for therapeutic interventions. Peroxisome proliferator-activated receptors are implicated in liver fibrosis. We aimed to evaluate the effect of bezafibrate and pioglitazone on a thioacetamide (TAA) rat model of liver fibrosis and to clarify the possible underlying mechanisms. Rats received intraperitoneal injections of TAA for 6 weeks. Daily oral treatments with bezafibrate or pioglitazone were started with the first day of TAA intoxication. Serum liver function tests, hepatic malondialdehyde (MDA), total nitrite and nitrate (NOx), superoxide dismutase, and hepatic histopathology were assessed to evaluate hepatic damage. Alpha smooth muscle actin (α-SMA) and tissue inhibitor metalloproteinase-1 (TIMP-1) and caspase-3 were also assessed. The TAA group experienced significant deterioration of liver functions, increased oxidative stress, and increased liver tissue NOx. Administration of bezafibrate or pioglitazone resulted in significant improvement of all liver functions and reduced oxidative stress in hepatic tissues. Only administration of bezafibrate significantly reduced NOx levels. Liver tissues from the TAA-treated group showed disrupted normal architecture. Administration of bezafibrate or pioglitazone attenuated this picture. Stronger α-SMA expression was detected in the TAA group. Treatment with bezafibrate or pioglitazone decreased the α-SMA expression.
Collapse
Affiliation(s)
- Salwa A Ibrahim
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| | - Nashwa F El-Tahawy
- Department of Histology & Cell Biology, Minia University Faculty of Medicine, Minia, Egypt
| | - Aly M Abdelrahman
- Department of Pharmacology, Minia University Faculty of Medicine, Minia, Egypt
| |
Collapse
|
33
|
Mirshahi F, Aqbi HF, Cresswell K, Saneshaw M, Coleman C, Jacobs T, Idowu MO, Dozmorov M, Sanyal AJ, Manjili MH. Longitudinal studies can identify distinct inflammatory cytokines associated with the inhibition or progression of liver cancer. Liver Int 2020; 40:468-472. [PMID: 31821689 DOI: 10.1111/liv.14323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/21/2019] [Accepted: 12/05/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Chronic diseases such as nonalcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC) are associated with chronic inflammation. However, controversial reports as to the key cytokines involved in the process of chronic inflammation hinder development of targeted therapies for patients. This is because, chronic inflammatory process cannot be fully understood by studying the mechanisms of the disease in a short-term or isolated fashion. Understanding of the trend of inflammatory cytokines through longitudinal studies could provide a profound insight into the process of disease progression. METHODS We performed a longitudinal analysis of inflammatory cytokines/chemokines and faecal microbiome dysbiosis associated with the diet-induced progression of NAFLD to HCC in diet-induced animal model of NAFLD comparing males and females, since males show a higher incidence of these diseases than females do. RESULTS Longitudinal analyses revealed that a transient and timely increase in LIF and TMIP1 was associated with the inhibition of the progression of NAFLD to HCC in females. On the other hand, chronically increasing trends in CCL12, CCL17, CXCL9 and LIX/CXCL5 were associated with the promotion of the progression of NAFLD to HCC in males. CONCLUSIONS We provided empirical evidence that a methodological shift from snapshot observations to longitudinal data collection and analysis can provide a better understanding of chronic liver diseases.
