1
|
Qiu W, Guo R, Yu H, Chen X, Chen Z, Ding D, Zhong J, Yang Y, Fang F. Single-cell atlas of human gingiva unveils a NETs-related neutrophil subpopulation regulating periodontal immunity. J Adv Res 2025; 72:287-301. [PMID: 39084404 DOI: 10.1016/j.jare.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Exaggerated neutrophil recruitment and activation are the major features of pathological alterations in periodontitis, in which neutrophil extracellular traps (NETs) are considered to be responsible for inflammatory periodontal lesions. Despite the critical role of NETs in the development and progression of periodontitis, their specific functions and mechanisms remain unclear. OBJECTIVES To demonstrate the important functions and specific mechanisms of NETs involved in periodontal immunopathology. METHODS We performed single-cell RNA sequencing on gingival tissues from both healthy individuals and patients diagnosed with periodontitis. High-dimensional weighted gene co-expression network analysis and pseudotime analysis were then applied to characterize the heterogeneity of neutrophils. Animal models of periodontitis were treated with NETs inhibitors to investigate the effects of NETs in severe periodontitis. Additionally, we established a periodontitis prediction model based on NETs-related genes using six types of machine learning methods. Cell-cell communication analysis was used to identify ligand-receptor pairs among the major cell groups within the immune microenvironment. RESULTS We constructed a single-cell atlas of the periodontal microenvironment and obtained nine major cell populations. We further identified a NETs-related subgroup (NrNeu) in neutrophils. An in vivo inhibition experiment confirmed the involvement of NETs in gingival inflammatory infiltration and alveolar bone absorption in severe periodontitis. We further screened three key NETs-related genes (PTGS2, MME and SLC2A3) and verified that they have the potential to predict periodontitis. Moreover, our findings revealed that gingival fibroblasts had the most interactions with NrNeu and that they might facilitate the production of NETs through the MIF-CD74/CXCR4 axis in periodontitis. CONCLUSION This study highlights the pathogenic role of NETs in periodontal immunity and elucidates the specific regulatory relationship by which gingival fibroblasts activate NETs, which provides new insights into the clinical diagnosis and treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiming Guo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Hongwen Yu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaoxin Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dian Ding
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jindou Zhong
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumeng Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Espiritu A, O’Sullivan KM. A Web of Challenges: The Therapeutic Struggle to Target NETs in Disease. Int J Mol Sci 2025; 26:4773. [PMID: 40429915 PMCID: PMC12111817 DOI: 10.3390/ijms26104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Neutrophil extracellular traps (NETs) play a crucial role in the pathophysiology of many debilitating conditions, including autoimmune diseases, inflammatory diseases, and cancer. As a result, NET-targeted therapies have been investigated in search of effective treatment strategies. Despite promising preclinical findings, clinical translation of NET inhibitors has had limited success. These preclinical studies have faced limitations such as mouse models that inaccurately reflect human disease dynamics, as well as by the complexity of NETs-including their diverse morphology and convoluted pathways to formation relative to pathology. The NET inhibitors themselves have several limitations, including off-target effects and bioavailability issues. The challenges facing NET-targeted therapies reported here may explain what is required to go from bench to bedside successfully.
Collapse
Affiliation(s)
| | - Kim Maree O’Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia;
| |
Collapse
|
3
|
Zeng M, Niu Y, Huang J, Deng L. Advances in neutrophil extracellular traps and ferroptosis in sepsis-induced cardiomyopathy. Front Immunol 2025; 16:1590313. [PMID: 40356926 PMCID: PMC12066755 DOI: 10.3389/fimmu.2025.1590313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Sepsis-induced cardiomyopathy is a reversible non-ischemic acute cardiac dysfunction associated with sepsis. It is strongly associated with an abnormal immune response. It emerges as a vital threat to public health owing to its high mortality rate. However, the exact pathogenesis requires further investigation. In recent years, NETosis and ferroptosis, which are novel modes of programmed cell death, have been identified and found to play important roles in sepsis-related organ damage. This article outlines the mechanisms of these two modes of cell death, discusses the role of neutrophil extracellular traps in myocardial injury and the importance of ferroptosis in sepsis-induced cardiomyopathy, and reviews the potential interconnection between these two types of programmed cell death in sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | - Liehua Deng
- Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical
University, Zhanjiang, China
| |
Collapse
|
4
|
Lin WH, Sheu SM, Wu CF, Huang WC, Hsu LJ, Yu KC, Cheng HC, Kao CY, Wu JJ, Wang MC, Teng CH. O-antigen of uropathogenic Escherichia coli is required for induction of neutrophil extracellular traps. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025; 58:209-218. [PMID: 39725572 DOI: 10.1016/j.jmii.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/02/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Urinary tract infections (UTIs) are prevalent bacterial infection, with uropathogenic Escherichia coli (UPEC) as the primary causative agent. The outer membrane of UPEC contains a lipopolysaccharide (LPS), which plays crucial roles in the host's immune response to infection. Neutrophils use neutrophil extracellular traps (NETs) are mechanism by which neutrophils defend against bacterial infections. However, the exact mechanism by which a bacterial LPS induces NET formation is not well understood. Therefore, the objective of this study is to identify the possible mechanism of LPS-mediated NETs and dissect the LPS domains of UPEC that predominantly modulate NET formation and NET-mediated killing. METHODS To investigate the mechanism of bacterial LPS-induced NET formation, we constructed UPEC CFT073 mutants that had rfaD, rfaL and the wzzE deleted with individual LPS biosynthetic genes including the inner core synthase, O-antigen ligase and O-antigen polymerase, respectively. Subsequently, we evaluated the NET/reactive oxygen species (ROS)/IL-1β induction abilities and assessed the activation of toll-like receptor 4 (TLR4)/JNK signaling by CFT073 and its mutants. RESULTS The results showed that the O-antigen of CFT073 LPS is essential for inducing NET formation through TLR4/JNK/NOX pathways. Inhibition of either pathway significantly decreased the production of ROS, induction of NETs, and secretion of IL-1β. CONCLUSION Our results demonstrate that CFT073 LPS is essential for inducing ROS-dependent NETs and IL-1β secretion from neutrophils. This study also provides evidence for the crucial roles of O-antigen in the immune response to UPEC infection, as well as its potential as a therapeutic target for the treatment of UTIs.
Collapse
Affiliation(s)
- Wei-Hung Lin
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shew-Meei Sheu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi City, Taiwan
| | - Ching-Fang Wu
- Division of Nephrology, Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Wen-Chun Huang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Yu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Ching Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Yen Kao
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
5
|
Nelson NC, Wong KK, Mahoney IJ, Malik T, Rudym D, Lesko MB, Qayum S, Lewis TC, Chang SH, Chan JCY, Geraci TC, Li Y, Pamar P, Schnier J, Singh R, Collazo D, Chang M, Kyeremateng Y, McCormick C, Borghi S, Patel S, Darawshy F, Barnett CR, Sulaiman I, Kugler MC, Brosnahan SB, Singh S, Tsay JCJ, Wu BG, Pass HI, Angel LF, Segal LN, Natalini JG. Lung allograft dysbiosis associates with immune response and primary graft dysfunction. J Heart Lung Transplant 2025; 44:422-434. [PMID: 39561864 PMCID: PMC11956144 DOI: 10.1016/j.healun.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Lower airway enrichment with oral commensals has been previously associated with severe primary graft dysfunction (PGD) after lung transplantation (LT). We aimed to determine whether this dysbiotic signature is present across all PGD severity grades and whether it is associated with a distinct host inflammatory endotype. METHODS Lower airway samples from 96 LT recipients were used to evaluate the lung allograft microbiota via 16S rRNA gene sequencing. Bronchoalveolar lavage (BAL) cytokine concentrations and cell differential percentages were compared across PGD grades. In a subset of samples, we evaluated the lower airway host transcriptome using RNA sequencing methods. RESULTS Differential analyses demonstrated lower airway enrichment with supraglottic-predominant taxa (SPT) in moderate and severe PGD. Dirichlet multinomial mixtures modeling identified 2 distinct microbial clusters. A greater percentage of subjects with moderate-severe PGD than no PGD were identified within the dysbiotic cluster (C-SPT, 48% and 29%, respectively) though this did not reach statistical significance (p = 0.06). PGD severity associated with increased BAL neutrophil concentration (p = 0.03) and correlated with BAL concentrations of MCP-1/CCL2, IP-10/CXCL10, IL-10, and TNF-α (p < 0.05). Furthermore, signatures of dysbiosis correlated with neutrophils, MCP-1/CCL-2, IL-10, and TNF-α (p < 0.05). C-SPT exhibited differential expression of TNF, SERPINE1, MPO, and MMP1 genes and upregulation of MAPK pathways, host signling associated with neutrophilic inflammation. CONCLUSIONS Lower airway dysbiosis within the lung allograft is associated with a neutrophilic inflammatory endotype, an immune profile commonly recognized as the hallmark for PGD. These data highlight a putative role of lower airway microbial dysbiosis in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Nathaniel C Nelson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Kendrew K Wong
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Ian J Mahoney
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Tahir Malik
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Darya Rudym
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Melissa B Lesko
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Seema Qayum
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Tyler C Lewis
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Stephanie H Chang
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Justin C Y Chan
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Travis C Geraci
- NYU Langone Transplant Institute, NYU Langone Health, New York, New York; Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Yonghua Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Prerna Pamar
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Joseph Schnier
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Rajbir Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Destiny Collazo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Miao Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Yaa Kyeremateng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Colin McCormick
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Sara Borghi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Shrey Patel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Fares Darawshy
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; The Institute of Pulmonology, Hadassah Medical Center, Jerusalem, Israel; Department of Medicine, The Faculty of Medicine at the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Clea R Barnett
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Imran Sulaiman
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; Department of Respiratory Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Department of Respiratory Medicine, Beaumont Hospital, Dublin, Ireland
| | - Matthias C Kugler
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Shari B Brosnahan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Shivani Singh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Jun-Chieh J Tsay
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, VA New York Harbor Healthcare System, New York, New York
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University Grossman School of Medicine, New York, New York
| | - Luis F Angel
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York
| | - Jake G Natalini
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York; NYU Langone Transplant Institute, NYU Langone Health, New York, New York.
| |
Collapse
|
6
|
Li K, Jiang KM, Wang Y, Hu F, Zhu XC, Sun CL, Jin L, Liu WT, Lin TT, Li M. Inhibition of NETs prevents doxorubicin-induced cardiotoxicity by attenuating IL-18-IFN-γ-Cx43 axis induced cardiac conduction abnormalities. Int Immunopharmacol 2025; 147:114016. [PMID: 39805175 DOI: 10.1016/j.intimp.2025.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Doxorubicin-induced cardiotoxicity (DIC) is one of the most severe side effects of doxorubicin, yet the underlying mechanisms remain incompletely understood. Our results showed that Neutrophil extracellular traps (NETs) accumulated in plasma and cardiac tissue after doxorubicin treatment. The inhibition of NETs formation by Pad4 gene ablation significantly attenuated doxorubicin-induced arrhythmia, prolonged survival time and reduced the levels of Troponin T (cTnT) and creatine kinase MB (CK-MB) in mice. In addition, reductions in left ventricular fractional shortening and ejection fraction induced by doxorubicin were more severe in WT mice than in Pad4-/- mice. Immunostaining and qPCR analyses revealed that NETs activated macrophages to release pro-inflammatory cytokines such as IL-18, IL-1β, and TNF-α. IL-18, in turn, activated T cells to produce IFN-γ, which, along with TNF-α, downregulated the expression of Cx43, thereby inducing cardiac conduction abnormalities. We identify that IL-18-IFN-γ-Cx43-induced cardiac conduction abnormalities triggered by neutrophil extracellular traps is the key molecular and cellular determinants of DIC. Furthermore, targeting NETs formation using ozone therapy significantly alleviated DIC. This study highlights the critical role of NETs in the development of DIC and proposes ozone therapy as a potential therapeutic strategy for treating DIC.
