1
|
Rejeb M, Lahmar A, Ghedira MB, Selmi A, Kosksi T, Debbabi N, Ghedira LC. Fish and bovine collagen promote higher migration and adhesion of dermal cells pre-treated with wound-healing herbal extracts. Tissue Cell 2025; 93:102762. [PMID: 39919404 DOI: 10.1016/j.tice.2025.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/01/2025] [Accepted: 01/25/2025] [Indexed: 02/09/2025]
Abstract
PURPOSE Dermal cells fabricate and interact with the extracellular matrix to preserve structural integrity and further healthy function during wound healing. Collagen is a critical component of the matrix, challenging collagen's stability during wound injury. Natural sources especially plant extracts can promote wound healing and interact with collagen to increase its action. In this context, we studied the effect of extracted fish and bovine collagen in controlling cell proliferation, migration, and adhesion in dermal cells pretreated with plant extract. METHODS An acid-solubilization procedure was used to extract collagen fish (CF) and bovine (CB). Three different hydro-ethanolic extracts were prepared Pistacia lentiscus leaves (PL), Calendula officinalis leaves (FL), and flowers (FS). Migration potency was determined using scratch assay. The covered surface area was estimated after 16 hours and 24 hours after cell seeding. The chemotaxis was determined by the Boyden chamber, and the film was coated with CF or CB (10 µg/mL). or poly-L-lysine (50 µg/mL). FINDINGS We show that CF and CB increase adherence and migration of 3T3-L1 cells, which are pretreated with PL, FL, and FS. In addition, we highlighted a significantly higher cell adhesion on the CF matrix compared to CB. However, in the case of cells pre-treated with PL, the attachment to CF and CB increased significantly compared to untreated cells. The exposition of Hacat cells to plant extracts regulates the secretion of MMP2 and MMP and the production of reactive oxygen species. CONCLUSION CF and CB promote higher migration and adhesion of dermal cells pre-treated with wound-healing herbal extracts. In future studies, composite dressings based on collagen, P. lentiscus, and C. officinalis extracts can potentially be developed for tissue regeneration.
Collapse
Affiliation(s)
- Marwa Rejeb
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia.
| | - Aida Lahmar
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia.
| | - Mohamed Bayrem Ghedira
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Arem Selmi
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Tahsine Kosksi
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Nawres Debbabi
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| | - Leila Chekir Ghedira
- Research Laboratory, Bioactive Natural Products and Biotechnology LR24ES14, Faculty of Dental Medicine of Monastir, University of Monastir, Avicenne Street, Monastir 5000, Tunisia
| |
Collapse
|
2
|
Alabrahim OAA, Lababidi JM, Fritzsche W, Azzazy HMES. Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment? NANOSCALE ADVANCES 2024:d4na00678j. [PMID: 39415775 PMCID: PMC11474398 DOI: 10.1039/d4na00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cancer, a complex global health burden, necessitates the development of innovative therapeutic strategies. While chemotherapy remains the primary treatment approach, its severe side effects and chemoresistance drive the search for novel alternatives. Essential oils (EOs), consisting of diverse bioactive phytochemicals, offer promise as anticancer agents. However, their limitations, such as instability, limited bioavailability, and non-specific targeting, hinder their therapeutic potential. These challenges were circumvented by utilizing nanoparticles and nanosystems as efficient delivery platforms for EOs. This review highlights the accumulating evidence based on loading EOs into several nanocarriers, including polymeric nanoparticles, nanoemulsions, nanofibers, lipid-based nanocapsules and nanostructures, niosomes, and liposomes, as effective anticancer regimens. It covers extraction and chemical composition of EOs, their mechanisms of action, and targeting strategies to various tumors. Additionally, it delves into the diverse landscape of nanocarriers, including their advantages and considerations for cancer targeting and EO encapsulation. The effectiveness of EO-loaded nanocarriers in cancer targeting and treatment is examined, highlighting enhanced cellular uptake, controlled drug release, and improved therapeutic efficacy. Finally, the review addresses existing challenges and future perspectives, emphasizing the potential for clinical translation and personalized medicine approaches.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Jude Majed Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
3
|
