1
|
Bougea A, Colosimo C, Falup-Pecurariu C, Palermo G, Degirmenci Y. Fluid biomarkers in atypical Parkinsonism: current state and future perspectives. J Neural Transm (Vienna) 2025:10.1007/s00702-025-02930-2. [PMID: 40392273 DOI: 10.1007/s00702-025-02930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Diagnosing Atypical Parkinsonian Syndromes (APS) may be challenging due to overlapping clinical features of Parkinson's disease (PD), and the lack of pathognomonic diagnostic tests. Fluid biomarkers can be useful tools that make it easier to identify and track different APS. Objectives: this narrative review aim to update the current state of fluid biomarker research in APS and their potential implications in clinical practice. A comprehensive literature search was conducted in PubMed and Scopus using the following terms: "Aβ42 amyloid beta with 42 amino acids'', " alpha-synuclein'', "Atypical Parkinsonian Syndromes'', "corticobasaldegeneration'', "C reactive protein'', "cerebrospinal fluid'', "dementia with Lewy bodies'', "multiple system atrophy'', "neurofilament light, oligomericαsyn, phosphorylated α -syn'', "tau phosphorylated at threonine 181'', "progressive supranuclear palsy'', "Seeding Amplification Assay'', "t-tau; total tau". The lack of high-affinity α-syn antibodies and ligands may contribute to α-syn's low efficacy as a diagnostic biomarker of APS. Cerebrospinal fluid (CSF) biomarkers reflecting Alzheimer pathology, axonal damage (neurofilament light chain) add valuable diagnostic and prognostic information in the neurochemical characterization of APS. Inflammatoryand microRNAs markers need to be further validated before their clinical use. Seeding Amplification Assays (SAA), despite their high sensitivity and specificity, are at this point used only as a research tool, and they are not quantitative or reflective of disease severity. Biomarker research for early identification and prognosis of APS patients requires multicenter collaboration, validation, and AI-based diagnostics, despite immature biological classification systems.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, 11528, Athens, Greece.
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - Cristian Falup-Pecurariu
- Department of Neurology, County Clinic Hospital, Transilvania University Brasov, Brasov, Romania
- Center for Neurodegenerative Diseases, Parkinson's Disease and Movement Disorders Unit of Neurology, Department of Neuroscience, University of Pisa, Santa Chiara Hospital, Pisa, Italy
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Parkinson's Disease and Movement Disorders Unit of Neurology, Department of Neuroscience, University of Pisa, Santa Chiara Hospital, Pisa, Italy
| | - Yildiz Degirmenci
- Head of Neurology Department, ISTUN) ZincirlikuyuMedicana Hospital Neurology ClinicParkinson's Disease and Movement Disorders Unit, Istanbul Health and Technology University, Istanbul, Turkey
| |
Collapse
|
2
|
Panghalia A, Singh V. Machine learning approaches for predicting the small molecule-miRNA associations: a comprehensive review. Mol Divers 2025:10.1007/s11030-025-11211-9. [PMID: 40392452 DOI: 10.1007/s11030-025-11211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/25/2025] [Indexed: 05/22/2025]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved small regulatory elements that are ubiquitous in cells and are found to be abnormally expressed during the onset and progression of several human diseases. miRNAs are increasingly recognized as potential diagnostic and therapeutic targets that could be inhibited by small molecules (SMs). The knowledge of SM-miRNA associations (SMAs) is sparse, mainly because of the dynamic and less predictable 3D structures of miRNAs that restrict the high-throughput screening of SMs. Toward augmenting the costly and laborious experiments determining the SM-miRNA interactions, machine learning (ML) has emerged as a cost-effective and efficient platform. In this article, various aspects associated with the ML-guided predictions of SMAs are thoroughly reviewed. Firstly, a detailed account of the SMA data resources useful for algorithms training is provided, followed by an elaboration of various feature extraction methods and similarity measures utilized on SMs and miRNAs. Subsequent to a summary of the ML algorithms basics and a brief description of the performance measures, an exhaustive census of all the 32 ML-based SMA prediction methods developed so far is outlined. Distinctive features of these methods have been described by classifying them into six broad categories, namely, classical ML, deep learning, matrix factorization, network propagation, graph learning, and ensemble learning methods. Trend analyses are performed to investigate the patterns in ML algorithms usage and performance achievement in SMA prediction. Outlining key principles behind the up-to-date methodologies and comparing their accomplishments, this review offers valuable insights into critical areas for future research in ML-based SMA prediction.
Collapse
Affiliation(s)
- Ashish Panghalia
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176215, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, 176215, India.
| |
Collapse
|
3
|
Serrano GE, Aslam S, Walker JE, Piras IS, Huentelman MJ, Arce RA, Glass MJ, Intorcia AJ, Suszczewicz KE, Borja CI, Cline MP, Qiji SH, Lorenzini I, Beh ST, Mariner M, Krupp A, McHattie R, Shull A, Wermager ZR, Beach TG. Characterization of Isolated Human Astrocytes from Aging Brain. Int J Mol Sci 2025; 26:3416. [PMID: 40244314 PMCID: PMC11990013 DOI: 10.3390/ijms26073416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Astrocytes have multiple crucial roles, including maintaining brain homeostasis and synaptic function, performing phagocytic clearance, and responding to injury and repair. It has been suggested that astrocyte performance is progressively impaired with aging, leading to imbalances in the brain's internal milieu that eventually impact neuronal function and lead to neurodegeneration. Until now, most evidence of astrocytic dysfunction in aging has come from experiments done with whole tissue homogenates, astrocytes collected by laser capture, or cell cultures derived from animal models or cell lines. In this study, we used postmortem-derived whole cells sorted with anti-GFAP antibodies to compare the unbiased, whole-transcriptomes of human astrocytes from control, older non-impaired individuals and subjects with different neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (ADD), and progressive supranuclear palsy (PSP). We found hundreds of dysregulated genes between disease and control astrocytes. In addition, we identified numerous genes shared between these common neurodegenerative disorders that are similarly dysregulated; in particular, UBC a gene for ubiquitin, which is a protein integral to cellular homeostasis and critically important in regulating function and outcomes of proteins under cellular stress, was upregulated in PSP, PD, and ADD when compared to control.
Collapse
Affiliation(s)
- Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Sidra Aslam
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Jessica E. Walker
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Ignazio S. Piras
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (I.S.P.); (M.J.H.)
| | - Matthew J. Huentelman
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA; (I.S.P.); (M.J.H.)
| | - Richard A. Arce
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Michael J. Glass
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Anthony J. Intorcia
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | | | - Claryssa I. Borja
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Madison P. Cline
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Sanaria H. Qiji
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Ileana Lorenzini
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Suet Theng Beh
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Monica Mariner
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Addison Krupp
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Rylee McHattie
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Anissa Shull
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Zekiel R. Wermager
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, AZ 85351, USA; (S.A.); (Z.R.W.)
| |
Collapse
|
4
|
Feng G, Lan X, Qin S, Shi Y, Zhao Q, Li Q, Zhong L. Advances in Research on Exosomal miRNAs in Central Nervous System Diseases. ASN Neuro 2025; 17:2465546. [PMID: 40165664 DOI: 10.1080/17590914.2025.2465546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/03/2025] [Accepted: 02/03/2025] [Indexed: 04/02/2025] Open
Abstract
Neurological diseases present a wide range of conditions, intricate diagnosis and treatment processes, and complex prognostic considerations. Therefore, research focusing on the diagnosis and treatment of these diseases is crucial. Exosomal miRNAs are small RNA molecules enclosed in membrane vesicles, released by cells and known to play roles in the development of various neurological disorders. They also serve as specific biomarkers for these conditions. Drawing on extensive research on exosomal miRNAs in diseases like stroke, Alzheimer's, epilepsy, Parkinson's, and neuroregeneration, this paper provides a comprehensive review of the relationship between exosomal miRNAs and neurological diseases. We strive to offer current and detailed theoretical understandings to help with the diagnosis and treatment of these disorders.
Collapse
Affiliation(s)
- Guangli Feng
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoqian Lan
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shiyi Qin
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuting Shi
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qinxi Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qing Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Lianmei Zhong
- Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Stoccoro A. Epigenetic Mechanisms Underlying Sex Differences in Neurodegenerative Diseases. BIOLOGY 2025; 14:98. [PMID: 39857328 PMCID: PMC11761232 DOI: 10.3390/biology14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Neurodegenerative diseases are characterized by profound differences between females and males in terms of incidence, clinical presentation, and disease progression. Furthermore, there is evidence suggesting that differences in sensitivity to medical treatments may exist between the two sexes. Although the role of sex hormones and sex chromosomes in driving differential susceptibility to these diseases is well-established, the molecular alterations underlying these differences remain poorly understood. Epigenetic mechanisms, including DNA methylation, histone tail modifications, and the activity of non-coding RNAs, are strongly implicated in the pathogenesis of neurodegenerative diseases. While it is known that epigenetic mechanisms play a crucial role in sexual differentiation and that distinct epigenetic patterns characterize females and males, sex-specific epigenetic patterns have been largely overlooked in studies aiming to identify epigenetic alterations associated with neurodegenerative diseases. This review aims to provide an overview of sex differences in epigenetic mechanisms, the role of sex-specific epigenetic processes in the central nervous system, and the main evidence of sex-specific epigenetic alterations in three neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Understanding the sex-related differences of these diseases is essential for developing personalized treatments and interventions that account for the unique epigenetic landscapes of each sex.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| |
Collapse
|
6
|
Sarkar S, Pandey A, Kumar Yadav S, Haris Siddiqui M, Pant AB, Yadav S. Differentiated and mature neurons are more responsive to neurotoxicant exposure at both transcriptional and translational levels. Neuroscience 2025; 564:110-125. [PMID: 39571964 DOI: 10.1016/j.neuroscience.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/13/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024]
Abstract
SH-SY5Y human neuroblastoma cells have been extensively used as an in vitro model system in a diverse range of studies involving neurodevelopment, neurotoxicity, neurodegeneration, and neuronal ageing. Both naïve and differentiated phenotypes of SH-SY5Y cells are utilized to model human neurons under in vitro conditions. The process of differentiation causes extensive remodeling of neuronal cells at multiple omic levels, including the epigenome and proteome. In the present investigation, the miRNAome and proteome profiles of arsenic-treated naïve and differentiated SH-SY5Y cells were generated using the miRNA OpenArray technology and high-resolution mass spectrometry. Our findings demonstrated that differentiation dramatically affected the response of SH-SY5Y cells to toxicant exposure, as indicated by increased tolerance of differentiated cells against arsenic exposure compared to naïve cells in cell viability assay. Arsenic-exposed naïve and differentiated SH-SY5Y cells possess distinct miRNA and protein profiles with few similarities. Compared to naïve cells, differentiated cells have undergone higher deregulation in the expression of brain-enriched miRNAs and proteins and have shown a more drastic decrease in oxygen consumption rate, which is a measure of mitochondrial respiration after exposure to arsenic. Proteins identified in arsenic-treated differentiated SH-SY5Y cells were more enriched in pathways underlying multifactorial neurotoxic events. Additionally, more functional regulatory modules have been identified between the miRNAs and proteins differentially expressed in arsenic-treated differentiated SH-SY5Y cells relative to naïve cells. Collectively, our studies have shown that differentiated SH-SY5Y cells displayed alterations in the expression of a greater number of miRNAs and proteins following neurotoxicant exposure, indicating their higher responsivity.