Collapse
Affiliation(s)
- Kun Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun-Mao Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu-Chang Zhu
- Cardiovascular Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang-Lin Sun
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lai Jin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Tong-Tong Lin
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligence Manufacture, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Meng Li
- Department of Pharmacy, Shenzhen Children's Hospital, Shenzhen, Guangzhou, China.
| |
Collapse
|
7
|
Brannon ER, Piegols LD, Cady G, Kupor D, Chu X, Guevara MV, Lima MR, Kanthi Y, Pinsky DJ, Uhrich KE, Eniola‐Adefeso O. Polymerized Salicylic Acid Microparticles Reduce the Progression and Formation of Human Neutrophil Extracellular Traps (NET)s. Adv Healthc Mater 2025; 14:e2400443. [PMID: 38898728 PMCID: PMC11628640 DOI: 10.1002/adhm.202400443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/02/2024] [Indexed: 06/21/2024]
Abstract
Neutrophils can contribute to inflammatory disease propagation via innate mechanisms intended for inflammation resolution. For example, neutrophil extracellular traps (NETs) are necessary for trapping pathogens but can contribute to clot formation and blood flow restriction, that is, ischemia. Currently, no therapeutics in the clinic directly target NETs despite the known involvement of NETs contributing to mortality and increased disease severity. Vascular-deployed particle-based therapeutics are a novel and robust alternative to traditional small-molecule drugs by enhancing drug delivery to cells of interest. This work designs a high-throughput assay to investigate the immunomodulatory behavior and functionality of salicylic acid-based polymer-based particle therapeutics against NETosis in human neutrophils. Briefly, this work finds that polymeric composition plays a role, and particle size can also influence rates of NETosis. Salicylate-based polymeric (Poly-SA) particles are found to functionally inhibit NETosis depending on the particle size and concentration exposed to neutrophils. This work demonstrates the high throughput method can help fast-track particle-based therapeutic optimization and design, more efficiently preparing this innovative therapeutics for the clinic.
Collapse
Affiliation(s)
- Emma R. Brannon
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth Road, NCRC B28Ann ArborMI48109USA
| | - Logan D. Piegols
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth Road, NCRC B28Ann ArborMI48109USA
| | - Gillian Cady
- Division of Cardiovascular MedicineSamuel and Jean Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMI48109USA
| | - Daniel Kupor
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth Road, NCRC B28Ann ArborMI48109USA
| | - Xueqi Chu
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth Road, NCRC B28Ann ArborMI48109USA
| | - M. Valentina Guevara
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth Road, NCRC B28Ann ArborMI48109USA
| | - Mariana R.N. Lima
- Department of ChemistryUniversity of California RiversideRiversideCA92521USA
| | - Yogendra Kanthi
- Division of Cardiovascular MedicineSamuel and Jean Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMI48109USA
- Section of Vascular Thrombosis & InflammationDivision of Intramural ResearchNational HeartLungand Blood InstituteBethesdaMD20892USA
| | - David J. Pinsky
- Division of Cardiovascular MedicineSamuel and Jean Frankel Cardiovascular CenterUniversity of MichiganAnn ArborMI48109USA
| | - Kathryn E. Uhrich
- Department of ChemistryUniversity of California RiversideRiversideCA92521USA
| | - Omolola Eniola‐Adefeso
- Department of Chemical EngineeringUniversity of Michigan2800 Plymouth Road, NCRC B28Ann ArborMI48109USA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
8
|
Hopke A, Viens AL, Alexander NJ, Mun SJ, Mansour MK, Irimia D. Spleen tyrosine kinase inhibitors disrupt human neutrophil swarming and antifungal functions. Microbiol Spectr 2025; 13:e0254921. [PMID: 39601545 PMCID: PMC11705959 DOI: 10.1128/spectrum.02549-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/26/2024] [Indexed: 11/29/2024] Open
Abstract
Neutrophils communicate with one another and amplify their destructive power through swarming, a collective process that synchronizes the activities of multiple neutrophils against one target. The sequence of activities contributing to swarming against clusters of fungi has been recently uncovered. However, the molecular signals controlling the neutrophils' activities during the swarming process are just emerging. Here, we report that spleen tyrosine kinase (SYK) inhibitors severely impair neutrophil swarming responses, resulting in the complete loss of fungal restriction. These findings are enabled by a microscale platform to probe the biology of human neutrophils swarming against uniformly sized clusters of growing Candida albicans, a representative opportunistic fungal pathogen. We take advantage of the ability to monitor large arrays of swarms and quantify the effect of multiple chemical inhibitors on different phases of human neutrophil swarming. We show that inhibitors that interfere with PI3Ky signaling disrupt the regulation of the initiation of swarming, while the activation of JNK signaling is essential for the activation of biochemical antifungal functions. Furthermore, we reveal that granulocyte colony-stimulating factors (GCSF and GM-CSF) can partially rescue the antifungal functions of neutrophils exposed to SYK inhibitors. These findings advance our understanding of neutrophil swarming biology in humans and lay the foundation for novel therapeutics that may restore neutrophil function during immunosuppression. IMPORTANCE Neutrophils can amplify their destructive power through swarming, a crucial process against large targets that individual neutrophils cannot destroy. However, the molecular mechanisms controlling this process are just emerging. Here, we leveraged microscale tools to probe the biology of swarming against fungi. We used multiple chemical inhibitors and mapped SYK, PI3Ky, and JNK signaling roles during human neutrophil swarming against fungal clusters of Candida albicans. We also found that treating human neutrophils with GCSF and GM-CSF rescues some neutrophil antifungal function during SYK inhibition. These findings advance our understanding of swarming biology in humans while laying the foundation for developing therapeutics that enhance neutrophil function during immunosuppression.
Collapse
Affiliation(s)
- Alex Hopke
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Adam L. Viens
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Natalie J. Alexander
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Seok Joon Mun
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel Irimia
- BioMEMS Resource Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Gagnani R, Srivastava M, Suri M, Singh H, Shanker Navik U, Bali A. A focus on c-Jun-N-terminal kinase signaling in sepsis-associated multiple organ dysfunction: Mechanisms and therapeutic strategies. Int Immunopharmacol 2024; 143:113552. [PMID: 39536486 DOI: 10.1016/j.intimp.2024.113552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Sepsis is a life-threatening condition characterized by a widespread inflammatory response to infection, inevitably leading to multiple organ dysfunctions. Extensive research, both in vivo and in vitro, has revealed key factors contributing to sepsis, such as apoptosis, inflammation, cytokine release, oxidative stress, and systemic stress. The changes observed during sepsis-induced conditions are mainly attributed to altered signal transduction pathways, which play a critical role in cell proliferation, migration, and apoptosis. C-Jun N-terminal kinases, JNKs, and serine/threonine protein kinases in the mitogen-activated super family have gained considerable interest for their contribution to cellular events under sepsis conditions. JNK1 and JNK2 are present in various tissues like the lungs, liver, and intestine, while JNK3 is found in neurons. The JNK pathway plays a crucial role in the signal transduction of cytokines related to sepsis development, notably TNF-α and IL-1β. Activated JNK leads to apoptosis, causing tissue damage and organ dysfunction. Further, JNK activation is significant in several inflammatory conditions. Pharmacologically inhibiting JNK has been shown to prevent sepsis-associated damage across multiple organs, including the lungs, liver, intestines, heart, and kidneys. Multiple signaling pathways have been implicated in sepsis, including JNK/c-Myc, Mst1-JNK, MKK4-JNK, JNK-dependent autophagy, and Sirt1/FoxO3a. The review examines the role of JNK signaling in the development of sepsis-induced multiple-organ dysfunction through specific mechanisms. It also discusses different therapeutic approaches to target JNK. This review emphasizes the potential of JNKs as targets for the development of therapeutic agents for sepsis and the associated specific organ damage.
Collapse
Affiliation(s)
- Riya Gagnani
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| | - Mukul Srivastava
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Manisha Suri
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Harshita Singh
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Uma Shanker Navik
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India
| | - Anjana Bali
- Laboratory of Neuroendocrinology, Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, India.
| |
Collapse
|
10
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Azzouz D, Palaniyar N. How Do ROS Induce NETosis? Oxidative DNA Damage, DNA Repair, and Chromatin Decondensation. Biomolecules 2024; 14:1307. [PMID: 39456240 PMCID: PMC11505619 DOI: 10.3390/biom14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are intricate, DNA-based, web-like structures adorned with cytotoxic proteins. They play a crucial role in antimicrobial defense but are also implicated in autoimmune diseases and tissue injury. The process of NET formation, known as NETosis, is a regulated cell death mechanism that involves the release of these structures and is unique to neutrophils. NETosis is heavily dependent on the production of reactive oxygen species (ROS), which can be generated either through NADPH oxidase (NOX) or mitochondrial pathways, leading to NOX-dependent or NOX-independent NETosis, respectively. Recent research has revealed an intricate interplay between ROS production, DNA repair, and NET formation in different contexts. UV radiation can trigger a combined process of NETosis and apoptosis, known as apoNETosis, driven by mitochondrial ROS and DNA repair. Similarly, in calcium ionophore-induced NETosis, both ROS and DNA repair are key components, but only play a partial role. In the case of bacterial infections, the early stages of DNA repair are pivotal. Interestingly, in serum-free conditions, spontaneous NETosis occurs through NOX-derived ROS, with early-stage DNA repair inhibition halting the process, while late-stage inhibition increases it. The intricate balance between DNA repair processes and ROS production appears to be a critical factor in regulating NET formation, with different pathways being activated depending on the nature of the stimulus. These findings not only deepen our understanding of the mechanisms behind NETosis but also suggest potential therapeutic targets for conditions where NETs contribute to disease pathology.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
12
|
Shen Z, Gu J, Jiang B, Long H, Li Z, Chen C, Pei Z, Xia F. Glycyrrhizin inhibits LPS-induced neutrophil-like release of NETs. Am J Transl Res 2024; 16:5507-5515. [PMID: 39544807 PMCID: PMC11558380 DOI: 10.62347/larn2372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE To investigate the regulatory effect of glycyrrhizin (GL) on the release of neutrophil extracellular traps (NETs) from neutrophils in sepsis. METHODS HL-60 cells were induced to differentiate into neutrophil-like dHL-60 cells to establish a neutrophil-like sepsis model. Expression levels of high-mobility group box 1 (HMGB1), citrullinated histone H3 (Cit-H3), and Toll-like receptor 9 (TLR9) were assessed by Western blotting. Free DNA, a component of NETs, was quantified using a fluorescence microplate reader. Cellular immunofluorescence analysis was used to detect the expression of the key NETs protein, Cit-H3. RESULTS dHL-60 cells stimulated with 200 ng/ml LPS exhibited the highest expression of Cit-H3. The neutrophil-like sepsis model showed significantly increased levels of Cit-H3 and HMGB1. GL intervention significantly reduced the expression levels of HMGB1 and Cit-H3 and decreased the free DNA level. These findings suggest that GL decreases HMGB1 expression and NET release in the neutrophil-like sepsis model. TLR9 expression was significantly elevated in the sepsis model. Exogenous recombinant human HMGB1 protein further increased TLR9 expression, while GL inhibited this increase. CONCLUSION GL may inhibit NET release in sepsis through the HMGB1/TLR9 pathway.
