1
|
Gao MD, Wang XJ, Li PB, Dong QQ, Tian LM. A Novel Molecular Regulatory Network in Bone Marrow Mesenchymal Stem Cells for Age-Related Osteoporosis. Clin Endocrinol (Oxf) 2025; 102:635-646. [PMID: 40145611 DOI: 10.1111/cen.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/17/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND This study evaluates the miRNA-mRNA regulatory networks that potentially influence the senescence mechanisms of bone marrow mesenchymal stem cells (BMSCs) in age-related osteoporosis (ARO). By identifying these networks, the study aims to offer new molecular markers and therapeutic targets for ARO. METHODS Five mRNA datasets were analyzed to identify common differentially expressed genes associated with senescence and osteoporosis. Seven hub genes were found to be enriched in the PI3K-Akt signaling pathway, and 22 hub miRNAs potentially regulating these genes. Primary BMSCs were harvested and cultured from seven younger, non-osteoporotic individuals and six older adults with osteoporosis. Expression levels of the hub genes and miRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Expression analysis showed that integrin subunit beta 3 (ITGB3), receptor tyrosine kinase ligand (KITLG), platelet-derived growth factor (PDGFB), and their associated regulatory miRNAs, exhibited significant differences between the two BMSC groups. CONCLUSION A newly identified miRNA-mRNA regulatory network may mediate ARO via the PI3K-Akt signaling pathway in BMSCs. These molecular insights provide a foundation for potential therapeutic interventions targeting age-related osteoporosis.
Collapse
Affiliation(s)
- Ming-Dong Gao
- The First School of Clinical Medical, Lanzhou University, Lanzhou, China
- Department of Pediatrics, Gansu Provincial Hospital, Lanzhou, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, Lanzhou, China
| | - Xiao-Jun Wang
- Department of Respiratory, Gansu Provincial Hospital, Lanzhou, China
| | - Peng-Biao Li
- Department of Orthopedics, Gansu Provincial Hospital, Lanzhou, China
| | - Qian-Qian Dong
- The First School of Clinical Medical, Lanzhou University, Lanzhou, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, Lanzhou, China
| | - Li-Min Tian
- The First School of Clinical Medical, Lanzhou University, Lanzhou, China
- Clinical Research Center for Metabolic Diseases, Gansu Province, Lanzhou, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
2
|
Agas D, Sabbieti MG. Untangling Ariadne's Thread Within the Bone Marrow Maze: A Close-Up View of Stem/Progenitor Cells' Interactome and Secretome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40035957 DOI: 10.1007/5584_2024_847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The bone marrow (BM) is a multifactorial, highly dynamic, still not fully "mapped," reservoir. The BM labyrinthine landscape is subject to a relentless debate on the specialized and stem/progenitor cells' scattering within designated microareas. Certainly, BM tissue plays a watchdog role in bone modeling and remodeling, hematopoiesis, immune surveillance, and endocrine response integration. Parameters like tissue topographical distinctiveness, stiffness and porosity grade, and cells' behavioral idiosyncrasies in terms of stem/progenitor cell housing, activation, and motility represent a knotty problem not easily solved. Given that the disruption of BM microdomains has been associated with a number of severe pathological disorders, the comprehension and preservation of the BM workspace at multiple levels have become mandatory. Solid evidence has showed the existence of an intricate and tightly regulated cross-talk between the BM cellular occupants. Direct physical cell-cell connections and soluble mediators, including cytokines, chemokines, growth factors, exosomes and microvesicles, orchestrate composite intracellular signaling routes. The spatiotemporal action of definite biofactors ensures a functional blood-producing organ with a physiological bone turnover and prompts the action of multipotent stromal/hematopoietic cells. Recently, significant research efforts have been addressed to build bioengineered niche-mimic models based on biofunctionalized scaffolds and organoid-like constructs. These artificial BM niches combine and transduce various aspects of bioinformatics and tissue engineering to unravel the complexities of BM organization. This chapter aims to unfold the recent breakthroughs in the understanding of a BM intramural cell-cell dialogue in a physiological and, in some cases, within an inflammatory background. BM maze is gradually being discovered, but there is still a long way to go.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | | |
Collapse
|
3
|
Dutta Gupta S, Pal N, Ta M. Vitronectin regulates focal adhesion turnover and migration of human placenta-derived MSCs under nutrient stress. Eur J Cell Biol 2025; 104:151477. [PMID: 39893799 DOI: 10.1016/j.ejcb.2025.151477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025] Open
Abstract
At sites of tissue damage and wound healing, the mesenchymal stem cells (MSCs) are often challenged by nutrient availability due to blood supply disruption. Thus, it becomes critical to identify novel factors and their mechanism of action in regulating the adhesion and migration of MSCs under nutrient stress condition for successful clinical application. In human placenta-derived MSCs (PL-MSCs), we demonstrated an increase in cell spread area, along with increased adhesion and reduced migration of the cells, when cultured under nutrient stress condition. Correspondingly, an increase in the total number per cell and size of focal adhesions (FAs), together with prominent stress fibers were observed in nutrient-stressed PL-MSCs compared to control PL-MSCs. The FAs were demonstrated to be more stable, exhibiting slower turnover and longer lifespan. Vitronectin (VTN), an ECM glycoprotein, was upregulated under nutrient stress condition. Knockdown of VTN in PL-MSCs led to a significant reduction in the total number per cell and size of FAs, along with their faster turnover and shorter lifespan. Subsequently, a reversal in the cell spread area, adhesion and migration properties of the nutrient-stressed PL-MSCs were noted. Additionally, our findings indicated that VTN, as an upstream regulator, stimulated the phosphorylation of myosin light chain, which possibly promoted the maturation and stability of FAs along with assembly of stress fibers, thereby leading to increased adhesion and reduced migration of the cells. Overall, our study defines a distinct role of VTN as a critical regulator of migration in PL-MSCs under nutrient stress condition.
Collapse
Affiliation(s)
- Srishti Dutta Gupta
- Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), India.
| | - Nitish Pal
- Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), India.
| | - Malancha Ta
- Indian Institute of Science Education and Research, Kolkata (IISER Kolkata), India.
| |
Collapse
|
4
|
Nowwarote N, Chahlaoui Z, Petit S, Duong LT, Dingli F, Loew D, Chansaenroj A, Kornsuthisopon C, Osathanon T, Ferre FC, Fournier BPJ. Decellularized extracellular matrix derived from dental pulp stem cells promotes gingival fibroblast adhesion and migration. BMC Oral Health 2024; 24:1166. [PMID: 39354504 PMCID: PMC11443845 DOI: 10.1186/s12903-024-04882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Decellularized extracellular matrix (dECM) has been proposed as a useful source of biomimetic materials for regenerative medicine due to its biological properties that regulate cell behaviors. The present study aimed to investigate the influence of decellularized ECM derived from dental pulp stem cells (DPSCs) on gingival fibroblast (GF) cell behaviors. Cells were isolated from dental pulp and gingival tissues. ECM was derived from culturing dental pulp stem cells in growth medium supplemented with ascorbic acid. A bioinformatic database of the extracellular matrix was constructed using Metascape. GFs were reseeded onto dECM, and their adhesion, spreading, and organization were subsequently observed. The migration ability of the cells was determined using a scratch assay. Protein expression was evaluated using immunofluorescence staining. RESULTS Type 1 collagen and fibronectin were detected on the ECM and dECM derived from DPSCs. Negative phalloidin and nuclei were noted in the dECM. The proteomic database revealed enrichment of several proteins involved in ECM organization, ECM-receptor interaction, and focal adhesion. Compared with those on the controls, the GFs on the dECM exhibited more organized stress fibers. Furthermore, cultured GFs on dECM exhibited significantly enhanced migration and proliferation abilities. Interestingly, GFs seeded on dECM showed upregulation of FN1, ITGB3, and CTNNB1 mRNA levels. CONCLUSIONS ECM derived from DSPCs generates a crucial microenvironment for regulating GF adhesion, migration and proliferation. Therefore, decellularized ECM from DPSCs could serve as a matrix for oral tissue repair.