Collapse
Affiliation(s)
| | - Hussein F Aqbi
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Richmond, VA, USA
| | - Kellen Cresswell
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Mulugeta Saneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
| | - Cara Coleman
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA
| | - Taylor Jacobs
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA
| | - Michael O Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA, USA
| | - Mikhail Dozmorov
- VCU Massey Cancer Center, Richmond, VA, USA
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Arun J Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Richmond, VA, USA
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Richmond, VA, USA
- VCU Massey Cancer Center, Richmond, VA, USA
- Department of Pathology, VCU School of Medicine, Richmond, VA, USA
| |
Collapse
|
34
|
Li X, Chen R, Kemper S, Brigstock DR. Extracellular Vesicles From Hepatocytes Are Therapeutic for Toxin-Mediated Fibrosis and Gene Expression in the Liver. Front Cell Dev Biol 2020; 7:368. [PMID: 31998720 PMCID: PMC6966099 DOI: 10.3389/fcell.2019.00368] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/16/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) are nano-sized membrane-limited organelles that are liberated from their producer cells, traverse the intercellular space, and may interact with other cells resulting in the uptake of the EV molecular payload by the recipient cells which may become functionally reprogramed as a result. Previous in vitro studies showed that EVs purified from normal mouse AML12 hepatocytes ("EVNorm") attenuate the pro-fibrogenic activities of activated hepatic stellate cells (HSCs), a principal fibrosis-producing cell type in the liver. In a 10-day CCl4 injury model, liver fibrogenesis, expression of hepatic cellular communication network factor 2 [CCN2, also known as connective tissue growth factor (CTGF)] or alpha smooth muscle actin (αSMA) was dose-dependently blocked during concurrent administration of EVNorm. Hepatic inflammation and expression of inflammatory cytokines were also reduced by EVNorm. In a 5-week CCl4 fibrosis model in mice, interstitial collagen deposition and mRNA and/or protein for collagen 1a1, αSMA or CCN2 were suppressed following administration of EVNorm over the last 2 weeks. RNA sequencing (RNA-seq) revealed that EVNorm therapy of mice receiving CCl4 for 5 weeks resulted in significant differences [false discovery rate (FDR) <0.05] in expression of 233 CCl4-regulated hepatic genes and these were principally associated with fibrosis, cell cycle, cell division, signal transduction, extracellular matrix (ECM), heat shock, cytochromes, drug detoxification, adaptive immunity, and membrane trafficking. Selected gene candidates from these groups were verified by qRT-PCR as targets of EVNorm in CCl4-injured livers. Additionally, EVNorm administration resulted in reduced activation of p53, a predicted upstream regulator of 40% of the genes for which expression was altered by EVNorm following CCl4 liver injury. In vitro, EVs from human HepG2 hepatocytes suppressed fibrogenic gene expression in activated mouse HSC and reversed the reduced viability or proliferation of HepG2 cells or AML12 cells exposed to CCl4. Similarly, EVs produced by primary human hepatocytes (PHH) protected PHH or human LX2 HSC from CCl4-mediated changes in cell number or gene expression in vitro. These findings show that EVs from human or mouse hepatocytes regulate toxin-associated gene expression leading to therapeutic outcomes including suppression of fibrogenesis, hepatocyte damage, and/or inflammation.
Collapse
Affiliation(s)
- Xinlei Li
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Ruju Chen
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Sherri Kemper
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - David R. Brigstock
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
35
|
Phaosri M, Jantrapirom S, Na Takuathung M, Soonthornchareonnon N, Sireeratawong S, Buacheen P, Pitchakarn P, Nimlamool W, Potikanond S. Salacia chinensis L. Stem Extract Exerts Antifibrotic Effects on Human Hepatic Stellate Cells Through the Inhibition of the TGF-β1-Induced SMAD2/3 Signaling Pathway. Int J Mol Sci 2019; 20:ijms20246314. [PMID: 31847284 PMCID: PMC6940887 DOI: 10.3390/ijms20246314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Salacia chinensis L. (SC) stems have been used as an ingredient in Thai traditional medicine for treating patients with hepatic fibrosis and liver cirrhosis. However, there is no scientific evidence supporting the antifibrotic effects of SC extract. Therefore, this study aimed to determine the antifibrotic activity of SC stem extract in human hepatic stellate cell-line called LX-2. We found that upon TGF-β1 stimulation, LX-2 cells transformed to a myofibroblast-like phenotype with a noticeable increase in α-SMA and collagen type I production. Interestingly, cells treated with SC extract significantly suppressed α-SMA and collagen type I production and reversed the myofibroblast-like characteristics back to normal. Additionally, TGF-β1 also influenced the development of fibrogenesis by upregulation of MMP-2, TIMP-1, and TIMP-2 and related cellular signaling, such as pSmad2/3, pErk1/2, and pJNK. Surprisingly, SC possesses antifibrotic activity through the suppression of TGF-β1-mediated production of collagen type 1, α-SMA, and the phosphorylation status of Smad2/3, Erk1/2, and JNK. Taken together, the present study provides accumulated information demonstrating the antifibrotic effects of SC stem extract and revealing its potential for development for hepatic fibrosis patients.
Collapse
Affiliation(s)
- Mattareeyapar Phaosri
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.); (S.J.); (M.N.T.); (S.S.); (W.N.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.); (S.J.); (M.N.T.); (S.S.); (W.N.)
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.); (S.J.); (M.N.T.); (S.S.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Noppamas Soonthornchareonnon
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Thung Phaya Thai, Rajathevi, Bangkok 10400, Thailand;
| | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.); (S.J.); (M.N.T.); (S.S.); (W.N.)
| | - Pensiri Buacheen
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.); (S.J.); (M.N.T.); (S.S.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (M.P.); (S.J.); (M.N.T.); (S.S.); (W.N.)