Collapse
Affiliation(s)
- Zixuan Shen
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Jiarun Gu
- Department of Emergency, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Baowei Jiang
- Department of Emergency, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Haodan Long
- Shool of Clinical Medicine, The Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Zhuojie Li
- Shool of Clinical Medicine, The Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Chen Chen
- Shool of Clinical Medicine, The Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| | - Zengsong Pei
- Dpartment of Surgical, Guizhou Rehabilitation HospitalGuiyang 550001, Guizhou, China
| | - Fei Xia
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical UniversityGuiyang 550001, Guizhou, China
| |
Collapse
|
13
|
Lv X, Han Y, Li Y, Wang X, Zhang T, Wang X, Zhang Q, Yang D, Zhao J. Nonylphenol displays immunotoxicity by triggering hemocyte extracellular traps in Manila clam via ROS burst, ERK pathway and glycolysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117145. [PMID: 39357378 DOI: 10.1016/j.ecoenv.2024.117145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Nonylphenol (NP), an endocrine disruptor, has been demonstrated to be a harmful environmental contaminant and toxic to organisms. In this study, to address concerns regarding the immunotoxicity of NP, we treated clam Ruditapes philippinarum hemocytes with NP in vitro and explored the underlying mechanisms of NP-induced extracellular traps (ETs). NP could induce the formation of hemocytes ETs in a dose-dependent manner. Transcriptomics analysis revealed changes of signaling pathway involved in immunity and energy metabolism in hemocytes after NP stimulation. In this process, both reactive oxygen species (ROS) and myeloperoxidase (MPO) were up-regulated. Moreover, mitogen-activated protein kinase (MAPK) signaling pathway was proved to be activated in the formation of NP-induced ETs, manifested as enhanced phosphorylation of extracellular signal-regulated kinase (ERK) but not p38 or c-Jun N-terminal kinase (JNK). In the presence of U0126, an ERK phosphorylation inhibitor, the NP-induced expression of NADPH oxidase enzyme (NOX) was significantly decreased, which further alleviated the ROS production and ultimately limited the release of ETs. NP exposure increased glucose uptake, along with enhanced activities of glycolysis-related enzymes such as hexokinase (HK) and pyruvate kinase (PK). After inhibiting glycolysis by the inhibitor 2-DG, the formation of NP-induced ETs was significantly suppressed. ERK could regulate mTOR signaling and the PI3K/AKT pathway, potentially directing ETs formation by orchestrating the glycolysis through the activation of key transcription factors c-Myc and HIF-1α. Collectively, the results preliminary confirm that the ERK-NOX-ROS axis and glycolysis are involved in NP-induced ETs formation, contributing to the cellular immunotoxicity in clam.
Collapse
Affiliation(s)
- Xiaojing Lv
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai 264025, PR China
| | - Yongxue Li
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xin Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Tianyu Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qianqian Zhang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Dinglong Yang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
14
|
Fang Z, Liu C, Yu X, Yang K, Yu T, Ji Y, Liu C. Identification of neutrophil extracellular trap-related biomarkers in non-alcoholic fatty liver disease through machine learning and single-cell analysis. Sci Rep 2024; 14:21085. [PMID: 39256536 PMCID: PMC11387488 DOI: 10.1038/s41598-024-72151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Non-alcoholic Fatty Liver Disease (NAFLD), noted for its widespread prevalence among adults, has become the leading chronic liver condition globally. Simultaneously, the annual disease burden, particularly liver cirrhosis caused by NAFLD, has increased significantly. Neutrophil Extracellular Traps (NETs) play a crucial role in the progression of this disease and are key to the pathogenesis of NAFLD. However, research into the specific roles of NETs-related genes in NAFLD is still a field requiring thorough investigation. Utilizing techniques like AddModuleScore, ssGSEA, and WGCNA, our team conducted gene screening to identify the genes linked to NETs in both single-cell and bulk transcriptomics. Using algorithms including Random Forest, Support Vector Machine, Least Absolute Shrinkage, and Selection Operator, we identified ZFP36L2 and PHLDA1 as key hub genes. The pivotal role of these genes in NAFLD diagnosis was confirmed using the training dataset GSE164760. This study identified 116 genes linked to NETs across single-cell and bulk transcriptomic analyses. These genes demonstrated enrichment in immune and metabolic pathways. Additionally, two NETs-related hub genes, PHLDA1 and ZFP36L2, were selected through machine learning for integration into a prognostic model. These hub genes play roles in inflammatory and metabolic processes. scRNA-seq results showed variations in cellular communication among cells with different expression patterns of these key genes. In conclusion, this study explored the molecular characteristics of NETs-associated genes in NAFLD. It identified two potential biomarkers and analyzed their roles in the hepatic microenvironment. These discoveries could aid in NAFLD diagnosis and management, with the ultimate goal of enhancing patient outcomes.
Collapse
Affiliation(s)
- Zhihao Fang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Changxu Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiaoxiao Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Kai Yang
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Tianqi Yu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanchao Ji
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chang Liu
- Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
15
|
Maqsood M, Suntharalingham S, Khan M, Ortiz-Sandoval CG, Feitz WJC, Palaniyar N, Licht C. Complement-Mediated Two-Step NETosis: Serum-Induced Complement Activation and Calcium Influx Generate NADPH Oxidase-Dependent NETs in Serum-Free Conditions. Int J Mol Sci 2024; 25:9625. [PMID: 39273570 PMCID: PMC11394910 DOI: 10.3390/ijms25179625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The complement system and neutrophils play crucial roles in innate immunity. Neutrophils release neutrophil extracellular traps (NETs), which are composed of decondensed DNA entangled with granular contents, as part of their innate immune function. Mechanisms governing complement-mediated NET formation remain unclear. In this study, we tested a two-step NETosis mechanism, as follows: classical complement-mediated neutrophil activation in serum and subsequent NET formation in serum-free conditions, using neutrophils from healthy donors, endothelial cells, and various assays (Fluo-4AM, DHR123, and SYTOX), along with flow cytometry and confocal microscopy. Our findings reveal that classical complement activation on neutrophils upregulated the membrane-anchored complement regulators CD46, CD55, and CD59. Additionally, complement activation increased CD11b on neutrophils, signifying activation and promoting their attachment to endothelial cells. Complement activation induced calcium influx and citrullination of histone 3 (CitH3) in neutrophils. However, CitH3 formation alone was insufficient for NET generation. Importantly, NET formation occurred only when neutrophils were in serum-free conditions. In such environments, neutrophils induced NADPH oxidase-dependent reactive oxygen species (ROS) production, leading to NET formation. Hence, we propose that complement-mediated NET formation involves a two-step process, as follows: complement deposition, neutrophil priming, calcium influx, CitH3 formation, and attachment to endothelial cells in serum. This is followed by NADPH-dependent ROS production and NET completion in serum-free conditions. Understanding this process may unveil treatment targets for pathologies involving complement activation and NET formation.
Collapse
Affiliation(s)
- Maria Maqsood
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
| | - Samuel Suntharalingham
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
| | - Meraj Khan
- Translational Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.K.); (N.P.)
| | - Carolina G. Ortiz-Sandoval
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
| | - Wouter J. C. Feitz
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands
| | - Nades Palaniyar
- Translational Medicine, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.K.); (N.P.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Christoph Licht
- Cell Biology, Research Institute, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (M.M.); (S.S.); (C.G.O.-S.); (W.J.C.F.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
16
|
Warner S, Teague HL, Ramos-Benitez MJ, Panicker S, Allen K, Gairhe S, Moyer T, Parachalil Gopalan B, Douagi I, Shet A, Kanthi Y, Suffredini AF, Chertow DS, Strich JR. R406 reduces lipopolysaccharide-induced neutrophil activation. Cell Immunol 2024; 403-404:104860. [PMID: 39084187 PMCID: PMC11387147 DOI: 10.1016/j.cellimm.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Modulating SYK has been demonstrated to have impacts on pathogenic neutrophil responses in COVID-19. During sepsis, neutrophils are vital in early bacterial clearance but also contribute to the dysregulated immune response and organ injury when hyperactivated. Here, we evaluated the impact of R406, the active metabolite of fostamatinib, on neutrophils stimulated by LPS. We demonstrate that R406 was able to effectively inhibit NETosis, degranulation, ROS generation, neutrophil adhesion, and the formation of CD16low neutrophils that have been linked to detrimental outcomes in severe sepsis. Further, the neutrophils remain metabolically active, capable of releasing cytokines, perform phagocytosis, and migrate in response to IL-8. Taken together, this data provides evidence of the potential efficacy of utilizing fostamatinib in bacterial sepsis.
Collapse
Affiliation(s)
- Seth Warner
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Heather L Teague
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Basic Science Department, Microbiology Division, School of Medicine, Ponce Health Sciences University, Ponce, PR, USA
| | - Sumith Panicker
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kiana Allen
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Salina Gairhe
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Tom Moyer
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bindu Parachalil Gopalan
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Iyadh Douagi
- Flow Cytometry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA; NIH Center for Human Immunology, Inflammation, and Autoimmunity, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arun Shet
- Laboratory of Sickle Thrombosis and Vascular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yogendra Kanthi
- Laboratory of Vascular Thrombosis and Inflammation, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anthony F Suffredini
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Chertow
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA; Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey R Strich
- Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Critical Care Medicine Department, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Lee HT, Lin CS, Liu CY, Chen P, Tsai CY, Wei YH. Mitochondrial Plasticity and Glucose Metabolic Alterations in Human Cancer under Oxidative Stress-From Viewpoints of Chronic Inflammation and Neutrophil Extracellular Traps (NETs). Int J Mol Sci 2024; 25:9458. [PMID: 39273403 PMCID: PMC11395599 DOI: 10.3390/ijms25179458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Oxidative stress elicited by reactive oxygen species (ROS) and chronic inflammation are involved both in deterring and the generation/progression of human cancers. Exogenous ROS can injure mitochondria and induce them to generate more endogenous mitochondrial ROS to further perpetuate the deteriorating condition in the affected cells. Dysfunction of these cancer mitochondria may possibly be offset by the Warburg effect, which is characterized by amplified glycolysis and metabolic reprogramming. ROS from neutrophil extracellular traps (NETs) are an essential element for neutrophils to defend against invading pathogens or to kill cancer cells. A chronic inflammation typically includes consecutive NET activation and tissue damage, as well as tissue repair, and together with NETs, ROS would participate in both the destruction and progression of cancers. This review discusses human mitochondrial plasticity and the glucose metabolic reprogramming of cancer cells confronting oxidative stress by the means of chronic inflammation and neutrophil extracellular traps (NETs).
Collapse
Affiliation(s)
- Hui-Ting Lee
- Division of Allergy, Immunology & Rheumatology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
| | - Chen-Sung Lin
- Division of Thoracic Surgery, Department of Surgery, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for General Education, Kainan University, Taoyuan City 338, Taiwan
| | - Chao-Yu Liu
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Po Chen
- Cancer Free Biotech, Taipei 114, Taiwan
| | - Chang-Youh Tsai
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Clinical Trial Center, Division of Immunology & Rheumatology, Fu Jen Catholic University Hospital, New Taipei City 243, Taiwan
- Faculty of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Yau-Huei Wei
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 500, Taiwan
| |
Collapse
|
18
|
Baratchi S, Danish H, Chheang C, Zhou Y, Huang A, Lai A, Khanmohammadi M, Quinn KM, Khoshmanesh K, Peter K. Piezo1 expression in neutrophils regulates shear-induced NETosis. Nat Commun 2024; 15:7023. [PMID: 39174529 PMCID: PMC11341855 DOI: 10.1038/s41467-024-51211-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Neutrophil infiltration and subsequent extracellular trap formation (NETosis) is a contributing factor in sterile inflammation. Furthermore, neutrophil extracellular traps (NETs) are prothrombotic, as they provide a scaffold for platelets and red blood cells to attach to. In circulation, neutrophils are constantly exposed to hemodynamic forces such as shear stress, which in turn regulates many of their biological functions such as crawling and NETosis. However, the mechanisms that mediate mechanotransduction in neutrophils are not fully understood. In this study, we demonstrate that shear stress induces NETosis, dependent on the shear stress level, and increases the sensitivity of neutrophils to NETosis-inducing agents such as adenosine triphosphate and lipopolysaccharides. Furthermore, shear stress increases intracellular calcium levels in neutrophils and this process is mediated by the mechanosensitive ion channel Piezo1. Activation of Piezo1 in response to shear stress mediates calpain activity and cytoskeleton remodeling, which consequently induces NETosis. Thus, activation of Piezo1 in response to shear stress leads to a stepwise sequence of cellular events that mediates NETosis and thereby places neutrophils at the centre of localized inflammation and prothrombotic effects.
Collapse
Affiliation(s)
- Sara Baratchi
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia.