Collapse
Affiliation(s)
- Sana Sarkar
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India; Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, India.
| | - Anuj Pandey
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjeev Kumar Yadav
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | | | - A B Pant
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology (FEST) Division, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, Lucknow, Uttar Pradesh, India.
| | - Sanjay Yadav
- All India Institute of Medical Sciences (AIIMS), Raebareli, Uttar Pradesh, India.
| |
Collapse
|
7
|
Wang R, Zhu L, Fan Y, Du H, Han W, Guan F, Zhu Y, Ni T, Chen T. Dopamine D3 receptor mediates natural and methamphetamine rewards via regulating the expression of miR-29c in the nucleus accumbens of mice. Neuropharmacology 2025; 262:110200. [PMID: 39490406 DOI: 10.1016/j.neuropharm.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The dopamine D3 receptor (D3R), principally confined to the nucleus accumbens (NAc), is involved in regulating natural and drug rewards; however, the molecular mechanisms underlying the associated process remain unclear. Earlier research has reported the concurrent influence of D3R and miR-29c expressed in the NAc on methamphetamine (METH)-induced reward behaviors and microglial activation, hinting at regulatory roles in reward processing. Herein, we performed viral manipulation-mediating D3R/miR-29c overexpression and inhibition in the whole NAc in male D3R knockout and wild-type mice to investigate this potential relationship. Behavioral responses to the rewarding stimuli were assessed using sucrose preference score, METH-induced locomotor sensitization, and METH-induced conditioned place preference tests. Overall, we observed a notable decrease in the behavioral response to sucrose and METH in D3R-deficient mice, accompanied by the downregulation of miR-29c expression in the NAc. Diminished responses to those rewarding stimuli in D3R-deficient mice primarily stemmed from the reduction of GSK3β activity and subsequent down-regulation of miR-29c in the NAc. Microglial activation in the NAc mediates the effect of D3R-miR-29c deficiency on the reward effects of sucrose and METH. Pharmacological suppression of microglial activity rescued the reduced response in mice lacking D3R-miR-29c in the NAc. Overall, this study revealed the mechanism by which D3R regulates both natural and drug rewards via miR-29c in the murine NAc, highlighting the role of the NAc D3R-miR-29c pathway as a critical regulator of rewards, and providing new insights into the role of NAc D3R-miR-29c in encoding rewarding experiences.
Collapse
Affiliation(s)
- Rui Wang
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yunting Fan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huiqing Du
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Han
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Fanglin Guan
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, PR China
| | - Tong Ni
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China; Institute of Drug Dependence and Neuroscience, Bio-Evidence Sciences Academy, Western China Science and Technology Innovation Harbor, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
8
|
Hemedan AA, Satagopam V, Schneider R, Ostaszewski M. Cohort-specific boolean models highlight different regulatory modules during Parkinson's disease progression. iScience 2024; 27:110956. [PMID: 39429779 PMCID: PMC11489052 DOI: 10.1016/j.isci.2024.110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 09/10/2024] [Indexed: 10/22/2024] Open
Abstract
Parkinson's disease (PD) involves complex molecular interactions and diverse comorbidities. To better understand its molecular mechanisms, we employed systems medicine approaches using the PD map, a detailed repository of PD-related interactions and applied Probabilistic Boolean Networks (PBNs) to capture the stochastic nature of molecular dynamics. By integrating cohort-level and real-world patient data, we modeled PD's subtype-specific pathway deregulations, providing a refined representation of its molecular landscape. Our study identifies key regulatory biomolecules and pathways that vary across PD subtypes, offering insights into the disease's progression and patient stratification. These findings have significant implications for the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Ahmed Abdelmonem Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Venkata Satagopam
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Reinhard Schneider
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
9
|
Luan M, Wei L, Sun Y, Chen J, Jiang Y, Wu W, Li F, Sun W, Zhu L, Wang Z, Deng J. Combining salivary α-synuclein seeding activity and miRNA-29a to distinguish Parkinson's disease and multiple system atrophy. Parkinsonism Relat Disord 2024; 127:107088. [PMID: 39111257 DOI: 10.1016/j.parkreldis.2024.107088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION The differential diagnosis of early Parkinson's disease (PD) by a single biomarker is still challenging due to its symptomatic overlap with other neurological diseases. Increasing evidences support the use of saliva biomarkers of neurodegeneration, including microRNAs and α-synuclein (α-syn) seeding activity, to diagnose patients with idiopathic PD and multiple system atrophy (MSA). Our previous study confirmed the salivary microRNA-29a-3p (miRNA-29a-3p) and α-syn seeding activity could differentiate PD and MSA from healthy control subjects (HCs) and patients with essential tremor (ET). METHODS We set up α-syn real-time quaking induced conversion seed amplification assay (α-syn RT-QuIC SAA) in 203 participants from the Peking University First Hospital with PD (n = 101), MSA (n = 32), ET (n = 17) and healthy control subjects (HCs, n = 53). We also determined miRNA-29a-3p in saliva by real time quantitative PCR (RT-qPCR) and, in 155 participants (36HCs, 80PD, 22MSA, 17ET). RESULTS Sensitivity of RT-QuIC seed amplification assay (SAA) for PD was 70.30 %, for MSA was 56.25 % and specificity for healthy controls was 92.45 %. The expression level of saliva miRNA-29a-3p was significantly decreased in patients with PD (p < 0.001) and MSA (p < 0.0001), and allowed differentiation with HCs (PD vs. HCs, AUC 0.69; MSA vs. HCs, AUC 0.95). Sensitivity of salivary miRNA-29a-3p for PD and MSA were 70.00 % and 95.45 %, respectively, and specificity for PD and MSA were 77.23 % and 80.56 %, respectively. By combining the salivary α-syn RT-QuIC SAA with miRNA-29a-3p, sensitivity for PD vs. HCs increasing to 75.00 %, while sensitivity for MSA vs. HCs increasing to 90.00 %. Specificity was 91.67 % for PD and 88.89 % for MSA after combining assessment of salivary α-syn RT-QuIC SAA. Salivary α-syn RT-QuIC SAA yielded 100.00 % sensitivity and 79.21 % specificity for PD vs. ET, and 100.00 % sensitivity and 65.63 % specificity for MSA vs. ET. Salivary miRNA-29a-3p provied 88.24 % sensitivity and 48.75 % specificity for PD vs. ET and 86.36 % sensitivity and 88.24 % specificity for MSA vs. ET. The combined assessment of saliva markers provided a better diagnostic value for ET vs. synucleinopathies (ET vs. PD: 88.24 % sensitivity and 81.25 % specificity; ET vs. MSA: 94.12 % sensitivity and 90.00 % specificity) than RT-QuIC SAA alone, or miRNA-29a-3p alone. The combination of lag phase and miRNA-29a-3p could add higher specificity (85.71 %) which increased approximately 40 percent (specificity: miRNA-29a-3p 47.50 %, lag phase 48.98 %) for discriminating PD from MSA. However, the sensitivity of combining these two methods was 61.11 %, which was lower than lag phase alone (89.66 %) or miRNA-29a-3p alone (95.45 %). CONCLUSIONS This study confirmed that saliva, a non-invasive biofluid in synucleinopathies possessed potential diagnostic power between PD, MSA, ET and normal controls. We show the combined value of saliva miRNA-29a-3p and saliva α-syn RT-QuIC SAA in the diagnosis and differential diagnosis of Parkinsonism.
Collapse
Affiliation(s)
- Mingyue Luan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Luhua Wei
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yunchuang Sun
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Jing Chen
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yanyan Jiang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Wu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Fan Li
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Wei Sun
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Li Zhu
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
| |
Collapse
|
10
|
Alkhazaali-Ali Z, Sahab-Negah S, Boroumand AR, Tavakol-Afshari J. MicroRNA (miRNA) as a biomarker for diagnosis, prognosis, and therapeutics molecules in neurodegenerative disease. Biomed Pharmacother 2024; 177:116899. [PMID: 38889636 DOI: 10.1016/j.biopha.2024.116899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Neurodegenerative diseases that include Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) that arise due to numerous causes like protein accumulation and autoimmunity characterized by neurologic depletion which lead to incapacity in normal physiological function such as thinking and movement in these patients. Glial cells perform an important role in protective neuronal function; in the case of neuroinflammation, glial cell dysfunction can promote the development of neurodegenerative diseases. miRNA that participates in gene regulation and plays a vital role in many biological processes in the body; in the central nervous system (CNS), it can play an essential part in neural maturation and differentiation. In neurodegenerative diseases, miRNA dysregulation occurs, enhancing the development of these diseases. In this review, we discuss neurodegenerative disease (Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS)) and how miRNA is preserved as a diagnostic biomarker or therapeutic agent in these disorders. Finally, we highlight miRNA as therapy.
Collapse
Affiliation(s)
- Zahraa Alkhazaali-Ali
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Amir Reza Boroumand
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol-Afshari
- Department of Immunology, Immunology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Bourzam A, Hamdi Y, Bahdoudi S, Duraisamy K, El Mehdi M, Basille-Dugay M, Dlimi O, Kharrat M, Vejux A, Lizard G, Ghrairi T, Lefranc B, Vaudry D, Boutin JA, Leprince J, Masmoudi-Kouki O. Octadecaneuropeptide, ODN, Promotes Cell Survival against 6-OHDA-Induced Oxidative Stress and Apoptosis by Modulating the Expression of miR-34b, miR-29a, and miR-21in Cultured Astrocytes. Cells 2024; 13:1188. [PMID: 39056770 PMCID: PMC11487398 DOI: 10.3390/cells13141188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides including octadecaneuropeptide (ODN). We have previously reported that ODN rescues neurons and astrocytes from 6-OHDA-induced oxidative stress and cell death. The purpose of this study was to examine the potential implication of miR-34b, miR-29a, and miR-21 in the protective activity of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Flow cytometry analysis showed that 6-OHDA increased the number of early apoptotic and apoptotic dead cells while treatment with the subnanomolar dose of ODN significantly reduced the number of apoptotic cells induced by 6-OHDA. 6-OHDA-treated astrocytes exhibited the over-expression of miR-21 (+118%) associated with a knockdown of miR-34b (-61%) and miR-29a (-49%). Co-treatment of astrocytes with ODN blocked the 6-OHDA-stimulated production of ROS and NO and stimulation of Bax and caspase-3 gene transcription. Concomitantly, ODN down-regulated the expression of miR-34b and miR-29a and rescued the 6-OHDA-associated reduced expression of miR21, indicating that ODN regulates their expression during cell death. Transfection with miR-21-3p inhibitor prevented the effect of 6-OHDA against cell death. In conclusion, our study indicated that (i) the expression of miRNAs miR-34b, miR-29a, and miR-21 is modified in astrocytes under 6-OHDA injury and (ii) that ODN prevents this deregulation to induce its neuroprotective action. The present study identified miR-21 as an emerging candidate and as a promising pharmacological target that opens new neuroprotective therapeutic strategies in neurodegenerative diseases, especially in Parkinson's disease.