Adibifard A, Bozorgi M, Kolangi F, Enayati A, Daneshfard B, Gorji N, Memariani Z. Effects of Pistacia genus on gastrointestinal tract disorders: A systematic and comprehensive review. Fitoterapia 2024; 176:106038. [PMID: 38801894 DOI: 10.1016/j.fitote.2024.106038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Gastrointestinal (GI) disorders characterized by persistent and recurrence gastrointestinal symptoms are prevalent. The genus Pistacia is widely emphasized as the relief of gastrointestinal diseases in traditional medicine. This review aimed to investigate the latest evidence on the effect of the Pistacia genus on GI tract disorders. The systematic search was performed following to PRISMA guidelines. The databases PubMed and Scopus were searched from 1980 to 2022 with restrictions to the original studies. Electronic databases were searched in title/abstract, using the keywords relevant to GI tract disorders. Forty-eight studies were included in this review following the inclusion criteria. Fifteen and 22 studies were clinical and animal studies, respectively, of which 6 clinical and 13 animal studies were on Inflammatory Bowel diseases. Seven clinical studies were on functional GI disorders. The most pieces of evidence from animal and clinical studies were on the intestinal inflammation and peptic ulcer affecting the inflammation as well as oxidative stress through different mechanistic pathways. The most referred active phytochemicals seem to be terpenoid compounds. Various in vitro studies have also shown the inhibitory activity of the different plant parts of Pistacia herbs on several GI tract cancer cells. Available scientific evidence supports the effects of various components of Pistacia genus plants in the field of GI tract diseases, especially digestive inflammations. Further studies are required to systematically evaluate the natural products of the genus Pistacia, particularly in the context of digestive disorders.
Collapse
Affiliation(s)
- Amir Adibifard
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahbubeh Bozorgi
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Fatemeh Kolangi
- Counseling and Reproductive Health Research Centre, Department of Persian Medicine, School of Persian Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Babak Daneshfard
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Canadian College of Integrative Medicine, Montreal, Quebec, Canada
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Pharmaceutical Sciences Research Center, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Saeedi F, Salehi M, Kamali MJ, Mir MA, Kazemi S, Shirafkan F, Neyshaburi EZ, Moeeni R, Gorji N, Memariani Z. Evaluation of the cytotoxic activities of the essential oil from Pistacia atlantica Desf. oleoresin on human gastric cancer cell lines. Med Oncol 2024; 41:148. [PMID: 38733486 DOI: 10.1007/s12032-024-02339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/21/2024] [Indexed: 05/13/2024]
Abstract
Numerous herbal products have been the subject of research regarding their potential role in cancer prevention or adjuvant therapy. Pistacia atlantica and its main phytochemicals have garnered significant attention for their potential anti-cancer effects. The study aimed to assess the growth inhibitory effects of P. atlantica essential oil (PAEO) on MKN-45 and AGS cells. This study quantified the volatile compounds in PAEO using Gas Chromatography-Mass Spectrometry (GC-MS). Subsequently, MKN-45 and AGS cells were treated with varying concentrations of PAEO (5%, 2.5%, 1.25%, 0.625%, 0.3125%, 0.156%, 0.0781%, 0.0391%, 0.0195%) for 24 h. Cell viability was evaluated through the MTT assay. The impact of PAEO on gene expression was investigated by quantifying the mRNA levels of Bax and Bcl2 in the various experimental groups using quantitative Real-Time PCR (qRT-PCR) analysis. Additionally, flow cytometry was utilized to evaluate apoptosis in the treated cells. The analysis of PAEO revealed that α-pinene was the predominant monoterpene, constituting 87.9% of the oil composition. The cytotoxic effects of PAEO were evaluated, and it was found that the oil significantly reduced the viability of MKN-45 and AGS cells. The IC50 for MKN-45 cells was determined to be 1.94 × 10-3% after 24 h of treatment, while for AGS cells the IC50 was 2.8 × 10-3% after 24 h. Additionally, the research revealed that PAEO triggered a notable rise in apoptotic cells in both AGS and MKN-45 cell lines. Moreover, at the molecular level, the findings indicated an increase in Bax expression and a decrease in Bcl2 mRNA expression, providing further evidence of the induction of apoptosis in both MKN-45 and AGS cell lines following PAEO treatment. The findings of this study offer evidence supporting the cytotoxic effects of PAEO on gastric cancer cell lines by promoting apoptosis. The findings suggest that PAEO may offer potential as a therapeutic candidate in managing and treating gastric cancer.