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.
| | - Habiba Danish
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Chanly Chheang
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Ying Zhou
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Angela Huang
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Austin Lai
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Manijeh Khanmohammadi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | - Kylie M Quinn
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia
| | | | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
19
|
Yasuda H, Takishita Y, Morita A, Tsutsumi T, Nakagawa N, Sato EF. Sodium Acetate Enhances Neutrophil Extracellular Trap Formation via Histone Acetylation Pathway in Neutrophil-like HL-60 Cells. Int J Mol Sci 2024; 25:8757. [PMID: 39201443 PMCID: PMC11354635 DOI: 10.3390/ijms25168757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Neutrophil extracellular trap formation has been identified as a new cell death mediator, termed NETosis, which is distinct from apoptosis and necrosis. NETs capture foreign substances, such as bacteria, by releasing DNA into the extracellular environment, and have been associated with inflammatory diseases and altered immune responses. Short-chain fatty acids, such as acetate, are produced by the gut microbiota and reportedly enhance innate immune responses; however, the underlying molecular mechanisms remain unclear. Here, we investigated the effects of sodium acetate, which has the highest SCFA concentration in the blood and gastrointestinal tract, on NETosis by focusing on the mechanisms associated with histone acetylation in neutrophil-like HL-60 cells. Sodium acetate enhanced NETosis, as shown by fluorescence staining with SYTOX green, and the effect was directly proportional to the treatment duration (16-24 h). Moreover, the addition of sodium acetate significantly enhanced the acetylation of Ace-H3, H3K9ace, and H3K14ace. Sodium acetate-induced histone acetylation rapidly decreased upon stimulation with the calcium ionophore A23187, whereas histone citrullination markedly increased. These results demonstrate that sodium acetate induces NETosis via histone acetylation in neutrophil-like HL-60 cells, providing new insights into the therapeutic effects based on the innate immunity-enhancing effect of dietary fiber.
Collapse
Affiliation(s)
- Hiroyuki Yasuda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
- Division of Pathological Sciences, Department of Pharmacology and Experimental Therapeutics, Kyoto Pharmaceutical University, Misasagi 5, Yamashina, Kyoto 607-8414, Japan
| | - Yutaka Takishita
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Akihiro Morita
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Tomonari Tsutsumi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Naoya Nakagawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| | - Eisuke F. Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka 513-8670, Japan; (H.Y.); (Y.T.); (A.M.); (T.T.); (N.N.)
| |
Collapse
|
20
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Huang L, Tan X, Xuan W, Luo Q, Xie L, Xi Y, Li R, Li L, Li F, Zhao M, Jiang Y, Wu X. Ficolin-A/2 Aggravates Severe Lung Injury through Neutrophil Extracellular Traps Mediated by Gasdermin D-Induced Pyroptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:989-1006. [PMID: 38442803 DOI: 10.1016/j.ajpath.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
Neutrophil extracellular traps (NETs) and pyroptosis are critical events in lung injury. This study investigated whether ficolin-A influenced NET formation through pyroptosis to exacerbate lipopolysaccharide (LPS)-induced lung injury. The expression of ficolin-A/2, NETs, and pyroptosis-related molecules was investigated in animal and cell models. Knockout and knockdown (recombinant protein) methods were used to elucidate regulatory mechanisms. The Pearson correlation coefficient was used to analyze the correlation between ficolins and pyroptosis- and NET-related markers in clinical samples. In this study, ficolin-2 (similar to ficolin-A) showed significant overexpression in patients with acute respiratory distress syndrome. In vivo, knockout of Fcna, but not Fcnb, attenuated lung inflammation and inhibited NET formation in the LPS-induced mouse model. DNase I further alleviated lung inflammation and NET formation in Fcna knockout mice. In vitro, neutrophils derived from Fcna-/- mice showed less pyroptosis and necroptosis than those from the control group after LPS stimulation. Additionally, GSDMD knockdown or Nod-like receptor protein 3 inhibitor reduced NET formation. Addition of recombinant ficolin-2 protein to human peripheral blood neutrophils promoted NET formation and pyroptosis after LPS stimulation, whereas Fcn2 knockdown had the opposite effect. Acute respiratory distress syndrome patients showed increased levels of pyroptosis- and NET-related markers, which were correlated positively with ficolin-2 levels. In conclusion, these results suggested that ficolin-A/2 exacerbated NET formation and LPS-induced lung injury via gasdermin D-mediated pyroptosis.
Collapse
Affiliation(s)
- Li Huang
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaowu Tan
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Weixia Xuan
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Qing Luo
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Xie
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yunzhu Xi
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Rong Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Feifan Li
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiyun Zhao
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yongliang Jiang
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Xu Wu
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China; Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
22
|
Xuan N, Zhao J, Kang Z, Cui W, Tian BP. Neutrophil extracellular traps and their implications in airway inflammatory diseases. Front Med (Lausanne) 2024; 10:1331000. [PMID: 38283037 PMCID: PMC10811107 DOI: 10.3389/fmed.2023.1331000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are essential for immune defense and have been increasingly recognized for their role in infection and inflammation. In the context of airway inflammatory diseases, there is growing evidence suggesting the involvement and significance of NETs. This review aims to provide an overview of the formation mechanisms and components of NETs and their impact on various airway inflammatory diseases, including acute lung injury/ARDS, asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis. By understanding the role of NETs in airway inflammation, we can gain valuable insights into the underlying pathogenesis of these diseases and identify potential targets for future therapeutic strategies that either target NETs formation or modulate their harmful effects. Further research is warranted to elucidate the complex interactions between NETs and airway inflammation and to develop targeted therapies that can effectively mitigate their detrimental effects while preserving their beneficial functions in host defense.
Collapse
Affiliation(s)
- Nanxia Xuan
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhiying Kang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao-ping Tian
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Fa P, Ke BG, Dupre A, Tsung A, Zhang H. The implication of neutrophil extracellular traps in nonalcoholic fatty liver disease. Front Immunol 2023; 14:1292679. [PMID: 38022519 PMCID: PMC10652891 DOI: 10.3389/fimmu.2023.1292679] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an expanding worldwide health concern, and the underlying mechanisms contributing to its progression still need further exploration. Neutrophil extracellular traps (NETs) are intricate formations comprised of nuclear constituents and diverse antimicrobial granules that are released into the extracellular milieu by activated neutrophils upon various triggers, which play a pivotal part in the onset and advancement of NAFLD. NETs actively participate in the genesis of NAFLD by fostering oxidative stress and inflammation, ultimately resulting in hepatic fat accumulation and the escalation of liver injury. Recent insights into the interaction with other hepatic immune populations and mediators, such as macrophages and T regulatory cells, have revealed several important mechanisms that can trigger further liver injury. In conclusion, the formation of NETs emerged as an important factor in the development of NAFLD, offering a promising target for innovative therapeutic approaches against this debilitating condition. This comprehensive review seeks to compile existing studies exploring the involvement of NETs in the genesis of NAFLD and their influence on the immune response throughout the progression of NAFLD.
Collapse
Affiliation(s)
- Pengyan Fa
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Benjamin G. Ke
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Abigail Dupre
- School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allan Tsung
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Hongji Zhang
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
24
|
Huang Y, Ding Y, Wang B, Ji Q, Peng C, Tan Q. Neutrophils extracellular traps and ferroptosis in diabetic wounds. Int Wound J 2023; 20:3840-3854. [PMID: 37199077 PMCID: PMC10588347 DOI: 10.1111/iwj.14231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Wound healing is an extremely complex process involving multiple levels of cells and tissues. It is mainly completed through four stages: haemostasis, inflammation, proliferation, and remodelling. When any one of these stages is impaired, it may lead to delayed healing or even transformation into chronic refractory wounds. Diabetes is a kind of common metabolic disease that affects approximately 500 million people worldwide, 25% of whom develop skin ulcers that break down repeatedly and are difficult to heal, making it a growing public health problem. Neutrophils extracellular traps and ferroptosis are new types of programmed cell death identified in recent years and have been found to interact with diabetic wounds. In this paper, the normal wound healing and interfering factors of the diabetic refractory wound were outlined. The mechanism of two kinds of programmed cell death was also described, and the interaction mechanism between different types of programmed cell death and diabetic refractory wounds was discussed.
Collapse
Affiliation(s)
- Yumeng Huang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
| | - Youjun Ding
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Emergency SurgeryThe Fourth Affiliated Hospital of Jiangsu University (Zhenjiang Fourth People's Hospital)ZhenjiangChina
| | - Beizhi Wang
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Qian Ji
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Chen Peng
- Department of OncologyAffiliated Hospital of Jiangsu UniversityZhenjiangChina
| | - Qian Tan
- Department of Burns and Plastic SurgeryNanjing Drum Tower Hospital Clinical College of Jiangsu UniversityNanjingChina
- Department of Burns and Plastic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Burns and Plastic SurgeryAnqing Shihua Hospital of Nanjing Drum Tower Hospital GroupAnqingChina
| |
Collapse
|
25
|
Marandu TF, Dombek M, Gutknecht M, Griessl M, Riça IG, Vlková B, Macáková K, Panagioti E, Griffith A, Lederer J, Yaffe M, Shankar S, Otterbein L, Itagaki K, Hauser CJ, Cook CH. Cytomegalovirus durably primes neutrophil oxidative burst. J Leukoc Biol 2023; 114:459-474. [PMID: 37566762 DOI: 10.1093/jleuko/qiad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 08/13/2023] Open
Abstract
Cytomegalovirus (CMV) is a ubiquitous herpes virus that infects most humans, thereafter persisting lifelong in tissues of the host. It is a known pathogen in immunosuppressed patients, but its impact on immunocompetent hosts remains less understood. Recent data have shown that CMV leaves a significant and long-lasting imprint in host immunity that may confer some protection against subsequent bacterial infection. Such innate immune activation may come at a cost, however, with potential to cause immunopathology. Neutrophils are central to many models of immunopathology, and while acute CMV infection is known to influence neutrophil biology, the impact of chronic CMV infection on neutrophil function remains unreported. Using our murine model of CMV infection and latency, we show that chronic CMV causes persistent enhancement of neutrophil oxidative burst well after resolution of acute infection. Moreover, this in vivo priming of marrow neutrophils is associated with enhanced formyl peptide receptor expression, and ultimately constitutive c-Jun N-terminal kinase phosphorylation and enhanced CD14 expression in/on circulating neutrophils. Finally, we show that neutrophil priming is dependent on viral load, suggesting that naturally infected human hosts will show variability in CMV-related neutrophil priming. Altogether, these findings represent a previously unrecognized and potentially important impact of chronic CMV infection on neutrophil responsiveness in immunocompetent hosts.
Collapse
Affiliation(s)
- Thomas F Marandu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Department of Microbiology & Immunology, Mbeya College of Health and Allied Sciences, Hospital Hill Rd, University of Dar es Salaam, Mbeya 53107, Tanzania
| | - Michael Dombek
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Michael Gutknecht
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Marion Griessl
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Ingred Goretti Riça
- Department of Biology and Biological Engineering, and Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA 02139, United States
| | - Barbora Vlková
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 4 Sasinkova St, Bratislava 811 08, Slovakia
| | - Kristína Macáková
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 4 Sasinkova St, Bratislava 811 08, Slovakia
| | - Eleni Panagioti
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Alec Griffith
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA 02215, United States
| | - James Lederer
- Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St., Boston, MA 02215, United States
| | - Michael Yaffe
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
- Department of Biology and Biological Engineering, and Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, MA 02139, United States
| | - Sidharth Shankar
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Leo Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Carl J Hauser
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| | - Charles H Cook
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis St., Boston, MA 02215, United States
| |
Collapse
|
26
|
Harper TC, Oberlick EM, Smith TJ, Nunes DE, Bray MA, Park S, Driscoll CD, Mowbray SF, Antczak C. GATA1 deletion in human pluripotent stem cells increases differentiation yield and maturity of neutrophils. iScience 2023; 26:107804. [PMID: 37720099 PMCID: PMC10500457 DOI: 10.1016/j.isci.2023.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
Human pluripotent stem cell (hPSC)-derived tissues can be used to model diseases in cell types that are challenging to harvest and study at-scale, such as neutrophils. Neutrophil dysregulation, specifically neutrophil extracellular trap (NET) formation, plays a critical role in the prognosis and progression of multiple diseases, including COVID-19. While hPSCs can generate limitless neutrophils (iNeutrophils) to study these processes, current differentiation protocols generate heterogeneous cultures of granulocytes and precursors. Here, we describe a method to improve iNeutrophil differentiations through the deletion of GATA1. GATA1 knockout (KO) iNeutrophils are nearly identical to primary neutrophils in form and function. Unlike wild-type iNeutrophils, GATA1 KO iNeutrophils generate NETs in response to the physiologic stimulant lipopolysaccharide, suggesting they are a more accurate model when performing NET inhibitor screens. Furthermore, through deletion of CYBB, we demonstrate that GATA1 KO iNeutrophils are a powerful tool in determining involvement of a given protein in NET formation.