Collapse
Affiliation(s)
- Amine Bourzam
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Yosra Hamdi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Seyma Bahdoudi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Karthi Duraisamy
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Mouna El Mehdi
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Magali Basille-Dugay
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Omayma Dlimi
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Maher Kharrat
- Human Genetics Laboratory (LR99ES10), Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Anne Vejux
- Centre des Sciences du Goût et de l'Alimentation (CSGA), CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), Université de Bourgogne, Inserm, 21000 Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), Université de Bourgogne, Inserm, 21000 Dijon, France
| | - Taoufik Ghrairi
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| | - Benjamin Lefranc
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - David Vaudry
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Jean A Boutin
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Inserm UMR 1239, University Rouen Normandie, 76000 Rouen, France
| | - Olfa Masmoudi-Kouki
- LR18ES03 Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, Faculty of Science of Tunis, University Tunis El Manar, Tunis 2092, Tunisia
| |
Collapse
|
12
|
Yang YL, Lin TK, Huang YH. MiR-29a efficiently suppresses the generation of reactive oxygen species and α-synuclein in a cellular model of Parkinson's disease by potentially targeting GSK-3β. Eur J Pharmacol 2024; 974:176615. [PMID: 38685306 DOI: 10.1016/j.ejphar.2024.176615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
MicroRNA-29a (miR-29a) has been suggested to serve a potential protective function against Parkinson's disease (PD); however, the exact molecular mechanisms remain elusive. This study explored the protective role of miR-29a in a cellular model of PD using SH-SY5Y cell lines through iTRAQ-based quantitative proteomic and biochemistry analysis. The findings showed that using a miR-29a mimic in SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+) significantly decreased cell death and increased mitochondrial membrane potential. It also reduced mitochondrial reactive oxygen species (ROS) and the production of α-synuclein. Subsequent heatmap analysis using iTRAQ-based quantitative proteomics revealed remarkably contrasting protein expression profiles for 882 genes when comparing the groups treated with miR-29a mimic plus MPP + against the control group treated solely with MPP+. The KEGG pathway analysis of these 882 genes indicated the substantial role of miR-29a in the PD pathway (P = 1.58x10-5) and highlighted its function in mitochondrial genes. Furthermore, treatment with a miR-29a mimic in SH-SY5Y cells reduced the levels of GSK-3β, phosphorylated GSK-3β, and cleaved caspase-7 following exposure to MPP+. The miR-29a mimic also upregulated the expressions of α-synuclein clearance proteins FYCO1 and Rab7 in this cellular PD model, thereby inhibiting the production of α-synuclein. Luciferase activity analysis confirmed the specific binding of miR-29a to the 3' untranslated region (3'UTR) of GSK-3β, leading to its repression. Our findings demonstrated miR-29a's neuroprotective role in mitochondrial function and highlighted its potential to inhibit ROS and α-synuclein production, offering possible therapeutic avenues for PD treatment.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, and Chang, Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
13
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
14
|
Khosroshahi PA, Ashayeri H, Ghanbari M, Malek A, Farhang S, Haghi M. Downregulation of miR-29a as a possible diagnostic biomarker for schizophrenia. Mol Biol Rep 2024; 51:617. [PMID: 38705955 PMCID: PMC11070389 DOI: 10.1007/s11033-024-09428-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND MicroRNAs (miRNAs) are epigenetic factors regulating many genes involved in brain development. Dysregulation of miRNA could result in dysregulation of genes which may contribute to diseases affecting the brain and behavior (e.g., schizophrenia). miR-29 family is a miRNA family contributing to brain maturation. miR-29 knockout in animal studies is reported to correlate with psychiatric disorders very similar to those seen in schizophrenia. In this study, we aimed to evaluate the miR-29a level in patients with schizophrenia and its potential value in the diagnosis of schizophrenia. MATERIALS AND METHODS The serum sample of 42 patients with schizophrenia and 40 healthy subjects were obtained from the Azeri Recent onset/Acute phase psychosis Survey (ARAS) Cohort study. After preparations, the expression level of miR-29a was investigated by real-time PCR. The SPSS and GraphPad prism software were used to analyze the relation between miR-29a level and clinical parameters and its potential as a biomarker for the diagnosis of schizophrenia. RESULTS Our study showed a significantly lower miR-29a level in patients compared to healthy controls (p = 0.0012). Furthermore, miR-29a level was significantly lower in some types of schizophrenia (p = 0.024). miR-29a level was not related to sex, age, or heredity (p > 0.05). miR-29a also showed 80% specificity and 71.43% sensitivity in the diagnosis of schizophrenia. CONCLUSION Downregulation of miR-29a in schizophrenia is significantly related to the development of this illness. It might have the potential as a biomarker for schizophrenia.
Collapse
Affiliation(s)
| | - Hamidreza Ashayeri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ghanbari
- Clinical Research Development Center, Mohammad Kermanshahi and Farabi Hospitals, Imam Khomeini, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ayyoub Malek
- University Medical Center Groningen, University of Groningen, University Center for Psychiatry, Groningen, The Netherlands
| | - Sara Farhang
- University Medical Center Groningen, University of Groningen, University Center for Psychiatry, Groningen, The Netherlands.
- Research center of psychiatry and behavioral sciences, Tabriz university of medical sciences, Tabriz, Iran.
| | - Mehdi Haghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
15
|
Tsamou M, Roggen EL. Sex-associated microRNAs potentially implicated in sporadic Alzheimer's disease (sAD). Brain Res 2024; 1829:148791. [PMID: 38307153 DOI: 10.1016/j.brainres.2024.148791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND The onset and pathology of sporadic Alzheimer's disease (sAD) seem to be affected by both sex and genetic mechanisms. Evidence supports that the high prevalence of sAD in women, worldwide, may be attributed to an interplay among aging, sex, and lifestyle, influenced by genetics, metabolic changes, and hormones. Interestingly, epigenetic mechanisms such as microRNAs (miRNAs), known as master regulators of gene expression, may contribute to this observed sexual dimorphism in sAD. OBJECTIVES To investigate the potential impact of sex-associated miRNAs on processes manifesting sAD pathology, as described by the Tau-driven Adverse Outcome Pathway (AOP) leading to memory loss. METHODS Using publicly available human miRNA datasets, sex-biased miRNAs, defined as differentially expressed by sex in tissues possibly affected by sAD pathology, were collected. In addition, sex hormone-related miRNAs were also retrieved from the literature. The compiled sex-biased and sex hormone-related miRNAs were further plugged into the dysregulated processes of the Tau-driven AOP for memory loss. RESULTS Several miRNAs, previously identified as sex-associated, were implicated in dysregulated processes associated with the manifestation of sAD pathology. Importantly, the described pathology processes were not confined to a particular sex. A mechanistic-based approach utilizing miRNAs was adopted in order to elucidate the link between sex and biological processes potentially involved in the development of memory loss. CONCLUSIONS The identification of sex-associated miRNAs involved in the early processes manifesting memory loss may shed light to the complex molecular mechanisms underlying sAD pathogenesis in a sex-specific manner.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands.
| | - Erwin L Roggen
- ToxGenSolutions (TGS), Oxfordlaan 70, 6229EV Maastricht, The Netherlands
| |
Collapse
|
16
|
Zhang Z, Wu Z, Hu S, He M. Identification of serum microRNA alterations associated with long-term exercise-induced motor improvements in patients with Parkinson disease. Medicine (Baltimore) 2024; 103:e37470. [PMID: 38552099 PMCID: PMC10977540 DOI: 10.1097/md.0000000000037470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/12/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Long-term physical exercise has been shown to benefit patients with Parkinson disease (PD), but there is a lack of evidence regarding the underlying mechanism. A better understanding of how such benefits are induced by exercise might contribute to the development of therapeutic targets for improving the motor function in individuals with PD. The purpose of this study was therefore to investigate the possible association between exercise-induced motor improvements and the changes in serum microRNA (miRNA) levels of PD patients through small RNA sequencing for the first time. METHODS Thirteen PD patients completed our 3-month home-and-community-based exercise program, while 6 patients were assigned to the control group. Motor functions were measured, and small RNA sequencing with data analysis was performed on serum miRNAs both before and after the program. The results were further validated by quantitative real-time polymerase chain reaction. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were then conducted to determine the role of differentially expressed miRNAs. RESULTS The 3-month home-and-community-based exercise program induced significant motor improvements in PD patients in terms of Unified Parkinson's Disease Rating Scale activities of daily living and Motor Subscale (P < .05), comfortable walking speed (P = .003), fast walking speed (P = .028), Six-Minute Walk Test (P = .004), Berg Balance Scale (P = .039), and Timed Up and Go (P = .002). A total of 11 miRNAs (10 upregulated and one downregulated) were identified to be remarkably differentially expressed after intervention in the exercise group, but not in the control group. The results of miRNA sequencing were further validated by quantitative real-time polymerase chain reaction. It was found that the targets of altered miRNAs were mostly enriched in the mitogen-activated protein kinase, Wnt, and Hippo signaling pathways and the GO annotations mainly included binding, catalytic activity, and transcription regulator activity. CONCLUSION The exercise-induced motor improvements were possibly associated with changes in circulating miRNA levels in PD patients. These miRNAs, as well as the most enriched pathways and GO terms, may play a critical role in the mechanism of exercise-induced benefits in PD and serve as novel treatment targets for the disease, although further investigations are needed.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziwei Wu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shenglan Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Geleta U, Prajapati P, Bachstetter A, Nelson PT, Wang WX. Sex-Biased Expression and Response of microRNAs in Neurological Diseases and Neurotrauma. Int J Mol Sci 2024; 25:2648. [PMID: 38473893 PMCID: PMC10931569 DOI: 10.3390/ijms25052648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurological diseases and neurotrauma manifest significant sex differences in prevalence, progression, outcome, and therapeutic responses. Genetic predisposition, sex hormones, inflammation, and environmental exposures are among many physiological and pathological factors that impact the sex disparity in neurological diseases. MicroRNAs (miRNAs) are a powerful class of gene expression regulator that are extensively involved in mediating biological pathways. Emerging evidence demonstrates that miRNAs play a crucial role in the sex dimorphism observed in various human diseases, including neurological diseases. Understanding the sex differences in miRNA expression and response is believed to have important implications for assessing the risk of neurological disease, defining therapeutic intervention strategies, and advancing both basic research and clinical investigations. However, there is limited research exploring the extent to which miRNAs contribute to the sex disparities observed in various neurological diseases. Here, we review the current state of knowledge related to the sexual dimorphism in miRNAs in neurological diseases and neurotrauma research. We also discuss how sex chromosomes may contribute to the miRNA sexual dimorphism phenomenon. We attempt to emphasize the significance of sexual dimorphism in miRNA biology in human diseases and to advocate a gender/sex-balanced science.