- Research Center of Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: or
| |
Collapse
|
36
|
Mafanda EK, Kandhi R, Bobbala D, Khan MGM, Nandi M, Menendez A, Ramanathan S, Ilangumaran S. Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis. Cytokine 2019; 124:154501. [DOI: 10.1016/j.cyto.2018.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/31/2022]
|
37
|
Liu Q, Chiu A, Wang LH, An D, Zhong M, Smink AM, de Haan BJ, de Vos P, Keane K, Vegge A, Chen EY, Song W, Liu WF, Flanders J, Rescan C, Grunnet LG, Wang X, Ma M. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat Commun 2019; 10:5262. [PMID: 31748525 PMCID: PMC6868136 DOI: 10.1038/s41467-019-13238-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Foreign body reaction (FBR) to implanted biomaterials and medical devices is common and can compromise the function of implants or cause complications. For example, in cell encapsulation, cellular overgrowth (CO) and fibrosis around the cellular constructs can reduce the mass transfer of oxygen, nutrients and metabolic wastes, undermining cell function and leading to transplant failure. Therefore, materials that mitigate FBR or CO will have broad applications in biomedicine. Here we report a group of zwitterionic, sulfobetaine (SB) and carboxybetaine (CB) modifications of alginates that reproducibly mitigate the CO of implanted alginate microcapsules in mice, dogs and pigs. Using the modified alginates (SB-alginates), we also demonstrate improved outcome of islet encapsulation in a chemically-induced diabetic mouse model. These zwitterion-modified alginates may contribute to the development of cell encapsulation therapies for type 1 diabetes and other hormone-deficient diseases.
Collapse
Affiliation(s)
- Qingsheng Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alan Chiu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Duo An
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Monica Zhong
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Kevin Keane
- Stem Cell Biology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Andreas Vegge
- Diabetes Research, Novo Nordisk A/S, 2760, Måløv, Denmark
| | - Esther Y Chen
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Wei Song
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - James Flanders
- Department of Clinical Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Claude Rescan
- Stem Cell Pharmacology, Novo Nordisk A/S, 2760, Måløv, Denmark
| | | | - Xi Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
38
|
Kirchner VA, Tak E, Kim K, LeCluyse EL, Niedernhofer LJ, Soldatow V, Lee J, Kim J, Tolar J, Song GW, Pruett TL. The evolving microenvironment of the human hepatocyte: Healthy vs. cirrhotic liver vs. isolated cells. Tissue Cell 2019; 62:101310. [PMID: 32433018 DOI: 10.1016/j.tice.2019.101310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023]
Abstract
The study of the liver microenvironment and hepatocyte's response to this environment in the setting of healthy liver, cirrhotic liver or cultured primary human hepatocytes (PHHs) addresses key questions for the development of novel liver therapies and predicts relevance of ex vivo PHHs models in liver biology. This study compared quantitative gene and protein expression of the inflammatory profile, oxidative stress response, angiogenesis and homing mechanisms in the biopsies of healthy and cirrhotic human livers and isolated PHHs. These profiles were correlated with the metabolic health of liver and PHHs defined by albumin production. The analysis demonstrated that cirrhotic liver and PHHs exhibited a distinct upregulation of the pro-inflammatory, oxidative stress and homing mechanism markers when compared to normal liver. The upregulation of the oxidative stress markers in PHHs inversely correlated with the albumin production. PHHs had diverse secretion of matrix metalloproteinases and their inhibitors, reflective of the cellular response to non-physiological culture conditions. The current study suggests that ex vivo PHHs manifest adaptive behavior by upregulating stress mechanisms (similar to the cirrhotic liver), downregulating normal metabolic function and upregulating matrix turnover. The ex vivo profile of PHHs may limit their therapeutic functionality and metabolic capacity to serve as in vitro metabolism and toxicology models.