Collapse
Affiliation(s)
- Thomas C. Harper
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Elaine M. Oberlick
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Tomas J. Smith
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Duncan E. Nunes
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mark-Anthony Bray
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Seonmi Park
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Corey D. Driscoll
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Sarah F. Mowbray
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Christophe Antczak
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| |
Collapse
|
27
|
Peng W, Qi H, Zhu W, Tong L, Rouzi A, Wu Y, Han L, He L, Yan Y, Pan T, Liu J, Wang Q, Jia Z, Song Y, Zhu Q, Zhou J. Lianhua Qingke ameliorates lipopolysaccharide-induced lung injury by inhibiting neutrophil extracellular traps formation and pyroptosis. Pulm Circ 2023; 13:e12295. [PMID: 37808899 PMCID: PMC10557103 DOI: 10.1002/pul2.12295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
LHQK is a patented Traditional Chinese Medicine (TCM) which is clinically used for acute tracheobronchitis, cough, and other respiratory diseases. Recent studies have proved that LHQK exhibits excellent clinical efficacy in the treatment of acute lung injury (ALI). However, the corresponding mechanisms remain largely unexplored. In this study, we investigated the effects and the underlying mechanisms of LHQK on lipopolysaccharide (LPS)-induced ALI in mice. The pathological examination, inflammatory cytokines assessments, and mucus secretion evaluation indicated that administration of LHQK ameliorated LPS-induced lung injury, and suppressed the secretion of Muc5AC and pro-inflammatory cytokines (IL-6, TNF-α, and IL-1β) in plasma and BALF. Furthermore, the results of cell-free DNA level showed that LHQK significantly inhibited LPS-induced NETs formation. Western blot revealed that LHQK effectively inhibited LPS-triggered pyroptosis in the lung. In addition, RNA-Seq data analysis, relatively bioinformatic analysis, and network pharmacology analysis revealed that LHQK and relative components may play multiple protective functions in LPS-induced ALI/acute respiratory distress syndrome (ARDS) by regulating multiple targets directly or indirectly related to NETs and pyroptosis. In conclusion, LHQK can effectively attenuate lung injury and reduce lung inflammation by inhibiting LPS-induced NETs formation and pyroptosis, which may be regulated directly or indirectly by active compounds of LHQK.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western MedicineHebeiShijiazhuangChina
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ainiwaer Rouzi
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ludan He
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Yu Yan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Ting Pan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
| | - Zhenhua Jia
- Hebei Academy of Integrated Traditional Chinese and Western MedicineHebeiShijiazhuangChina
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan UniversityFudan UniversityShanghaiChina
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
- Shanghai Key Laboratory of Lung Inflammation and InjuryShanghaiChina
- Shanghai Institute of Infectious Disease and BiosecurityFudan UniversityShanghaiChina
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan UniversityFudan UniversityShanghaiChina
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health CommissionFudan UniversityShanghaiChina
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan UniversityFudan UniversityShanghaiChina
| |
Collapse
|
28
|
Xu Q, Shi M, Ding L, Xia Y, Luo L, Lu X, Zhang X, Deng DYB. High expression of P-selectin induces neutrophil extracellular traps via the PSGL-1/Syk/Ca 2+/PAD4 pathway to exacerbate acute pancreatitis. Front Immunol 2023; 14:1265344. [PMID: 37841279 PMCID: PMC10568494 DOI: 10.3389/fimmu.2023.1265344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Background Excessive neutrophil extracellular traps (NETs) is involved in the progression of acute pancreatitis (AP) but the mechanisms controlling NETs formation in AP are not fully understood. Therefore, our study sought to investigate the mechanism of the highly expressed P-selectin stimulating the formation of NETs in AP. Methods NETs formation was detected by flow cytometry, immunofluorescence staining, and cf-DNA and MPO-DNA complexes were measured as biomarkers of NETs formation. Neutrophils treated with P-selectin and pharmacological inhibitors were examined by western blot, immunofluorescence staining and flow cytometry. Mouse model of AP was established by caerulein and the effect of inhibiting P-selectin by PSI-697 on the level of NETs and PAD4 in pancreatic tissue was observed. The severity of AP was evaluated by histopathological score and the detection of serum amylase and lipase. Results Patients with AP had elevated levels of NETs and P-selectin compared with healthy volunteers. Stimulation of P-selectin up-regulated the expression of PSGL-1, increased the phosphorylation of Syk, mediated intracellular calcium signal and led to the activation and expression of PAD4, which modulated NETs formation in neutrophils. Pretreament with PSI-697 blunted NETs formation and PAD4 expression in the pancreatic tissue, and ameliorated the severity of AP in mice. Conclusion Taken together, these results suggest that P-selectin induces NETs through PSGL-1 and its downstream Syk/Ca2+/PAD4 signaling pathway, and that targeting this pathway might be a promising strategy for the treatment of AP.
Collapse
Affiliation(s)
- Qi Xu
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Ming Shi
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lu Ding
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yu Xia
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Liang Luo
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaofang Lu
- Department of Pathology, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaoying Zhang
- Department of Health Management Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - David Y. B. Deng
- Department of Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
29
|
Wang Z, Zhu D, Zhang Y, Xia F, Zhu J, Dai J, Zhuge X. Extracellular vesicles produced by avian pathogenic Escherichia coli (APEC) activate macrophage proinflammatory response and neutrophil extracellular trap (NET) formation through TLR4 signaling. Microb Cell Fact 2023; 22:177. [PMID: 37689682 PMCID: PMC10492386 DOI: 10.1186/s12934-023-02171-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Avian pathogenic Escherichia coli (APEC) is the major pathogen causing important avian diseases in poultry. As an important subtype of extraintestinal pathogenic E. coli, APEC has zoonotic potential and is considered a foodborne pathogen. APEC extracellular vesicles (EVs) may play vital roles in the interaction of the pathogen with its host cells. However, the precise roles played by APEC EVs are still not completely clear, especially in immune cells. RESULTS In this study, we investigated the relationships between APEC EVs and immune cells. The production and characteristics of the EVs of APEC isolate CT265 were identified. Toll like receptor 4 (TLR4) triggered the cellular immune responses when it interacted with APEC EVs. APEC EVs induced a significant release of proinflammatory cytokines in THP-1 macrophages. APEC EVs induced the macrophage inflammatory response via the TLR4/MYD88/NF-κB signaling pathway, which participated in the activation of the APEC-EV-induced NLRP3 inflammasome. However, the loss of lipopolysaccharide (LPS) from APEC EVs reduced the activation of the NLRP3 inflammasome mediated by TLR4/MYD88/NF-κB signaling. Because APEC EVs activated the macrophage inflammatory response and cytokines release, we speculated that the interaction between APEC EVs and macrophages activated and promoted neutrophil migration during APEC extraintestinal infection. This study is the first to report that APEC EVs induce the formation of neutrophil extracellular traps (NETs) and chicken heterophil extracellular traps. Treatment with APEC EVs induced SAPK/JNK activation in neutrophils. The inhibition of TLR4 signaling suppressed APEC-EV-induced NET formation. However, although APEC EVs activated the immune response of macrophages and initiated NET formation, they also damaged macrophages, causing their apoptosis. The loss of LPS from APEC EVs did not prevent this process. CONCLUSION APEC-derived EVs induced inflammatory responses in macrophages and NETs in neutrophils, and that TLR4 was involved in the APEC-EV-activated inflammatory response. These findings provided a basis for the further study of APEC pathogenesis.
Collapse
Affiliation(s)
- Zhongxing Wang
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Dongyu Zhu
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Yuting Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Fufang Xia
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China
| | - Jiaying Zhu
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianjun Dai
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- College of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiangkai Zhuge
- Key Lab of Animal Bacteriology, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Ministry of Agriculture, Nanjing Agricultural University, No.1 Weigang road, Nanjing, 210095, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, No.9 Seyuan road, Nantong, Jiangsu, 226019, P.R. China.
| |
Collapse
|
30
|
Anthonymuthu S, Sabui S, Lee K, Sheikh A, Fleckenstein JM, Said HM. Bacterial lipopolysaccharide inhibits colonic carrier-mediated uptake of thiamin pyrophosphate: roles for TLR4 receptor and NF-κB/P38/JNK signaling pathway. Am J Physiol Cell Physiol 2023; 325:C758-C769. [PMID: 37519229 PMCID: PMC10635650 DOI: 10.1152/ajpcell.00272.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/01/2023]
Abstract
This study investigated the effect of the bacterial endotoxin lipopolysaccharide (LPS) on colonic uptake of thiamin pyrophosphate (TPP), the biologically active form of vitamin B1 that is generated by gut microbiota. We used three complementary models in our study: in vitro (human-derived colonic epithelial NCM460), ex vivo (human differentiated colonoid monolayers), and in vivo (mouse colonic tissue). The results showed that exposure of NCM460 cells to LPS leads to a significant inhibition of carrier-mediated TPP uptake as well as in decreased expression of the colonic TPP transporter (cTPPT) protein, mRNA, and heterologous nuclear RNA (hnRNA) compared with untreated controls. Similarly, exposure of human differentiated colonoid monolayers and mice to LPS caused significant inhibition in colonic carrier-mediated TPP uptake and in cTPPT protein, mRNA, and hnRNA expression. The effect of LPS on colonic TPP uptake and cTTPT expression was also found to be associated with a significant reduction in activity of the SLC44A4 promoter as well as in decreased expression of the nuclear factor Elf-3 (E74-like ETS transcription factor 3), which is needed for promoter activity. Finally, we found that knocking down the Toll-like receptor 4 (TLR4) and blocking the nuclear factor kappa B (NF-κB), JNK, and p38 signaling pathways with the use of pharmacological inhibitors lead to significant abrogation in the degree of LPS-mediated inhibition in TPP uptake and cTPPT expression. These results demonstrated that exposure of colonic epithelia to LPS inhibits colonic TPP uptake via transcriptional mechanism(s) and that the effect is mediated via TLR4 receptor and NF-κB/p38/JNK signaling pathways.NEW & NOTEWORTHY This study examined the effect of the bacterial lipopolysaccharide (LPS) on the colonic uptake of thiamin pyrophosphate (TPP), the biologically active form of vitamin B1. Three complementary models were used: in vitro (human NCM460 cells), ex vivo (human colonoids), and in vivo (mice). The results showed LPS to significantly suppress TPP uptake and the expression of its transporter, and that these effects are mediated via the membrane TLR4 receptor, and involve the NF-κB/p38/JNK signaling pathways.
Collapse
Affiliation(s)
- Selvaraj Anthonymuthu
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Subrata Sabui
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| | - Katherine Lee
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
| | - Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - James M Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Veterans Affairs Medical Center, St. Louis, Missouri, United States
| | - Hamid M Said
- Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States
- Department of Medicine, School of Medicine, University of California, Irvine, California, United States
- Department of Medical Research, Tibor Rubin VA Medical Center, Long Beach, California, United States
| |
Collapse
|
31
|
Yang X, Ma Y, Chen X, Zhu J, Xue W, Ning K. Mechanisms of neutrophil extracellular trap in chronic inflammation of endothelium in atherosclerosis. Life Sci 2023:121867. [PMID: 37348812 DOI: 10.1016/j.lfs.2023.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Cardiovascular diseases are a primary cause of morbidity and mortality around the world. In addition, atherosclerosis (AS)-caused cardiovascular disease is the primary cause of death in human diseases, and almost two billion people suffer from carotid AS worldwide. AS is caused by chronic inflammation of the arterial vessel and is initiated by dysfunction of vascular endothelial cells. Neutrophils protect against pathogen invasion because they function as a component of the innate immune system. However, the contribution of neutrophils to cardiovascular disease has not yet been clarified. Neutrophil extracellular traps (NETs) represent an immune defense mechanism that is different from direct pathogen phagocytosis. NETs are extracellular web-like structures activated by neutrophils, and they play important roles in promoting endothelial inflammation via direct or indirect pathways. NETs consist of DNA, histones, myeloperoxidase, matrix metalloproteinases, proteinase 3, etc. Most of the components of NETs have no direct toxic effect on endothelial cells, such as DNA, but they can damage endothelial cells indirectly. In addition, NETs play a critical role in the process of AS; therefore, it is important to clarify the mechanisms of NETs in AS because NETs are a new potential therapeutic target AS. This review summarizes the possible mechanisms of NETs in AS.