Collapse
Affiliation(s)
- Urim Geleta
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Paresh Prajapati
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
| | - Adam Bachstetter
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Neuroscience, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Peter T. Nelson
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (U.G.); (P.P.); (A.B.); (P.T.N.)
- Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
- Pathology and Laboratory Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
18
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
Braunger LJ, Knab F, Gasser T. Using Extracellular miRNA Signatures to Identify Patients with LRRK2-Related Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:977-991. [PMID: 38848197 PMCID: PMC11307038 DOI: 10.3233/jpd-230408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Background Mutations in the Leucine Rich Repeat Kinase 2 gene are highly relevant in both sporadic and familial cases of Parkinson's disease. Specific therapies are entering clinical trials but patient stratification remains challenging. Dysregulated microRNA expression levels have been proposed as biomarker candidates in sporadic Parkinson's disease. Objective In this proof-of concept study we evaluate the potential of extracellular miRNA signatures to identify LRRK2-driven molecular patterns in Parkinson's disease. Methods We measured expression levels of 91 miRNAs via RT-qPCR in ten individuals with sporadic Parkinson's disease, ten LRRK2 mutation carriers and eleven healthy controls using both plasma and cerebrospinal fluid. We compared miRNA signatures using heatmaps and t-tests. Next, we applied group sorting algorithms and tested sensitivity and specificity of their group predictions. Results miR-29c-3p was differentially expressed between LRRK2 mutation carriers and sporadic cases, with miR-425-5p trending towards significance. Individuals clustered in principal component analysis along mutation status. Group affiliation was predicted with high accuracy in the prediction models (sensitivity up to 89%, specificity up to 70%). miRs-128-3p, 29c-3p, 223-3p, and 424-5p were identified as promising discriminators among all analyses. Conclusions LRRK2 mutation status impacts the extracellular miRNA signature measured in plasma and separates mutation carriers from sporadic Parkinson's disease patients. Monitoring LRRK2 miRNA signatures could be an interesting approach to test drug efficacy of LRRK2-targeting therapies. In light of small sample size, the suggested approach needs to be validated in larger cohorts.
Collapse
Affiliation(s)
- Luca Jannik Braunger
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Felix Knab
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Thomas Gasser
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tuebingen, Germany
| |
Collapse
|
20
|
Stanková S, Košutzká Z, Straka I, Gažová A, Minár M. Up-regulated expression of miRNA-29b in patients with Parkinson's disease on levodopa gel infusion. Acta Neurol Belg 2023; 123:1983-1984. [PMID: 35752745 DOI: 10.1007/s13760-022-02010-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
Affiliation(s)
- Simona Stanková
- Second Department of Neurology, Faculty of Medicine of Comenius University, University Hospital Bratislava and Comenius University Bratislava, Limbová 5, 83305, Bratislava, Slovakia
| | - Zuzana Košutzká
- Second Department of Neurology, Faculty of Medicine of Comenius University, University Hospital Bratislava and Comenius University Bratislava, Limbová 5, 83305, Bratislava, Slovakia
| | - Igor Straka
- Second Department of Neurology, Faculty of Medicine of Comenius University, University Hospital Bratislava and Comenius University Bratislava, Limbová 5, 83305, Bratislava, Slovakia
| | - Andrea Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Minár
- Second Department of Neurology, Faculty of Medicine of Comenius University, University Hospital Bratislava and Comenius University Bratislava, Limbová 5, 83305, Bratislava, Slovakia.
| |
Collapse
|
21
|
Guévremont D, Roy J, Cutfield NJ, Williams JM. MicroRNAs in Parkinson's disease: a systematic review and diagnostic accuracy meta-analysis. Sci Rep 2023; 13:16272. [PMID: 37770507 PMCID: PMC10539377 DOI: 10.1038/s41598-023-43096-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
Current clinical tests for Parkinson's disease (PD) provide insufficient diagnostic accuracy leading to an urgent need for improved diagnostic biomarkers. As microRNAs (miRNAs) are promising biomarkers of various diseases, including PD, this systematic review and meta-analysis aimed to assess the diagnostic accuracy of biofluid miRNAs in PD. All studies reporting data on miRNAs expression in PD patients compared to controls were included. Gene targets and significant pathways associated with miRNAs expressed in more than 3 biofluid studies with the same direction of change were analyzed using target prediction and enrichment analysis. A bivariate model was used to calculate sensitivity, specificity, likelihood ratios, and diagnostic odds ratio. While miR-24-3p and miR-214-3p were the most reported miRNA (7 each), miR-331-5p was found to be consistently up regulated in 4 different biofluids. Importantly, miR-19b-3p, miR-24-3p, miR-146a-5p, and miR-221-3p were reported in multiple studies without conflicting directions of change in serum and bioinformatic analysis found the targets of these miRNAs to be associated with pathways important in PD pathology. Of the 102 studies from the systematic review, 15 studies reported sensitivity and specificity data on combinations of miRNAs and were pooled for meta-analysis. Studies (17) reporting sensitivity and specificity data on single microRNA were pooled in a separate meta-analysis. Meta-analysis of the combinations of miRNAs (15 studies) showed that biofluid miRNAs can discriminate between PD patients and controls with good diagnostic accuracy (sensitivity = 0.82, 95% CI 0.76-0.87; specificity = 0.80, 95% CI 0.74-0.84; AUC = 0.87, 95% CI 0.83-0.89). However, we found multiple studies included more males with PD than any other group therefore possibly introducing a sex-related selection bias. Overall, our study captures key miRNAs which may represent a point of focus for future studies and the development of diagnostic panels whilst also highlighting the importance of appropriate study design to develop representative biomarker panels for the diagnosis of PD.
Collapse
Affiliation(s)
- Diane Guévremont
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
| | - Joyeeta Roy
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Nicholas J Cutfield
- Brain Health Research Centre, Dunedin, New Zealand
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
- Brain Health Research Centre, Dunedin, New Zealand.
| |
Collapse
|
22
|
Wang J, Guo C, Yang L, Sun P, Jing X. Peripheral blood microR-146a and microR-29c expression in children with Mycoplasma pneumoniae pneumonia and its clinical value. Ital J Pediatr 2023; 49:119. [PMID: 37705091 PMCID: PMC10500935 DOI: 10.1186/s13052-023-01500-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND We investigated changes in microR-29c and microR-146a expression in the serum of children with Mycoplasma pneumoniae pneumonia, analysed their relationship with inflammatory factors and disease severity, and evaluated their diagnostic significance. METHODS Fifty-six children with Mycoplasma pneumoniae pneumonia were enrolled as the Mycoplasma pneumoniae pneumonia group; 37 healthy children were enrolled as the control group. The microR-29c or microR-146a serum expression levels were determined using real-time quantitative reverse transcription polymerase chain reaction. Interleukin-17, tumour necrosis factor-alpha, and interleukin-1 beta levels were detected using enzyme-linked immunosorbent assay. The correlation between serum microR-29c or microR-146a expression and inflammatory factors was analysed using the Pearson's method. Receiver operating characteristic curves were used to evaluate the diagnostic value of serum microR-29c, microR-146a, and their combined detection in Mycoplasma pneumoniae pneumonia. RESULTS Compared with that in healthy children, the microR-29c and microR-146a serum levels were significantly downregulated in children with Mycoplasma pneumoniae pneumonia; the decrease was more obvious in children with severe cases than that in those with mild cases. In addition, microR-29c and microR-146a were negatively correlated with increased expression of interleukin-17, tumour necrosis factor-alpha, and interleukin-1 beta. Receiver operating characteristic curves showed that a combination of microR-29c and microR-146a was highly suitable for diagnosing Mycoplasma pneumoniae pneumonia. CONCLUSION Serum microR-29c and microR-146a were underexpressed in children with Mycoplasma pneumoniae pneumonia, and diagnostic accuracy was significantly improved with combined microR-29c and microR-146a detection. Therefore, both microR-29c and microR-146a levels can be used as biomarkers for the diagnosis of Mycoplasma pneumoniae pneumonia.
Collapse
Affiliation(s)
- Jingcai Wang
- Department of Pediatric Medicine, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China
| | - Chunyan Guo
- Department of Pediatric Medicine, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China
| | - Lixin Yang
- Department of Pediatric Medicine, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China
| | - Peng Sun
- Department of Pediatric Medicine, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China
| | - Xiaoqing Jing
- Department of Pediatric Medicine, Affiliated Hospital of Chengde Medical College, Chengde, 067000, China.
| |
Collapse
|
23
|
Awuson-David B, Williams AC, Wright B, Hill LJ, Di Pietro V. Common microRNA regulated pathways in Alzheimer's and Parkinson's disease. Front Neurosci 2023; 17:1228927. [PMID: 37719162 PMCID: PMC10502311 DOI: 10.3389/fnins.2023.1228927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in gene regulation. Recently, miRNA dysregulation has been found in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The diagnosis of Alzheimer's and Parkinson's is currently challenging, mainly occurring when pathology is already present, and although treatments are available for both diseases, the role of treatment is primarily to prevent or delay the progress of the diseases instead of fully overcoming the diseases. Therefore, the challenge in the near future will be to determine effective drugs to tackle the dysregulated biological pathways in neurodegenerative diseases. In the present study, we describe the dysregulation of miRNAs in blood of Alzheimer's and Parkinson's patients with the aim to identify common mechanisms between the 2 pathologies and potentially to identify common therapeutic targets which can stop or delay the progression of two most frequent neuropathologies. Two independent systematic reviews, bioinformatic analysis, and experiment validation were performed to identify whether AD and PD share common pathways. A total of 15 common miRNAs were found in the literature and 13 common KEGG pathways. Among the common miRNAs, two were selected for validation in a small cohort of AD and PD patients. Let-7f-5p and miR-29b-3p showed to be good predictors in blood of PD patients.