Collapse
Affiliation(s)
- Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France.
- Department of Oral Biology, Dental Faculty Garancière, Université Paris Cité, Paris, 75006, France.
| | - Zakaria Chahlaoui
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| | - Stephane Petit
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| | - Lucas T Duong
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
| | - Florent Dingli
- Centre de Recherche, CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Damarys Loew
- Centre de Recherche, CurieCoreTech Spectrométrie de Masse Protéomique, Institut Curie, PSL Research University, Paris, France
| | - Ajjima Chansaenroj
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatvadee Kornsuthisopon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Francois Come Ferre
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
- Department of Oral Biology, Dental Faculty Garancière, Université Paris Cité, Paris, 75006, France
| | - Benjamin P J Fournier
- Centre de Recherche des Cordeliers, Molecular Oral Pathophysiology, INSERM UMRS 1138, Université Paris Cité, Sorbonne Université, Paris, 75006, France
- Department of Oral Biology, Dental Faculty Garancière, Université Paris Cité, Paris, 75006, France
| |
Collapse
|
5
|
Candelas A, Vianay B, Gelin M, Faivre L, Larghero J, Blanchoin L, Théry M, Brunet S. Heterotypic interaction promotes asymmetric division of human hematopoietic progenitors. Development 2024; 151:dev203088. [PMID: 39136544 DOI: 10.1242/dev.203088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.
Collapse
Affiliation(s)
- Adrian Candelas
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Benoit Vianay
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Matthieu Gelin
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| | - Lionel Faivre
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Jerome Larghero
- Unité de Thérapie Cellulaire, Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, AP-HP, Hôpital Saint-Louis, Center of Clinical Investigations in Biotherapies of Cancer CBT501, Université Paris Cité, F-75010 Paris, France
| | - Laurent Blanchoin
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Manuel Théry
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
- Cytomorpholab, University Grenoble-Alpes, CEA, CNRS, INRA, Laboratoire de Phyiologie Cellulaire & Végétale, F-38054 Grenoble, France
| | - Stéphane Brunet
- Human Immunology, Pathophysiology, Immunotherapy, INSERM Unit 976, Institut de Recherche St Louis, AP-HP, Hôpital Saint-Louis, Université Paris Cité, F-75010 Paris, France
| |
Collapse
|
6
|
Ludwig-Husemann A, Schertl P, Shrivastava A, Geckle U, Hafner J, Schaarschmidt F, Willenbacher N, Freudenberg U, Werner C, Lee-Thedieck C. A Multifunctional Nanostructured Hydrogel as a Platform for Deciphering Niche Interactions of Hematopoietic Stem and Progenitor Cells. Adv Healthc Mater 2024; 13:e2304157. [PMID: 38870600 DOI: 10.1002/adhm.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/10/2024] [Indexed: 06/15/2024]
Abstract
For over half a century, hematopoietic stem cells (HSCs) have been used for transplantation therapy to treat severe hematologic diseases. Successful outcomes depend on collecting sufficient donor HSCs as well as ensuring efficient engraftment. These processes are influenced by dynamic interactions of HSCs with the bone marrow niche, which can be revealed by artificial niche models. Here, a multifunctional nanostructured hydrogel is presented as a 2D platform to investigate how the interdependencies of cytokine binding and nanopatterned adhesive ligands influence the behavior of human hematopoietic stem and progenitor cells (HSPCs). The results indicate that the degree of HSPC polarization and motility, observed when cultured on gels presenting the chemokine SDF-1α and a nanoscale-defined density of a cellular (IDSP) or extracellular matrix (LDV) α4β1 integrin binding motif, are differently influenced on hydrogels functionalized with the different ligand types. Further, SDF-1α promotes cell polarization but not motility. Strikingly, the degree of differentiation correlates negatively with the nanoparticle spacing, which determines ligand density, but only for the cellular-derived IDSP motif. This mechanism potentially offers a means of predictably regulating early HSC fate decisions. Consequently, the innovative multifunctional hydrogel holds promise for deciphering dynamic HSPC-niche interactions and refining transplantation therapy protocols.
Collapse
Affiliation(s)
- Anita Ludwig-Husemann
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Peter Schertl
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Ananya Shrivastava
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Udo Geckle
- Institute for Applied Materials - Energy Storage Systems, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Johanna Hafner
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Frank Schaarschmidt
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, 76131, Karlsruhe, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden e.V, Max Bergmann Center of Biomaterials, Hohe Str. 6, 01069, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
7
|
Phothichailert S, Samoun S, Fournier BP, Isaac J, Nelwan SC, Osathanon T, Nowwarote N. MSCs-Derived Decellularised Matrix: Cellular Responses and Regenerative Dentistry. Int Dent J 2024; 74:403-417. [PMID: 38494389 PMCID: PMC11123543 DOI: 10.1016/j.identj.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
The decellularised extracellular matrix (dECM) of in vitro cell culture is a naturally derived biomaterial formed by the removal of cellular components. The compositions of molecules in the extracellular matrix (ECM) differ depending on various factors, including the culture conditions. Cell-derived ECM provides a 3-dimensional structure that has a complex influence on cell signalling, which in turn affects cell survival and differentiation. This review describes the effects of dECM derived from mesenchymal stem cells (MSCs) on cell responses, including cell migration, cell proliferation, and cell differentiation in vitro. Published articles were searched in the PubMed databases in 2005 to 2022, with assigned keywords (MSCs and decellularisation and cell culture). The 41 articles were reviewed, with the following criteria. (1) ECM was produced exclusively from MSCs; (2) decellularisation processes were performed; and (3) the dECM production was discussed in terms of culture systems and specific supplementations that are suitable for creating the dECM biomaterials. The dECM derived from MSCs supports cell adhesion, enhances cell proliferation, and promotes cell differentiation. Importantly, dECM derived from dental MSCs shows promise in regenerative dentistry applications. Therefore, the literature strongly supports cell-based dECMs as a promising option for innovative tissue engineering approaches for regenerative medicine.