Collapse
Affiliation(s)
- V A Kirchner
- Department of Surgery, Division of Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
| | - E Tak
- Department of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - K Kim
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - E L LeCluyse
- LifeSciences Institute of Regenerative Medicine, Research Triangle Park, NC 27709, USA
| | - L J Niedernhofer
- The Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - V Soldatow
- LifeSciences Institute of Regenerative Medicine, Research Triangle Park, NC 27709, USA
| | - J Lee
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - J Kim
- Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - J Tolar
- Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - G W Song
- Department of Liver Transplantation and Hepatobiliary Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea; Asan-Minnesota Institute for Innovating Transplantation, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | - T L Pruett
- Department of Surgery, Division of Transplantation, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
39
|
Salah MM, Ashour AA, Abdelghany TM, Abdel-Aziz AAH, Salama SA. Pirfenidone alleviates concanavalin A-induced liver fibrosis in mice. Life Sci 2019; 239:116982. [PMID: 31639402 DOI: 10.1016/j.lfs.2019.116982] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
AIMS Liver fibrosis (LF) is a life-threatening complication of most chronic liver diseases resulting from a variety of injurious agents and hepatotoxic insults. To date, there are no specific therapies for LF, and all the currently available drugs have been developed for other indications. Thus, there is a pressing need to develop new drugs for treatment of LF. Therefore, the current study aimed to elucidate the potential antifibrotic effect of Pirfenidone (PFD) against concanavalin A (ConA)-induced immunological model of liver fibrosis in mice. MAIN METHODS Hepatic fibrosis was induced in mice by injecting ConA (10 mg/kg/wk./i.v) for 4 weeks. Then, the mice were treated with or without PFD (125 mg/kg/ip/day) for 2 weeks. Hepatic fibrosis was determined by Masson Trichrome staining; Haematoxylin & eosin (H&E) staining, immunohistochemistry staining of type II and IV collagens, and colorimetric assessment of hydroxyprolline (HP) content in the liver tissues. In addition, the expression of α-SMA mRNA was determined by real time RT-PCR. The serum levels of TGF-β, TNF-α, TIMP-1 and MMP-2 were measured by ELISA. KEY FINDINGS Treatment with PFD significantly reduced ConA-induced expression of type II and IV collagens, α-SMA mRNA expression, and HP content and decreased inflammatory cells infiltration in hepatic tissues. Furthermore, serum levels of TGF-β, TNF-α, and TIMP-1 were significantly reduced with concomitant increase in MMP-2 expression. SIGNIFICANCE Treatment with PFD ameliorates concanavalin A-induced hepatic inflammation and fibrosis in mice. Thus, PFD may represent a promising therapeutic option for hepatic fibrosis and its related complications.
Collapse
Affiliation(s)
- Mostafa M Salah
- Clinical Research Department, Triclinium Clinical Development, (TCD MENA), Cairo, Egypt
| | - Ahmed A Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Abdel-Aziz H Abdel-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
40
|
Al-Hashem F, Al-Humayed S, Amin SN, Kamar SS, Mansy SS, Hassan S, Abdel-Salam LO, Ellatif MA, Alfaifi M, Haidara MA, Al-Ani B. Metformin inhibits mTOR-HIF-1α axis and profibrogenic and inflammatory biomarkers in thioacetamide-induced hepatic tissue alterations. J Cell Physiol 2019; 234:9328-9337. [PMID: 30334569 DOI: 10.1002/jcp.27616] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/24/2018] [Indexed: 02/05/2023]
Abstract
The potential inhibitory effect of the antidiabetic and anti-inflammatory drug, metformin on thioacetamide (TAA)-induced hepatotoxicity associated with the inhibition of mammalian target of rapamycin (mTOR)-hypoxia-inducible factor-1α (HIF-1α) axis has not been investigated before. Therefore, we tested whether metformin can protect against liver injuries including fibrosis induced by TAA possibly via the downregulation of mTOR-HIF-1α axis and profibrogenic and inflammatory biomarkers. Rats either injected with TAA (200 mg/kg; twice a week for 8 weeks) before being killed after 10 weeks (model group) or were pretreated with metformin (200 mg/kg) daily for 2 weeks before TAA injections and continued receiving both agents until the end of the experiment, at Week 10 (protective group). Using light and electron microscopy examinations, we observed in the model group substantial damage to the hepatocytes and liver tissue such as collagen deposition, infiltration of inflammatory cells, and degenerative cellular changes with ballooned mitochondria that were substantially ameliorated by metformin. Metformin also significantly ( p < 0.05) inhibited TAA-induced HIF-1α, mTOR, the profibrogenic biomarker α-smooth muscle actin, tissue inhibitor of metalloproteinases-1, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), alanine aminotransferase (ALT) and aspartate aminotransferase in harvested liver homogenates and blood samples. In addition, a significant ( p < 0.01) positive correlation between hypoxia scoring (HIF-1α) and the serum levels of TNF-α ( r = 0.797), IL-6 ( r = 0.859), and ALT ( r = 0.760) was observed. We conclude that metformin protects against TAA-induced hepatic injuries in rats, which is associated with the inhibition of mTOR-HIF-1α axis and profibrogenic and inflammatory biomarkers; thus, may offer therapeutic potential in humans.