Collapse
Affiliation(s)
- Betina Awuson-David
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian C. Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Benjamin Wright
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
24
|
Kunze R, Fischer S, Marti HH, Preissner KT. Brain alarm by self-extracellular nucleic acids: from neuroinflammation to neurodegeneration. J Biomed Sci 2023; 30:64. [PMID: 37550658 PMCID: PMC10405513 DOI: 10.1186/s12929-023-00954-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Neurological disorders such as stroke, multiple sclerosis, as well as the neurodegenerative diseases Parkinson's or Alzheimer's disease are accompanied or even powered by danger associated molecular patterns (DAMPs), defined as endogenous molecules released from stressed or damaged tissue. Besides protein-related DAMPs or "alarmins", numerous nucleic acid DAMPs exist in body fluids, such as cell-free nuclear and mitochondrial DNA as well as different species of extracellular RNA, collectively termed as self-extracellular nucleic acids (SENAs). Among these, microRNA, long non-coding RNAs, circular RNAs and extracellular ribosomal RNA constitute the majority of RNA-based DAMPs. Upon tissue injury, necrosis or apoptosis, such SENAs are released from neuronal, immune and other cells predominantly in association with extracellular vesicles and may be translocated to target cells where they can induce intracellular regulatory pathways in gene transcription and translation. The majority of SENA-induced signaling reactions in the brain appear to be related to neuroinflammatory processes, often causally associated with the onset or progression of the respective disease. In this review, the impact of the diverse types of SENAs on neuroinflammatory and neurodegenerative diseases will be discussed. Based on the accumulating knowledge in this field, several specific antagonistic approaches are presented that could serve as therapeutic interventions to lower the pathological outcome of the indicated brain disorders.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Silvia Fischer
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
| | - Hugo H. Marti
- Institute of Physiology and Pathophysiology, Department of Cardiovascular Physiology, Ruprecht-Karls-University, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany
| | - Klaus T. Preissner
- Department of Biochemistry, Medical School, Justus-Liebig-University, Giessen, Germany
- Kerckhoff-Heart-Research-Institute, Department of Cardiology, Medical School, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
25
|
Titze-de-Almeida SS, Titze-de-Almeida R. Progress in circRNA-Targeted Therapy in Experimental Parkinson's Disease. Pharmaceutics 2023; 15:2035. [PMID: 37631249 PMCID: PMC10459713 DOI: 10.3390/pharmaceutics15082035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded RNA molecules often circularized by backsplicing. Growing evidence implicates circRNAs in the underlying mechanisms of various diseases, such as Alzheimer's and Parkinson's disease (PD)-the first and second most prevalent neurodegenerative disorders. In this sense, circSNCA, circHIPK2, circHIPK3, and circSLC8A1 are circRNAs that have been related to the neurodegenerative process of PD. Gain-of-function and loss-of-function studies on circRNAs have shed light on their roles in the pathobiology of various diseases. Gain-of-function approaches typically employ viral or non-viral vectors that hyperexpress RNA sequences capable of circularizing to form the specific circRNA under investigation. In contrast, loss-of-function studies utilize CRISPR/Cas systems, antisense oligonucleotides (ASOs), or RNAi techniques to knock down the target circRNA. The role of aberrantly expressed circRNAs in brain pathology has raised a critical question: could circRNAs serve as viable targets for neuroprotective treatments? Translating any oligonucleotide-based therapy, including those targeting circRNAs, involves developing adequate brain delivery systems, minimizing off-target effects, and addressing the high costs of treatment. Nonetheless, RNAi-based FDA-approved drugs have entered the market, and circRNAs have attracted significant attention and investment from major pharmaceutical companies. Spanning from bench to bedside, circRNAs present a vast opportunity in biotechnology for oligonucleotide-based therapies designed to slow or even halt the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Simoneide Souza Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
- Research Center for Major Themes, Central Institute of Sciences, University of Brasília, Brasília 70910-900, Brazil
| |
Collapse
|
26
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
27
|
Piscopo P, Grasso M, Manzini V, Zeni A, Castelluzzo M, Fontana F, Talarico G, Castellano AE, Rivabene R, Crestini A, Bruno G, Ricci L, Denti MA. Identification of miRNAs regulating MAPT expression and their analysis in plasma of patients with dementia. Front Mol Neurosci 2023; 16:1127163. [PMID: 37324585 PMCID: PMC10266489 DOI: 10.3389/fnmol.2023.1127163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023] Open
Abstract
Background Dementia is one of the most common diseases in elderly people and hundreds of thousand new cases per year of Alzheimer's disease (AD) are estimated. While the recent decade has seen significant advances in the development of novel biomarkers to identify dementias at their early stage, a great effort has been recently made to identify biomarkers able to improve differential diagnosis. However, only few potential candidates, mainly detectable in cerebrospinal fluid (CSF), have been described so far. Methods We searched for miRNAs regulating MAPT translation. We employed a capture technology able to find the miRNAs directly bound to the MAPT transcript in cell lines. Afterwards, we evaluated the levels of these miRNAs in plasma samples from FTD (n = 42) and AD patients (n = 33) and relative healthy controls (HCs) (n = 42) by using qRT-PCR. Results Firstly, we found all miRNAs that interact with the MAPT transcript. Ten miRNAs have been selected to verify their effect on Tau levels increasing or reducing miRNA levels by using cell transfections with plasmids expressing the miRNAs genes or LNA antagomiRs. Following the results obtained, miR-92a-3p, miR-320a and miR-320b were selected to analyse their levels in plasma samples of patients with FTD and AD respect to HCs. The analysis showed that the miR-92a-1-3p was under-expressed in both AD and FTD compared to HCs. Moreover, miR-320a was upregulated in FTD vs. AD patients, particularly in men when we stratified by sex. Respect to HC, the only difference is showed in men with AD who have reduced levels of this miRNA. Instead, miR-320b is up-regulated in both dementias, but only patients with FTD maintain this trend in both genders. Conclusions Our results seem to identify miR-92a-3p and miR-320a as possible good biomarkers to discriminate AD from HC, while miR-320b to discriminate FTD from HC, particularly in males. Combining three miRNAs improves the accuracy only in females, particularly for differential diagnosis (FTD vs. AD) and to distinguish FTD from HC.
Collapse
Affiliation(s)
- Paola Piscopo
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Margherita Grasso
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Valeria Manzini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
- Department of Biology and Biotechnology Charles Darwin, University of Rome “Sapienza”, Rome, Italy
| | - Andrea Zeni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Francesca Fontana
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Giuseppina Talarico
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | | | - Roberto Rivabene
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Alessio Crestini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Bruno
- Department of Human Neuroscience, University of Rome “Sapienza”, Rome, Italy
| | - Leonardo Ricci
- Department of Physics, University of Trento, Trento, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
28
|
Citterio LA, Mancuso R, Agostini S, Meloni M, Clerici M. Serum and Exosomal miR-7-1-5p and miR-223-3p as Possible Biomarkers for Parkinson's Disease. Biomolecules 2023; 13:biom13050865. [PMID: 37238734 DOI: 10.3390/biom13050865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The etiology of Parkinson's disease (PD) is poorly understood, and is strongly suspected to include both genetic and environmental factors. In this context, it is essential to investigate possible biomarkers for both prognostic and diagnostic purposes. Several studies reported dysregulated microRNA expression in neurodegenerative disorders, including PD. Using ddPCR, we investigated the concentrations of miR-7-1-5p, miR-499-3p, miR-223-3p and miR-223-5p-miRNAs involved in the α-synuclein pathway and in inflammation-in the serum and serum-isolated exosomes of 45 PD patients and 49 age- and sex-matched healthy controls (HC). While miR-499-3p and miR-223-5p showed no differences (1), serum concentration of miR-7-1-5p was significantly increased (p = 0.0007 vs. HC) and (2) miR-223-3p serum (p = 0.0006) and exosome (p = 0.0002) concentrations were significantly increased. ROC curve analysis showed that miR-223-3p and miR-7-1-5p serum concentration discriminates between PD and HC (p = 0.0001, in both cases). Notably, in PD patients, both miR-223-3p serum (p = 0.0008) and exosome (p = 0.006) concentrations correlated with levodopa equivalent daily dosage (LEDD). Finally, serum α-synuclein was increased in PD patients compared to HC (p = 0.025), and in patients correlated with serum miR-7-1-5p in (p = 0.05). Our results suggest that both miR-7-1-5p and miR-223-3p, distinguishing PD from HC, have the potential to be useful and non-invasive biomarkers in Parkinson's disease.
Collapse
Affiliation(s)
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mario Meloni
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20100 Milan, Italy
| |
Collapse
|
29
|
Nicoletti A, Baschi R, Cicero CE, Iacono S, Re VL, Luca A, Schirò G, Monastero R. Sex and gender differences in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis: a narrative review. Mech Ageing Dev 2023; 212:111821. [PMID: 37127082 DOI: 10.1016/j.mad.2023.111821] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), exhibit high phenotypic variability and they are very common in the general population. These diseases are associated with poor prognosis and a significant burden on patients and their caregivers. Although increasing evidence suggests that biological sex is an important factor for the development and phenotypical expression of some NDs, the role of sex and gender in the diagnosis and prognosis of NDs has been poorly explored. Current knowledge relating to sex- and gender-related differences in the epidemiology, clinical features, biomarkers, and treatment of AD, PD, and ALS will be summarized in this narrative review. The cumulative evidence hitherto collected suggests that sex and gender are factors to be considered in explaining the heterogeneity of these NDs. Clarifying the role of sex and gender in AD, PD, and ALS is a key topic in precision medicine, which will facilitate sex-specific prevention and treatment strategies to be implemented in the near future.
Collapse
Affiliation(s)
- Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| | - Roberta Baschi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy
| | - Calogero Edoardo Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Salvatore Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy
| | - Vincenzina Lo Re
- Neurology Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Via Ernesto Tricomi 5, 90127 Palermo, Italy; Women's Brain Project, Guntershausen, Switzerland
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy
| | - Roberto Monastero
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy.
| |
Collapse
|
30
|
Vallelunga A, Iannitti T, Somma G, Russillo MC, Picillo M, De Micco R, Vacca L, Cilia R, Cicero CE, Zangaglia R, Lazzeri G, Galantucci S, Radicati FG, De Rosa A, Amboni M, Scaglione C, Tessitore A, Stocchi F, Eleopra R, Nicoletti A, Pacchetti C, Di Fonzo A, Volontè MA, Barone P, Pellecchia MT. Gender differences in microRNA expression in levodopa-naive PD patients. J Neurol 2023:10.1007/s00415-023-11707-0. [PMID: 37052669 DOI: 10.1007/s00415-023-11707-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
Gender is an important factor influencing epidemiological and clinical features of Parkinson's disease (PD). We aimed to evaluate gender differences in the expression of a panel of miRNAs (miR-34a-5p, miR-146a, miR-155, miR-29a, miR-106a) possibly involved in the pathophysiology or progression of disease. Serum samples were obtained from 104 PD patients (58 men and 46 women) never treated with levodopa. We measured levels of miRNAs using quantitative PCR. Correlations between miRNA expression and clinical data were assessed using the Spearman's correlation test. We used STRING to evaluate co-expression relationship among target genes. MiR-34a-5p was significantly upregulated in PD male patients compared to PD female patients (fc: 1.62; p < 0.0001). No correlation was found with age, BMI, and disease severity, assessed by UPDRS III scale, in male and female patients. MiR-146a-5p was significantly upregulated in female as compared to male patients (fc: 3.44; p < 0.0001) and a significant correlation was also observed between disease duration and mir-146a-5p. No differences were found in the expression of miR-29a, miR-106a-5p and miR-155 between genders. Predicted target genes for miR-34a-5p and miR-146-5p and protein interactions in biological processes were reported. Our study supports the hypothesis that there are gender-specific differences in serum miRNAs expression in PD patients. Follow-up of this cohort is needed to understand if these differences may affect disease progression and response to treatment.
