1
|
Bourrel PN, Caluva E, Requina C, Juricich J, Gerlo P, Avila S, Galvani G. Impact of hive configuration on internal temperature and pollen foraging in a semi-arid region. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2025:10.1007/s00484-025-02931-6. [PMID: 40304763 DOI: 10.1007/s00484-025-02931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 04/06/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
The health of honey bee colonies is under threat from numerous factors, particularly thermal events intensified by climate change. In specific regions, beekeeping is undergoing continuous adaptation to enhance productivity and align with local environmental characteristics. An alternative technique to the traditional Langstroth hive (SH) is the stacked nucs method (NH), which involves managing colonies in a smaller space than the standard 10-frame hive. In the presence of immature stages, internal temperature must be adequately controlled by workers hence the description of thermal dynamics would facilitate understanding the development of colonies with different beekeeping methodologies. In an apiary located in Mendoza (32° 41' 05.3" S, 68° 39' 22.4" W) the internal temperature of the brood area and lateral wall in the hives were monitored during the season of honey production. We describe the frequency of exposition to non-optimal temperature range for brood and flight activity of pollen collection. The mean of internal temperature in SH was 33.2 °C and 34.1 °C in NH. The thermal range was between 2.4 and 3.1 °C in the brood area, being significantly elevated in the colony formation period. The lateral temperature values showed the exposure to thermal extremes indicating overheating in hives with reduced space. Pollen foraging was similar with a decrease in activity as noon approached in both types of hives. The temperature above or below the optimal range was discussed according to the hourly pattern, heat waves, and seasonal schedule by the beekeeper's management in a semi-arid region.
Collapse
Affiliation(s)
- Pablo Neyen Bourrel
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Guaymallén, Provincia de Mendoza, Argentina
| | - Emanuel Caluva
- Estación Experimental, Instituto Nacional de Tecnología Agropecuaria, Concepción del Uruguay, Provincia de Entre Ríos, Argentina
| | - Carina Requina
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Guaymallén, Provincia de Mendoza, Argentina
| | - Juan Juricich
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Guaymallén, Provincia de Mendoza, Argentina
| | - Paula Gerlo
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Guaymallén, Provincia de Mendoza, Argentina
| | - Sebastian Avila
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Guaymallén, Provincia de Mendoza, Argentina
- Estación Experimental, Instituto Nacional de Tecnología Agropecuaria, Junín, Provincia de Mendoza, Argentina
| | - Geronimo Galvani
- Facultad de Ciencias Veterinarias y Ambientales, Universidad Juan Agustín Maza, Guaymallén, Provincia de Mendoza, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Quezada-Euán JJG, Medina RG, Soto-Correa A, Pech-Jiménez C, Paxton RJ, Solís T, Aragón-Pech R, Moo-Valle H. Heat domes increase vulnerability of native stingless bees by simultaneously weakening key survival traits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177705. [PMID: 39579888 DOI: 10.1016/j.scitotenv.2024.177705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Heatwave events increase in frequency and duration, yet there is a strong gap in assessing their nonlethal effects on tropical insects, including beneficial social species. The stingless bees are a highly diverse group of pantropical pollinators that provide key ecosystem services. Here, we simultaneously analyzed for the first time the effect of sublethal heat stress (HS) during immature (pupal) development on adult morphology (size, shape, symmetry) and immune response of the three castes/sexes in stingless bee colonies: workers, unmated queens (gynes) and males, as well as its impact on the onset of foraging and lifespan in workers. Individuals experimentally heat stressed during development had smaller body size and reduced symmetry as adults compared with control, non-heat stressed (NHS) individuals, though the strength of the effects of HS also varied between castes and sexes. Notably, males were more prone to the effects of HS compared with workers, and less so gynes; HS reduced the immune response of males, though not that of workers or queens. Workers had significantly earlier onset of foraging and a shorter lifespan when exposed as immatures to HS. Under a worst-case scenario, knock-on negative impacts on individual survival caused by HS could compromise colony fitness. In the long-term, heatwaves may also have repercussions for the persistence of stingless bee species, the sustainability of key ancestral activities like meliponiculture and ecosystem services. Measures to ameliorate the effect of climatic warming are urgently needed to protect these pollinators, which represent an iconic world heritage.
Collapse
Affiliation(s)
- J J G Quezada-Euán
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico.
| | - R G Medina
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) Campo Experimental Edzná, San Francisco de Campeche, Campeche, Mexico
| | - A Soto-Correa
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico; Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - C Pech-Jiménez
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Jalisco, Mexico
| | - R J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - T Solís
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - R Aragón-Pech
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - H Moo-Valle
- Departamento de Apicultura Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico
| |
Collapse
|
3
|
Chang MMY, Hsu PS, Yang EC, Sun SJ, Ho CK. Warming induces short-term phenological shifts in pollinator-plant interactions that enhance larval development in honey bee. PLoS One 2024; 19:e0314791. [PMID: 39625961 PMCID: PMC11614231 DOI: 10.1371/journal.pone.0314791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
Climate warming can precipitate mismatches in plant-pollinator interactions by altering their phenologies of both parties, impacting ecosystem services. While most studies have focused on long-term, seasonal phenological shifts, the effect of warming on short-term phenological match-mismatch in these interactions remains unclear. Here, we investigate how experimental warming affects within-day foraging behavior of the honey bee (Apis mellifera) and plant anthesis, and whether the resulting changes in bee pollen composition, in terms of the relative abundance of pollen from different plant species, influences larval development. Experimental warming advanced both the within-day foraging by bees and anthesis of Bidens pilosa-the predominant pollen source among all plant species represented in the collected pollen. Through experimental manipulation of pollen composition, we demonstrated that an increased proportion of B. pilosa pollen in the diet enhanced bee larval growth efficiency. Overall, our study demonstrates that warming may influence pollinator interactions with the many plant species by affecting pollinator behaviors and plant anthesis on short-term temporal scales, with potential implications for pollinator larval development.
Collapse
Affiliation(s)
- Megan M. Y. Chang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| | - Pei-Shou Hsu
- Miaoli District Agricultural Research and Extension Station, Ministry of Agriculture, Taipei City, Taiwan
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei City, Taiwan
| | - Syuan-Jyun Sun
- International Degree Program in Climate Change and Sustainable Development, National Taiwan University, Taipei City, Taiwan
| | - Chuan-Kai Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
4
|
Phokasem P, Disayathanoowat T, Chantaphanwattana T, Sinpoo C, Chen YP, Evans JD, Lee JH, Krongdang S. Comparative toxicity of oral exposure to paraquat: Survival rates and gene expression in two honey bees species; Apis mellifera and Apis cerana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125026. [PMID: 39326830 DOI: 10.1016/j.envpol.2024.125026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Honey bees provide vital pollination services to agricultural crops and wild plants worldwide. Unfortunately, the misuse and overuse of pesticides in agricultural production have led to an increase in incidents harming honey bees in recent years. Among the commonly utilized bee species in beekeeping are Apis cerana and Apis mellifera, with wild A. cerana populations widely dispersed in forests, contributing substantially to ecosystem balance. Yet, the impact of paraquat, a toxic herbicide, on A. cerana remains largely unexplored. This study aims to address this gap by examining acute exposure endpoints based on mortality represented by median lethal doses (LD50 values) of paraquat, survival rates, and gene expression patterns between the A. cerana and A. mellifera. The findings revealed that A. cerana exhibits greater sensitivity to paraquat compared to A. mellifera. The acute oral LD50 values for A. cerana were 5.85, 1.74, and 1.21 μg/bee at 24, 48, and 72 h, respectively, whereas the corresponding values for A. mellifera were 104.00, 11.00, and 6.41 μg/bee. Further, the study demonstrated significant upregulation of the detoxification (antioxidative) enzymes SOD1, CAT, and LLDH-X2 in both A. mellifera and A. cerana following exposure to the lethal dose of paraquat. However, SOD2 expression was notably downregulated in both species, indicating potential mitochondrial damage. These findings suggest that while honey bees initiate activate defense mechanisms against oxidative damage, paraquat exposure may still impair mitochondrial function. Paraquat was found to be moderately toxic to A. mellifera but highly toxic to A. cerana, indicating the importance of screening multiple bee species when assessing the risks of chemical exposure. This research provides a rare comparative analysis of chemical stress effects on morbidity and gene expression in two different honey bee species, establishing a foundational framework for risk assessment and the regulation of herbicide risks to pollinating insects.