Collapse
Affiliation(s)
- Fatemeh Saeedi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Shirafkan
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Ebrahim Zabihi Neyshaburi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Reihaneh Moeeni
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Memariani
- Pharmaceutical Sciences Research Center, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
5
|
Kartalis A, Afendoulis D, Didagelos M, Ampeliotis M, Moutafi M, Voutas P, Smyrnioudis N, Papagiannis N, Garoufalis S, Boula E, Smyrnioudis I, Vlachopoulos C. Effects of Chios Mastiha essential oil on cholesterol levels of healthy volunteers: A prospective, randomized, placebo-controlled study (MASTIHA-OIL). Hellenic J Cardiol 2024; 77:63-69. [PMID: 37634870 DOI: 10.1016/j.hjc.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
INTRODUCTION Chios Mastiha essential oil (CMO) is a natural product extracted from the resin of Mastiha, possessing antioxidant, anti-microbial, anti-ulcer, anti-neoplastic, and cholesterol-lowering capabilities in vitro, and its hypolipidemic effect was confirmed in animal studies. Yet, there are no randomized, placebo-controlled clinical studies in the literature regarding CMO's hypolipidemic effects in humans. A prospective, randomized, placebo-controlled study was designed to study the hypolipidemic effect of CMO capsules on healthy volunteers with elevated cholesterol. METHODS 192 healthy volunteers were screened and 160 of them with total cholesterol> 200 mg/dl participated in the study. They were randomized with a 2:1 ratio of receiving CMO capsules (200 mg mastiha-oil/capsule) and placebo for 8 weeks respectively. 113 patients received CMO and 47 were randomized in the control group, and all of them completed the follow-up period. RESULTS After 8 weeks of CMO administration, total and LDL cholesterol were significantly lower in the CMO compared to the placebo group 215.2 ± 27.5 vs 237.0 ± 27.9 mg/dl (p < 0.001) and 135.0 ± 26.1 vs 153.0 ± 23.3 mg/dl (p < 0.001) respectively. No gastrointestinal adverse events or liver or renal toxicity were reported. Additionally, in the CMO group total cholesterol was significantly decreased by 20.6 mg/dl (9%), LDL by 18.1 mg/dl (12%), triglycerides by 21.8 mg/dl (15%), and glucose by 4.6 mg/dl (5%) and HDL was increased by 2.4 mg/dl (5%), compared to their baseline values. CONCLUSION The MASTIHA-OIL study showed the efficacy and safety of CMO in reduction of total and LDL cholesterol after 8 weeks of administration in healthy volunteers with elevated cholesterol levels.
Collapse
Affiliation(s)
| | | | - Matthaios Didagelos
- 1(st) Cardiology Department, "AHEPA" University Hospital of Thessaloniki, Greece
| | | | - Maria Moutafi
- Cardiology Department, General Hospital of Chios "Skylitseion", Greece
| | - Petros Voutas
- Cardiology Department, General Hospital of Chios "Skylitseion", Greece
| | | | | | | | - Eirini Boula
- Biochemistry Department, General Hospital of Chios "Skylitseion", Greece
| | | | | |
Collapse
|
6
|
Abe M, Asada N, Kimura M, Fukui C, Yamada D, Wang Z, Miyake M, Takarada T, Ono M, Aoe M, Kitamura W, Matsuda M, Moriyama T, Matsumura A, Maeda Y. Antitumor activity of α-pinene in T-cell tumors. Cancer Sci 2024; 115:1317-1332. [PMID: 38279512 PMCID: PMC11007008 DOI: 10.1111/cas.16086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
T-cell acute leukemia and lymphoma have a poor prognosis. Although new therapeutic agents have been developed, their therapeutic effects are suboptimal. α-Pinene, a monoterpene compound, has an antitumor effect on solid tumors; however, few comprehensive investigations have been conducted on its impact on hematologic malignancies. This report provides a comprehensive analysis of the potential benefits of using α-pinene as an antitumor agent for the treatment of T-cell tumors. We found that α-pinene inhibited the proliferation of hematologic malignancies, especially in T-cell tumor cell lines EL-4 and Molt-4, induced mitochondrial dysfunction and reactive oxygen species accumulation, and inhibited NF-κB p65 translocation into the nucleus, leading to robust apoptosis in EL-4 cells. Collectively, these findings suggest that α-pinene has potential as a therapeutic agent for T-cell malignancies, and further investigation is warranted.