Collapse
Affiliation(s)
- Suphalak Phothichailert
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Shirel Samoun
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Universite, INSERM UMRS1138, Molecular Oral Pathophysiology, Paris, France
| | - Benjamin P Fournier
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Universite, INSERM UMRS1138, Molecular Oral Pathophysiology, Paris, France; Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, Paris, France
| | - Juliane Isaac
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Universite, INSERM UMRS1138, Molecular Oral Pathophysiology, Paris, France; Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, Paris, France
| | - Sindy Cornelia Nelwan
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Universitas Airlangga, Airlangga, Indonesia
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Universite, INSERM UMRS1138, Molecular Oral Pathophysiology, Paris, France; Department of Oral Biology, Faculty of Dentistry, Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Bose B, Nihad M, P SS. Pluripotent stem cells: Basic biology or else differentiations aimed at translational research and the role of flow cytometry. Cytometry A 2023; 103:368-377. [PMID: 36918734 DOI: 10.1002/cyto.a.24726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/19/2023] [Accepted: 02/25/2023] [Indexed: 03/16/2023]
Abstract
Pluripotent stem cell research has revolutionized the modern era for the past 14 years with the advent of induced pluripotent stem cells. Before this time, scientists had access to human and mouse embryonic stem cells primarily for basic research and an attempt towards lineage-specific differentiations for cell therapy applications. Regarding pluripotent stem cells, expression of bonafide marker proteins such as Oct4, Nanog, Sox2, Klf4, c-Myc, and Lin28 have been considered giving a perfect readout for pluripotent stem cells and assessed using an analytical flow cytometer. In addition to the intracellular markers, surface markers such as stage-specific embryonic antigen-1 for mouse cells and SSEA-4 for human cells are needed to sort pure populations of stem cells for further downstream applications for cell therapy. The surface marker SSEA-4 is the most appropriate for obtaining pure populations of human pluripotent stem cells. When differentiated in a controlled manner using growth factors or small molecules, it is mandatory to assess the downregulation of pluripotency markers (Oct4, Nanog, Sox2, and Klf4) with subsequent up-regulation of stage-specific differentiation markers. Such assessments are done using flow cytometry. Pluripotent stem cells have a high teratoma-forming potential in vivo. Small amounts of undifferentiated PSCs might lead to dangerous teratomas upon transplantation if leftover in the pool of differentiated cells. Hence, flow cytometry is essential for sorting out PSC populations with teratoma-forming potential. The pure populations of differentiated progenitors need to be flow-sorted before differentiating them further for cell therapy applications. For example, Glycoprotein 2 is a specific cell-surface marker for pancreatic progenitors that enables one to sort the pancreatic progenitors differentiated from human PSCs. Taken together, analytical flow cytometry, and cell sorting provide indispensable tools in PSC research and cell therapy.
Collapse
Affiliation(s)
- Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
9
|
Petaroudi M, Rodrigo‐Navarro A, Dobre O, Dalby MJ, Salmeron‐Sanchez M. Living Biomaterials to Engineer Hematopoietic Stem Cell Niches. Adv Healthc Mater 2022; 11:e2200964. [PMID: 35933595 PMCID: PMC11469072 DOI: 10.1002/adhm.202200964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Indexed: 01/28/2023]
Abstract
Living biointerfaces are a new class of biomaterials combining living cells and polymeric matrices that can act as biologically active and instructive materials that host and provide signals to surrounding cells. Here, living biomaterials based on Lactococcus lactis to control hematopoietic stem cells in 2D surfaces and 3D hydrogels are introduced. L. lactis is modified to express C-X-C motif chemokine ligand 12 (CXCL12), thrombopoietin (TPO), vascular cell adhesion protein 1 (VCAM1), and the 7th-10th type III domains of human plasma fibronectin (FN III7-10 ), in an attempt to mimic ex vivo the conditions of the human bone marrow. These results suggest that living biomaterials that incorporate bacteria expressing recombinant CXCL12, TPO, VCAM1, and FN in both 2D systems direct hematopoietic stem and progenitor cells (HSPCs)-bacteria interaction, and in 3D using hydrogels functionalized with full-length human plasma fibronectin allow for a notable expansion of the CD34+ /CD38- /CD90+ HSPC population compared to the initial population. These results provide a strong evidence based on data that suggest the possibility of using living materials based on genetically engineered bacteria for the ex-vivo expansion of HSPC with eventual practical clinical applications in HSPCs transplantation for hematological disorders.
Collapse
Affiliation(s)
- Michaela Petaroudi
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | | | - Oana Dobre
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | - Matthew J. Dalby
- Centre for the Cellular MicroenvironmentUniversity of GlasgowGlasgowG12 8LTUK
| | | |
Collapse
|
10
|
Bains AK, Behrens Wu L, Rivière J, Rother S, Magno V, Friedrichs J, Werner C, Bornhäuser M, Götze KS, Cross M, Platzbecker U, Wobus M. Bone marrow mesenchymal stromal cell-derived extracellular matrix displays altered glycosaminoglycan structure and impaired functionality in Myelodysplastic Syndromes. Front Oncol 2022; 12:961473. [PMID: 36158640 PMCID: PMC9492883 DOI: 10.3389/fonc.2022.961473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Myelodysplastic syndromes (MDS) comprise a heterogeneous group of hematologic malignancies characterized by clonal hematopoiesis, one or more cytopenias such as anemia, neutropenia, or thrombocytopenia, abnormal cellular maturation, and a high risk of progression to acute myeloid leukemia. The bone marrow microenvironment (BMME) in general and mesenchymal stromal cells (MSCs) in particular contribute to both the initiation and progression of MDS. However, little is known about the role of MSC-derived extracellular matrix (ECM) in this context. Therefore, we performed a comparative analysis of in vitro deposited MSC-derived ECM of different MDS subtypes and healthy controls. Atomic force microscopy analyses demonstrated that MDS ECM was significantly thicker and more compliant than those from healthy MSCs. Scanning electron microscopy showed a dense meshwork of fibrillar bundles connected by numerous smaller structures that span the distance between fibers in MDS ECM. Glycosaminoglycan (GAG) structures were detectable at high abundance in MDS ECM as white, sponge-like arrays on top of the fibrillar network. Quantification by Blyscan assay confirmed these observations, with higher concentrations of sulfated GAGs in MDS ECM. Fluorescent lectin staining with wheat germ agglutinin and peanut agglutinin demonstrated increased deposition of N-acetyl-glucosamine GAGs (hyaluronan (HA) and heparan sulfate) in low risk (LR) MDS ECM. Differential expression of N-acetyl-galactosamine GAGs (chondroitin sulfate, dermatan sulfate) was observed between LR- and high risk (HR)-MDS. Moreover, increased amounts of HA in the matrix of MSCs from LR-MDS patients were found to correlate with enhanced HA synthase 1 mRNA expression in these cells. Stimulation of mononuclear cells from healthy donors with low molecular weight HA resulted in an increased expression of various pro-inflammatory cytokines suggesting a contribution of the ECM to the inflammatory BMME typical of LR-MDS. CD34+ hematopoietic stem and progenitor cells (HSPCs) displayed an impaired differentiation potential after cultivation on MDS ECM and modified morphology accompanied by decreased integrin expression which mediate cell-matrix interaction. In summary, we provide evidence for structural alterations of the MSC-derived ECM in both LR- and HR-MDS. GAGs may play an important role in this remodeling processes during the malignant transformation which leads to the observed disturbance in the support of normal hematopoiesis.