Collapse
Affiliation(s)
- Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | | | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand; Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMARTBEE SDGs), Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Yan Ping Chen
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Jay D Evans
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA.
| | - Ji-Ho Lee
- School of Natural Resources and Environmental Science, Department of Biological Environment, Kangwon National University, Chuncheon, Gangwon State, 24341, Republic of Korea.
| | - Sasiprapa Krongdang
- US Department of Agriculture - Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, 20705, USA; Faculty of Science and Social Sciences, Burapha University, Sa Kaeo Campus, Sa Kaeo, 27160, Thailand.
| |
Collapse
|
5
|
Nebauer CA, Prucker P, Ruedenauer FA, Kollmann J, Leonhardt SD. Bumblebees under stress: Interacting effects of pesticides and heatwaves on colony development and longevity. iScience 2024; 27:111050. [PMID: 39559759 PMCID: PMC11570329 DOI: 10.1016/j.isci.2024.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Pollinator decline is linked to intensified agricultural practices, pathogens, climate change, and several other factors. We investigated the combined impact of heat and pesticide stress on food consumption, survival, and reproductive fitness of bumble bees. As climate change is expected to intensify heatwaves, we simulated a present-day and a future heatwave scenario (as expected in 50 years). In both scenarios, we exposed microcolonies to three widely used pesticides: azoxystrobin (fungicide), flupyradifurone, and sulfoxaflor (both insecticides)-mixed into pollen and nectar in field-realistic concentrations. We found that bees always consumed the least of sulfoxaflor-treated food, whereas consumption did not differ between other treatments or heatwave scenarios. Surprisingly, pesticide-stressed colonies performed slightly better in the future heatwave scenario in terms of reproductive fitness and survival. Sulfoxaflor consistently had the strongest negative effect, reducing survival rates, brood development, and food consumption, although effects were less severe in the future heatwave scenario.
Collapse
Affiliation(s)
- Carmen A. Nebauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Paula Prucker
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johannes Kollmann
- Restoration Ecology, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Sara D. Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Li X. Based proteomics analyses reveal response mechanisms of Apis mellifera (Hymenoptera: Apidae) against the heat stress. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 39600210 PMCID: PMC11599371 DOI: 10.1093/jisesa/iead074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/11/2023] [Accepted: 10/03/2023] [Indexed: 11/29/2024]
Abstract
Heat stress can significantly affect the survival, metabolism, and reproduction of honeybees. It is important to understand the proteomic changes of honeybees under heat stress to understand the molecular mechanism behind heat resistance. However, the proteomic changes of honeybees under heat stress are poorly understood. We analyzed the proteomic changes of Apis mellifera Ligustica (Hymenoptera: Apidae) under heat stress using mass spectrometry-based proteomics with TMT (Tandem mass tags) stable isotope labeling. A total of 3,799 proteins were identified, 85 of which differentially abundance between experimental groups. The most significant categories affected by heat stress were associated with transcription and translation processes, metabolism, and stress-resistant pathways. We found that heat stress altered the protein profiles in A. mellifera, with momentous resist proteins being upregulated in heat groups. These results show a proof of molecular details that A. mellifera can respond to heat stress by increasing resist proteins. Our findings add research basis for studying the molecular mechanisms of honeybees' resistance to heat stress. The differentially expressed proteins identified in this study can be used as biomarkers of heat stress in bees, and provide a foundation for future research on honeybees under heat stress. Our in-depth proteomic analysis provides new insights into how bees cope with heat stress.
Collapse
Affiliation(s)
- Xinyu Li
- Shandong Vocational College of Light Industry, Zibo, Shandong Province, China
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong Province, China
- Qingdao Bright Moon Seaweed Group Co., Ltd, Qingdao, Shandong Province, China
| |
Collapse
|
7
|
Wallon S, Rigal F, Melo CD, Elias RB, Borges PAV. Unveiling Arthropod Responses to Climate Change: A Functional Trait Analysis in Intensive Pastures. INSECTS 2024; 15:677. [PMID: 39336645 PMCID: PMC11432249 DOI: 10.3390/insects15090677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This study investigates the impact of elevated temperatures on arthropod communities in intensively managed pastures on the volcanic island of Terceira, Azores (Portugal), using a functional trait approach. Open Top Chambers (OTCs) were employed to simulate increased temperatures, and the functional traits of ground dwelling arthropods were analyzed along a small elevation gradient (180-400 m) during winter and summer. Key findings include lower abundances of herbivores, coprophagous organisms, detritivores, and fungivores at high elevations in summer, with predators showing a peak at middle elevations. Larger-bodied arthropods were more prevalent at higher elevations during winter, while beetles exhibited distinct ecological traits, with larger species peaking at middle elevations. The OTCs significantly affected the arthropod communities, increasing the abundance of herbivores, predators, coprophagous organisms, and fungivores during winter by alleviating environmental stressors. Notably, iridescent beetles decreased with elevation and were more common inside OTCs at lower elevations, suggesting a thermoregulatory advantage. The study underscores the importance of considering functional traits in assessing the impacts of climate change on arthropod communities and highlights the complex, species-specific nature of their responses to environmental changes.
Collapse
Affiliation(s)
- Sophie Wallon
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
| | - François Rigal
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- Institut des Sciences Analytiques et de Physico Chimie Pour L'environnement et les Materiaux UMR 5254, Comité National de la Recherche Scientifque-University de Pau et des Pays de l'Adour-E2S UPPA, 64053 Pau, France
| | - Catarina D Melo
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- CFE-Centre for Functional Ecology, Universidade de Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Rui B Elias
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
| | - Paulo A V Borges
- CE3C-Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group, CHANGE-Global Change and Sustainability Institute, School of Agricultural and Environmental Sciences, University of the Azores, Rua Capitão João d'Ávila, Pico da Urze, 9700-042 Angra do Heroísmo, Portugal
- IUCN SSC Atlantic Islands Invertebrate Specialist Group, 9700-042 Angra do Heroísmo, Portugal
| |
Collapse
|
8
|
Zhang B, Zhang C, Zhang J, Lu S, Zhao H, Jiang Y, Ma W. Regulatory roles of long non-coding RNAs in short-term heat stress in adult worker bees. BMC Genomics 2024; 25:506. [PMID: 38778290 PMCID: PMC11110378 DOI: 10.1186/s12864-024-10399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial modulators of post-transcriptional gene expression regulation, cell fate determination, and disease development. However, lncRNA functions during short-term heat stress in adult worker bees are poorly understood. Here, we performed deep sequencing and bioinformatic analyses of honeybee lncRNAs. RNA interference was performed by using siRNA targeting the most highly expressed lncRNA. The silencing effect on lncRNA and the relative expression levels of seven heat shock protein (HSP) genes, were subsequently examined. Overall, 7,842 lncRNAs and 115 differentially expressed lncRNAs (DELs) were identified in adult worker bees following heat stress exposure. Structural analysis revealed that the overall expression abundance, length of transcripts, exon number, and open reading frames of lncRNAs were lower than those of mRNAs. GO analysis revealed that the target genes were mainly involved in "metabolism," "protein folding," "response to stress," and "signal transduction" pathways. KEGG analysis indicated that the "protein processing in endoplasmic reticulum" and "longevity regulating pathway-multiple species" pathways were most enriched. Quantitative real-time polymerase chain reaction (qRT-PCR) detection of the selected DELs confirmed the reliability of the sequencing data. Moreover, the siRNA experiment indicated that feeding siRNA yielded a silencing efficiency of 77.51% for lncRNA MSTRG.9645.5. Upon silencing this lncRNA, the expression levels of three HSP genes were significantly downregulated (p < 0.05), whereas those of three other HSP genes were significantly upregulated (p < 0.05). Our results provide a new perspective for understanding the regulatory mechanisms of lncRNAs in adult worker bees under short-term heat stress.
Collapse
Affiliation(s)
- Bing Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Chaoying Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Jiangchao Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Surong Lu
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi, China.
| |
Collapse
|
9
|
Johnson BL, Prouty C, Jack CJ, Stuhl C, Ellis JD. Developing a method to rear Varroa destructor in vitro. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:795-808. [PMID: 38478141 DOI: 10.1007/s10493-024-00905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/27/2024] [Indexed: 05/03/2024]
Abstract
Varroa destructor is a significant mite pest of western honey bees (Apis mellifera). Developing a method to rear and maintain populations of V. destructor in vitro would provide year-round access to the mites, allowing scientists to study their biology, behavior, and control more rapidly. In this study, we determined the impact of various rearing parameters on V. destructor survival and reproduction in vitro. This was done by collecting V. destructor from colonies, placing them in gelatin capsules containing honey bee larvae, and manipulating the following conditions experimentally: rearing temperature, colony source of honey bee larva, behavioral/developmental stages of V. destructor and honey bee larva, and mite:bee larva ratio. Varroa destructor survival was significantly impacted by temperature, colony source of larvae and mite behavioral stage. In addition, V. destructor reproduction was significantly impacted by mite: larva ratio, larval developmental stage, colony source of larva, and temperature. The following conditions optimized mite survival and reproduction in vitro: using a 4:1 mite:larva ratio, beginning the study with late stage uncapped larvae, using mites collected from adult bees, maintaining the rearing temperature at 34.5° C, and screening larval colony source. Ultimately, this research can be used to improve V. destructor in vitro rearing programs.