Collapse
Affiliation(s)
- A Vallelunga
- Department of Life Sciences and Biotechnologies, Section of Medicines and Health Products, University of Ferrara, Ferrara, Italy
| | - T Iannitti
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - G Somma
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - M C Russillo
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - M Picillo
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - R De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - L Vacca
- IRCCS San Raffaele, Rome, Italy
| | - R Cilia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - C E Cicero
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - R Zangaglia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - G Lazzeri
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - S Galantucci
- IRCCS San Raffaele Scientific Institute, Neurology Unit, Milan, Italy
| | | | - A De Rosa
- IRCCS San Raffaele, Rome, Italy
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - M Amboni
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - C Scaglione
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - A Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - F Stocchi
- IRCCS San Raffaele, Rome, Italy
- University San Raffaele, Roma, Italy
| | - R Eleopra
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - A Nicoletti
- Neurologic Unit, AOU "Policlinico-San Marco", Department of Medical, Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
| | - C Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - A Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - M A Volontè
- IRCCS San Raffaele Scientific Institute, Neurology Unit, Milan, Italy
| | - P Barone
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy
| | - M T Pellecchia
- Department of Medicine Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Fisciano, Italy.
| |
Collapse
|
31
|
Bougea A, Stefanis L. microRNA and circRNA in Parkinson's Disease and atypical parkinsonian syndromes. Adv Clin Chem 2023; 115:83-133. [PMID: 37673523 DOI: 10.1016/bs.acc.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Multiple System Atrophy (MSA) and Progressive Supranuclear Palsy (PSP) are atypical parkinsonian syndromes (APS) with various clinical phenotypes and considerable clinical overlap with idiopathic Parkinson's disease (iPD). This disease heterogeneity makes ante-mortem diagnosis extremely challenging with up to 24% of patients misdiagnosed. Because diagnosis is predominantly clinical, there is great interest in identifying biomarkers for early diagnosis and differentiation of the different types of parkinsonism. Compared to protein biomarkers, microRNAs (miRNAs) and circularRNAs (circRNAs) are stable tissue-specific molecules that can be accurately measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). This chapter critically reviews miRNAs and circRNAs as diagnostic biomarkers and therapeutics to differentiate atypical parkinsonian disorders and their role in disease pathogenesis.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Leonidas Stefanis
- 1st Department of Neurology, Medical School, Aeginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
32
|
Elangovan A, Venkatesan D, Selvaraj P, Pasha MY, Babu HWS, Iyer M, Narayanasamy A, Subramaniam MD, Valsala Gopalakrishnan A, Kumar NS, Vellingiri B. miRNA in Parkinson's disease: From pathogenesis to theranostic approaches. J Cell Physiol 2023; 238:329-354. [PMID: 36502506 DOI: 10.1002/jcp.30932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is an age associated neurological disorder which is specified by cardinal motor symptoms such as tremor, stiffness, bradykinesia, postural instability, and non-motor symptoms. Dopaminergic neurons degradation in substantia nigra region and aggregation of αSyn are the classic signs of molecular defects noticed in PD pathogenesis. The discovery of microRNAs (miRNA) predicted to have a pivotal part in various processes regarding regularizing the cellular functions. Studies on dysregulation of miRNA in PD pathogenesis has recently gained the concern where our review unravels the role of miRNA expression in PD and its necessity in clinical validation for therapeutic development in PD. Here, we discussed how miRNA associated with ageing process in PD through molecular mechanistic approach of miRNAs on sirtuins, tumor necrosis factor-alpha and interleukin-6, dopamine loss, oxidative stress and autophagic dysregulation. Further we have also conferred the expression of miRNAs affected by SNCA gene expression, neuronal differentiation and its therapeutic potential with PD. In conclusion, we suggest more rigorous studies should be conducted on understanding the mechanisms and functions of miRNA in PD which will eventually lead to discovery of novel and promising therapeutics for PD.
Collapse
Affiliation(s)
- Ajay Elangovan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Dhivya Venkatesan
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Priyanka Selvaraj
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Md Younus Pasha
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Harysh Winster Suresh Babu
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mahalaxmi Iyer
- Livestock Farming, & Bioresources Technology, Tamil Nadu, India
| | - Arul Narayanasamy
- Department of Zoology, Disease Proteomics Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Tamil Nadu, Chennai, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, India
| | | | - Balachandar Vellingiri
- Department of Human Genetics and Molecular Biology, Human Molecular Cytogenetics and Stem Cell Laboratory, Bharathiar University, Tamil Nadu, Coimbatore, India.,Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Punjab, Bathinda, India
| |
Collapse
|
33
|
Potential Regulation of miRNA-29 and miRNA-9 by Estrogens in Neurodegenerative Disorders: An Insightful Perspective. Brain Sci 2023; 13:brainsci13020243. [PMID: 36831786 PMCID: PMC9954655 DOI: 10.3390/brainsci13020243] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a link between a hormone and microRNAs (miRNAs) is of great importance since it enables the adjustment of genetic composition or cellular functions without needing gene-level interventions. The dicer-mediated cleavage of precursor miRNAs is an interface link between miRNA and its regulators; any disruption in this process can affect neurogenesis. Besides, the hormonal regulation of miRNAs can occur at the molecular and cellular levels, both directly, through binding to the promoter elements of miRNAs, and indirectly, via regulation of the signaling effects of the post-transcriptional processing proteins. Estrogenic hormones have many roles in regulating miRNAs in the brain. This review discusses miRNAs, their detailed biogenesis, activities, and both the general and estrogen-dependent regulations. Additionally, we highlight the relationship between miR-29, miR-9, and estrogens in the nervous system. Such a relationship could be a possible etiological route for developing various neurodegenerative disorders.
Collapse
|
34
|
Searching for Biomarkers in the Blood of Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. Int J Mol Sci 2023; 24:ijms24031842. [PMID: 36768161 PMCID: PMC9915927 DOI: 10.3390/ijms24031842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Parkinson's disease (PD) is diagnosed many years after its onset, under a significant degradation of the nigrostriatal dopaminergic system, responsible for the regulation of motor function. This explains the low effectiveness of the treatment of patients. Therefore, one of the highest priorities in neurology is the development of the early (preclinical) diagnosis of PD. The aim of this study was to search for changes in the blood of patients at risk of developing PD, which are considered potential diagnostic biomarkers. Out of 1835 patients, 26 patients were included in the risk group and 20 patients in the control group. The primary criteria for inclusion in a risk group were the impairment of sleep behavior disorder and sense of smell, and the secondary criteria were neurological and mental disorders. In patients at risk and in controls, the composition of plasma and the expression of genes of interest in lymphocytes were assessed by 27 indicators. The main changes that we found in plasma include a decrease in the concentrations of l-3,4-dihydroxyphenylalanine (L-DOPA) and urates, as well as the expressions of some types of microRNA, and an increase in the total oxidative status. In turn, in the lymphocytes of patients at risk, an increase in the expression of the DA D3 receptor gene and the lymphocyte activation gene 3 (LAG3), as well as a decrease in the expression of the Protein deglycase DJ-1 gene (PARK7), were observed. The blood changes we found in patients at risk are considered candidates for diagnostic biomarkers at the prodromal stage of PD.
Collapse
|
35
|
Naren P, Cholkar A, Kamble S, Khan SS, Srivastava S, Madan J, Mehra N, Tiwari V, Singh SB, Khatri DK. Pathological and Therapeutic Advances in Parkinson's Disease: Mitochondria in the Interplay. J Alzheimers Dis 2023; 94:S399-S428. [PMID: 36093711 PMCID: PMC10473111 DOI: 10.3233/jad-220682] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative illness majorly affecting the population between the ages of 55 to 65 years. Progressive dopaminergic neuronal loss and the collective assemblage of misfolded alpha-synuclein in the substantia nigra, remain notable neuro-pathological hallmarks of the disease. Multitudes of mechanistic pathways have been proposed in attempts to unravel the pathogenesis of PD but still, it remains elusive. The convergence of PD pathology is found in organelle dysfunction where mitochondria remain a major contributor. Mitochondrial processes like bioenergetics, mitochondrial dynamics, and mitophagy are under strict regulation by the mitochondrial genome and nuclear genome. These processes aggravate neurodegenerative activities upon alteration through neuroinflammation, oxidative damage, apoptosis, and proteostatic stress. Therefore, the mitochondria have grabbed a central position in the patho-mechanistic exploration of neurodegenerative diseases like PD. The management of PD remains a challenge to physicians to date, due to the variable therapeutic response of patients and the limitation of conventional chemical agents which only offer symptomatic relief with minimal to no disease-modifying effect. This review describes the patho-mechanistic pathways involved in PD not only limited to protein dyshomeostasis and oxidative stress, but explicit attention has been drawn to exploring mechanisms like organelle dysfunction, primarily mitochondria and mitochondrial genome influence, while delineating the newer exploratory targets such as GBA1, GLP, LRRK2, and miRNAs and therapeutic agents targeting them.
Collapse
Affiliation(s)
- Padmashri Naren
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Anjali Cholkar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Suchita Kamble
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Sabiya Samim Khan
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Neelesh Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, India
| | - Vinod Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (B.H.U.) Varanasi (U.P.), India
| | - Shashi Bala Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
36
|
Ardashirova NS, Abramycheva NY, Fedotova EY, Illarioshkin SN. MicroRNA Expression Profile Changes in the Leukocytes of Parkinson’s Disease Patients. Acta Naturae 2022; 14:79-84. [PMID: 36348717 PMCID: PMC9611861 DOI: 10.32607/actanaturae.11729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common movement disorders. It
is primarily diagnosed clinically. A correct diagnosis of PD in its early
stages is important for the development of a pathogenic treatment, which
necessitates a search for potential biomarkers of the disease. We evaluated the
diagnostic value of several microRNAs and their relationship with the clinical
characteristics of PD. The study included 70 PD patients and 40 healthy
volunteers. We analyzed the expression of 15 microRNAs in blood leukocytes,
which were selected based on literature data and modern concepts of molecular
PD pathogenesis. All patients were evaluated using the Hoehn and Yahr scale,
UPDRS, NMSQ, and PDQ-39. The data analysis revealed a statistically significant
increase in the expression of miR-7-5p, miR-29c-3p, and miR-185-5p and a
statistically significant decrease in the expression of miR-29a-3p and
miR-30c-1-5p in leukocytes in PD. However, the altered microRNA profile was
shown to have a moderate diagnostic value for PD diagnosis. MicroRNA expression
changes were associated with the motor and non-motor phenotypic features of PD
and administration of anti-Parkinson’s drugs. Also, a relationship
between some of the microRNAs studied and the duration and severity of PD was
found, which may potentially be used to monitor disease progression.