Collapse
Affiliation(s)
- Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Suliman Al-Humayed
- Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Shaimaa N Amin
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa S Kamar
- Department of Medical Histology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Soheir S Mansy
- Electron Microscopy Research Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Sarah Hassan
- Electron Microscopy Research Department, Theodor Bilharz Research Institute, Cairo, Egypt
| | - Lubna O Abdel-Salam
- Department of Pathology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Abd Ellatif
- Department of Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed A Haidara
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Bahjat Al-Ani
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
41
|
Zhang HE, Henderson JM, Gorrell MD. Animal models for hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2019; 1865:993-1002. [PMID: 31007176 DOI: 10.1016/j.bbadis.2018.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) represents ~90% of all cases of primary liver cancer and occurs predominantly in patients with underlying chronic liver disease and cirrhosis. Establishing appropriate animal models for HCC is required for basic and translational studies, especially the models that can recapitulate one of the human disease settings. Current animal models can be categorized as chemically-induced, genetically-engineered, xenograft, or a combination of these with each other or with a metabolic insult. A single approach to resemble human HCC in animals is not sufficient. Combining pathogenic insults in animal models may more realistically recapitulate the multiple etiologic agents occurring in humans. Combining chemical injury with metabolic disorder or alcohol consumption in mice reduces the time taken to hepatocarcinogenesis. Genetically-engineering weak activation of HCC-promoting pathways combined with disease-specific injury models will possibly mimic the pathophysiology of human HCC in distinct clinical settings.
Collapse
Affiliation(s)
- Hui Emma Zhang
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - James M Henderson
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Newtown, New South Wales, 2042, Australia; The University of Sydney Faculty of Medicine and Health, New South Wales, 2006, Australia.
| |
Collapse
|
42
|
Schmidt T, Schwinge D, Rolvien T, Jeschke A, Schmidt C, Neven M, Butscheidt S, Kriz M, Kunzmann L, Mussawy H, Hubert J, Hawellek T, Rüther W, Oheim R, Barvencik F, Lohse AW, Schramm C, Schinke T, Amling M. Th17 cell frequency is associated with low bone mass in primary sclerosing cholangitis. J Hepatol 2019; 70:941-953. [PMID: 30641095 DOI: 10.1016/j.jhep.2018.12.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Osteoporotic fractures are a major cause of morbidity and reduced quality of life in patients with primary sclerosing cholangitis (PSC), a progressive bile duct disease of unknown origin. Although it is generally assumed that this pathology is a consequence of impaired calcium homeostasis and malabsorption, the cellular and molecular causes of PSC-associated osteoporosis are unknown. METHODS We determined bone mineral density by dual-X-ray absorptiometry and assessed bone microstructure by high-resolution peripheral quantitative computed tomography in patients with PSC. Laboratory markers of liver and bone metabolism were measured, and liver stiffness was assessed by FibroScan. We determined the frequency of Th17 cells by the ex vivo stimulation of peripheral blood mononuclear cells in a subgroup of 40 patients with PSC. To investigate the potential involvement of IL-17 in PSC-associated bone loss, we analyzed the skeletal phenotype of mice lacking Abcb4 and/or Il-17. RESULTS Unlike in patients with primary biliary cholangitis, bone loss in patients with PSC was not associated with disease duration or liver fibrosis. However, we observed a significant negative correlation between the bone resorption biomarker deoxypyridinoline and bone mineral density in the PSC cohort, indicating increased bone resorption. Importantly, the frequency of Th17 cells in peripheral blood was positively correlated with the urinary deoxypyridinoline level and negatively correlated with bone mass. We observed that Abcb4-deficient mice displayed a low-bone-mass phenotype, which was corrected by an additional Il-17 deficiency or anti-IL-17 treatment, whereas the liver pathology was unaffected. CONCLUSIONS Our findings demonstrate that an increased frequency of Th17 cells is associated with bone resorption in PSC. Whether antibody-based IL-17 blockade is beneficial against bone loss in patients with PSC should be addressed in future studies. LAY SUMMARY Primary sclerosing cholangitis (PSC) is a cholestatic liver disease characterized by progressive bile duct destruction. One serious complication of PSC is reduced bone mass resulting in increased fracture risk. Herein, we demonstrate that Th17 cells mediate bone loss in PSC by inducing bone resorption, which suggests that antibody-based IL-17 blockade might be beneficial for the treatment of bone loss in affected patients.