Collapse
Affiliation(s)
- Brynn L Johnson
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, 32611, Gainesville, FL, USA.
| | - Cody Prouty
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, 32611, Gainesville, FL, USA
| | - Cameron J Jack
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, 32611, Gainesville, FL, USA
| | - Charles Stuhl
- Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 32608, Gainesville, FL, USA
| | - James D Ellis
- Honey Bee Research and Extension Laboratory, Entomology and Nematology Department, University of Florida, 32611, Gainesville, FL, USA
| |
Collapse
|
10
|
Alghamdi AA, Alattal YZ. Alterations in Histone Methylation States Increased Profusion of Lethal(2)-Essential-for-Life-Like (l(2)elf), Trithorax and Polycomb Genes in Apis mellifera under Heat Stress. INSECTS 2024; 15:33. [PMID: 38249039 PMCID: PMC10816215 DOI: 10.3390/insects15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
Histone post-translational modifications (PTMs) represent a key mechanism in the thermal adaptation of the honeybee Apis mellifera. In this study, a chromatin immunoprecipitation assay and qPCR were employed to explore the changes in the methylation states of H3K4m2, H3K4m3, H3K27m2 and H3K27m3 associated with l2efl (ID: 72474, 724405, 724488), histone methyltransferases (HMTs) ((trx) and PR-set7) and Polycomb (Pc) and (Su(z)12) genes in A. m. jemenitica (tolerant subspecies) and A. m. carnica (susceptible subspecies) in response to heat treatment (42 °C for 1 h). The results revealed significant enrichment fold changes in the methylation/demethylation of most H3K4 and H3K27 marks at all targeted genes. These changes increased the profusion of l2efl (ID: 72474, 724405, 724488), histone methyltransferases (HMTs) (trx) and Polycomb (Pc) and Su(z)12 and decreased the profusion of HMT (PR-set7) in both honeybee subspecies. The changes in the methylation enrichment folds of histone methyltransferases (HMTs) ((trx), PR-set) and Polycomb (Pc), Su(z)12 genes demonstrate the well-harmonized coordination of epigenetic gene regulation in response to heat treatment. Compared to the control, the changes in the methylation enrichment folds of H3K4m3 at Polycomb Su(z)12 were about 30× and 100× higher in treated A. m. jemenitica and A.m. carnica, respectively. Similarly, changes in the methylation/demethylation enrichment folds of HMT (trx) and Polycomb (Pc) and Su(z)12 were 2-3× higher in A. m. carnica than in A. m. jemenitica after treatment (42 °C). It is evident that post-translational chromatin modification in both honeybee subspecies can diminish heat stress impact by (I) increasing the transcriptional provision of l2efl associated with survival and (II) increasing the silencing of genes associated with general cellular activities.
Collapse
Affiliation(s)
| | - Yehya Z. Alattal
- Department of Plant Protection, Chair of Engineer Abdullah Ahmad Bagshan for Bee Research, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
11
|
Abou-Shaara HF. The response of heat shock proteins in honey bees to abiotic and biotic stressors. J Therm Biol 2024; 119:103784. [PMID: 38232472 DOI: 10.1016/j.jtherbio.2024.103784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Honey bees, Apis mellifera, are the most important managed pollinators worldwide. They are highly impacted by various abiotic and biotic stressors, especially temperature extremes, which can lead to cellular damage and death. The induction of heat shock proteins (HSPs) has been recorded in honey bees as a response to various types of stressors. HSPs are classified into different gene families according to their molecular weights. HSPs play an important role in maintaining cellular protein homeostasis due to their contribution as molecular chaperones or co-chaperones. HSPs in honey bees have complex functions with induction even under normal colony conditions. Previous studies have suggested various functions of HSPs to protect cells from damage under exposure to environmental stressors, pollutants, and pathogens. Surprisingly, HSPs have also been found to play roles in larval development and age-related tasks. The expression of HSPs varies depending on tissue type, developmental stage, age, and stress period. This article reviews studies on HSPs (sHSPs, HSP40, HSP60, HSP70, and HSP90) in honey bees and highlights gaps in the available knowledge. This review is crucial for honey bee research, particularly in the face of climate change challenges.
Collapse
Affiliation(s)
- Hossam F Abou-Shaara
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
| |
Collapse
|
12
|
Farnan H, Yeeles P, Lach L. Sublethal doses of insecticide reduce thermal tolerance of a stingless bee and are not avoided in a resource choice test. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230949. [PMID: 38026031 PMCID: PMC10663796 DOI: 10.1098/rsos.230949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Insecticides and climate change are among the multiple stressors that bees face, but little is known about their synergistic effects, especially for non-Apis bee species. In laboratory experiments, we tested whether the stingless bee Tetragonula hockingsi avoids insecticide in sucrose solutions and how T. hockingsi responds to insecticide and heat stress combined. We found that T. hockingsi neither preferred nor avoided sucrose solutions with either low (2.5 × 10-4 ng µl-1 imidacloprid or 1.0 × 10-4 ng µl-1 fipronil) or high (2.5 × 10-3 ng µl-1 imidacloprid or 1.0 × 10-3 ng µl-1 fipronil) insecticide concentrations when offered alongside sucrose without insecticide. In our combined stress experiment, the smallest dose of imidacloprid (7.5 × 10-4 ng) did not significantly affect thermal tolerance (CTmax). However, CTmax significantly reduced by 0.8°C (±0.16 SE) and by 0.5°C (±0.16 SE) when bees were fed as little as 7.5 × 10-3 ng of imidacloprid or 3.0 × 10-4 ng of fipronil, respectively, and as much as 1.5°C (±0.16 SE) and 1.2°C (±0.16 SE) when bees were fed 7.5 × 10-2 ng of imidacloprid or 3.0 × 10-2 ng of fipronil, respectively. Predictions of temperature increase, and increased insecticide use in the tropics suggest that T. hockingsi will be at increased risk of the effects of both stressors in the future.
Collapse
Affiliation(s)
- Holly Farnan
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| | - Peter Yeeles
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| | - Lori Lach
- College of Science and Engineering, James Cook University, PO Box 6811, Cairns, Queensland 4870, Australia
| |
Collapse
|
13
|
Jhawar J, Davidson JD, Weidenmüller A, Wild B, Dormagen DM, Landgraf T, Couzin ID, Smith ML. How honeybees respond to heat stress from the individual to colony level. J R Soc Interface 2023; 20:20230290. [PMID: 37848056 PMCID: PMC10581772 DOI: 10.1098/rsif.2023.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
A honey bee colony functions as an integrated collective, with individuals coordinating their behaviour to adapt and respond to unexpected disturbances. Nest homeostasis is critical for colony function; when ambient temperatures increase, individuals switch to thermoregulatory roles to cool the nest, such as fanning and water collection. While prior work has focused on bees engaged in specific behaviours, less is known about how responses are coordinated at the colony level, and how previous tasks predict behavioural changes during a heat stress. Using BeesBook automated tracking, we follow thousands of individuals during an experimentally induced heat stress, and analyse their behavioural changes from the individual to colony level. We show that heat stress causes an overall increase in activity levels and a spatial reorganization of bees away from the brood area. Using a generalized framework to analyse individual behaviour, we find that individuals differ in their response to heat stress, which depends on their prior behaviour and correlates with age. Examining the correlation of behavioural metrics over time suggests that heat stress perturbation does not have a long-lasting effect on an individual's future behaviour. These results demonstrate how thousands of individuals within a colony change their behaviour to achieve a coordinated response to an environmental disturbance.
Collapse
Affiliation(s)
- Jitesh Jhawar
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- School of Arts and Sciences, Ahmedabad University, 380009, Ahmedabad, Gujarat, India
| | - Jacob D. Davidson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Anja Weidenmüller
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Benjamin Wild
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - David M. Dormagen
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tim Landgraf
- Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany
| | - Iain D. Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| | - Michael L. Smith
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- Department of Biological Sciences, Auburn University, 36849 Auburn AL, USA
| |
Collapse
|
14
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
15
|
Alattal YZ, Alghamdi AA. Linking Histone Methylation States and hsp Transcriptional Regulation in Thermo-Tolerant and Thermo-Susceptible A. mellifera L. Subspecies in Response to Heat Stress. INSECTS 2023; 14:insects14030225. [PMID: 36975910 PMCID: PMC10057246 DOI: 10.3390/insects14030225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 05/31/2023]
Abstract
Genetic and epigenetic responses to environmental cues of worker honeybees mediate hsp synthesis, a key mechanism to tolerate high ambient temperatures in Apis mellifera. In this study, the chromatin immunoprecipitation assay followed by qPCR were used to determine alterations in histone methylation states (H3K27me2, H3K27me3, H3K4me2, and H3K4me3) associated with hsp/hsc/trx in A. m. jemenetica (thermo-tolerant subspecies) and A. m. carnica (thermo-susceptible subspecies) after heat treatment. The results revealed significant changes in enrichment folds of histone methylation states associated with hsp/hsc/trx. Indeed, the enrichment of H3K27me2 decreased strongly in response to heat stress. Changes in histone methylation states were significantly higher in A. m. carnica samples compared to A. m. jemenitica samples. Our study provides a new perception on linking histone post-translational methylation as an epigenetic mechanism of gene regulation with hsp/hsc/trx in A. mellifera subspecies exposed to heat stress.