Collapse
Affiliation(s)
- Masaya Abe
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Noboru Asada
- Department of Hematology and OncologyOkayama University HospitalOkayamaJapan
| | - Maiko Kimura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Chie Fukui
- Division of Hematology, Department of MedicineKobe University HospitalKobeJapan
| | - Daisuke Yamada
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Ziyi Wang
- Department of Molecular Biology and BiochemistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masayuki Miyake
- Division of Medical SupportOkayama University HospitalOkayamaJapan
| | - Takeshi Takarada
- Department of Regenerative ScienceOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Mitsuaki Ono
- Department of Molecular Biology and BiochemistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Michinori Aoe
- Division of Medical SupportOkayama University HospitalOkayamaJapan
| | - Wataru Kitamura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Masayuki Matsuda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Takashi Moriyama
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Akifumi Matsumura
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| |
Collapse
|
7
|
Alabrahim OAA, Azzazy HMES. Synergistic anticancer effect of Pistacia lentiscus essential oils and 5-Fluorouracil co-loaded onto biodegradable nanofibers against melanoma and breast cancer. DISCOVER NANO 2024; 19:27. [PMID: 38353827 PMCID: PMC10866856 DOI: 10.1186/s11671-024-03962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Chemoresistance and severe toxicities represent major drawbacks of chemotherapy. Natural extracts, including the essential oils of Pistacia lentiscus (PLEO), exhibit substantial anticancer and anti-inflammatory activities where different cancers are reported to dramatically recess following targeting with PLEO. PLEO has promising antimicrobial, anticancer, and anti-inflammatory properties. However, the therapeutic properties of PLEO are restricted by limited stability, bioavailability, and targeting ability. PLEO nanoformulation can maximize their physicochemical and therapeutic properties, overcoming their shortcomings. Hence, PLEO was extracted and its chemical composition was determined by GC-MS. PLEO and 5-Fluorouracil (5FU) were electrospun into poly-ε-caprolactone nanofibers (PCL-NFs), of 290.71 nm to 680.95 nm diameter, to investigate their anticancer and potential synergistic activities against triple-negative breast cancer cells (MDA-MB-231), human adenocarcinoma breast cancer cells (MCF-7), and human skin melanoma cell line (A375). The prepared nanofibers (NFs) showed enhanced thermal stability and remarkable physical integrity and tensile strength. Biodegradability studies showed prolonged stability over 42 days, supporting the NFs use as a localized therapy of breast tissues (postmastectomy) or melanoma. Release studies revealed sustainable release behaviors over 168 h, with higher released amounts of 5FU and PLEO at pH 5.4, indicating higher targeting abilities towards cancer tissues. NFs loaded with PLEO showed strong antioxidant properties. Finally, NFs loaded with either PLEO or 5FU depicted greater anticancer activities compared to free compounds. The highest anticancer activities were observed with NFs co-loaded with PLEO and 5FU. The developed 5FU-PLEO-PCL-NFs hold potential as a local treatment of breast cancer tissues (post-mastectomy) and melanoma to minimize their possible recurrence.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, SSE # 1184, P.O. Box 74, New Cairo, 11835, Egypt.
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena, Germany.
| |
Collapse
|
8
|
Tamburini D, Fulcher K, Briggs L, von Aderkas N, Pulak C, Stacey R. Advances in the characterisation and identification of mastic ( Pistacia sp.) resin in archaeological samples by GC-QToF-MS. RSC Adv 2024; 14:836-854. [PMID: 38174260 PMCID: PMC10759165 DOI: 10.1039/d3ra06651g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
The optimisation and application of an analytical method based on gas chromatography coupled to quadrupole time-of-flight mass spectrometry (GC-QToF-MS) is proposed for the first time for the characterisation and identification of mastic (Pistacia sp.) resin in archaeological samples. The GC-QToF-MS method demonstrated higher sensitivity compared to single quadrupole GC-MS and enabled enhanced structural elucidation power to be exploited, particularly due to the high mass resolution and accuracy, the possibility to use standard and low ionisation energies as well as its tandem MS capabilities. The heat-induced degradation of the resin was also studied in open air conditions, showing that 28-norolean-17-en-3-one forms upon heating, but then progressively degrades. This makes it a reliable marker for heating of Pistacia resin; however, the lack of detection does not imply that the resin was not heated. These observations were used to interpret the results of a large number of archaeological samples containing Pistacia resin in different formulations, from various archaeological contexts and exposed to different environmental conditions. Lumps of relatively pure resin found in marine waterlogged conditions (Uluburun shipwreck, Turkey), residues on ceramics from Sai Island (Nubia, Sudan) as well as varnish and coating layers on Egyptian coffins from the collections of the British Museum (London, UK) and Fitzwilliam Museum (Cambridge, UK) were analysed to understand what the molecular profiles reveal about the use of the resin. The results showed that the resin was often mixed with a drying or semi-drying oil in ancient varnish formulations, thus suggesting that oil was used as a medium to dissolve the resin, which would have been impossible to apply as a layer using simple heat. These new observations significantly add to our understanding of ancient Egyptian technology and provide museum scientists and conservators with key information to accurately identify Pistacia resin and preserve objects containing it.