Collapse
Affiliation(s)
- Amanpreet Kaur Bains
- Medical Department I, Haematology and Cell Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Lena Behrens Wu
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Jennifer Rivière
- Department of Medicine III, Hematology/Oncology, School of Medicine, Klinikum rechts der Isar, München, Technical University of Munich, Munich, Germany
| | - Sandra Rother
- Center for Molecular Signaling Präklinisches Zentrum für Molekulare Signalverarbeitung (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Valentina Magno
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Jens Friedrichs
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden, Technische Universität (TU) Dresden, Dresden, Germany
| | - Martin Bornhäuser
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Katharina S. Götze
- Department of Medicine III, Hematology/Oncology, School of Medicine, Klinikum rechts der Isar, München, Technical University of Munich, Munich, Germany
| | - Michael Cross
- Medical Department I, Haematology and Cell Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Uwe Platzbecker
- Medical Department I, Haematology and Cell Therapy, University of Leipzig Medical Center, Leipzig, Germany
| | - Manja Wobus
- Department of Medicine I, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
- *Correspondence: Manja Wobus,
| |
Collapse
|
11
|
Lázničková P, Bendíčková K, Kepák T, Frič J. Immunosenescence in Childhood Cancer Survivors and in Elderly: A Comparison and Implication for Risk Stratification. FRONTIERS IN AGING 2022; 2:708788. [PMID: 35822014 PMCID: PMC9261368 DOI: 10.3389/fragi.2021.708788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
The population of childhood cancer survivors (CCS) has grown rapidly in recent decades. Although cured of their original malignancy, these individuals are at increased risk of serious late effects, including age-associated complications. An impaired immune system has been linked to the emergence of these conditions in the elderly and CCS, likely due to senescent immune cell phenotypes accompanied by low-grade inflammation, which in the elderly is known as "inflammaging." Whether these observations in the elderly and CCS are underpinned by similar mechanisms is unclear. If so, existing knowledge on immunosenescent phenotypes and inflammaging might potentially serve to benefit CCS. We summarize recent findings on the immune changes in CCS and the elderly, and highlight the similarities and identify areas for future research. Improving our understanding of the underlying mechanisms and immunosenescent markers of accelerated immune aging might help us to identify individuals at increased risk of serious health complications.
Collapse
Affiliation(s)
- Petra Lázničková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Kamila Bendíčková
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Tomáš Kepák
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Department of Pediatric Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jan Frič
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.,Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
12
|
Gilchrist AE, Harley BA. Engineered Tissue Models to Replicate Dynamic Interactions within the Hematopoietic Stem Cell Niche. Adv Healthc Mater 2022; 11:e2102130. [PMID: 34936239 PMCID: PMC8986554 DOI: 10.1002/adhm.202102130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells are the progenitors of the blood and immune system and represent the most widely used regenerative therapy. However, their rarity and limited donor base necessitate the design of ex vivo systems that support HSC expansion without the loss of long-term stem cell activity. This review describes recent advances in biomaterials systems to replicate features of the hematopoietic niche. Inspired by the native bone marrow, these instructive biomaterials provide stimuli and cues from cocultured niche-associated cells to support HSC encapsulation and expansion. Engineered systems increasingly enable study of the dynamic nature of the matrix and biomolecular environment as well as the role of cell-cell signaling (e.g., autocrine feedback vs paracrine signaling between dissimilar cells). The inherent coupling of material properties, biotransport of cell-secreted factors, and cell-mediated remodeling motivate dynamic biomaterial systems as well as characterization and modeling tools capable of evaluating a temporally evolving tissue microenvironment. Recent advances in HSC identification and tracking, model-based experimental design, and single-cell culture platforms facilitate the study of the effect of constellations of matrix, cell, and soluble factor signals on HSC fate. While inspired by the HSC niche, these tools are amenable to the broader stem cell engineering community.
Collapse
Affiliation(s)
- Aidan E. Gilchrist
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Brendan A.C. Harley
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
13
|
Zmrhal V, Svoradova A, Batik A, Slama P. Three-Dimensional Avian Hematopoietic Stem Cell Cultures as a Model for Studying Disease Pathogenesis. Front Cell Dev Biol 2022; 9:730804. [PMID: 35127695 PMCID: PMC8811169 DOI: 10.3389/fcell.2021.730804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) cell culture is attracting increasing attention today because it can mimic tissue environments and provide more realistic results than do conventional cell cultures. On the other hand, very little attention has been given to using 3D cell cultures in the field of avian cell biology. Although mimicking the bone marrow niche is a classic challenge of mammalian stem cell research, experiments have never been conducted in poultry on preparing in vitro the bone marrow niche. It is well known, however, that all diseases cause immunosuppression and target immune cells and their development. Hematopoietic stem cells (HSC) reside in the bone marrow and constitute a source for immune cells of lymphoid and myeloid origins. Disease prevention and control in poultry are facing new challenges, such as greater use of alternative breeding systems and expanding production of eggs and chicken meat in developing countries. Moreover, the COVID-19 pandemic will draw greater attention to the importance of disease management in poultry because poultry constitutes a rich source of zoonotic diseases. For these reasons, and because they will lead to a better understanding of disease pathogenesis, in vivo HSC niches for studying disease pathogenesis can be valuable tools for developing more effective disease prevention, diagnosis, and control. The main goal of this review is to summarize knowledge about avian hematopoietic cells, HSC niches, avian immunosuppressive diseases, and isolation of HSC, and the main part of the review is dedicated to using 3D cell cultures and their possible use for studying disease pathogenesis with practical examples. Therefore, this review can serve as a practical guide to support further preparation of 3D avian HSC niches to study the pathogenesis of avian diseases.
Collapse
Affiliation(s)
- Vladimir Zmrhal
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Andrea Svoradova
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
- NPPC, Research Institute for Animal Production in Nitra, Luzianky, Slovak Republic
| | - Andrej Batik
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
14
|
Abstract
Dormancy is an evolutionarily conserved protective mechanism widely observed in nature. A pathological example is found during cancer metastasis, where cancer cells disseminate from the primary tumor, home to secondary organs, and enter a growth-arrested state, which could last for decades. Recent studies have pointed toward the microenvironment being heavily involved in inducing, preserving, or ceasing this dormant state, with a strong focus on identifying specific molecular mechanisms and signaling pathways. Increasing evidence now suggests the existence of an interplay between intracellular as well as extracellular biochemical and mechanical cues in guiding such processes. Despite the inherent complexities associated with dormancy, proliferation, and growth of cancer cells and tumor tissues, viewing these phenomena from a physical perspective allows for a more global description, independent from many details of the systems. Building on the analogies between tissues and fluids and thermodynamic phase separation concepts, we classify a number of proposed mechanisms in terms of a thermodynamic metastability of the tumor with respect to growth. This can be governed by interaction with the microenvironment in the form of adherence (wetting) to a substrate or by mechanical confinement of the surrounding extracellular matrix. By drawing parallels with clinical and experimental data, we advance the notion that the local energy minima, or metastable states, emerging in the tissue droplet growth kinetics can be associated with a dormant state. Despite its simplicity, the provided framework captures several aspects associated with cancer dormancy and tumor growth.