Collapse
|
16
|
McKinnon AC, Collins L, Wood JL, Murphy N, Franks AE, Steinbauer MJ. Precision Monitoring of Honey Bee (Hymenoptera: Apidae) Activity and Pollen Diversity during Pollination to Evaluate Colony Health. INSECTS 2023; 14:95. [PMID: 36662023 PMCID: PMC9865544 DOI: 10.3390/insects14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Certain crops depend upon pollination services for fruit set, and, of these, almonds are of high value for Australia. Stressors, such as diseases, parasites, pesticides, and nutrition, can contribute to honey bee Apis mellifera L. colony decline, thereby reducing bee activity and pollination efficiency. In Australia, field studies are required to monitor honey bee health and to ascertain whether factors associated with colony decline are impacting hives. We monitored honey bee colonies during and after pollination services of almond. Video surveillance technology was used to quantify bee activity, and bee-collected pollen was periodically tested for pesticide residues. Plant species diversity was also assessed using DNA metabarcoding of the pollen. Results showed that bee activity increased in almond but not in bushland. Residues detected included four fungicides, although the quantities were of low risk of oral toxicity to bees. Floral diversity was lower in the pollen collected by bees from almonds compared to bushland. However, diversity was higher at the onset and conclusion of the almond bloom, suggesting that bees foraged more widely when availability was low. Our findings suggest that commercial almond orchards may sustain healthier bee colonies compared to bushland in early spring, although the magnitude of the benefit is likely landscape-dependent.
Collapse
Affiliation(s)
- Aimee C. McKinnon
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| | - Luke Collins
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC 3086, Australia
| | - Nick Murphy
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Research Centre for Future Landscapes, La Trobe University, Melbourne, VIC 3086, Australia
| | - Martin J. Steinbauer
- Department of Ecology, Environment and Evolution, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
17
|
Dequenne I, Philippart de Foy JM, Cani PD. Developing Strategies to Help Bee Colony Resilience in Changing Environments. Animals (Basel) 2022; 12:ani12233396. [PMID: 36496917 PMCID: PMC9737243 DOI: 10.3390/ani12233396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/16/2022] [Accepted: 11/30/2022] [Indexed: 12/10/2022] Open
Abstract
Climate change, loss of plant biodiversity, burdens caused by new pathogens, predators, and toxins due to human disturbance and activity are significant causes of the loss of bee colonies and wild bees. The aim of this review is to highlight some possible strategies that could help develop bee resilience in facing their changing environments. Scientists underline the importance of the links between nutrition, microbiota, and immune and neuroendocrine stress resistance of bees. Nutrition with special care for plant-derived molecules may play a major role in bee colony health. Studies have highlighted the importance of pollen, essential oils, plant resins, and leaves or fungi as sources of fundamental nutrients for the development and longevity of a honeybee colony. The microbiota is also considered as a key factor in bee physiology and a cornerstone between nutrition, metabolism, growth, health, and pathogen resistance. Another stressor is the varroa mite parasite. This parasite is a major concern for beekeepers and needs specific strategies to reduce its severe impact on honeybees. Here we discuss how helping bees to thrive, especially through changing environments, is of great concern for beekeepers and scientists.
Collapse
Affiliation(s)
- Isabelle Dequenne
- J-M Philippart de Foy & I Dequenne Consultation, Avenue Orban, 127, 1150 Brussels, Belgium
| | | | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
- WELBIO Department, WEL Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Avenue Pasteur, 6, 1300 Wavre, Belgium
- Correspondence:
| |
Collapse
|
18
|
Cook D, Tarlinton B, McGree JM, Blackler A, Hauxwell C. Temperature Sensing and Honey Bee Colony Strength. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:715-723. [PMID: 35522232 PMCID: PMC9175291 DOI: 10.1093/jee/toac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Strength auditing of European honey bee (Apis mellifera Linnaeus, 1758 [Hymenoptera: Apidae]) colonies is critical for apiarists to manage colony health and meet pollination contracts conditions. Colony strength assessments used during pollination servicing in Australia typically use a frame-top cluster-count (Number of Frames) inspection. Sensing technology has potential to improve auditing processes, and commercial temperature sensors are widely available. We evaluate the use and placement of temperature sensing technology in colony strength assessment and identify key parameters linking temperature to colony strength. Custom-built temperature sensors measured hive temperature across the top of hive brood boxes. A linear mixed-effect model including harmonic sine and cosine curves representing diurnal temperature fluctuations in hives was used to compare Number of Frames with temperature sensor data. There was a significant effect of presence of bees on hive temperature and range: hives without bees recorded a 5.5°C lower mean temperature and greater temperature ranges than hives containing live bees. Hives without bees reach peak temperature earlier than hives with bees, regardless of colony strength. Sensor placement across the width of the hive was identified as an important factor when linking sensor data with colony strength. Data from sensors nearest to the hive geometric center were found to be more closely linked to colony strength. Furthermore, a one unit increase in Number of Frames was significantly associated with a mean temperature increase of 0.36°C. This demonstrates that statistical models that account for diurnal temperature patterns could be used to predict colony strength from temperature sensor data.
Collapse
Affiliation(s)
| | - Boyd Tarlinton
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia
| | - James M McGree
- School of Mathematical Sciences, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia
| | - Alethea Blackler
- School of Design, Faculty of Creative Industries, Education and Social Justice, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia
| | - Caroline Hauxwell
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia
| |
Collapse
|
19
|
Effects of Thiamethoxam-Dressed Oilseed Rape Seeds and Nosema ceranae on Colonies of Apis mellifera iberiensis, L. under Field Conditions of Central Spain. Is Hormesis Playing a Role? INSECTS 2022; 13:insects13040371. [PMID: 35447813 PMCID: PMC9032297 DOI: 10.3390/insects13040371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The collapse of the honey bee colonies is a complex phenomenon in which different factors may participate in an interrelated manner (e.g., pathogen interactions, exposure to chemicals, beekeeping practices, climatology, etc.). In light of the current debate regarding the interpretation of field and monitoring studies in prospective risk assessments, here we studied how exposure to thiamethoxam affects honey bee colonies in Central Spain when applied as a seed treatment to winter oilseed rape, according to the good agricultural practice in place prior to the EU restrictions. Under the experimental conditions, exposure to thiamethoxam, alone or in combination with other stressors, did not generate and maintain sufficient chronic stress as to provoke honey bee colony collapse. The stress derived from exposure to thiamethoxam and honey bee pathogens was compensated by adjustments in the colony’s dynamics, and by an increase in the worker bee population, a behavior known as hormesis. An analysis of the factors underlying this phenomenon should be incorporated into the prospective risk assessment of plant protection products in order to improve the future interpretation of field studies and management practices. Abstract To study the influence of thiamethoxam exposure on colony strength and pathogen prevalence, an apiary (5 colonies) was placed in front of a plot sown with winter oilseed rape (wOSR), just before the flowering phase. Before sowing, the seeds were treated with an equivalent application of 18 g thiamethoxam/ha. For comparison, a second apiary (5 colonies) was located in front of a separate 750 m plot sown with untreated wOSR. Dead foragers at the entrance of hives were assessed every 2–3 days throughout the exposure period, while the colony strength (number of combs covered with adult honey bees and brood) and pathogens were monitored each month until the following spring. Foraging on the wOSR crop was confirmed by melissopalynology determination of the corbicular pollen collected periodically, while the chemical analysis showed that exposure to thiamethoxam was mainly through nectar. There was an increase in the accumulation of dead bees in the apiary exposed to thiamethoxam relating with the control, which was coped with an increment of bee brood surface and adult bee population. However, we did not find statistically significant differences between apiaries (α = 0.05) in terms of the evolution of pathogens. We discuss these results under hormesis perspective.