Collapse
Affiliation(s)
- Diego Tamburini
- Department of Scientific Research, The British Museum Great Russell Street London WC1B 3DG UK
| | - Kate Fulcher
- Department of Scientific Research, The British Museum Great Russell Street London WC1B 3DG UK
| | - Lisa Briggs
- Department of Scientific Research, The British Museum Great Russell Street London WC1B 3DG UK
| | - Nelly von Aderkas
- Department of Scientific Research, The British Museum Great Russell Street London WC1B 3DG UK
| | - Cemal Pulak
- Department of Anthropology, Institute of Nautical Archaeology at Texas A&M University, Texas A&M University College Station Texas USA
| | - Rebecca Stacey
- Department of Scientific Research, The British Museum Great Russell Street London WC1B 3DG UK
| |
Collapse
|
9
|
Deshmukh R, Singh R, Sharma S, Mishra AK, Harwansh RK. A Snapshot of Selenium-enclosed Nanoparticles for the Management of Cancer. Curr Pharm Des 2024; 30:841-858. [PMID: 38462835 DOI: 10.2174/0113816128297329240305071103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024]
Abstract
Among the primary causes of mortality in today's world is cancer. Many drugs are employed to give lengthy and severe chemotherapy and radiation therapy, like nitrosoureas (Cisplatin, Oxaliplatin), Antimetabolites (5-fluorouracil, Methotrexate), Topoisomerase inhibitors (Etoposide), Mitotic inhibitors (Doxorubicin); such treatment is associated with significant adverse effects. Antitumor antibiotics have side effects similar to chemotherapy and radiotherapy. Selenium (Se) is an essential trace element for humans and animals, and additional Se supplementation is required, particularly for individuals deficient in Se. Due to its unique features and high bioactivities, selenium nanoparticles (SeNPs), which act as a supplement to counter Se deficiency, have recently gained worldwide attention. This study presented a safer and more economical way of preparing stable SeNPs. The researcher has assessed the antiproliferative efficiency of SeNPs-based paclitaxel delivery systems against tumor cells in vitro with relevant mechanistic visualization. SeNPs stabilized by Pluronic F-127 were synthesized and studied. The significant properties and biological activities of PTX-loaded SeNPs on cancer cells from the lungs, breasts, cervical, and colons. In one study, SeNPs were formulated using chitosan (CTS) polymer and then incorporated into CTS/citrate gel, resulting in a SeNPs-loaded chitosan/citrate complex; in another study, CTS was used in the synthesis of SeNPs and then situated into CTS/citrate gel, resulting in Se loaded nanoparticles. These formulations were found to be more successful in cancer treatment.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Sandeep Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Ashwini Kumar Mishra
- Delhi Institute of Pharmaceutical Sciences and Research University, Delhi 110017, India
| | | |
Collapse
|
10
|
de Oliveira Lopes AL, Neves de Andrade CC, Sousa Duarte S, Gadelha Marques KK, Ramos Marques de Souza R, de Lourdes Assunção Araújo de Azevedo F, Fechine Tavares J, Dos Santos Golzio S, Ramos Gonçalves JC, Sobral MV. Assessment of the in Vitro Antimelanoma Potential of Lippia microphylla Cham (Verbenaceae) Essential Oil. Chem Biodivers 2023; 20:e202300717. [PMID: 37867470 DOI: 10.1002/cbdv.202300717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
Essential oils stand out among natural products for their complex composition, frequently described in the literature with a range of biological effects. This study evaluated the cytotoxic activity against several human cancer cell lines of essential oils extracted from the leaves of Lippia microphylla (EO-LM) Cham. (Verbenaceae). The melanoma cell line SK-MEL-28 was the most sensitive to the EO-LM, presenting an IC50 of 33.38±1.16 μg/mL. Afterward, the effects of EO-LM on the cell cycle, induction of apoptosis, and production of reactive oxygen species (ROS) were evaluated. We stated a significant increase in the sub-G1 population, indicating apoptosis, later confirmed by an increase of SK-MEL-28 cells labeled with Annexin V-FITC and by the formation of apoptotic bodies and membrane blebs, observed by confocal microscopy. Additionally, EO-LM reduced the production of ROS, indicating antioxidant activity. Therefore, EO-LM exhibits anti-melanoma activity in vitro, suggesting its potential as an anticancer agent.