Collapse
Affiliation(s)
- Xiaofan Yang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yupeng Ma
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Xin Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Jingjing Zhu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Wenlong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|
32
|
Azzouz D, Palaniyar N. Mitochondrial ROS and base excision repair steps leading to DNA nick formation drive ultraviolet induced-NETosis. Front Immunol 2023; 14:1198716. [PMID: 37350954 PMCID: PMC10282603 DOI: 10.3389/fimmu.2023.1198716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Reactive oxygen species (ROS) is essential for neutrophil extracellular trap formation (NETosis), and generated either by NADPH oxidases (e.g., during infections) or mitochondria (e.g., sterile injury) in neutrophils. We recently showed that ultraviolet (UV) radiation, a sterile injury-inducing agent, dose-dependently induced mitochondrial ROS generation, and increasing levels of ROS shifted the neutrophil death from apoptosis to NETosis. Nevertheless, how ROS executes UV-induced NETosis is unknown. In this study, we first confirmed that UV doses used in our experiments generated mitochondrial ROS, and the inhibition of mitochondrial ROS suppressed NETosis (Mitosox, SYTOX, immunocytochemistry, imaging). Next, we showed that UV irradiation extensively oxidized DNA, by confocal imaging of 8-oxyguanine (8-oxoG) in NETs. Immunofluorescence microscopy further showed that a DNA repair protein, proliferating cell nuclear antigen, was widely distributed throughout the DNA, indicating that the DNA repair machinery was active throughout the genome during UV-induced NETosis. Inhibition of specific steps of base excision repair (BER) pathway showed that steps leading up to DNA nick formation, but not the later steps, suppressed UV-induced NETosis. In summary, this study shows that (i) high levels of mitochondrial ROS produced following UV irradiation induces extensive oxidative DNA damage, and (ii) early steps of the BER pathway leading to DNA nicking results in chromatin decondensation and NETosis. Collectively, these findings reveal how ROS induces NOX-independent NETosis, and also a novel biological mechanism for UV irradiation- and -mitochondrial ROS-mediated NETosis.
Collapse
Affiliation(s)
- Dhia Azzouz
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Translational Medicine, Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Zhou E, Yu H, Wu Z, Li P, Xie Y, Jiang M, Wang J, Yang Z. Saxitoxin induces the release of human neutrophil extracellular traps. Toxicon 2023; 230:107163. [PMID: 37207941 DOI: 10.1016/j.toxicon.2023.107163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Saxitoxin (STX) is a potent shellfish toxin found in freshwater and marine ecosystems which threatens human health by contaminating drinking water and shellfish. The formation of neutrophil extracellular traps (NETs) is a defense mechanism employed by polymorphonuclear leukocytes (PMNs) to destroy invading pathogens, and also plays a critical role in the pathogenesis of various diseases. In this study, we aimed to investigate the role of STX on human NET formation. Typical NETs-associated characteristics were detected from STX-stimulated PMNs using immunofluorescence microscopy. Moreover, NET quantification based on PicoGreen® fluorescent dye revealed that STX triggered NET formation in a concentration-dependent manner, and NET formation peaked at 120 min (with a total time of 180 min) after induction by STX. Intracellular reactive oxygen species (iROS) detection showed that iROS were significantly elevated in STX-challenged PMNs. These findings present insight into the effects of STX on human NET formation and serve as a basis for further investigations of STX immunotoxicity.
Collapse
Affiliation(s)
- Ershun Zhou
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Hongsen Yu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Zhikai Wu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Peixuan Li
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Yueqing Xie
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Mingzhen Jiang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China
| | - Jingjing Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| | - Zhengtao Yang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, PR China.
| |
Collapse
|
34
|
Ivey AD, Matthew Fagan B, Murthy P, Lotze MT, Zeh HJ, Hazlehurst LA, Geldenhuys WJ, Boone BA. Chloroquine reduces neutrophil extracellular trap (NET) formation through inhibition of peptidyl arginine deiminase 4 (PAD4). Clin Exp Immunol 2023; 211:239-247. [PMID: 36655514 PMCID: PMC10038322 DOI: 10.1093/cei/uxad005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/03/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Neutrophil extracellular traps (NETs) occur when chromatin is decondensed and extruded from the cell, generating a web-like structure. NETs have been implicated in the pathogenesis of several sterile disease states and thus are a potential therapeutic target. Various pathways have been shown to induce NETs, including autophagy, with several key enzymes being activated like peptidyl arginine deiminase 4 (PAD4), an enzyme responsible for citrullination of histones, allowing for DNA unwinding and subsequent release from the cell. Pre-clinical studies have already demonstrated that chloroquine (CQ) and hydroxychloroquine (HCQ) are able to reduce NETs and slow disease progression. The exact mechanism as to how these drugs reduce NETs has yet to be elucidated. CQ and HCQ decrease NET formation from various NET activators, independent of their autophagy inhibitory function. CQ and HCQ were found to inhibit PAD4 exclusively, in a dose-dependent manner, confirmed with reduced CitH3+ NETs after CQ or HCQ treatment. Circulating CitH3 levels were reduced in pancreatic cancer patients after HCQ treatment. In silico screening of PAD4 protein structure identified a likely binding site interaction at Arg639 for CQ and Trp347, Ser468, and Glu580 for HCQ. SPR analysis confirmed the binding of HCQ and CQ with PAD4 with KD values of 54.1 µM (CQ) and 88.1 µM (HCQ). This data provide evidence of direct PAD4 inhibition as a mechanism for CQ/HCQ inhibition of NETs. We propose that these drugs likely reduce NET formation through multiple mechanisms; the previously established TLR9 and autophagy inhibitory mechanism and the novel PAD4 inhibitory mechanism.
Collapse
Affiliation(s)
- Abby D Ivey
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
| | - B Matthew Fagan
- Department of Surgery, West Virginia University, Morgantown, WV, USA
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Herbert J Zeh
- Department of Surgery, UT Southwestern, Dallas, TX, USA
| | - Lori A Hazlehurst
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
- Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
| | - Werner J Geldenhuys
- Pharmaceutical Sciences, West Virginia University, Morgantown, WV, USA
- Neuroscience, West Virginia University, Morgantown, WV, USA
| | - Brian A Boone
- Cancer Cell Biology, West Virginia University, Morgantown, WV, USA
- Department of Surgery, West Virginia University, Morgantown, WV, USA
- Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
35
|
Yan M, Gu Y, Sun H, Ge Q. Neutrophil extracellular traps in tumor progression and immunotherapy. Front Immunol 2023; 14:1135086. [PMID: 36993957 PMCID: PMC10040667 DOI: 10.3389/fimmu.2023.1135086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Tumor immunity is a growing field of research that involves immune cells within the tumor microenvironment. Neutrophil extracellular traps (NETs) are neutrophil-derived extracellular web-like chromatin structures that are composed of histones and granule proteins. Initially discovered as the predominant host defense against pathogens, NETs have attracted increasing attention due to they have also been tightly associated with tumor. Excessive NET formation has been linked to increased tumor growth, metastasis, and drug resistance. Moreover, through direct and/or indirect effects on immune cells, an abnormal increase in NETs benefits immune exclusion and inhibits T-cell mediated antitumor immune responses. In this review, we summarize the recent but rapid progress in understanding the pivotal roles of NETs in tumor and anti-tumor immunity, highlighting the most relevant challenges in the field. We believe that NETs may be a promising therapeutic target for tumor immunotherapy.
Collapse
Affiliation(s)
- Meina Yan
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- *Correspondence: Meina Yan, ;
| | - Yifeng Gu
- Department of Laboratory Medicine, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, China
| | - Hongxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Qinghong Ge
- Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
36
|
Neutrophil extracellular traps as a unique target in the treatment of chemotherapy-induced peripheral neuropathy. EBioMedicine 2023; 90:104499. [PMID: 36870200 PMCID: PMC10009451 DOI: 10.1016/j.ebiom.2023.104499] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) is a severe dose-limiting side effect of chemotherapy and remains a huge clinical challenge. Here, we explore the role of microcirculation hypoxia induced by neutrophil extracellular traps (NETs) in the development of CIPN and look for potential treatment. METHODS The expression of NETs in plasma and dorsal root ganglion (DRG) are examined by ELISA, IHC, IF and Western blotting. IVIS Spectrum imaging and Laser Doppler Flow Metry are applied to explore the microcirculation hypoxia induced by NETs in the development of CIPN. Stroke Homing peptide (SHp)-guided deoxyribonuclease 1 (DNase1) is used to degrade NETs. FINDINGS The level of NETs in patients received chemotherapy increases significantly. And NETs accumulate in the DRG and limbs in CIPN mice. It leads to disturbed microcirculation and ischemic status in limbs and sciatic nerves treated with oxaliplatin (L-OHP). Furthermore, targeting NETs with DNase1 significantly reduces the chemotherapy-induced mechanical hyperalgesia. The pharmacological or genetic inhibition on myeloperoxidase (MPO) or peptidyl arginine deiminase-4 (PAD4) dramatically improves microcirculation disturbance caused by L-OHP and prevents the development of CIPN in mice. INTERPRETATION In addition to uncovering the role of NETs as a key element in the development of CIPN, our finding provides a potential therapeutic strategy that targeted degradation of NETs by SHp-guided DNase1 could be an effective treatment for CIPN. FUNDING This study was funded by the National Natural Science Foundation of China81870870, 81971047, 81773798, 82271252; Natural Science Foundation of Jiangsu ProvinceBK20191253; Major Project of "Science and Technology Innovation Fund" of Nanjing Medical University2017NJMUCX004; Key R&D Program (Social Development) Project of Jiangsu ProvinceBE2019732; Nanjing Special Fund for Health Science and Technology DevelopmentYKK19170.
Collapse
|
37
|
Putative Role of Neutrophil Extracellular Trap Formation in Chronic Myeloproliferative Neoplasms. Int J Mol Sci 2023; 24:ijms24054497. [PMID: 36901933 PMCID: PMC10003516 DOI: 10.3390/ijms24054497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematologic malignancies characterized by gene mutations that promote myeloproliferation and resistance to apoptosis via constitutively active signaling pathways, with Janus kinase 2-signal transducers and the activators of transcription (JAK-STAT) axis as a core part. Chronic inflammation has been described as a pivot for the development and advancement of MPNs from early stage cancer to pronounced bone marrow fibrosis, but there are still unresolved questions regarding this issue. The MPN neutrophils are characterized by upregulation of JAK target genes, they are in a state of activation and with deregulated apoptotic machinery. Deregulated neutrophil apoptotic cell death supports inflammation and steers them towards secondary necrosis or neutrophil extracellular trap (NET) formation, a trigger of inflammation both ways. NETs in proinflammatory bone marrow microenvironment induce hematopoietic precursor proliferation, which has an impact on hematopoietic disorders. In MPNs, neutrophils are primed for NET formation, and even though it seems obvious for NETs to intervene in the disease progression by supporting inflammation, no reliable data are available. We discuss in this review the potential pathophysiological relevance of NET formation in MPNs, with the intention of contributing to a better understanding of how neutrophils and neutrophil clonality can orchestrate the evolution of a pathological microenvironment in MPNs.