Collapse
|
20
|
Pan C, Chen S, Chen Z, Li Y, Liu Y, Zhang Z, Xu Y, Liu G, Yang K, Liu G, Du Z, Zhang L. Assessing the geographical distribution of 76 Dendrobium species and impacts of climate change on their potential suitable distribution area in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20571-20592. [PMID: 34741266 DOI: 10.1007/s11356-021-15788-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The geographical distribution of plant resources is of great significance for studying the origin, distribution, and evolution of species. Climate and geographical factors help shape the distribution of plant species. Dendrobium is a commonly used traditional medicine and a precious economic crop in China. Owing to the over-exploitation and increasing medicinal demand of Dendrobium species plants, systematic investigation of the geographical distribution of the plants and analysis of their potential distribution under climate change are important for protecting Dendrobium plants. We adopted DIVA-GIS to analyze the georeferenced records of 76 species of the Dendrobium species collected from 2166 herbarium records. We analyzed the eco-geographical distribution and species richness of the genus Dendrobium to simulate the distribution of current and future scenarios using MaxEnt. The results revealed the distribution of Dendrobium in 30 provinces of China, with species abundance in Yunnan, Guangxi, Guangdong, and Hainan. Our model identified the following bioclimatic variables: precipitation in the driest months and the warmest seasons, isothermality, and range of annual temperature. Among them, annual precipitation is the most crucial bioclimatic variable affecting the distribution of 16 selected Dendrobium species. The change of climate in the future will lead to an increase in habitat suitability for some Dendrobium species as follows: D. officinal 2.12%, D. hancockii by 6.00%, D. hercoglossum by 8.25%, D. devonianum by 7.71%, D. henryi by 9.40%, and D. hainanense by 13.70%. By contrast, habitat suitability will dramatically decrease for other Dendrobium species: D. chrysotoxum by 0.89%, D. chrysanthum by 12.68%, D. fimbriatum by 5.07%, D. aduncum by 11.44%, D. densiflorum by 18.47%, D. aphyllum by 8.05%, D. loddigesii by 16.45%, D. nobile by 5.41%, D. falconeri by 8.73%, and D. moniliforme by 10.61%. The reduction of these species will be detrimental to the medicinal and economic value of the genus Dendrobium. Therefore, targeted development and reasonable management strategies should be adopted to conserve these valuable resources.
Collapse
Affiliation(s)
- Chunxing Pan
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Surui Chen
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Ziming Chen
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Yiming Li
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Yike Liu
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Zejun Zhang
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Yani Xu
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Guanting Liu
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China
| | - Kaiye Yang
- Infinitus (China) Company Ltd, Guangzhou, China
| | | | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China.
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
21
|
Gonzalez VH, Hranitz JM, McGonigle MB, Manweiler RE, Smith DR, Barthell JF. Acute exposure to sublethal doses of neonicotinoid insecticides increases heat tolerance in honey bees. PLoS One 2022; 17:e0240950. [PMID: 35213539 PMCID: PMC8880832 DOI: 10.1371/journal.pone.0240950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and 1/100 of LD50 and measured their heat tolerance 4 h post-feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2 ˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| | - John M. Hranitz
- Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, Pennsylvania, United States of America
| | - Mercedes B. McGonigle
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rachel E. Manweiler
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Deborah R. Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - John F. Barthell
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| |
Collapse
|
22
|
Prado A, Brunet JL, Peruzzi M, Bonnet M, Bordier C, Crauser D, Le Conte Y, Alaux C. Warmer winters are associated with lower levels of the cryoprotectant glycerol, a slower decrease in vitellogenin expression and reduced virus infections in winter honeybees. JOURNAL OF INSECT PHYSIOLOGY 2022; 136:104348. [PMID: 34906562 DOI: 10.1016/j.jinsphys.2021.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Within the context of climate change, winter temperatures at high latitudes are predicted to rise faster than summer temperatures. This phenomenon is expected to negatively affect the diapause performance and survival of insects, since they largely rely on low temperatures to lower their metabolism and preserve energy. However, some insects like honeybees, remain relatively active during the winter and elevate their metabolic rate to produce endothermic heat when temperatures drop. Warming winters are thus expected to improve overwintering performance of honeybees. In order to verify this hypothesis, for two consecutive years, we exposed honeybee colonies to either a mild or cold winter. We then monitored the influence of wintering conditions on several parameters of honeybee overwintering physiology, such as levels of the cryoprotectant glycerol, expression levels of immune and antioxidant genes, and genes encoding multifunctional proteins, including vitellogenin, which promotes bee longevity. Winter conditions had no effect on the expression of antioxidant genes, and genes related to immunity were not consistently affected. However, mild winters were consistently associated with a lower investment in glycerol synthesis and a higher expression of fat body genes, especially apidaecin and vitellogenin. Finally, while we found that viral loads generally decreased through the winter, this trend was more pronounced under mild winter conditions. In conclusion, and without considering how warming temperatures might affect other aspects of honeybee biology before overwintering, our data suggest that warming temperatures will likely benefit honeybee vitality by notably reducing their viral loads over the winter.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Mexico
| | | | | | - Marc Bonnet
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Celia Bordier
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | | | - Yves Le Conte
- INRAE, Abeilles & Environnement, 84914 Avignon, France
| | - Cedric Alaux
- INRAE, Abeilles & Environnement, 84914 Avignon, France.
| |
Collapse
|
23
|
Smoliński S, Langowska A, Glazaczow A. Raised seasonal temperatures reinforce autumn Varroa destructor infestation in honey bee colonies. Sci Rep 2021; 11:22256. [PMID: 34782664 PMCID: PMC8593171 DOI: 10.1038/s41598-021-01369-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
Varroa destructor is the main pest of the honey bee Apis mellifera, causing colony losses. We investigated the effect of temperature on the autumn abundance of V. destructor in bee colonies over 1991-2020 in Central Europe. We tested the hypothesis that temperature can affect autumn mite populations with different time-lags modulating the bee abundance and brood availability. We showed that raised spring (March-May) and autumn (October) temperatures reinforce autumn V. destructor infestation in the bee colonies. The critical temperature signals embrace periods of bee activity, i.e., just after the first cleansing flights and just before the last observed bee flights, but no direct effects of phenological changes on V. destructor abundance were found. These effects were potentially associated with increased bee reproduction in the specific periods of the year and not with the extended period of activity or accelerated spring onset. We found significant effects of autumn bee abundance, autumn capped brood abundance, and the number of colonies merged on autumn mite infestation. We also observed differences in V. destructor abundance between bees derived from different subspecies. We indicated that climatic effects, through influence on the bee abundance and brood availability, are one of the main drivers regulating V. destructor abundance.
Collapse
Affiliation(s)
- Szymon Smoliński
- Department of Fisheries Resources, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | - Aleksandra Langowska
- Department of Zoology, Section of Apidology, Poznań University of Life Sciences, Wojska Polskiego 71c, 60-628, Poznan, Poland.
| | - Adam Glazaczow
- Department of Systematic Zoology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614, Poznan, Poland
| |
Collapse
|
24
|
Bach DM, Holzman MA, Wague F, Miranda JL, Lopatkin AJ, Mansfield JH, Snow JW. Thermal stress induces tissue damage and a broad shift in regenerative signaling pathways in the honey bee digestive tract. J Exp Biol 2021; 224:272039. [PMID: 34477881 DOI: 10.1242/jeb.242262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Honey bee colonies in the USA have suffered from increased die-off in the last few years with a complex set of interacting stresses playing a key role. With changing climate, an increase in the frequency of severe weather events, such as heat waves, is anticipated. Understanding how these changes may contribute to stress in honey bees is crucial. Individual honey bees appear to have a high capacity to endure thermal stress. One reason for this high-level endurance is likely their robust heat shock response (HSR), which contributes to thermotolerance at the cellular level. However, less is known about other mechanisms of thermotolerance, especially those operating at the tissue level. To elucidate other determinants of resilience in this species, we used thermal stress coupled with RNAseq and identified broad transcriptional remodeling of a number of key signaling pathways in the honey bee, including those pathways known to be involved in digestive tract regeneration in the fruit fly such as the Hippo and JAK/STAT pathways. We also observed cell death and shedding of epithelial cells, which likely leads to induction of this regenerative transcriptional program. We found that thermal stress affects many of these pathways in other tissues, suggesting a shared program of damage response. This study provides important foundational characterization of the tissue damage response program in this key pollinating species. In addition, our data suggest that a robust regeneration program may also be a critical contributor to thermotolerance at the tissue level, a possibility which warrants further exploration in this and other species.
Collapse
Affiliation(s)
- Dunay M Bach
- Biology Department, Barnard College, New York, NY 10027, USA
| | | | - Fatoumata Wague
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Jj L Miranda
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Allison J Lopatkin
- Biology Department, Barnard College, New York, NY 10027, USA.,Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY 10027, USA.,Data Science Institute , Columbia University, New York, NY 10027, USA
| | | | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA
| |
Collapse
|
25
|
Becsi B, Formayer H, Brodschneider R. A biophysical approach to assess weather impacts on honey bee colony winter mortality. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210618. [PMID: 34631120 PMCID: PMC8483266 DOI: 10.1098/rsos.210618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/02/2021] [Indexed: 06/02/2023]
Abstract
The western honey bee (Apis mellifera) is one of the most important insects kept by humans, but high colony losses are reported around the world. While the effects of general climatic conditions on colony winter mortality were already demonstrated, no study has investigated specific weather conditions linked to biophysical processes governing colony vitality. Here, we quantify the comparative relevance of four such processes that co-determine the colonies' fitness for wintering during the annual hive management cycle, using a 10-year dataset of winter colony mortality in Austria that includes 266 378 bee colonies. We formulate four process-based hypotheses for wintering success and operationalize them with weather indicators. The empirical data is used to fit simple and multiple linear regression models on different geographical scales. The results show that approximately 20% of winter mortality variability can be explained by the analysed weather conditions, and that it is most sensitive to the duration of extreme cold spells in mid and late winter. Our approach shows the potential of developing weather indicators based on biophysical processes and discusses the way forward for applying them in climate change studies.