Collapse
|
37
|
Bai X, Wang J, Zhang X, Tang Y, He Y, Zhao J, Han L, Fang R, Liu Z, Dong H, Li Q, Ge J, Ma Y, Yu M, Sun R, Wang J, Fei J, Huang F. Deficiency of miR-29a/b1 leads to premature aging and dopaminergic neuroprotection in mice. Front Mol Neurosci 2022; 15:978191. [PMID: 36277485 PMCID: PMC9582353 DOI: 10.3389/fnmol.2022.978191] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of midbrain dopaminergic neurons. The miR-29s family, including miR-29a and miR-29b1 as well as miR-29b2 and miR-29c, are implicated in aging, metabolism, neuronal survival, and neurological disorders. In this study, the roles of miR-29a/b1 in aging and PD were investigated. miR-29a/b1 knockout mice (named as 29a KO hereafter) and their wild-type (WT) controls were used to analyze aging-related phenotypes. After challenged with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), dopaminergic injuries, glial activation, and mouse behaviors were evaluated. Primary glial cells were further cultured to explore the underlying mechanisms. Additionally, the levels of miR-29s in the cerebrospinal fluid (CSF) of PD patients (n = 18) and healthy subjects (n = 17) were quantified. 29a KO mice showed dramatic weight loss, kyphosis, and along with increased and deepened wrinkles in skins, when compared with WT mice. Moreover, both abdominal and brown adipose tissues reduced in 29a KO mice, compared to their WT counterpart. However, in MPTP-induced PD mouse model, the deficiency of miR-29a/b1 led to less severe damages of dopaminergic system and mitigated glial activation in the nigrostriatal pathway, and subsequently alleviated the motor impairments in 3-month-old mice. Eight-month-old mutant mice maintained such a resistance to MPTP intoxication. Mechanistically, the deficiency of miR-29a/b-1 promoted the expression of neurotrophic factors in 1-Methyl-4-phenylpyridinium (MPP+)-treated primary mixed glia and primary astrocytes. In lipopolysaccharide (LPS)-treated primary microglia, knockout of miR-29a/b-1 inhibited the expression of inflammatory factors, and promoted the expression of anti-inflammatory factors and neurotrophic factors. Knockout of miR-29a/b1 increased the activity of AMP-activated protein kinase (AMPK) and repressed NF-κB/p65 signaling in glial cells. Moreover, we found miR-29a level was increased in the CSF of patients with PD. Our results suggest that 29a KO mice display the peripheral premature senility. The combined effects of less activated glial cells might contribute to the mitigated inflammatory responses and elicit resistance to MPTP intoxication in miR-29a/b1 KO mice.
Collapse
Affiliation(s)
- Xiaochen Bai
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinghui Wang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yilin Tang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yongtao He
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Linlin Han
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Fang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Zhaolin Liu
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Hongtian Dong
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qing Li
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Jingyu Ge
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Mei Yu
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Jian Wang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Jian Wang,
| | - Jian Fei
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
- School of Life Science and Technology, Tongji University, Shanghai, China
- *Correspondence: Jian Fei,
| | - Fang Huang
- Department of Translational Neuroscience, MOE Frontiers Center for Brain Science, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Jing’an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
- Fang Huang,
| |
Collapse
|
38
|
Soto M, Iranzo A, Lahoz S, Fernández M, Serradell M, Gaig C, Melón P, Martí M, Santamaría J, Camps J, Fernández‐Santiago R, Ezquerra M. Serum MicroRNAs Predict Isolated Rapid Eye Movement Sleep Behavior Disorder and Lewy Body Diseases. Mov Disord 2022; 37:2086-2098. [PMID: 35962561 PMCID: PMC9804841 DOI: 10.1002/mds.29171] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Isolated rapid eye movement sleep behavior disorder (IRBD) is a well-established clinical risk factor for Lewy body diseases (LBDs), such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). OBJECTIVE To elucidate whether serum microRNA (miRNA) deregulation in IRBD can antedate the diagnosis of LBD by performing a longitudinal study in different progression stages of IRBD before and after LBD diagnosis and assessing the predictive performance of differentially expressed miRNAs by machine learning-based modeling. METHODS Using genome-wide miRNA analysis and real-time quantitative polymerase chain reaction validation, we assessed serum miRNA profiles from patients with IRBD stratified by dopamine transporter (DaT) single-photon emission computed tomography into DaT-negative IRBD (n = 17) and DaT-positive IRBD (n = 21), IRBD phenoconverted into LBD (n = 13), and controls (n = 20). Longitudinally, we followed up the IRBD cohort by studying three time point serum samples over 26 months. RESULTS We found sustained cross-sectional and longitudinal deregulation of 12 miRNAs across the RBD continuum, including DaT-negative IRBD, DaT-positive IRBD, and LBD phenoconverted IRBD (let-7c-5p, miR-19b-3p, miR-140, miR-22-3p, miR-221-3p, miR-24-3p, miR-25-3p, miR-29c-3p, miR-361-5p, miR-425-5p, miR-4505, and miR-451a) (false discovery rate P < 0.05). Age- and sex-adjusted predictive modeling based on the 12 differentially expressed miRNA biosignatures discriminated IRBD and PD or DLB from controls with an area under the curve of 98% (95% confidence interval: 89-99%). CONCLUSIONS Besides clinical diagnosis of IRBD or imaging markers such as DaT single-photon emission computed tomography, specific miRNA biosignatures alone hold promise as progression biomarkers for patients with IRBD for predicting PD and DLB clinical outcomes. Further miRNA studies in other PD at-risk populations, such as LRRK2 mutation asymptomatic carriers or hyposmic subjects, are warranted. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Marta Soto
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Alex Iranzo
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Sara Lahoz
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
| | - Manel Fernández
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Mónica Serradell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Carles Gaig
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Paula Melón
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Maria‐Jose Martí
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Movement Disorders Unit, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Joan Santamaría
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
- Sleep Center, Department of Neurology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)MadridSpain
| | - Rubén Fernández‐Santiago
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| | - Mario Ezquerra
- Laboratory of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)‐Hospital Clínic de BarcelonaUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED)BarcelonaSpain
| |
Collapse
|
39
|
Yang YL, Lin TK, Huang YH. MiR-29a inhibits MPP + - Induced cell death and inflammation in Parkinson's disease model in vitro by potential targeting of MAVS. Eur J Pharmacol 2022; 934:175302. [PMID: 36174668 DOI: 10.1016/j.ejphar.2022.175302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) primarily affects the motor system and is the second most common age-related neurodegenerative disorder after Alzheimer's disease. Mitochondrial complex I deficiency and functional abnormalities are implicated in the development of PD. MicroRNA-29a (miR-29a) has emerged as a critical miRNA in PD. This study aims to investigate the protective role of miR-29a in MPP+ in SH-SY5Y cell lines in vitro PD model by targeting mitochondrial antiviral signaling protein (MAVS). Administration of MPP + inhibited miR-29a expression in SH-SY5Y cell lines. Our findings prove that miR-29a mimic treatment decreased cell death, ROS production, MAVS, p-IRF3, p-NFκBp65, IL-6, cleaved caspase-3, cleaved-PARP, LC3BII, and death while increasing glutathione peroxidase 1 and manganese superoxide dismutase after MPP + treatment in SH-SY5Y cells. Furthermore, MAVS expression was significantly corrected with the above genes in our in vitro model of PD. Luciferase activity analysis also confirmed that miR-29a specific binding 3'UTR of MAVS repressed expression. In conclusion, this research provides novel insight into a neuroprotective pathway of miR-29a and could thus serve as a possible therapeutic target for improving the treatment of PD.
Collapse
Affiliation(s)
- Ya-Ling Yang
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Tsu-Kung Lin
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Center of Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan
| | - Ying-Hsien Huang
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, And Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan.
| |
Collapse
|
40
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
41
|
MiR-370-3p aggravates blood–brain barrier injury and neuron apoptosis by targeting SMURF1 to activate the TLR4/MyD88/NF-κB signaling in sepsis-associated encephalopathy. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00270-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Hiengrach P, Visitchanakun P, Tongchairawewat P, Tangsirisatian P, Jungteerapanich T, Ritprajak P, Wannigama DL, Tangtanatakul P, Leelahavanichkul A. Sepsis Encephalopathy Is Partly Mediated by miR370-3p-Induced Mitochondrial Injury but Attenuated by BAM15 in Cecal Ligation and Puncture Sepsis Male Mice. Int J Mol Sci 2022; 23:5445. [PMID: 35628259 PMCID: PMC9141734 DOI: 10.3390/ijms23105445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100β, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1β) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Pakteema Tongchairawewat
- Chulalongkorn University International Medical Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (P.T.); (T.J.)
| | - Ponphisudti Tangsirisatian
- Chulalongkorn University International Medical Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (P.T.); (T.J.)
| | - Thitiphat Jungteerapanich
- Chulalongkorn University International Medical Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (P.T.); (T.J.)
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Dhammika Leshan Wannigama
- Antimicrobial Resistance and Stewardship Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Pattarin Tangtanatakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Disease, Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Bougea A. MicroRNA as Candidate Biomarkers in Atypical Parkinsonian Syndromes: Systematic Literature Review. Medicina (B Aires) 2022; 58:medicina58040483. [PMID: 35454322 PMCID: PMC9025474 DOI: 10.3390/medicina58040483] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background and Objectives: Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are rare atypical parkinsonian syndromes, characterized by motor and cognitive symptoms. Their clinical diagnosis is challenging because there are no established biomarkers. Dysregulation of microRNAs (miRNAs/miRs) has been reported to serve an important role in neurodegenerative diseases. However, the miRNA profiles of MSA and PSP patients are rarely reported. The aim of this study was to critically review the role of miRNAs as diagnostic biomarkers to differentiate these atypical parkinsonian disorders and their role in disease pathogenesis. Materials and Methods: A systematic literature search of PubMed was conducted up to February 2022 according the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Results: A total of 15 studies were analyzed. Three studies have shown that miR-9-3p, miR-19a, miR-19b, and miR-24 are potential biomarkers for MSA. In two studies, miR-132 was downregulated, whereas miR-147a and miR-518e were upregulated in the brain tissue of PSP patients. Conclusions: The potential of miRNA is still uncertain as a potential differential diagnostic marker to identify these disorders. Pre-analytical and analytical factors of included studies were important limitations to justify the introduction of miRNAs into clinical practice.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 72-74 Vassilisis Sofia's Avenue, 11528 Athens, Greece
| |
Collapse
|
44
|
Ahmadzadeh-Darinsoo M, Ahmadzadeh-Darinsoo M, Abbasi S, Arefian E, Bernard C, Tafreshi AP. Altered expression of miR-29a-3p and miR-34a-5p by specific inhibition of GSK3β in the MPP+ treated SH-SY5Y Parkinson's model. Noncoding RNA Res 2022; 7:1-6. [PMID: 35087989 PMCID: PMC8777260 DOI: 10.1016/j.ncrna.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022] Open
Abstract
In the current study, the effects of 7-BIO as a specific GSK3β inhibitor was examined on cell survival and expression of miR-29a-3p and miR-34a-5p in neurotoxin MPP+ treated SH-SY5Y cells. Our findings revealed that while co-treatment of the cells with 7-BIO and MPP+ did not alter the toxicity induced by MPP+, pretreatment with 3.5 μM 7-BIO for 6 h increased the survival of the 2 mM MPP+ treated cells. Also, qRT-PCR analysis of gene expression showed that while miR-29a-3p was unchanged in cells treated with either 2 mM MPP+ or 3.5 μM 7-BIO alone, miR-34a-5p was increased by MPP+ but decreased by 7-BIO. Pretreatment with 3.5 μM 7-BIO prior to MPP+ however, increased miR-29a-3p but decreased miR-34a-5p induced by MPP+. We therefore suggest that 7-BIO inhibition of GSK3β alleviates the MPP+ induced neurotoxicity by regulating miR-29a-3p and miR-34a-5p expressions in Parkinson's disease model SH-SY5Y cells.