Collapse
|
38
|
Mahish C, De S, Chatterjee S, Ghosh S, Keshry SS, Mukherjee T, Khamaru S, Tung KS, Subudhi BB, Chattopadhyay S, Chattopadhyay S. TLR4 is one of the receptors for Chikungunya virus envelope protein E2 and regulates virus induced pro-inflammatory responses in host macrophages. Front Immunol 2023; 14:1139808. [PMID: 37153546 PMCID: PMC10157217 DOI: 10.3389/fimmu.2023.1139808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Toll like receptor 4 (TLR4), a pathogen-associated molecular pattern (PAMP) receptor, is known to exert inflammation in various cases of microbial infection, cancer and autoimmune disorders. However, any such involvement of TLR4 in Chikungunya virus (CHIKV) infection is yet to be explored. Accordingly, the role of TLR4 was investigated towards CHIKV infection and modulation of host immune responses in the current study using mice macrophage cell line RAW264.7, primary macrophage cells of different origins and in vivo mice model. The findings suggest that TLR4 inhibition using TAK-242 (a specific pharmacological inhibitor) reduces viral copy number as well as reduces the CHIKV-E2 protein level significantly using p38 and JNK-MAPK pathways. Moreover, this led to reduced expression of macrophage activation markers like CD14, CD86, MHC-II and pro-inflammatory cytokines (TNF, IL-6, MCP-1) significantly in both the mouse primary macrophages and RAW264.7 cell line, in vitro. Additionally, TAK-242-directed TLR4 inhibition demonstrated a significant reduction of percent E2-positive cells, viral titre and TNF expression in hPBMC-derived macrophages, in vitro. These observations were further validated in TLR4-knockout (KO) RAW cells. Furthermore, the interaction between CHIKV-E2 and TLR4 was demonstrated by immuno-precipitation studies, in vitro and supported by molecular docking analysis, in silico. TLR4-dependent viral entry was further validated by an anti-TLR4 antibody-mediated blocking experiment. It was noticed that TLR4 is necessary for the early events of viral infection, especially during the attachment and entry stages. Interestingly, it was also observed that TLR4 is not involved in the post-entry stages of CHIKV infection in host macrophages. The administration of TAK-242 decreased CHIKV infection significantly by reducing disease manifestations, improving survivability (around 75%) and reducing inflammation in mice model. Collectively, for the first time, this study reports TLR4 as one of the novel receptors to facilitate the attachment and entry of CHIKV in host macrophages, the TLR4-CHIKV-E2 interactions are essential for efficient viral entry and modulation of infection-induced pro-inflammatory responses in host macrophages, which might have translational implication for designing future therapeutics to regulate the CHIKV infection.
Collapse
Affiliation(s)
- Chandan Mahish
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Saikat De
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Sanchari Chatterjee
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Soumyajit Ghosh
- Institute of Life Sciences, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Supriya Suman Keshry
- Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, India
| | - Tathagata Mukherjee
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Somlata Khamaru
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Kshyama Subhadarsini Tung
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
| | - Bharat Bhusan Subudhi
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Soma Chattopadhyay
- Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Subhasis Chattopadhyay, ; Soma Chattopadhyay,
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, Jatni, Odisha, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, Maharashtra, India
- *Correspondence: Subhasis Chattopadhyay, ; Soma Chattopadhyay,
| |
Collapse
|
39
|
Pan W, Xin Q, Xu J, He J, Chen Z, Hu X, Li T, Zhu Y, Wei W, Wu Y. IgD enhances the release of neutrophil extracellular traps (NETs) via FcδR in rheumatoid arthritis patients. Int Immunopharmacol 2023; 114:109484. [PMID: 36450207 DOI: 10.1016/j.intimp.2022.109484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune inflammatory disorder affecting primarily the joints. Neutrophils and the release of neutrophil extracellular traps (NETs) contribute to the pathogenesis of RA. However, IgD, which was abnormally higher in RA, has not been studied for its pathological role in neutrophil activation and NETs formation. To investigate the effects of IgD on neutrophil activation and NETs formation via IgD receptor (FcδR), we collect peripheral blood of RA patients and established adjuvant-induced arthritis (AA) rat model. We found that the expression of FcδR on neutrophils was significantly higher in RA patients compared with healthy controls. As a specific marker of NETs, the level of citrullinated histone H3 was positively correlated with sIgD and FcδR in RA patients. IgD enhances the release of NETs and promotes the proliferation of fibroblast-like synoviocytes (FLS) from RA patients by activating neutrophils. As a competitive FcδR blocker, IgD-Fc-Ig fusion protein could significantly reduce NETs formation and FcδR expression on neutrophils in vitro. In vivo, IgD-Fc-Ig could restrain IgD-induced neutrophil activation and NETs formation, thus inhibited FLS proliferation in AA rats. Data presented here demonstrate that neutrophils could be triggered by IgD to release NETs and take part in FLS proliferation in RA patients with excessive IgD. Blocking IgD-FcδR could inhibit neutrophil activation and NETs formation, and represent an additional attractive novel therapeutic strategy for the treatment of RA.
Collapse
Affiliation(s)
- Wenwen Pan
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Qianling Xin
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jing Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jingjing He
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaoxi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Tao Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanqing Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Anhui Provincial Institute of Translational Medicine, Hefei, China.
| |
Collapse
|
40
|
Violi F, Pignatelli P, Castellani V, Carnevale R, Cammisotto V. Gut dysbiosis, endotoxemia and clotting activation: A dangerous trio for portal vein thrombosis in cirrhosis. Blood Rev 2023; 57:100998. [PMID: 35985881 DOI: 10.1016/j.blre.2022.100998] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 01/28/2023]
Abstract
Liver cirrhosis (LC) is associated with portal venous thrombosis (PVT) in roughly 20% of cirrhotic patients but the underlying mechanism is still unclear. Low-grade endotoxemia by lipopolysaccharides (LPS), a component of outer gut microbiota membrane, is detectable in the portal circulation of LC and could predispose to PVT. LPS may translocate into systemic circulation upon microbiota dysbiosis-induced gut barrier dysfunction, that is a prerequisite for enhanced gut permeability and ensuing endotoxemia. Experimental and clinical studies provided evidence that LPS behaves a pro-thrombotic molecule so promoting clotting and platelet activation. Experiments conducted in the portal circulation of cirrhotic patients showed the existence of LPS-related enhanced thrombin generation as well as endothelial dysfunction, venous stasis, and platelet activation. The review will analyze 1) the pro-thrombotic role of endotoxemia in the context of LC 2) the biological plausibility linking endotoxemia with PVT and 3) the potentially interventional tools to lower endotoxemia and eventually hypercoagulation.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy; Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122, Naples, Italy.
| | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy; Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122, Naples, Italy
| | - Valentina Castellani
- Department of General and Specialized Surgery "Paride Stefanini", Sapienza University of Rome, Italy
| | - Roberto Carnevale
- Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122, Naples, Italy; Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 40100, Latina, Italy
| | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico, 155, Rome 00161, Italy
| |
Collapse
|
41
|
Abstract
Systemic inflammation has been suggested to have a pivotal role in atherothrombosis, but the factors that trigger systemic inflammation have not been fully elucidated. Lipopolysaccharide (LPS) is a component of the membrane of Gram-negative bacteria present in the gut that can translocate into the systemic circulation, causing non-septic, low-grade endotoxaemia. Gut dysbiosis is a major determinant of low-grade endotoxaemia via dysfunction of the intestinal barrier scaffold, which is a prerequisite for LPS translocation into the systemic circulation. Experimental studies have demonstrated that LPS is present in atherosclerotic arteries but not in normal arteries. In atherosclerotic plaques, LPS promotes a pro-inflammatory status that can lead to plaque instability and thrombus formation. Low-grade endotoxaemia affects several cell types, including leukocytes, platelets and endothelial cells, leading to inflammation and clot formation. Low-grade endotoxaemia has been described in patients at risk of or with overt cardiovascular disease, in whom low-grade endotoxaemia was associated with atherosclerotic burden and its clinical sequelae. In this Review, we describe the mechanisms favouring the development of low-grade endotoxaemia, focusing on gut dysbiosis and changes in gut permeability; the plausible biological mechanisms linking low-grade endotoxaemia and atherothrombosis; the clinical studies suggesting that low-grade endotoxaemia is a risk factor for cardiovascular events; and the potential therapeutic tools to improve gut permeability and eventually eliminate low-grade endotoxaemia.
Collapse
|
42
|
Lin T, Hu L, Hu F, Li K, Wang CY, Zong LJ, Zhao YQ, Zhang X, Li Y, Yang Y, Wang Y, Jiang CY, Wu X, Liu WT. NET-Triggered NLRP3 Activation and IL18 Release Drive Oxaliplatin-Induced Peripheral Neuropathy. Cancer Immunol Res 2022; 10:1542-1558. [PMID: 36255412 PMCID: PMC9716254 DOI: 10.1158/2326-6066.cir-22-0197] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/22/2022] [Accepted: 10/12/2022] [Indexed: 01/10/2023]
Abstract
Oxaliplatin is an antineoplastic agent frequently used in the treatment of gastrointestinal tumors. However, it causes dose-limiting sensorimotor neuropathy, referred to as oxaliplatin-induced peripheral neuropathy (OIPN), for which there is no effective treatment. Here, we report that the elevation of neutrophil extracellular traps (NET) is a pathologic change common to both cancer patients treated with oxaliplatin and a murine model of OIPN. Mechanistically, we found that NETs trigger NLR family pyrin domain containing 3 (NLRP3) inflammasome activation and the subsequent release of IL18 by macrophages, resulting in mechanical hyperalgesia. In NLRP3-deficient mice, the mechanical hyperalgesia characteristic of OIPN in our model was reduced. In addition, in the murine model, treatment with the IL18 decoy receptor IL18BP prevented the development of OIPN. We further showed that eicosapentaenoic acid (EPA) reduced NET formation by suppressing the LPS-TLR4-JNK pathway and thereby abolished NLRP3 inflammasome activation and the subsequent secretion of IL18, which markedly prevented oxaliplatin-induced mechanical hyperalgesia in mice. These results identify a role for NET-triggered NLRP3 activation and IL18 release in the development of OIPN and suggest that utilizing IL18BP and EPA could be effective treatments for OIPN.
Collapse
Affiliation(s)
- Tongtong Lin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Li
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao-Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Li-Juan Zong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Qian Zhao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaotao Zhang
- Department of Radiation Oncology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Yang Yang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun-Yi Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Corresponding Authors: Chun-Yi Jiang, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail: ; Xuefeng Wu, 22 Hankou Road, Gulou District, Nanjing, 210093, Jiangsu Province, China. Phone: 025-8968-1312; E-mail: ; and Wen-Tao Liu, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail:
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.,Corresponding Authors: Chun-Yi Jiang, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail: ; Xuefeng Wu, 22 Hankou Road, Gulou District, Nanjing, 210093, Jiangsu Province, China. Phone: 025-8968-1312; E-mail: ; and Wen-Tao Liu, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail:
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China.,Corresponding Authors: Chun-Yi Jiang, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail: ; Xuefeng Wu, 22 Hankou Road, Gulou District, Nanjing, 210093, Jiangsu Province, China. Phone: 025-8968-1312; E-mail: ; and Wen-Tao Liu, 101 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China. Phone: 025-8686-9338; E-mail:
| |
Collapse
|
43
|
Chen Y, Hu H, Tan S, Dong Q, Fan X, Wang Y, Zhang H, He J. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol 2022; 11:99. [PMCID: PMC9667637 DOI: 10.1186/s40164-022-00345-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
AbstractNeutrophil extracellular traps (NETs) released by activated neutrophils typically consist of DNA-histone complexes and granule proteins. NETs were originally identified as a host defense system against foreign pathogens and are strongly associated with autoimmune diseases. However, a novel and predominant role of NETs in cancer is emerging. Increasing evidence has confirmed that many stimuli can facilitate NET formation in an NADPH oxidase (NOX)-dependent/NOX-independent manner. In cancer, NETs have been linked to cancer progression, metastasis, and cancer-associated thrombosis. In this review, we aimed to summarize the current available knowledge regarding NET formation and focused on the role of NETs in cancer biological behaviors. The potential target for cancer therapy will be further discussed.