Collapse
Affiliation(s)
- Benedikt Becsi
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Herbert Formayer
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Robert Brodschneider
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Institute of Biology, University of Graz, Universitaetsplatz 2/I, 8010 Graz, Austria
| |
Collapse
|
26
|
St Leger RJ. Insects and their pathogens in a changing climate. J Invertebr Pathol 2021; 184:107644. [PMID: 34237297 DOI: 10.1016/j.jip.2021.107644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 01/02/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022]
Abstract
The complex nature of climate change-mediated multitrophic interaction is an underexplored area, but has the potential to dramatically shift transmission and distribution of many insects and their pathogens, placing some populations closer to the brink of extinction. However, for individual insect-pathogen interactions climate change will have complicated hard-to-anticipate impacts. Thus, both pathogen virulence and insect host immunity are intrinsically linked with generalized stress responses, and in both pathogen and host have extensive trade-offs with nutrition (e.g., host plant quality), growth and reproduction. Potentially alleviating or exasperating these impacts, some pathogens and hosts respond genetically and rapidly to environmental shifts. This review identifies many areas for future research including a particular need to identify how altered global warming interacts with other environmental changes and stressors, and how consistent these impacts are across pathogens and hosts. With that achieved we would be closer to producing an overarching framework to integrate knowledge on all environmental interplay and infectious disease events.
Collapse
Affiliation(s)
- Raymond J St Leger
- Department of Entomology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
27
|
Honey Bee Colony Population Daily Loss Rate Forecasting and an Early Warning Method Using Temporal Convolutional Networks. SENSORS 2021; 21:s21113900. [PMID: 34200104 PMCID: PMC8201321 DOI: 10.3390/s21113900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 11/17/2022]
Abstract
The population loss rate of a honey bee colony is a critical index to verify its health condition. Forecasting models for the population loss rate of a honey bee colony can be an essential tool in honey bee health management and pave a way to early warning methods in the understanding of potential abnormalities affecting a honey bee colony. This work presents a forecasting and early warning algorithm for the population daily loss rate of honey bee colonies and determining warning levels based on the predictions. Honey bee colony population daily loss rate data were obtained through embedded image systems to automatically monitor in real-time the in-and-out activity of honey bees at hive entrances. A forecasting model was trained based on temporal convolutional neural networks (TCN) to predict the following day’s population loss rate. The forecasting model was optimized by conducting feature importance analysis, feature selection, and hyperparameter optimization. A warning level determination method using an isolation forest algorithm was applied to classify the population daily loss rate as normal or abnormal. The integrated algorithm was tested on two population loss rate datasets collected from multiple honey bee colonies in a honey bee farm. The test results show that the forecasting model can achieve a weighted mean average percentage error (WMAPE) of 17.1 ± 1.6%, while the warning level determination method reached 90.0 ± 8.5% accuracy. The forecasting model developed through this study can be used to facilitate efficient management of honey bee colonies and prevent colony collapse.
Collapse
|
28
|
Stabentheiner A, Kovac H, Mandl M, Käfer H. Coping with the cold and fighting the heat: thermal homeostasis of a superorganism, the honeybee colony. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:337-351. [PMID: 33598719 PMCID: PMC8079341 DOI: 10.1007/s00359-021-01464-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022]
Abstract
The worldwide distribution of honeybees and their fast propagation to new areas rests on their ability to keep up optimal 'tropical conditions' in their brood nest both in the cold and in the heat. Honeybee colonies behave like 'superorganisms' where individuals work together to promote reproduction of the colony. Social cooperation has developed strongly in thermal homeostasis, which guarantees a fast and constant development of the brood. We here report on the cooperation of individuals in reaction to environmental variation to achieve thermal constancy of 34-36 °C. The measurement of body temperature together with bee density and in-hive microclimate showed that behaviours for hive heating or cooling are strongly interlaced and differ in their start values. When environmental temperature changes, heat production is adjusted both by regulation of bee density due to migration activity and by the degree of endothermy. Overheating of the brood is prevented by cooling with water droplets and increased fanning, which start already at moderate temperatures where heat production and bee density are still at an increased level. This interlaced change and onset of different thermoregulatory behaviours guarantees a graded adaptation of individual behaviour to stabilise the temperature of the brood.
Collapse
Affiliation(s)
| | - Helmut Kovac
- Institute of Biology, University of Graz, 8010, Graz, Austria.
| | - Monika Mandl
- Institute of Biology, University of Graz, 8010, Graz, Austria
| | - Helmut Käfer
- Institute of Biology, University of Graz, 8010, Graz, Austria
| |
Collapse
|
29
|
Cook D, Blackler A, McGree J, Hauxwell C. Thermal Impacts of Apicultural Practice and Products on the Honey Bee Colony. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:538-546. [PMID: 33704483 DOI: 10.1093/jee/toab023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Indexed: 06/12/2023]
Abstract
Hive design and apicultural processes have not been fundamentally changed since the design and commercialization of the Langstroth moveable frame hive in 1854. Colonies of Apis mellifera Linnaeus (Hymentoptera: Apidae) (the honey bee) maintain a brood nest temperature within the narrow range of 34.5-35.5°C, critical for brood development. Apis mellifera invest considerable energy to maintain hive homeostasis through behavioral modification of the hive environment. Human honey-harvesting processes and removal of the honey-filled comb (a source of thermal mass) have a detrimental impact on hive temperature that requires an increased investment of energy to rectify. This additional energy demand on the bees is a form of stress to the colony and diverts workers away from other essential tasks to that of environmental management. We investigated the thermal energy loss resulting from the removal and extraction of honey, the rate of thermal loss of an Australian standard Langstroth 10 frame hive, and the effect of honey and wax as a thermal mass in unoccupied bee hive. The results demonstrate that considerable energy expenditure would be required to rectify the hive thermal environment after honey harvesting or honeycomb frame addition. Honey provides thermal mass in the beehive, acting as a thermal buffer to external temperature change, which may mediate part of the thermal losses from the simplistic design of the Langstroth hive. Identification of these impacts in current apicultural practice and hive design allows for the improvement in the design of beehives and associated practices. These improvements may reduce stress to the bee colony, increasing colony efficiency for pollination and nectar foraging.
Collapse
Affiliation(s)
- Daniel Cook
- Creative Industries, Queensland University of Technology, Brisbane, QLD, Australia
| | - Alethea Blackler
- Creative Industries, Queensland University of Technology, Brisbane, QLD, Australia
| | - James McGree
- Science & Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Caroline Hauxwell
- Science & Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Prado A, Requier F, Crauser D, Le Conte Y, Bretagnolle V, Alaux C. Honeybee lifespan: the critical role of pre-foraging stage. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200998. [PMID: 33391795 PMCID: PMC7735337 DOI: 10.1098/rsos.200998] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Assessing the various anthropogenic pressures imposed on honeybees requires characterizing the patterns and drivers of natural mortality. Using automated lifelong individual monitoring devices, we monitored worker bees in different geographical, seasonal and colony contexts creating a broad range of hive conditions. We measured their life-history traits and notably assessed whether lifespan is influenced by pre-foraging flight experience. Our results show that the age at the first flight and onset of foraging are critical factors that determine, to a large extent, lifespan. Most importantly, our results indicate that a large proportion (40%) of the bees die during pre-foraging stage, and for those surviving, the elapsed time and flight experience between the first flight and the onset of foraging is of paramount importance to maximize the number of days spent foraging. Once in the foraging stage, individuals experience a constant mortality risk of 9% and 36% per hour of foraging and per foraging day, respectively. In conclusion, the pre-foraging stage during which bees perform orientation flights is a critical driver of bee lifespan. We believe these data on the natural mortality risks in honeybee workers will help assess the impact of anthropogenic pressures on bees.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Querétaro, Mexico
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Didier Crauser
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, CNRS and La Rochelle University, UMR 7372, 79360 Beauvoir sur Niort, France
- LTSER Zone Atelier “Plaine & Val de Sèvre”, CNRS, F-79360 Villiers-en-Bois, France
| | - Cédric Alaux
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| |
Collapse
|
31
|
Perez R, Aron S. Adaptations to thermal stress in social insects: recent advances and future directions. Biol Rev Camb Philos Soc 2020; 95:1535-1553. [PMID: 33021060 DOI: 10.1111/brv.12628] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/20/2023]
Abstract
Thermal stress is a major driver of population declines and extinctions. Shifts in thermal regimes create new environmental conditions, leading to trait adaptation, population migration, and/or species extinction. Extensive research has examined thermal adaptations in terrestrial arthropods. However, little is known about social insects, despite their major role in ecosystems. It is only within the last few years that the adaptations of social insects to thermal stress have received attention. Herein, we discuss what is currently known about thermal tolerance and thermal adaptation in social insects - namely ants, termites, social bees, and social wasps. We describe the behavioural, morphological, physiological, and molecular adaptations that social insects have evolved to cope with thermal stress. We examine individual and collective responses to both temporary and persistent changes in thermal conditions and explore the extent to which individuals can exploit genetic variability to acclimatise. Finally, we consider the costs and benefits of sociality in the face of thermal stress, and we propose some future research directions that should advance our knowledge of individual and collective thermal adaptations in social insects.