Collapse
|
15
|
Liu B, Tao C, Wu Z, Yao H, Wang DA. Engineering strategies to achieve efficient in vitro expansion of haematopoietic stem cells: development and improvement. J Mater Chem B 2022; 10:1734-1753. [DOI: 10.1039/d1tb02706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Haematopoietic stem cells are the basis for building and maintaining lifelong haematopoietic mechanisms and important resources for the treatment of blood disorders. Haematopoietic niches are microenvironment in the body where...
Collapse
|
16
|
Matteini F, Mulaw MA, Florian MC. Aging of the Hematopoietic Stem Cell Niche: New Tools to Answer an Old Question. Front Immunol 2021; 12:738204. [PMID: 34858399 PMCID: PMC8631970 DOI: 10.3389/fimmu.2021.738204] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
The hematopoietic stem cell (HSC) niche is a specialized microenvironment, where a complex and dynamic network of interactions across multiple cell types regulates HSC function. During the last years, it became progressively clearer that changes in the HSC niche are responsible for specific alterations of HSC behavior. The aging of the bone marrow (BM) microenvironment has been shown to critically contribute to the decline in HSC function over time. Interestingly, while upon aging some niche structures within the BM are degenerated and negatively affect HSC functionality, other niche cells and specific signals are preserved and essential to retaining HSC function and regenerative capacity. These new findings on the role of the aging BM niche critically depend on the implementation of new technical tools, developed thanks to transdisciplinary approaches, which bring together different scientific fields. For example, the development of specific mouse models in addition to coculture systems, new 3D-imaging tools, ossicles, and ex-vivo BM mimicking systems is highlighting the importance of new technologies to unravel the complexity of the BM niche on aging. Of note, an exponential impact in the understanding of this biological system has been recently brought by single-cell sequencing techniques, spatial transcriptomics, and implementation of artificial intelligence and deep learning approaches to data analysis and integration. This review focuses on how the aging of the BM niche affects HSCs and on the new tools to investigate the specific alterations occurring in the BM upon aging. All these new advances in the understanding of the BM niche and its regulatory function on HSCs have the potential to lead to novel therapeutical approaches to preserve HSC function upon aging and disease.
Collapse
Affiliation(s)
- Francesca Matteini
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
| | - Medhanie A. Mulaw
- Institute for Molecular Medicine and Internal Medicine I, Ulm University and University Hospital Ulm, Ulm, Germany
| | - M. Carolina Florian
- Stem Cell Aging Group, Regenerative Medicine Program, The Bellvitge Institute for Biomedical Research (IDIBELL), Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], Barcelona, Spain
- Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
17
|
Guan Y, Yang B, Xu W, Li D, Wang S, Ren Z, Zhang J, Zhang T, Liu XZ, Li J, Li C, Meng F, Han F, Wu T, Wang Y, Peng J. Cell-derived extracellular matrix materials for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1007-1021. [PMID: 34641714 DOI: 10.1089/ten.teb.2021.0147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The involvement of cell-derived extracellular matrix (CDM) in assembling tissue engineering scaffolds has yielded significant results. CDM possesses excellent characteristics, such as ideal cellular microenvironment mimicry and good biocompatibility, which make it a popular research direction in the field of bionanomaterials. CDM has significant advantages as an expansion culture substrate for stem cells, including stabilization of phenotype, reversal of senescence, and guidance of specific differentiation. In addition, the applications of CDM-assembled tissue engineering scaffolds for disease simulation and tissue organ repair are comprehensively summarized; the focus is mainly on bone and cartilage repair, skin defect or wound healing, engineered blood vessels, peripheral nerves, and periodontal tissue repair. We consider CDM a highly promising bionic biomaterial for tissue engineering applications and propose a vision for its comprehensive development.
Collapse
Affiliation(s)
- Yanjun Guan
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Boyao Yang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Wenjing Xu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Dongdong Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Sidong Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, Beijing, China;
| | - Zhiqi Ren
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Jian Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tieyuan Zhang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics, Chinese PLA, General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Xiu-Zhi Liu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Junyang Li
- Nankai University School of Medicine, 481107, Tianjin, Tianjin, China.,Chinese PLA General Hospital, 104607, Beijing, Beijing, China;
| | - Chaochao Li
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Fanqi Meng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Peking University People's Hospital, 71185, Department of spine surgery, Beijing, China;
| | - Feng Han
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Tong Wu
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China;
| | - Yu Wang
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| | - Jiang Peng
- Chinese PLA General Hospital, 104607, Institute of Orthopedics; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, Beijing, China.,Nantong University, 66479, Co-innovation Center of Neuroregeneration, Nantong, Jiangsu, China;
| |
Collapse
|
18
|
Wang R, Wang X, Yang S, Xiao Y, Jia Y, Zhong J, Gao Q, Zhang X. Umbilical cord-derived mesenchymal stem cells promote myeloid-derived suppressor cell enrichment by secreting CXCL1 to prevent graft-versus-host disease after hematopoietic stem cell transplantation. Cytotherapy 2021; 23:996-1006. [PMID: 34465514 DOI: 10.1016/j.jcyt.2021.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AIMS Human mesenchymal stem cells (MSCs) from various tissues have emerged as attractive candidates for the prevention and treatment of graft-versus-host disease (GVHD). However, the molecular machinery that defines and channels the behavior of these cells remains poorly understood. METHODS In this study, the authors compared the efficacy of four tissue-derived MSC types in controlling GVHD in a murine model and investigated their immunomodulatory effects. RESULTS Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) effectively decreased the incidence and severity of GVHD, which was mediated by the enrichment of myeloid-derived suppressor cells in GVHD target tissues. RNA sequencing results showed that hUCMSCs highly expressed CXCL1. CONCLUSIONS These results suggest a novel prophylactic application of hUCMSCs for controlling GVHD after allogeneic hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Rui Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shijie Yang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yunshuo Xiao
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yanhui Jia
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiangfan Zhong
- Department of Cell Biology, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangguo Gao
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
19
|
Tian X, Sun M, Wu H, Chen C, Li H, Qiu S, Wang T, Han J, Xiao Q, Chen K. Exosome-derived miR-let-7c promotes angiogenesis in multiple myeloma by polarizing M2 macrophages in the bone marrow microenvironment. Leuk Res 2021; 105:106566. [PMID: 33848709 DOI: 10.1016/j.leukres.2021.106566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Angiogenesis is an integral part of the multiple myeloma (MM) microenvironment, and affects tumorigenesis, progression, invasion, and metastasis. Exosomes are essential for cell-cell communication and help in regulating the bone marrow microenvironment. Herein, we investigated macrophage polarization and angiogenesis in MM in vitro via exosome-derived miR-let-7c. We observed that exosomal miR-let-7c secreted by mesenchymal stem cells promoted M2 macrophage polarization, thereby enhancing angiogenesis in the bone marrow microenvironment. Suppressing miR-let-7c expression significantly inhibited vascular endothelial cell function in myeloma. Thus, exosomal miR-let-7c may be a reliable biomarker for early prediction of tumor progression and a promising therapeutic target for MM.