Collapse
|
44
|
Azzouz D, Palaniyar N. ROS and DNA repair in spontaneous versus agonist-induced NETosis: Context matters. Front Immunol 2022; 13:1033815. [PMID: 36426351 PMCID: PMC9679651 DOI: 10.3389/fimmu.2022.1033815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 04/14/2024] Open
Abstract
Reactive oxygen species (ROS) is essential for neutrophil extracellular trap formation (NETosis). Nevertheless, how ROS induces NETosis at baseline and during neutrophil activation is unknown. Although neutrophils carry DNA transcription, replication and repair machineries, their relevance in the short-lived mature neutrophils that carry pre-synthesized proteins has remained a mystery for decades. Our recent studies show that (i) NETosis-inducing agonists promote NETosis-specific kinase activation, genome-wide transcription that helps to decondense chromatin, and (ii) excess ROS produced by NADPH oxidase activating agonists generate genome-wide 8-oxy-guanine (8-OG), and the initial steps of DNA repair are needed to decondense chromatin in these cells. These steps require DNA repair proteins necessary for the assembly and nicking at the damaged DNA sites (poly ADP ribose polymerase PARP, apurinic endonuclease APE1 and DNA ligase), but not the enzymes that mediate the repair DNA synthesis (Proliferating cell nuclear antigen (PCNA) and DNA Polymerases). In this study, we show that (i) similar to agonist-induced NETosis, inhibition of early steps of oxidative DNA damage repair proteins suppresses spontaneous NETosis, but (ii) the inhibition of late stage repair proteins DNA polymerases and PCNA drastically promotes baseline NETosis. Hence, in the absence of excessive ROS generation and neutrophil activation, DNA repair mediated by PCNA and DNA polymerases is essential to prevent chromatin decondensation and spontaneous NETosis. These findings indicate that ROS, oxidative DNA damage, transcription and DNA repair differentially regulate spontaneous and agonist-induced NETosis. Therefore, context matters.
Collapse
Affiliation(s)
- Dhia Azzouz
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nades Palaniyar
- Program in Translational Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
45
|
Chen H, Xu X, Tang Q, Ni L, Cao S, Hao Y, Wang L, Hu X. (+)-Borneol inhibits the generation of reactive oxygen species and neutrophil extracellular traps induced by phorbol-12-myristate-13-acetate. Front Pharmacol 2022; 13:1023450. [PMID: 36419617 PMCID: PMC9676272 DOI: 10.3389/fphar.2022.1023450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background and purpose: Neutrophil extracellular traps (NETs) are special web-like structures that can be generated in both infectious and noninfectious diseases. Previous studies showed that reactive oxygen species (ROS) were crucial in the formation of NETs (NETosis). The purpose of this study is to evaluate the effect of (+)-borneol, an antioxidant, on NETosis. Methods: Human neutrophils were stimulated with phorbol-12-myristate-13-acetate (PMA) to induce NETosis in vitro. Neutrophils treated with (+)-borneol at three different time points (−30 min, 0, and 30 min) associated with PMA stimulation were used to examine the effect of (+)-borneol on the formation of NETs. The ROS generation of neutrophils was also measured to explore the potential mechanism of the inhibitory effect of (+)-borneol on NETosis. Results: (+)-Borneol pretreatment inhibited NETosis induced by PMA. Immunofluorescence staining visualized and confirmed the inhibitory effect. (+)-Borneol inhibited the burst of ROS in neutrophils caused by PMA. Suppressing NADPH oxidase or protein kinase C (PKC) eliminated the effect of (+)-borneol on NETosis. Moreover, inhibiting Toll-like receptor 2 (TLR2) led to increased NETosis which can be inhibited by (+)-borneol. Conclusion: (+)-Borneol decreases the ROS level in activated neutrophils and inhibits NETosis triggered by PMA stimulation in vitro. (+)-Borneol therapy may be effective in some NET-dependent conditions.
Collapse
Affiliation(s)
- Hanze Chen
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinxin Xu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiwen Tang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linhui Ni
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonggang Hao
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Wang
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Li Wang, ; Xingyue Hu,
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Li Wang, ; Xingyue Hu,
| |
Collapse
|
46
|
Schoen J, Euler M, Schauer C, Schett G, Herrmann M, Knopf J, Yaykasli KO. Neutrophils' Extracellular Trap Mechanisms: From Physiology to Pathology. Int J Mol Sci 2022; 23:12855. [PMID: 36361646 PMCID: PMC9653572 DOI: 10.3390/ijms232112855] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Neutrophils are an essential part of the innate immune system and the first line of defense against invading pathogens. They phagocytose, release granular contents, produce reactive oxygen species, and form neutrophil extracellular traps (NETs) to fight pathogens. With the characterization of NETs and their components, neutrophils were identified as players of the innate adaptive crosstalk. This has placed NETs at the center not only of physiological but also pathological processes. Aside from their role in pathogen uptake and clearance, NETs have been demonstrated to contribute to the resolution of inflammation by forming aggregated NETs able to degrade inflammatory mediators. On the other hand, NETs have the potential to foster severe pathological conditions. When homeostasis is disrupted, they occlude vessels and ducts, serve as sources of autoantigens and danger or damage associated molecular patterns, directly damage tissues, and exaggerate complement activity and inflammation. This review focusses on the understanding of NETs from their formation to their functions in both physiological and pathological processes.
Collapse
Affiliation(s)
- Janina Schoen
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Maximilien Euler
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Christine Schauer
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Kursat Oguz Yaykasli
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| |
Collapse
|
47
|
Low NETosis Induced in Anaplasma phagocytophilum-Infected Cells. Vaccines (Basel) 2022; 10:vaccines10101756. [PMID: 36298621 PMCID: PMC9610684 DOI: 10.3390/vaccines10101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022] Open
Abstract
Anaplasma phagocytophilum are obligatory intracellular bacteria that preferentially replicate inside leukocytes by utilizing biological compounds and processes of these primary host defensive cells. In this study, bioinformatics analysis was conducted to further characterize A. phagocytophilum–host interactions using the neutrophil-like model of human Caucasian promyelocytic leukemia HL60 cells. We detected a hierarchy of molecules involved in A. phagocytophilum-HL60 interactions with overrepresentation in infected human cells of proteins involved in the reactive oxygen species (ROS) pathway and cell surface monocyte markers. As A. phagocytophilum phagocytosis by neutrophils is inhibited, the results suggested a possible explanation for our bioinformatics data: radical oxygen compounds could induce the killing of bacteria activating NETosis, a unique form of defense mechanism resulting in cell death that is characterized by the release of decondensed chromatin and granular contents to the extracellular space, forming neutrophil extracellular traps (NETs) to eliminate invading microorganisms. Thus, we confirmed the existence of a low NETosis induced in A. phagocytophilum-infected cells by immunofluorescence (IF) experiments. These results provide new insights into the complex mechanisms that govern immune response during A. phagocytophilum host interactions.
Collapse
|
48
|
Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 2022; 13:927215. [PMID: 36148229 PMCID: PMC9488113 DOI: 10.3389/fimmu.2022.927215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced by neutrophil activation and usually have both anti-infective and pro-damage effects. Streptococcus uberis (S. uberis), one of the common causative organisms of mastitis, can lead to the production of NETs. Taurine, a free amino acid abundant in the organism, has been shown to have immunomodulatory effects. In this study, we investigated the molecular mechanisms of S. uberis-induced NETs formation and the regulatory role of taurine. The results showed that NETs had a disruptive effect on mammary epithelial cells and barriers, but do not significantly inhibit the proliferation of S. uberis. S. uberis induced NADPH oxidase-dependent NETs. TLR2-mediated activation of the MAPK signaling pathway was involved in this process. Taurine could inhibit the activation of MAPK signaling pathway and NADPH oxidase by modulating the activity of TAK1, thereby inhibiting the production of ROS and NETs. The effects of taurine on NADPH oxidase and NETs in S. uberis infection were also demonstrated in vivo. These results suggest that taurine can protect mammary epithelial cells and barriers from damage by reducing S. uberis-induced NETs. These data provide new insights and strategies for the prevention and control of mastitis.
Collapse
Affiliation(s)
- Ming Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yabing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Binfeng Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jinfeng Miao,
| |
Collapse
|
49
|
Aging hampers neutrophil extracellular traps (NETs) efficacy. Aging Clin Exp Res 2022; 34:2345-2353. [PMID: 35920993 PMCID: PMC9637667 DOI: 10.1007/s40520-022-02201-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 07/17/2022] [Indexed: 11/16/2022]
Abstract
Background NETosis is a neutrophil-mediated defense mechanism during which DNA and enzymes are extruded forming a network (NETs) trapping and killing different pathogens. NETosis is reduced in both mice and humans during aging. Aims We explored the difference in the efficacy of NETs released in elderly (> 65 years) versus adults (20–50 years) subjects in inhibiting Staphylococcus aureus growth and activating the growth of keratinocytes. Methods Neutrophil granulocytes, obtained from venous blood both in healthy elderly and adult subjects, were stimulated by LPS (0–250 µg/ml) to induce the formation of NET. NETs were quantified by SYBR Green staining and growth inhibition of S. aureus was evaluated by disk diffusion test. Furthermore, NETs (0–500 ng/ml) were added to immortalized human keratinocytes (HaCaT cells), and their proliferation was evaluated by MTT assay after 24 h. Finally, the DNA size of NETs was evaluated by flow cytometry after SYBR Green staining. Results Greater production of NETs was observed in elderly subjects than in adults, but these NETs showed reduced bactericidal capacity and HaCaT cells’ proliferation stimulation. The activities of the NETs are related to the size of the extruded DNA threads, and when NETs size was analyzed, DNA from elderly showed a higher size compared to that obtained by adults. Discussion Unexpected results showed aging-related NETs structural modification resulting in both a lower antimicrobial activity and keratinocyte proliferation stimulation compared to NETs obtained from adults. Conclusions The NETs DNA size observed in elderly subjects has not been previously reported and could be part of other pathogenic mechanisms observed in aging.
Collapse
|
50
|
Sharma A, Chauhan A, Chauhan P, Evans DL, Szlabick RE, Aaland MO, Mishra BB, Sharma J. Glycolipid Metabolite β-Glucosylceramide Is a Neutrophil Extracellular Trap-Inducing Ligand of Mincle Released during Bacterial Infection and Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:391-400. [PMID: 35768151 PMCID: PMC9347214 DOI: 10.4049/jimmunol.2100855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Neutrophil extracellular traps (NETs) are implicated in host defense and inflammatory pathologies alike. A wide range of pathogen- and host-derived factors are known to induce NETs, yet the knowledge about specific receptor-ligand interactions in this response is limited. We previously reported that macrophage-inducible C-type lectin (Mincle) regulates NET formation. In this article, we identify glycosphingolipid β-glucosylceramide (β-GlcCer) as a specific NET-inducing ligand of Mincle. We found that purified β-GlcCer induced NETs in mouse primary neutrophils in vitro and in vivo, and this effect was abrogated in Mincle deficiency. Cell-free β-GlcCer accumulated in the lungs of pneumonic mice, which correlated with pulmonary NET formation in wild-type, but not in Mincle-/-, mice infected intranasally with Klebsiella pneumoniae Although leukocyte infiltration by β-GlcCer administration in vivo did not require Mincle, NETs induced by this sphingolipid were important for bacterial clearance during Klebsiella infection. Mechanistically, β-GlcCer did not activate reactive oxygen species formation in neutrophils but required autophagy and glycolysis for NET formation, because ATG4 inhibitor NSC185058, as well as glycolysis inhibitor 2-deoxy-d-glucose, abrogated β-GlcCer-induced NETs. Forced autophagy activation by tamoxifen could overcome the inhibitory effect of glycolysis blockage on β-GlcCer-mediated NET formation, suggesting that autophagy activation is sufficient to induce NETs in response to this metabolite in the absence of glycolysis. Finally, β-GlcCer accumulated in the plasma of patients with systemic inflammatory response syndrome, and its levels correlated with the extent of systemic NET formation in these patients. Overall, our results posit β-GlcCer as a potent NET-inducing ligand of Mincle with diagnostic and therapeutic potential in inflammatory disease settings.
Collapse
Affiliation(s)
- Atul Sharma
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Arun Chauhan
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Pooja Chauhan
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Dustin L Evans
- Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND
| | - Randolph E Szlabick
- Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND
| | - Mary O Aaland
- Department of Surgery, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND
| | - Bibhuti B Mishra
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| | - Jyotika Sharma
- Department of Biomedical Sciences, School of Medicine & Health Sciences, The University of North Dakota, Grand Forks, ND; and
| |
Collapse
|