Collapse
Affiliation(s)
- Tobias Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Dorothee Schwinge
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Constantin Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Sebastian Butscheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marvin Kriz
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Lilly Kunzmann
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Haider Mussawy
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jan Hubert
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thelonius Hawellek
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Wolfgang Rüther
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Florian Barvencik
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Ansgar W Lohse
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christoph Schramm
- First Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
43
|
Serum biomarkers of fibrosis and extracellular matrix remodeling in patients with nonalcoholic fatty liver disease: association with liver histology. Eur J Gastroenterol Hepatol 2019; 31:43-46. [PMID: 30134384 DOI: 10.1097/meg.0000000000001240] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND We sought to explore the interplay of multiple serum biomarkers of fibrosis and extracellular matrix remodeling with the results of liver histology in patients with nonalcoholic fatty liver disease (NAFLD). PATIENTS AND METHODS Venous blood samples were collected from 80 patients with biopsy-proven NAFLD and 59 age-matched and sex-matched healthy controls. Serum levels of transforming growth factor (TGF)-β1, TGF-β2, matrix metalloproteinases (MMP)-1, MMP-2, MMP-7, MMP-9, MMP-10, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were determined by using the Luminex MagPix technology on a MAGPIX analyzer. RESULTS We documented significant differences in the levels of TGF-β1, TGF-β2, MMP-2, MMP-7, MMP-9, TIMP-1, and TIMP-2 between NAFLD patients and controls. However, none of these biomarkers was able to distinguish between nonalcoholic steatohepatitis and nonalcoholic fatty liver. TIMP-1 levels were significantly higher in patients with significant fibrosis (fibrosis stage ≥2; 2624±1261 pg/ml) than in those without (fibrosis stage 0-1; 2096±906 pg/ml; P=0.03). Moreover, serum levels of TIMP-1 were identified as the only independent predictor of histological fibrosis (β=0.298, t=2.7, P=0.007). CONCLUSION Our study provides insights into the association of multiple serum biomarkers of fibrosis and extracellular matrix remodeling with NAFLD histology. Notably, serum levels of TIMP-1 were identified as a clinically useful marker for distinguishing NAFLD patients with and without significant fibrosis.
Collapse
|
44
|
Jiang Y, Zhao Y, He F, Wang H. Artificial MicroRNA-Mediated Tgfbr2 and Pdgfrb Co-Silencing Ameliorates Carbon Tetrachloride-Induced Hepatic Fibrosis in Mice. Hum Gene Ther 2018; 30:179-196. [PMID: 30024280 DOI: 10.1089/hum.2018.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatic stellate cells (HSCs) are the primary cell type responsible for liver fibrogenesis. Transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor (PDGF) are key profibrotic cytokines that regulate HSC activation and proliferation with functional convergence. Dual RNA interference against their receptors may achieve therapeutic effects. A novel RNAi strategy based on HSC-specific GFAP promoter-driven and lentiviral-expressed artificial microRNAs (amiRNAs) was devised that consists of an microRNA-30a backbone and effective shRNAs against mouse Pdgfrβ and Tgfbr2. Then, its antifibrotic efficacy was tested in primary and cultured HSCs and in mice affected with carbon tetrachloride-induced hepatic fibrosis. The study shows that amiRNA-mediated Pdgfrβ and Tgfbr2 co-silencing inhibits HSC activation and proliferation. After recombinant lentiviral particles were delivered into the liver via tail-vein injection, therapeutic amiRNAs were preferentially expressed in HSCs and efficiently co-knocked down in situ Tgfbr2 and Pdgfrβ expression, which correlates with downregulated expression of target or effector genes of their signaling, which include Pai-1, P70S6K, and D-cyclins. amiRNA-based HSC-specific co-silencing of Tgfbr2 and Pdgfrβ significantly suppressed hepatic expression of fibrotic markers α-Sma and Col1a1, extracellular matrix regulators Mmps and Timp1, and phenotypically ameliorated liver fibrosis, as indicated by reductions in serum alanine aminotransferase activity, collagen deposition, and α-Sma-positive staining. The findings provide proof of concept for the use of amiRNA-mediated co-silencing of two profibrogenic pathways in liver fibrosis treatment and highlight the therapeutic potential of concatenated amiRNAs for gene therapy.