Collapse
Affiliation(s)
- Xiangyu Tian
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Avenue, Zhengzhou, 450000, China; Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450000, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, No. 40 Da Xue Avenue, Zhengzhou, 450000, China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450000, China
| | - Han Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450000, China
| | - Chao Chen
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Avenue, Zhengzhou, 450000, China
| | - Hui Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450000, China
| | - Sen Qiu
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, No. 40 Da Xue Avenue, Zhengzhou, 450000, China
| | - Tong Wang
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, No. 40 Da Xue Avenue, Zhengzhou, 450000, China
| | - Junya Han
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, No. 40 Da Xue Avenue, Zhengzhou, 450000, China
| | - Qiankun Xiao
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, No. 40 Da Xue Avenue, Zhengzhou, 450000, China
| | - Kuisheng Chen
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Ke Xue Avenue, Zhengzhou, 450000, China; Henan Key Laboratory of Tumor Pathology, Zhengzhou University, No. 40 Da Xue Avenue, Zhengzhou, 450000, China; Department of Pathology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian She Dong Avenue, Zhengzhou, 450000, China.
| |
Collapse
|
20
|
Caulier B, Stofleth G, Hannani D, Guidetti M, Josserand V, Laurin D, Chroboczek J, Mossuz P, Plantaz D. Evaluation of the human type 3 adenoviral dodecahedron as a vector to target acute myeloid leukemia. Mol Ther Methods Clin Dev 2021; 20:181-190. [PMID: 33473357 PMCID: PMC7797482 DOI: 10.1016/j.omtm.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023]
Abstract
Intensive systemic chemotherapy is the gold standard of acute myeloid leukemia (AML) treatment and is associated with considerable off-target toxicities. Safer and targeted delivery systems are thus urgently needed. In this study, we evaluated a virus-like particle derived from the human type 3 adenovirus, called the adenoviral dodecahedron (Dd) to target AML cells. The vectorization of leukemic cells was proved very effective at nanomolar concentrations in a time- and dose-dependent manner, without vector toxicity. The internalization involved clathrin-mediated energy-dependent endocytosis and strongly correlated with the expression of αVβ3 integrin. The treatment of healthy donor peripheral blood mononuclear cells showed a preferential targeting of monocytes compared to lymphocytes and granulocytes. Similarly, monocytes but also AML blasts were the best-vectorized populations in patients while acute lymphoid leukemia blasts were less efficiently targeted. Importantly, AML leukemic stem cells (LSCs) could be addressed. Finally, Dd reached peripheral monocytes and bone marrow hematopoietic stem and progenitor cells following intravenous injection in mice, without excessive spreading in other organs. These findings reveal Dd as a promising myeloid vector especially for therapeutic purposes in AML blasts, LSCs, and progenitor cells.
Collapse
Affiliation(s)
- Benjamin Caulier
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Gaëlle Stofleth
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Department of Pediatric Onco-Immuno-Hematology, University Grenoble Alpes Hospital, Grenoble, France
| | - Dalil Hannani
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Mélanie Guidetti
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Véronique Josserand
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - David Laurin
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
- Etablissement Français du Sang Auvergne Rhône-Alpes, Grenoble, France
| | - Jadwiga Chroboczek
- University Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
| | - Pascal Mossuz
- Institute of Biology and Pathology, Laboratory of Cellular Hematology, University Grenoble Alpes Hospital, Grenoble, France
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, Grenoble, France
| | - Dominique Plantaz
- Department of Pediatric Onco-Immuno-Hematology, University Grenoble Alpes Hospital, Grenoble, France
| |
Collapse
|
21
|
3D Scaffolds to Model the Hematopoietic Stem Cell Niche: Applications and Perspectives. MATERIALS 2021; 14:ma14030569. [PMID: 33530372 PMCID: PMC7865713 DOI: 10.3390/ma14030569] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSC) are responsible for the production of blood and immune cells during life. HSC fate decisions are dependent on signals from specialized microenvironments in the bone marrow, termed niches. The HSC niche is a tridimensional environment that comprises cellular, chemical, and physical elements. Introductorily, we will revise the current knowledge of some relevant elements of the niche. Despite the importance of the niche in HSC function, most experimental approaches to study human HSCs use bidimensional models. Probably, this contributes to the failure in translating many in vitro findings into a clinical setting. Recreating the complexity of the bone marrow microenvironment in vitro would provide a powerful tool to achieve in vitro production of HSCs for transplantation, develop more effective therapies for hematologic malignancies and provide deeper insight into the HSC niche. We previously demonstrated that an optimized decellularization method can preserve with striking detail the ECM architecture of the bone marrow niche and support HSC culture. We will discuss the potential of this decellularized scaffold as HSC niche model. Besides decellularized scaffolds, several other methods have been reported to mimic some characteristics of the HSC niche. In this review, we will examine these models and their applications, advantages, and limitations.
Collapse
|
22
|
Horton PD, Dumbali S, Wenzel PL. Mechanoregulation in hematopoiesis and hematologic disorders. CURRENT STEM CELL REPORTS 2020; 6:86-95. [PMID: 33094091 PMCID: PMC7577202 DOI: 10.1007/s40778-020-00172-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are reliant on intrinsic and extrinsic factors for tight control of self-renewal, quiescence, differentiation, and homing. Given the intimate relationship between HSCs and their niche, increasing numbers of studies are examining how biophysical cues in the hematopoietic microenvironment impact HSC functions. RECENT FINDINGS Numerous mechanosensors are present on hematopoietic cells, including integrins, mechanosensitive ion channels, and primary cilia. Integrin-ligand adhesion, in particular, has been found to be critical for homing and anchoring of HSCs and progenitors in the bone marrow. Integrin-mediated interactions with ligands present on extracellular matrix and endothelial cells are key to establishing long-term engraftment and quiescence of HSCs. Importantly, disruption in the architecture and cellular composition of the bone marrow associated with conditioning regimens and primary myelofibrosis exposes HSCs to a profoundly distinct mechanical environment, with potential implications for progression of hematologic dysfunction and pathologies. SUMMARY Study of the mechanobiological signals that govern hematopoiesis represents an important future step toward understanding HSC biology in homeostasis, aging, and cancer.
Collapse
Affiliation(s)
- Paulina D. Horton
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Sandeep Dumbali
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| | - Pamela L. Wenzel
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, TX, 77030, USA
| |
Collapse
|
23
|
Morhayim J, Ghebes CA, Erkeland SJ, Ter Borg MND, Hoogenboezem RM, Bindels EMJ, van Alphen FPJ, Kassem M, van Wijnen AJ, Cornelissen JJ, van Leeuwen JP, van der Eerden BCJ, Voermans C, van de Peppel J, Braakman E. Identification of osteolineage cell-derived extracellular vesicle cargo implicated in hematopoietic support. FASEB J 2020; 34:5435-5452. [PMID: 32086861 PMCID: PMC7136136 DOI: 10.1096/fj.201902610r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Osteolineage cell‐derived extracellular vesicles (EVs) play a regulatory role in hematopoiesis and have been shown to promote the ex vivo expansion of human hematopoietic stem and progenitor cells (HSPCs). Here, we demonstrate that EVs from different human osteolineage sources do not have the same HSPC expansion promoting potential. Comparison of stimulatory and non‐stimulatory osteolineage EVs by next‐generation sequencing and mass spectrometry analyses revealed distinct microRNA and protein signatures identifying EV‐derived candidate regulators of ex vivo HSPC expansion. Accordingly, the treatment of umbilical cord blood‐derived CD34+ HSPCs with stimulatory EVs‐altered HSPC transcriptome, including genes with known roles in cell proliferation. An integrative bioinformatics approach, which connects the HSPC gene expression data with the candidate cargo in stimulatory EVs, delineated the potentially targeted biological functions and pathways during hematopoietic cell expansion and development. In conclusion, our study gives novel insights into the complex biological role of EVs in osteolineage cell‐HSPC crosstalk and promotes the utility of EVs and their cargo as therapeutic agents in regenerative medicine.