Collapse
Affiliation(s)
- Rémy Perez
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Serge Aron
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
32
|
Medina RG, Paxton RJ, Hernández-Sotomayor SMT, Pech-Jiménez C, Medina-Medina LA, Quezada-Euán JJG. Heat stress during development affects immunocompetence in workers, queens and drones of Africanized honey bees (Apis mellifera L.) (Hymenoptera: Apidae). J Therm Biol 2020; 89:102541. [PMID: 32364969 DOI: 10.1016/j.jtherbio.2020.102541] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 01/27/2023]
Abstract
Though social insects generally seem to have a reduced individual immunoresponse compared to solitary species, the impact of heat stress on that response has not been studied. In the honey bee, the effect of heat stress on reproductives (queens and males/drones) may also vary compared to workers, but this is currently unknown. Here, we quantified the activity of an enzyme linked to the immune response in insects and known to be affected by heat stress in solitary species: phenoloxidase (PO), in workers, queens and drones of Africanized honey bees (AHBs) experimentally subjected to elevated temperatures during the pupal stage. Additionally, we evaluated this marker in individuals experimentally infected with the entomopathogenic fungus Metarhizium anisopliae. Differences in PO activity were found between sexes and castes, with PO activity generally higher in workers and lower in reproductives. Such differences are associated with the likelihood of exposure to infection and the role of different individuals in the colony. Contrary to our expectation, heat stress did not cause an increase in PO activity equally in all classes of individual. Heat stress during the pupal stage significantly decreased the PO activity of AHB queens, but not that of workers or drones, which more frequently engage in extranidal activity. Experimental infection with Metarhizium anisopliae reduced PO activity in queens and workers, but increased it in drones. Notably, heat stressed workers lived significantly shorter after infection despite exhibiting greater PO activity than queens or drones. We suggest that this discrepancy may be related to trade-offs among immune response cascades in honey bees such as between heat shock proteins and defensin peptides used in microbial defence. Our results provide evidence for complex relationships among humoral immune responses in AHBs and suggest that heat stress could result in a reduced life expectancy of individuals.
Collapse
Affiliation(s)
- Rubén G Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico; Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Edzna, Campeche, Mexico.
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - S M Teresa Hernández-Sotomayor
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, Mexico
| | - Cristina Pech-Jiménez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY) Mérida, Yucatán, Mexico
| | - Luis A Medina-Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| | - José Javier G Quezada-Euán
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico
| |
Collapse
|
33
|
Coulon M, Dalmon A, Di Prisco G, Prado A, Arban F, Dubois E, Ribière-Chabert M, Alaux C, Thiéry R, Le Conte Y. Interactions Between Thiamethoxam and Deformed Wing Virus Can Drastically Impair Flight Behavior of Honey Bees. Front Microbiol 2020; 11:766. [PMID: 32425910 PMCID: PMC7203464 DOI: 10.3389/fmicb.2020.00766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/31/2020] [Indexed: 01/06/2023] Open
Abstract
Exposure to multiple stress factors is believed to contribute to honey bee colony decline. However, little is known about how co-exposure to stress factors can alter the survival and behavior of free-living honey bees in colony conditions. We therefore studied the potential interaction between a neonicotinoid pesticide, thiamethoxam, and a highly prevalent honey bee pathogen, Deformed wing virus (DWV). For this purpose, tagged bees were exposed to DWV by feeding or injection, and/or to field-relevant doses of thiamethoxam, then left in colonies equipped with optical bee counters to monitor flight activity. DWV loads and the expression of immune genes were quantified. A reduction in vitellogenin expression level was observed in DWV-injected bees and was associated with precocious onset of foraging. Combined exposure to DWV and thiamethoxam did not result in higher DWV loads compared to bees only exposed to DWV, but induced precocious foraging, increased the risk of not returning to the hive after the first flight, and decreased survival when compared to single stress exposures. We therefore provided the first evidence for deleterious interactions between DWV and thiamethoxam in natural conditions.
Collapse
Affiliation(s)
- Marianne Coulon
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France.,ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Anne Dalmon
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Gennaro Di Prisco
- CREA-AA, Research Centre for Agriculture and Environment, Council for Agricultural Research and Economics, Bologna, Italy.,Department of Agriculture, University of Naples "Federico II", Portici, Italy
| | - Alberto Prado
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France.,Escuela Nacional de Estudios Superiores Juriquilla, UNAM, Juriquilla, Mexico
| | - Florine Arban
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Eric Dubois
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | | | - Cedric Alaux
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| | - Richard Thiéry
- ANSES Sophia Antipolis, Unit of Honey bee Pathology, Sophia Antipolis, France
| | - Yves Le Conte
- INRAE, UR 406 Abeilles et Environnement, Site Agroparc, Avignon, France
| |
Collapse
|
34
|
Greenop A, Mica-Hawkyard N, Walkington S, Wilby A, Cook SM, Pywell RF, Woodcock BA. Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services. INSECTS 2020; 11:E191. [PMID: 32197403 PMCID: PMC7142647 DOI: 10.3390/insects11030191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.
Collapse
Affiliation(s)
- Arran Greenop
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | - Nevine Mica-Hawkyard
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| | - Sarah Walkington
- Core Research Laboratories, Natural History Museum, Cromwell Rd, Kensington, London SW7 5BD, UK;
| | - Andrew Wilby
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | - Samantha M Cook
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK;
| | - Richard F Pywell
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| | - Ben A Woodcock
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| |
Collapse
|
35
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
36
|
Alburaki M, Karim S, Lamour K, Adamczyk J, Stewart SD. RNA-seq reveals disruption of gene regulation when honey bees are caged and deprived of hive conditions. ACTA ACUST UNITED AC 2019; 222:jeb.207761. [PMID: 31413101 DOI: 10.1242/jeb.207761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022]
Abstract
In this study, we present phenotypic and genetic data characterizing the impact of imidacloprid and caging stress on honey bee Apis mellifera physiological responses and regulation of 45 genes using targeted-RNA seq. The term 'caging stress' characterizes the effects of depriving honey bees of all hive aspects and conditions. Two cohorts of 1 day old sister bees were subjected to different conditions. One cohort was caged and fed different imidacloprid-tainted sugar solutions and the second was marked and introduced back to its natal hive. Physiological bee parameters and diet behavior were monitored daily for caged bees over several weeks. Bee samples from both cohorts were sampled weekly for RNA sequencing and oxidative stress analyses. Imidacloprid induced significant protein damage and post-ingestive aversion responses in caged bees, leading to lower tainted syrup consumption and higher water intake compared with the controls. No differentially expressed genes were observed among caged bees in regards to imidacloprid treatment. However, significant upregulation in antioxidant genes was recorded in caged bees as compared with hive bees, with overwhelming downregulation in all gene categories in caged bees at week 4. We identified two sets of genes that were constantly regulated in caged bees, including Rsod with unknown function in insects that could potentially characterize caging stress in honey bees.
Collapse
Affiliation(s)
| | - Shahid Karim
- The University of Southern Mississippi, Department of Cell and Molecular Biology Sciences, Hattiesburg, MS 39406, USA
| | - Kurt Lamour
- The University of Tennessee, Entomology and Plant Pathology Department, Knoxville, TN 37996, USA
| | - John Adamczyk
- USDA-ARS Thad Cochran Horticulture Laboratory, Poplarville, MS 39470, USA
| | - Scott D Stewart
- The University of Tennessee, Department of Entomology and Plant Pathology, West Tennessee Research and Education Center, Jackson, TN 38301, USA
| |
Collapse
|
37
|
Vanderplanck M, Martinet B, Carvalheiro LG, Rasmont P, Barraud A, Renaudeau C, Michez D. Ensuring access to high-quality resources reduces the impacts of heat stress on bees. Sci Rep 2019; 9:12596. [PMID: 31467366 PMCID: PMC6715733 DOI: 10.1038/s41598-019-49025-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/15/2019] [Indexed: 11/09/2022] Open
Abstract
Pollinators are experiencing declines globally, negatively affecting the reproduction of wild plants and crop production. Well-known drivers of these declines include climatic and nutritional stresses, such as a change of dietary resources due to the degradation of habitat quality. Understanding potential synergies between these two important drivers is needed to improve predictive models of the future effects of climate change on pollinator declines. Here, bumblebee colony bioassays were used to evaluate the interactive effects of heat stress, a reduction of dietary resource quality, and colony size. Using a total of 117 colonies, we applied a fully crossed experiment to test the effect of three dietary quality levels under three levels of heat stress with two colony sizes. Both nutritional and heat stress reduced colony development resulting in a lower investment in offspring production. Small colonies were much more sensitive to heat and nutritional stresses than large ones, possibly because a higher percentage of workers helps maintain social homeostasis. Strikingly, the effects of heat stress were far less pronounced for small colonies fed with suitable diets. Overall, our study suggests that landscape management actions that ensure access to high-quality resources could reduce the impacts of heat stress on bee decline.