Collapse
|
45
|
Liu Y, Xu Y, Yu M. MicroRNA-4722-5p and microRNA-615-3p serve as potential biomarkers for Alzheimer's disease. Exp Ther Med 2022; 23:241. [PMID: 35222718 PMCID: PMC8815048 DOI: 10.3892/etm.2022.11166] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/09/2021] [Indexed: 12/05/2022] Open
Abstract
The aim of the present study was to investigate the expression levels of microRNA(miR)-4722-5p and miR-615-3p in Alzheimer's disease (AD) and their diagnostic value. Blood samples were collected from 33 patients with AD and 33 healthy controls, and an β-amyloid (Aβ)25-35-induced PC12 cell model was also established. The relative mRNA expression levels of miR-4722-5p and miR-615-3p were detected using reverse transcription-quantitative PCR. The correlations between the mRNA expression levels of the two miRNAs and the mini-mental state examination (MMSE) scores were analyzed, and the receiver operating characteristic curve was used to assess the diagnostic value of miR-4722-5p and miR-615-3p in AD. Functional enrichment analysis of the miRNA target genes was performed using The Database for Annotation, Visualization and Integrated Discovery database and the R language analysis package. The mRNA expression levels of miR-4722-5p and miR-615-3p were increased in patients with AD and the Aβ25-35-induced PC12 cell model. The mRNA expression levels of miR-4722-5p and miR-615-3p were negatively correlated with MMSE scores, and the combination of the two miRNAs for AD had an improved diagnostic value than that of each miRNA alone. The results of Gene Ontology (GO) enrichment analysis showed that the target genes of miR-4722-5p were found in the cytoplasm and cytosol, and were mainly involved in protein folding and cell division. The molecular functions included protein binding and GTPase activator activity. The results of Kyoto Encyclopedia of Genes and Genomes analysis showed that miR-4722-5p was associated with the regulation of dopaminergic synapses and mTOR signaling pathways. GO enrichment analysis also revealed that the target genes of miR-615-3p were located in the nucleus and cytoplasm, were involved in the regulation of transcription and protein phosphorylation, and were associated with protein binding, metal ion binding and transcription factor activity. The target genes of miR-615-3p played important roles in the regulation of the Ras and FoxO signaling pathways. In conclusion, miR-4722-5p and miR-615-3p may be potential biomarkers in the early diagnosis of AD.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yuhao Xu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Ming Yu
- Department of Neurology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| |
Collapse
|
46
|
Xu A, Kouznetsova VL, Tsigelny IF. Alzheimer's Disease Diagnostics Using miRNA Biomarkers and Machine Learning. J Alzheimers Dis 2022; 86:841-859. [PMID: 35147545 DOI: 10.3233/jad-215502] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The current standard for Alzheimer's disease (AD) diagnosis is often imprecise, as with memory tests, and invasive or expensive, as with brain scans. However, the dysregulation patterns of miRNA in blood hold potential as useful biomarkers for the non-invasive diagnosis and even treatment of AD. OBJECTIVE The goal of this research is to elucidate new miRNA biomarkers and create a machine-learning (ML) model for the diagnosis of AD. METHODS We utilized pathways and target gene networks related to confirmed miRNA biomarkers in AD diagnosis and created multiple models to use for diagnostics based on the significant differences among miRNA expression between blood profiles (serum and plasma). RESULTS The best performing serum-based ML model, trained on filtered disease-specific miRNA datasets, was able to identify miRNA biomarkers with 92.0% accuracy and the best performing plasma-based ML model, trained on filtered disease-specific miRNA datasets, was able to identify miRNA biomarkers with 90.9% accuracy. Through analysis of AD implicated miRNA, thousands of descriptors reliant on target gene and pathways were created which can then be used to identify novel biomarkers and strengthen disease diagnosis. CONCLUSION Development of a ML model including miRNA and their genomic and pathway descriptors made it possible to achieve considerable accuracy for the prediction of AD.
Collapse
Affiliation(s)
- Amy Xu
- IUL Science Internship Program, San Diego, CA, USA
| | - Valentina L Kouznetsova
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA.,BiAna, San Diego, CA, USA
| | - Igor F Tsigelny
- San Diego Supercomputer Center, University of California San Diego, La Jolla, CA, USA.,BiAna, San Diego, CA, USA.,Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
47
|
Manna I, Quattrone A, De Benedittis S, Iaccino E, Quattrone A. Roles of Non-Coding RNAs as Novel Diagnostic Biomarkers in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1475-1489. [PMID: 34334422 PMCID: PMC8609715 DOI: 10.3233/jpd-212726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, affecting 5%of the elderly population. Currently, the diagnosis of PD is mainly based on clinical features and no definitive diagnostic biomarkers have been identified. The discovery of biomarkers at the earliest stages of PD is of extreme interest. This review focuses on the current findings in the field of circulating non-coding RNAs in PD. We briefly describe the more established circulating biomarkers in PD and provide a more thorough review of non-coding RNAs, in particular microRNAs, long non-coding RNAs and circular RNAs, differentially expressed in PD, highlighting their potential for being considered as biomarkers for diagnosis. Together, these studies hold promise for the use of peripheral biomarkers for the diagnosis of PD.
Collapse
Affiliation(s)
- Ida Manna
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, Catanzaro, Italy
| | - Andrea Quattrone
- Department of Medical and Surgical Sciences, Institute of Neurology, University “Magna Graecia, ” Germaneto, Catanzaro, Italy
| | - Selene De Benedittis
- Department of Medical and Surgical Sciences, University “Magna Graecia, ” Germaneto, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Section of Germaneto, Catanzaro, Italy
- Neuroscience Research Center, University “Magna Graecia”, Catanzaro, Italy
| |
Collapse
|
48
|
Ruffo P, Strafella C, Cascella R, Caputo V, Conforti FL, Andò S, Giardina E. Deregulation of ncRNA in Neurodegenerative Disease: Focus on circRNA, lncRNA and miRNA in Amyotrophic Lateral Sclerosis. Front Genet 2021; 12:784996. [PMID: 34925464 PMCID: PMC8674781 DOI: 10.3389/fgene.2021.784996] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/16/2021] [Indexed: 01/17/2023] Open
Abstract
Parallel and massive sequencing of total RNA samples derived from different samples are possible thanks to the use of NGS (Next Generation Sequencing) technologies. This allowed characterizing the transcriptomic profile of both cell and tissue populations, increasing the knowledge of the molecular pathological processes of complex diseases, such as neurodegenerative diseases (NDs). Among the NDs, Amyotrophic Lateral Sclerosis (ALS) is caused by the progressive loss of motor neurons (MNs), and, to date, the diagnosis is often made by exclusion because there is no specific symptomatologic picture. For this reason, it is important to search for biomarkers that are clinically useful for carrying out a fast and accurate diagnosis of ALS. Thanks to various studies, it has been possible to propose several molecular mechanisms associated with the disease, some of which include the action of non-coding RNA, including circRNAs, miRNAs, and lncRNAs which will be discussed in the present review. The evidence analyzed in this review highlights the importance of conducting studies to better characterize the different ncRNAs in the disease to use them as possible diagnostic, prognostic, and/or predictive biomarkers of ALS and other NDs.
Collapse
Affiliation(s)
- Paola Ruffo
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
49
|
Wang S, Wen Q, Xiong B, Zhang L, Yu X, Ouyang X. Long Noncoding RNA NEAT1 Knockdown Ameliorates 1-Methyl-4-Phenylpyridine-Induced Cell Injury Through MicroRNA-519a-3p/SP1 Axis in Parkinson Disease. World Neurosurg 2021; 156:e93-e103. [PMID: 34508910 DOI: 10.1016/j.wneu.2021.08.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Parkinson disease is a neurodegenerative disease and is characterized by resting tremor, dementia, and gait disorder. Previous studies have indicated that long noncoding RNA participates in the regulation of the pathogenesis of Parkinson disease. The study aimed to reveal the effects of long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1) on 1-methyl-4-phenylpyridine (MPP+)-induced human neuroblastoma cell injury and the underlying mechanism. METHODS The expressions of NEAT1, microRNA (miR)-519a-3p, and transcription factor specific protein 1 (SP1) were detected by quantitative real-time polymerase chain reaction. The protein expressions of SP1 and inflammation-related factors were determined by Western blot. Cell viability was determined by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell apoptosis was investigated by flow cytometry analysis. The targeting relationship between miR-519a-3p and NEAT1 or SP1 was predicted by starBase online database and verified by a dual-luciferase reporter assay. RESULTS NEAT1 and SP1 expressions were significantly upregulated, whereas miR-519a-3p was downregulated in MPP+-treated neuroblastoma cells in a dose- and time-dependent manner when compared with control groups. NEAT1 knockdown restrained MPP+-induced repression of cell viability and promotion of cell apoptosis and inflammation. Additionally, NEAT1 served as a sponge of miR-519a-3p and regulated MPP+-caused cell injury by interacting with miR-519a-3p. Also, SP1, a target gene of miR-519a-3p, rescued miR-519a-3p-mediated actions under MPP+ treatment. Importantly, NEAT1 stimulated SP1 expression through interaction with miR-519a-3p. CONCLUSIONS NEAT1 silencing protected against MPP+-induced neuroblastoma cell injury by regulating the miR-519a-3p/SP1 pathway. This finding provides a novel direction for the development of therapeutic strategies for Parkinson disease.
Collapse
Affiliation(s)
- Shuihua Wang
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| | - Qinli Wen
- Department of Pharmacy, Jiangxi Cancer Hospital, Nanchang, China
| | - Bohai Xiong
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| | - Li Zhang
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| | - Xiaoli Yu
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China.
| | - Xiaochun Ouyang
- Department of Neurology, 908 Hospital of PLA Joint Logistics Support Force, Nanchang, China
| |
Collapse
|
50
|
Screening of Parkinson's Differential MicroRNA Based on GEO Database and Its Clinical Verification. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8171236. [PMID: 34812409 PMCID: PMC8605920 DOI: 10.1155/2021/8171236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Objective This study is set out to explore the potential difference of miR in PD through GEO data and provide diagnostic indicators for clinical practice. Methods In this study, differential miR was screened through the Gene Expression Omnibus (GEO) database, 68 PD patients treated in our hospital from May 2017 to March 2018 were collected as the research group (RG), and 50 normal subjects who underwent physical examination in our hospital during the same period were collected as the control group (CG). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression and diagnostic value of miR-374a-5p in serum of patients. The potential target genes of miR-374a-5p were predicted, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology Consortium (GO) were carried out. Results GEO2R analysis revealed that 193 miRs are expressed differentially, of which 78 were highly expressed and 115 were poorly expressed. The miR-374a-5p expression in the serum of the RG was reduced markedly and had a diagnostic value. Targetscan and miRDB online websites were used to predict their target genes, with 415 common target genes. miR-374a-5p may participate in 27 functional pathways and 8 signal pathways. Conclusion miR-335-5p has low expression in PD and is expected to be a potential diagnostic indicator.
Collapse
|