Collapse
Affiliation(s)
- Yan Jiang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuanyuan Zhao
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Fuchu He
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China.,2 State Key Laboratory of Proteomics, Beijing Institute of Radiation Medicine, Beijing, P.R. China
| | - Haijian Wang
- 1 The Fifth People's Hospital of Shanghai, State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, P.R. China
| |
Collapse
|
45
|
Grouix B, Sarra-Bournet F, Leduc M, Simard JC, Hince K, Geerts L, Blais A, Gervais L, Laverdure A, Felton A, Richard J, Ouboudinar J, Gagnon W, Leblond FA, Laurin P, Gagnon L. PBI-4050 Reduces Stellate Cell Activation and Liver Fibrosis through Modulation of Intracellular ATP Levels and the Liver Kinase B1/AMP-Activated Protein Kinase/Mammalian Target of Rapamycin Pathway. J Pharmacol Exp Ther 2018; 367:71-81. [PMID: 30093459 DOI: 10.1124/jpet.118.250068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/12/2018] [Indexed: 12/30/2022] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently no effective therapy. We previously showed that 2-(3-pentylphenyl)acetic acid (PBI-4050) is a dual G protein-coupled receptor GPR40 agonist/GPR84 antagonist that exerts antifibrotic, anti-inflammatory, and antiproliferative action. We evaluated PBI-4050 for the treatment of liver fibrosis in vivo and elucidated its mechanism of action on human hepatic stellate cells (HSCs). The antifibrotic effect of PBI-4050 was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation-induced liver fibrosis rodent models. Treatment with PBI-4050 suppressed CCl4-induced serum aspartate aminotransferase levels, inflammatory marker nitric oxide synthase, epithelial to mesenchymal transition transcription factor Snail, and multiple profibrotic factors. PBI-4050 also decreased GPR84 mRNA expression in CCl4-induced injury, while restoring peroxisome proliferator-activated receptor γ (PPARγ) to the control level. Collagen deposition and α-smooth muscle actin (α-SMA) protein levels were also attenuated by PBI-4050 treatment in the bile duct ligation rat model. Transforming growth factor-β-activated primary HSCs were used to examine the effect of PBI-4050 and its mechanism of action in vitro. PBI-4050 inhibited HSC proliferation by arresting cells in the G0/G1 cycle phase. Subsequent analysis demonstrated that PBI-4050 signals through a reduction of intracellular ATP levels, activation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), and blockade of mammalian target of rapamycin (mTOR), resulting in reduced protein and mRNA levels of α-SMA and connective tissue growth factor and restored PPARγ mRNA expression. Our findings suggest that PBI-4050 may exert antifibrotic activity in the liver through a novel mechanism of action involving modulation of intracellular ATP levels and the LKB1/AMPK/mTOR pathway in stellate cells, and PBI-4050 may be a promising agent for treating liver fibrosis.
Collapse
Affiliation(s)
| | | | - Martin Leduc
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | - Kathy Hince
- Prometic BioSciences Inc., Laval, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | - Lyne Gagnon
- Prometic BioSciences Inc., Laval, Québec, Canada
| |
Collapse
|
46
|
Therapeutic Potential of OMe-PS-miR-29b1 for Treating Liver Fibrosis. Mol Ther 2018; 26:2798-2811. [PMID: 30287074 DOI: 10.1016/j.ymthe.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023] Open
Abstract
Trans-differentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts secretes excess amounts of extracellular matrix (ECM) proteins. miR-29b1 has the potential to treat liver fibrosis, because it targets several profibrotic genes. We previously demonstrated that miR-29b1 and the hedgehog (Hh) pathway inhibitor GDC-0449 could, together, inhibit the activation of HSCs and ECM production in common bile-duct-ligated (CBDL) mice. Herein, we determined the effect of chemical modifications of miR-29b1 on its stability, immunogenicity, and Argonaute-2 (Ago2) loading in vitro, after modifying its antisense strand with phosphorothioate (PS-miR-29b1), 2'-O-methyl-phosphorothioate (OMe-miR-29b1), locked nucleic acid (LNA-miR-29b1), and N,N'-diethyl-4-(4-nitronaphthalen-1-ylazo)-phenylamine (ZEN-miR-29b1). Chemical modifications significantly improved stability of miR-29b1 in 50% FBS. Among all the modified miRNAs tested, OMe-PS-miR-29b1 showed the highest stability with low immunogenicity, without the loss of efficacy in vitro. Therefore, OMe-PS-miR-29b1 was complexed with poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-tetraethylenepentamine (mPEG-b-PCC-g-DC-g-TEPA) cationic micelles, and anti-fibrotic efficacy was evaluated in CBDL mice. There was a significant improvement in liver histology and decrease in the levels of injury markers. Further, mRNA/protein levels of collagen, α-SMA, and TIMP-1 were significantly lower for the OMe-PS-miR-29b1-loaded micelles compared to miR-29b1-loaded micelles. In conclusion, micellar delivery of OMe-PS-miR-29b1 is a promising strategy to treat liver fibrosis.