Collapse
Affiliation(s)
- Jess Morhayim
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mariëtte N D Ter Borg
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Remco M Hoogenboezem
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric M J Bindels
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Moustapha Kassem
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | | | - Jan J Cornelissen
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Johannes P van Leeuwen
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eric Braakman
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
24
|
Zhang P, Zhang C, Li J, Han J, Liu X, Yang H. The physical microenvironment of hematopoietic stem cells and its emerging roles in engineering applications. Stem Cell Res Ther 2019; 10:327. [PMID: 31744536 PMCID: PMC6862744 DOI: 10.1186/s13287-019-1422-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
Stem cells are considered the fundamental underpinnings of tissue biology. The stem cell microenvironment provides factors and elements that play significant roles in controlling the cell fate direction. The bone marrow is an important environment for functional hematopoietic stem cells in adults. Remarkable progress has been achieved in the area of hematopoietic stem cell fate modulation based on the recognition of biochemical factors provided by bone marrow niches. In this review, we focus on emerging evidence that hematopoietic stem cell fate is altered in response to a variety of microenvironmental physical cues, such as geometric properties, matrix stiffness, and mechanical forces. Based on knowledge of these biophysical cues, recent developments in harnessing hematopoietic stem cell niches ex vivo are also discussed. A comprehensive understanding of cell microenvironments helps provide mechanistic insights into pathophysiological mechanisms and underlies biomaterial-based hematopoietic stem cell engineering.
Collapse
Affiliation(s)
- Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Chen Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Jing Li
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Jiyang Han
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, People's Republic of China.
| |
Collapse
|
25
|
Chen P, Guan X, Zhao X, Chen F, Yang J, Wang Y, Hu Y, Lian Q, Chen H. Characterization and differentiation of CD51 + Stem Leydig cells in adult mouse testes. Mol Cell Endocrinol 2019; 493:110449. [PMID: 31102608 DOI: 10.1016/j.mce.2019.110449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022]
Abstract
It was reported previously that adult mouse stem Leydig cells (SLCs) express CD51 (integrin α-chain V). However, it is still unclear whether all CD51+ cells are SLCs. In the present study, we found that CD51+ cells can be classified into two sub-groups, a weakly-staining group (CD51+) and a strongly-staining group (CD51++). The CD51+ cells expressed common SLC marker genes, including Nestin, Pdgfra and Coup-tf2, while CD51++ cells did not express these genes. Instead, they expressed macrophage markers, such as F4/80, Cd115 and Tnfa. When these cells were induced to differentiate in vitro, the CD51+ cells, but not CD51++ cells, formed Leydig cells. Overall, our results showed that although SLCs expressed CD51, not all CD51-expressing cells are SLCs. The cells that expressed high levels of CD51 are actually macrophages.
Collapse
Affiliation(s)
- Panpan Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoju Guan
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingxing Zhao
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fenfen Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jianying Yang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, Henan, 471023, China
| | - Yiyan Wang
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yue Hu
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haolin Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, Perioperative Medicine, Zhejiang Province Key Lab of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Tietze S, Kräter M, Jacobi A, Taubenberger A, Herbig M, Wehner R, Schmitz M, Otto O, List C, Kaya B, Wobus M, Bornhäuser M, Guck J. Spheroid Culture of Mesenchymal Stromal Cells Results in Morphorheological Properties Appropriate for Improved Microcirculation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802104. [PMID: 31016116 PMCID: PMC6469243 DOI: 10.1002/advs.201802104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/21/2019] [Indexed: 05/10/2023]
Abstract
Human bone marrow mesenchymal stromal cells (MSCs) are used in clinical trials for the treatment of systemic inflammatory diseases due to their regenerative and immunomodulatory properties. However, intravenous administration of MSCs is hampered by cell trapping within the pulmonary capillary networks. Here, it is hypothesized that traditional 2D plastic-adherent cell expansion fails to result in appropriate morphorheological properties required for successful cell circulation. To address this issue, a method to culture MSCs in nonadherent 3D spheroids (mesenspheres) is adapted. The biological properties of mesensphere-cultured MSCs remain identical to conventional 2D cultures. However, morphorheological analyses reveal a smaller size and lower stiffness of mesensphere-derived MSCs compared to plastic-adherent MSCs, measured using real-time deformability cytometry and atomic force microscopy. These properties result in an increased ability to pass through microconstrictions in an ex vivo microcirculation assay. This ability is confirmed in vivo by comparison of cell accumulation in various organ capillary networks after intravenous injection of both types of MSCs in mouse. The findings generally identify cellular morphorheological properties as attractive targets for improving microcirculation and specifically suggest mesensphere culture as a promising approach for optimized MSC-based therapies.
Collapse
Affiliation(s)
- Stefanie Tietze
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Martin Kräter
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
- Max Planck Institute for the Science of Light & Max‐Planck‐Zentrum für Physik und MedizinStaudtstraße 291058ErlangenGermany
| | - Angela Jacobi
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Anna Taubenberger
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Maik Herbig
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Rebekka Wehner
- Institute of ImmunologyMedical Faculty Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Marc Schmitz
- Institute of ImmunologyMedical Faculty Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Oliver Otto
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
| | - Catrin List
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Berna Kaya
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Manja Wobus
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Martin Bornhäuser
- Medical Clinic IUniversity Hospital Carl Gustav CarusTU DresdenFetscherstraße 7401307DresdenGermany
| | - Jochen Guck
- Biotechnology CenterCenter for Molecular and Cellular BioengineeringTU DresdenTatzberg 47‐4901307DresdenGermany
- Max Planck Institute for the Science of Light & Max‐Planck‐Zentrum für Physik und MedizinStaudtstraße 291058ErlangenGermany
| |
Collapse
|
27
|
Li D, Chiu G, Lipe B, Hopkins RA, Lillis J, Ashton JM, Paul S, Aljitawi OS. Decellularized Wharton jelly matrix: a biomimetic scaffold for ex vivo hematopoietic stem cell culture. Blood Adv 2019; 3:1011-1026. [PMID: 30940636 PMCID: PMC6457237 DOI: 10.1182/bloodadvances.2018019315] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 02/10/2019] [Indexed: 12/13/2022] Open
Abstract
Hematopoietic stem progenitor cells (HSPCs) reside in the bone marrow (BM) hematopoietic "niche," a special 3-dimensional (3D) microenvironment that regulates HSPC self-renewal and multipotency. In this study, we evaluated a novel 3D in vitro culture system that uses components of the BM hematopoietic niche to expand umbilical cord blood (UCB) CD34+ cells. We developed this model using decellularized Wharton jelly matrix (DWJM) as an extracellular matrix (ECM) scaffold and human BM mesenchymal stromal cells (MSCs) as supporting niche cells. To assess the efficacy of this model in expanding CD34+ cells, we analyzed UCB CD34+ cells, following culture in DWJM, for proliferation, viability, self-renewal, multilineage differentiation, and transmigration capability. We found that DWJM significantly expanded UCB HSPC subset. It promoted UCB CD34+ cell quiescence, while maintaining their viability, differentiation potential with megakaryocytic differentiation bias, and clonogenic capacity. DWJM induced an increase in the frequency of c-kit+ cells, a population with enhanced self-renewal ability, and in CXCR4 expression in CD34+ cells, which enhanced their transmigration capability. The presence of BM MSCs in DWJM, however, impaired UCB CD34+ cell transmigration and suppressed CXCR4 expression. Transcriptome analysis indicated that DWJM upregulates a set of genes that are specifically involved in megakaryocytic differentiation, cell mobility, and BM homing. Collectively, our results indicate that the DWJM-based 3D culture system is a novel in vitro model that supports the proliferation of UCB CD34+ cells with enhanced transmigration potential, while maintaining their differentiation potential. Our findings shed light on the interplay between DWJM and BM MSCs in supporting the ex vivo culture of human UCB CD34+ cells for use in clinical transplantation.