Collapse
Affiliation(s)
- Ana Luiza de Oliveira Lopes
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
| | - Camyla Caroliny Neves de Andrade
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
| | - Sâmia Sousa Duarte
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
| | - Karinne Kelly Gadelha Marques
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
| | - Ramon Ramos Marques de Souza
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
| | | | - Josean Fechine Tavares
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP, 58051-900, João Pessoa, PB, Brazil
| | - Sócrates Dos Santos Golzio
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP, 58051-900, João Pessoa, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP, 58051-900, João Pessoa, PB, Brazil
| | - Marianna Vieira Sobral
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, CEP 58051-900, João Pessoa, PB, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, CEP, 58051-900, João Pessoa, PB, Brazil
| |
Collapse
|
11
|
Gębarowski T, Wiatrak B, Jęśkowiak-Kossakowska I, Grajzer M, Prescha A. Oils from Transgenic Flax Lines as Potential Chemopreventive Agents in Colorectal Cancer. Biomedicines 2023; 11:2592. [PMID: 37761033 PMCID: PMC10527327 DOI: 10.3390/biomedicines11092592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Colorectal cancer is a major global health concern, and the need for effective chemopreventive agents is paramount. This study aimed to evaluate the potential of oils from transgenically modified flax for the prevention of colorectal cancer, in relation to the oil concertation. Flaxseed oils were obtained from traditional (Nike) and genetically modified flax lines (M and B). Cell viability assays were performed on various cancer cell lines, including colon adenocarcinoma cells. Flaxseed oil B exhibited the strongest anti-proliferative properties compared to the reference drugs and other oils. Additionally, M and B oils showed enhanced accumulation of Rhodamine 123 and increased apoptosis in colorectal cancer cells. M oil exhibited the highest levels of p53 protein. Notably, the tested transgenic oils did not induce metastasis and displayed stronger inhibition of COX-1 compared to COX-2. These data indicate the utility of flaxseed oils, especially from the M line, as adjuvants in colorectal cancer treatment, targeting the colon specifically.
Collapse
Affiliation(s)
- Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, The Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Izabela Jęśkowiak-Kossakowska
- Department of Pharmacology, Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland;
| | - Magdalena Grajzer
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.G.); (A.P.)
| | - Anna Prescha
- Department of Dietetics and Bromatology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland; (M.G.); (A.P.)