Collapse
Affiliation(s)
- Maryse Vanderplanck
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium. .,Evo-Eco-Paleo - UMR 8198, CNRS, Université de Lille, F-59000, Lille, France.
| | - Baptiste Martinet
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium.
| | - Luísa Gigante Carvalheiro
- Departamento de Ecologia, Universidade Federal de Goiás, Campus Samambaia, Goiânia, GO, Brazil.,Center for Ecology, Evolution and Environmental Changes (cE3c), University of Lisboa, Lisbon, Portugal
| | - Pierre Rasmont
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium
| | - Alexandre Barraud
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium.,Pierre and Marie Curie University, Paris-Sorbonne 4, Place Jussieu, 75005, Paris, France
| | - Coraline Renaudeau
- Pierre and Marie Curie University, Paris-Sorbonne 4, Place Jussieu, 75005, Paris, France
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Place du Parc 23, 7000, Mons, Belgium
| |
Collapse
|
38
|
Prado A, Pioz M, Vidau C, Requier F, Jury M, Crauser D, Brunet JL, Le Conte Y, Alaux C. Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1250-1260. [PMID: 30308813 DOI: 10.1016/j.scitotenv.2018.09.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 05/21/2023]
Abstract
Due to the widespread use of pesticides and their persistence in the environment, non-target organisms are chronically exposed to mixtures of toxic residues. Fungicides, herbicides and insecticides are all found at low doses in the diet of pollinators such as honey bees, but due to the lack of data on the toxicological effects of these mixtures, determining their risk is difficult to assess. We therefore developed a study combining the identification of common pollen-bound pesticide mixtures associated with poor colony development and tested their effects on bee behavior and physiology. We exposed bees to the identified pesticide mixtures during the first days of their adult life, a crucial period for physiological development. Using optic bee counters we recorded the behavior of bees throughout their lives and identified two pesticide mixtures that delay the onset of foraging and slow-down foraging activity. Furthermore, one of these mixtures hampers pollen foraging. As bee longevity is strongly influenced by the time spent foraging, bees exposed to these pesticide mixtures outlived control bees. Physiological analysis revealed that perturbations of the energetic metabolism preceded the altered behavior. In conclusion, we found that early-life exposure to low doses of pesticide mixtures can have long-term effects that translate into longer-lived but slower and less efficient bees. These surprising findings contrast with the commonly reported increase in bee mortality upon pesticide exposure, and demonstrate that exposure that may seem harmless (e.g., very low doses, pesticides not intended to kill insects) can have undesirable effects on non-target organisms.
Collapse
Affiliation(s)
- Alberto Prado
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France; UMT PrADE, Site Agroparc, 84914 Avignon, France.
| | - Maryline Pioz
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France; UMT PrADE, Site Agroparc, 84914 Avignon, France
| | - Cyril Vidau
- UMT PrADE, Site Agroparc, 84914 Avignon, France; ITSAP-Institut de l'abeille, Site Agroparc, 84914 Avignon, France
| | - Fabrice Requier
- Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural (IRNAD), Sede Andina, Universidad Nacional de Río Negro, Argentina; Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mylène Jury
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France
| | - Didier Crauser
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France; UMT PrADE, Site Agroparc, 84914 Avignon, France
| | - Jean-Luc Brunet
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France; UMT PrADE, Site Agroparc, 84914 Avignon, France
| | - Yves Le Conte
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France; UMT PrADE, Site Agroparc, 84914 Avignon, France
| | - Cédric Alaux
- INRA, UR406 Abeilles & Environnement, Site Agroparc, 84914 Avignon, France; UMT PrADE, Site Agroparc, 84914 Avignon, France
| |
Collapse
|
39
|
Mitchell D. Thermal efficiency extends distance and variety for honeybee foragers: analysis of the energetics of nectar collection and desiccation by Apis mellifera. J R Soc Interface 2019; 16:20180879. [PMID: 30958150 PMCID: PMC6364643 DOI: 10.1098/rsif.2018.0879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/24/2018] [Indexed: 01/29/2023] Open
Abstract
The desiccation of nectar to produce honey by honeybees ( Apis mellifera L.) is an energy-intensive process, as it involves a quasi-isothermal change in the concentration of sugars from typically 20 to 80% by vaporization (honey ripening). This analysis creates mathematical models for: the collected nectar to honey ratio; energy recovery ratio; honey energy margin; and the break-even distance, which includes the factors of nectar concentration and the distance to the nectar from the nest; energetics of desiccation and a new factor, thermal energy efficiency (TEE) of nectar desiccation. These models show a significant proportion of delivered energy in the nectar must be used in desiccation, and that there is a strong connection between TEE and nest lumped thermal conductance with colony behaviour. They show the connection between TEE and honeybee colony success, or failure, in the rate of return, in terms of distance or quality of foraging. Consequently, TEE is a key parameter in honeybee populations and foraging modelling. For bee keeping, it quantifies the summer benefits of a key hive design parameter, hive thermal conductance and gives a sound theoretical basis for improving honey yields, as seen in expanded polystyrene hives.
Collapse
Affiliation(s)
- Derek Mitchell
- School of Mechanical Engineering, Leeds University, Leeds Yorkshire, UK
| |
Collapse
|
40
|
Medina RG, Paxton RJ, De Luna E, Fleites-Ayil FA, Medina Medina LA, Quezada-Euán JJG. Developmental stability, age at onset of foraging and longevity of Africanized honey bees (Apis mellifera L.) under heat stress (Hymenoptera: Apidae). J Therm Biol 2018; 74:214-225. [PMID: 29801630 DOI: 10.1016/j.jtherbio.2018.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/17/2022]
Abstract
Beekeeping with the western honey bee (Apis mellifera) is important in tropical regions but scant information is available on the possible consequences of global warming for tropical beekeeping. We evaluated the effect of heat stress on developmental stability, the age at onset of foraging (AOF) and longevity in Africanized honey bees (AHBs) in the Yucatan Peninsula of Mexico, one of the main honey producing areas in the Neotropics, where high temperatures occur in spring and summer. To do so, we reared worker AHB pupae under a fluctuating temperature regime, simulating current tropical heatwaves, with a high temperature peak of 40.0 °C for 1 h daily across six days, and compared them to control pupae reared at stable temperatures of 34.0-35.5 °C. Heat stress did not markedly affect overall body size, though the forewing of heat-stressed bees was slightly shorter than controls. However, bees reared under heat stress showed significantly greater fluctuating asymmetry (FA) in forewing shape. Heat stress also decreased AOF and reduced longevity. Our results show that changes occur in the phenotype and behavior of honey bees under heat stress, with potential consequences for colony fitness.
Collapse
Affiliation(s)
- Rubén G Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico.
| | - Robert J Paxton
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Efraín De Luna
- Biodiversidad y Sistemática, Instituto de Ecología, A.C. Xalapa, Mexico
| | - Fernando A Fleites-Ayil
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico
| | - Luis A Medina Medina
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico
| | - José Javier G Quezada-Euán
- Departamento de Apicultura, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apdo. Postal 97100, Mérida, Yucatán, Mexico
| |
Collapse
|
41
|
Bordier C, Klein S, Le Conte Y, Barron AB, Alaux C. Stress decreases pollen foraging performance in honeybees. ACTA ACUST UNITED AC 2018; 221:jeb.171470. [PMID: 29361592 DOI: 10.1242/jeb.171470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Foraging in honeybees is energetically demanding. Here, we examined whether stressors, which generally increase metabolic demands, can impair foraging performance. A controlled non-pathogenic stressor (immune challenge) resulted in a change in the foraging preferences of bees. It reduced pollen foraging and increased the duration of trips in pollen foragers. Stress also reduced the amount of octopamine in the brain of pollen foragers (a biogenic amine involved in the regulation of foraging and flight behaviour in insects). According to the literature, flight metabolic rate is higher during pollen foraging than during nectar foraging, and nectar gives a higher energetic return relative to the foraging effort when compared with pollen. We thus propose that stress might be particularly detrimental to the performance of pollen foragers, and stressed bees prefer the energy-rich resource of nectar. In conclusion, stress, even at low levels, could have consequences for bee foraging behaviour and thereby the nutritional balance of the colony.
Collapse
Affiliation(s)
- Célia Bordier
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Simon Klein
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research (CNRS), University Paul Sabatier (UPS), 31062 Toulouse, France.,Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| |
Collapse
|