Collapse
Affiliation(s)
- Dandan Li
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Grace Chiu
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Brea Lipe
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| | - Richard A Hopkins
- Cardiac Surgery Research Laboratories, Children's Mercy Hospital and Clinics, Kansas City, MO; and
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY
| | - John M Ashton
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Omar S Aljitawi
- Hematology/Oncology and Bone Marrow Transplant Program, Department of Medicine, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
28
|
Urbanska M, Rosendahl P, Kräter M, Guck J. High-throughput single-cell mechanical phenotyping with real-time deformability cytometry. Methods Cell Biol 2018; 147:175-198. [PMID: 30165957 DOI: 10.1016/bs.mcb.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanical properties of cells can serve as a label-free marker of cell state and function and their alterations have been implicated in processes such as cancer metastasis, leukocyte activation, or stem cell differentiation. Over recent years, new techniques for single-cell mechanical characterization at high throughput have been developed to accelerate discovery in the field of mechanical phenotyping. One such technique is real-time deformability cytometry (RT-DC), a robust technology based on microfluidics that performs continuous mechanical characterization of cells in a contactless manner at rates of up to 1000 cells per second. This tremendous throughput allows for comparison of large sample numbers and precise characterization of heterogeneous cell populations. Additionally, parameters acquired in RT-DC measurements can be used to determine the apparent Young's modulus of individual cells. In this chapter, we present practical aspects important for the implementation of the RT-DC methodology, including a description of the setup, operation principles, and experimental protocols. In the latter, we describe a variety of preparation procedures for samples originating from different sources including 2D and 3D cell cultures as well as blood and tissue-derived primary cells, and discuss obstacles that may arise during their measurements. Finally, we provide insights into standard data analysis procedures and discuss the method's performance in light of other available techniques.
Collapse
Affiliation(s)
- Marta Urbanska
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Philipp Rosendahl
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kräter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Rosendahl P, Plak K, Jacobi A, Kraeter M, Toepfner N, Otto O, Herold C, Winzi M, Herbig M, Ge Y, Girardo S, Wagner K, Baum B, Guck J. Real-time fluorescence and deformability cytometry. Nat Methods 2018; 15:355-358. [PMID: 29608556 DOI: 10.1038/nmeth.4639] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
The throughput of cell mechanical characterization has recently approached that of conventional flow cytometers. However, this very sensitive, label-free approach still lacks the specificity of molecular markers. Here we developed an approach that combines real-time 1D-imaging fluorescence and deformability cytometry in one instrument (RT-FDC), thus opening many new research avenues. We demonstrated its utility by using subcellular fluorescence localization to identify mitotic cells and test for mechanical changes in those cells in an RNA interference screen.
Collapse
Affiliation(s)
- Philipp Rosendahl
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Katarzyna Plak
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- MRC Laboratory for Molecular and Cellular Biology, University College London, London, UK
| | - Angela Jacobi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Martin Kraeter
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Medical Clinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nicole Toepfner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Oliver Otto
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Christoph Herold
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Maria Winzi
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Maik Herbig
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Yan Ge
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Salvatore Girardo
- Microstructure Facility, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Katrin Wagner
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular and Cellular Biology, University College London, London, UK
| | - Jochen Guck
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
30
|
Cui X, Zhang X, Bu H, Liu N, Li H, Guan X, Yan H, Wang Y, Zhang H, Ding Y, Cheng M. Shear stress-mediated changes in the expression of complement regulatory protein CD59 on human endothelial progenitor cells by ECM-integrinα Vβ 3-F-actin pathway in vitro. Biochem Biophys Res Commun 2017; 494:416-421. [PMID: 28943429 DOI: 10.1016/j.bbrc.2017.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
Membrane regulatory proteins, such as CD46, CD55, and CD59, prevent excess complement activation and to protect cells from damage. Previous investigations confirmed that shear stress in the physiological range was more favorable for endothelial progenitor cells (EPCs) to repair injured vascular endothelial cells and operates mainly in atheroprotective actions. However, detailed events that contribute to shear stress-induced protection in EPCs, particularly the mechanisms of signal transduction, remain poorly understood. In this study, we observed shear stress-mediated changes in the expression of complement regulatory proteins CD46, CD55, and CD59 on human EPCs and focused on the mechanical transmission mechanism in transformed cells in response to the ECM-F-actin pathway in vitro. Shear stress was observed to promote the expression of complement regulatory protein CD59, but not CD46 or CD55, on EPCs. In addition, the shear stress-induced CD59 expression was confirmed to be associated with the ECM components and was alleviated in EPCs pretreated with GRGDSP, which inhibits ECM components-integrin interaction. Furthermore, shear stress also promotes the rearrangement and polymerization of F-actin. However, shear stress-induced CD59 expression was reduced when the F-actin stress fiber formation process was delayed by Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP) or destroyed by cytochalasin D (Cyto D), while Jasplakinolide (JAS) reversed the expression of CD59 through promotion of F-actin polymerization and its stabilizing capacities. Our results indicates that shear stress is an important mediator in EPC expression of CD59 regulated by the ECM-F-actin pathway, which is a key factor in preventing membrane attack complex (MAC) -mediated cell autolysis.
Collapse
Affiliation(s)
- Xiaodong Cui
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiaoyun Zhang
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hongnan Bu
- Department of Gynaecology and Obstetrics, The 89 Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Na Liu
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hong Li
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Xiumei Guan
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hong Yan
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Yuzhen Wang
- Medical Research Center, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Hua Zhang
- Department of Gynaecology and Obstetrics, The 89 Hospital of Chinese PLA, Weifang, Shandong, 261021, China
| | - Yuzhen Ding
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China
| | - Min Cheng
- Clinical Medical School, Weifang Medical University, Weifang, Shandong, 261053, PR China.
| |
Collapse
|