Collapse
|
47
|
Afratis NA, Klepfish M, Karamanos NK, Sagi I. The apparent competitive action of ECM proteases and cross-linking enzymes during fibrosis: Applications to drug discovery. Adv Drug Deliv Rev 2018; 129:4-15. [PMID: 29627371 DOI: 10.1016/j.addr.2018.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Abstract
Progressive loss of organ function in most organs is associated with fibrosis, a tissue state associated with abnormal matrix buildup. If highly progressive, the fibrotic process eventually leads to organ failure and death. Fibrosis is a basic connective tissue lesion defined by the increase in the amount of fibrillar extracellular matrix (ECM) components in a tissue or organ. In addition, intrinsic changes in important structural cells can induce the fibrotic response by regulating the differentiation, recruitment, proliferation and activation of extracellular matrix-producing myofibroblasts. ECM enzymes belonging to the family of matrix metalloproteinases (MMPs) and lysyl oxidases (LOXs) play a crucial role in ECM remodeling and regeneration. MMPs have a catalytic role in degradation of ECM, whereas LOX/LOXLs mediate ECM, especially collagen, cross-linking and stiffening. Importantly, enzymes from both families are elevated during the fibrotic response to tissue injury and its resolution. Yet, the apparent molecular competition or antagonistic activities of these enzyme families during the various stages of fibrosis is often overlooked. In this review, we discuss the diverse roles of MMPs and LOX/LOXL2 in chronic organ fibrosis. Finally, we review contemporary therapeutic strategies for fibrosis treatment, based on neutralization of MMP and LOX activity, as well as the development of novel drug delivery approaches.
Collapse
Affiliation(s)
- Nikolaos A Afratis
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mordehay Klepfish
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26500, Greece
| | - Irit Sagi
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
48
|
Zhu J, Ren J, Tang L. Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Mol Med Rep 2018; 17:7265-7273. [PMID: 29568950 DOI: 10.3892/mmr.2018.8760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/07/2017] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is characterized by invasion and migration. DNA methylation of CpG islands in tumor suppressor genes is considered to be an epigenetic mechanism underlying cancer development. Epigenetic silencing of a gene may be reversed by drugs, including genistein. The present study aimed to determine the effect of genistein on Wnt inhibitory factor 1 (WIF1) and invasion, and migration of colon cancer cells. The viability of HT29 colon cancer cells was suppressed by genistein in a dose dependent manner. Following 72 h of treatment with 10, 20 and 60 µmol/l genistein, increased demethylation of WIF1 was induced in a dose‑dependent manner. Additionally, the invasive/migratory abilities of cells treated with genistein decreased in a dose‑dependent manner. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to identify the mRNA and protein expression levels of invasion/migration‑associated factors. Following treatment with genistein, matrix metalloproteinase (MMP) 2 and MMP9 expression levels decreased, whereas the expression of metalloproteinase inhibitor 1 and E‑cadherin increased significantly. In addition, the expression levels of proto‑oncogene Wnt‑1 (Wnt‑1)/β‑catenin pathway‑associated factors, β‑catenin, c‑Myc proto‑oncogene protein and cyclin D1 decreased in a dose‑dependent manner following treatment with genistein. The invasive/migratory abilities of cells transfected with WIF1‑small interfering (si) RNA, and those transfected with WIF1‑siRNA and treated with genistein, increased notably compared with the control group. The present study demonstrated that genistein was able to inhibit the cell invasion and migration of colon cancer cells by inducing demethylation, and recovering the activity of WIF1 by altering the expression of invasion‑associated factors, and components of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
49
|
Roderfeld M. Matrix metalloproteinase functions in hepatic injury and fibrosis. Matrix Biol 2017; 68-69:452-462. [PMID: 29221811 DOI: 10.1016/j.matbio.2017.11.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/18/2023]
Abstract
Liver fibrosis is the most common final outcome for chronic liver diseases. The complex pathogenesis includes hepatic parenchymal damage as a result of a persistent noxe, activation and recruitment of immune cells, activation of hepatic stellate cells, and the synthesis of fibrotic extracellular matrix (ECM) components leading to scar formation. Clinical studies and animal models demonstrated that fibrosis can be reversible. In this regard matrix metalloproteinases (MMPs) have been focused as therapeutic targets due to their ability to modulate tissue turnover during fibrogenesis as well as regeneration and, of special interest, due to their influence on cellular behavior like proliferation, gene expression, and apoptosis that, in turn, impact fibrosis and regeneration. The current review aims to summarize and update the knowledge about expression pattern and the central roles of MMPs in hepatic fibrosis.
Collapse
Affiliation(s)
- Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University Giessen, Gaffkystr. 11c, D-35392 Giessen, Germany.
| |
Collapse
|