| |
Collapse
|
12
|
Fahmy SA, Sedky NK, Ramzy A, Abdelhady MM, Alabrahim OAA, Shamma SN, Azzazy HMES. Green extraction of essential oils from Pistacia lentiscus resins: Encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells. J Drug Deliv Sci Technol 2023; 87:104820. [DOI: 10.1016/j.jddst.2023.104820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Gioxari A, Amerikanou C, Valsamidou E, Kleftaki SA, Tzavara C, Kalaitzopoulou A, Stergiou I, Smyrnioudis I, Kaliora AC. Chios mastiha essential oil exhibits antihypertensive, hypolipidemic and anti-obesity effects in metabolically unhealthy adults - a randomized controlled trial. Pharmacol Res 2023; 194:106821. [PMID: 37329633 DOI: 10.1016/j.phrs.2023.106821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
The essential oil of the resinous exudate from Pistacia lentiscus of Chios namely Chios Mastiha Essential Oil (CMEO), is a natural volatile oil rich in monoterpenes α-pinene, β-myrcene, β-pinene. In the present randomized controlled trial, we investigated the effects of CMEO on individuals with abdominal obesity and metabolic abnormalities i.e., dyslipidemia, hypertension, insulin resistance. Eligible patients (N = 94) were randomly assigned to either the intervention group, receiving capsules containing 200 mg of CMEO daily for 3 months adjunct to current treatment for metabolic disorder(s), or the control group. Anthropometric measurements, blood markers, and quality of life (QoL) were assessed. Statistical analysis was performed on an intention-to-treat basis. A significant improvement in blood lipid profile, namely triglycerides (p = 0.026) and low-density lipoprotein (p = 0.05) of the CMEO group versus controls was observed. Systolic blood pressure (p = 0.05) and alanine aminotransferase (p = 0.022) significantly decreased only after CMEO intake. Alike, weight decreased only in CMEO (p = 0.02), while mean changes in % body fat (p = 0.005) and visceral fat (p = 0.045) were significantly different between groups post-intervention. Lower oxidized LDL (p = 0.044) and higher adiponectin (p = 0.007) were recorded in CMEO with significant different mean changes between groups post-intervention. QoL, as assessed by Short Form-12 questionnaire was improved in the CMEO compared to control (p = 0.041 for Physical Composite Score, p = 0.035 for Mental Composite Score). No adverse effects were reported. An anti-obesity effect of CMEO, probably attributed to modulation of inflammatory and antioxidant processes, is suggested. Conclusively, CMEO can be safe and effective in regulating metabolic abnormalities, adjunct to treatment. (ClinicalTrials.gov. The effect of Mastiha oil in Metabolic Syndrome, ID Number: NCT04785573).
Collapse
Affiliation(s)
- Aristea Gioxari
- Department of Nutritional Science and Dietetics, School of Health Science, University of the Peloponnese, Antikalamos, 24100 Kalamata, Messinia, Greece
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | - Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | - Stamatia-Angeliki Kleftaki
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | - Chara Tzavara
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece
| | | | - Ioannis Stergiou
- Diabetes Outpatient Department, General Hospital G. Gennimatas, Thessaloniki, Greece
| | | | - Adriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 70 El. Venizelou Ave, 17676 Athens, Greece.
| |
Collapse
|
14
|
Georgantopoulos A, Vougioukas A, Kalousi FD, Tsialtas I, Psarra AMG. Comparative Studies on the Anti-Inflammatory and Apoptotic Activities of Four Greek Essential Oils: Involvement in the Regulation of NF-κΒ and Steroid Receptor Signaling. Life (Basel) 2023; 13:1534. [PMID: 37511910 PMCID: PMC10381560 DOI: 10.3390/life13071534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Essential oils (EOs) are well-known for their anti-fungal, anti-microbial, anti-inflammatory and relaxing activities. Steroid hormones, especially glucocorticoids, are also well-known for their anti-inflammatory activities and control of the hypothalamus-pituitary-adrenal (HPA) axis and glucose homeostasis. The biological activities of glucocorticoids render them the most widely prescribed anti-inflammatory drugs, despite their adverse side effects. In this study, comparative studies of the anti-inflammatory activities and interference with glucocorticoids receptor (GR) and estrogen receptor (ER) signaling of EOs from Greek Oregano, Melissa officinalis, Lavender and from the Chios Mastic, produced from the Greek endemic mastic tree, were performed in Human Embryonic Kidney 293 (HEK-293) cells. Chios Mastic (Mastiha) and oregano EOs exhibited the highest anti-inflammatory activities. The former showed a reduction in both NF-κB activity and protein levels. Mastic essential oil also caused a reduction in GR protein levels that may compensate for its boosting effect on dexamethasone (DEX)-induced GR transcriptional activation, ending up in no induction of the gluconeogenic phoshoenolpyruvate carboxykinase (PEPCK) protein levels that constitute the GR target. Oregano, Melissa officinalis and lavender EOs caused the suppression of the transcriptional activation of GR. Furthermore, the most active EO, that taken from Melissa officinalis, showed a reduction in both GR and PEPCK protein levels. Thus, the anti-inflammatory and anti-gluconeogenic activities of the EOs were uncovered, possibly via the regulation of GR signaling. Moreover, cytotoxic actions of Melissa officinalis and lavender EOs via the induction of mitochondrial-dependent apoptosis were revealed. Our results highlight these essentials oils' anti-inflammatory and apoptotic actions in relation to their implication on the regulation of steroid hormones' actions, uncovering their potential use in steroid therapy, with many applications in pharmaceutical and health industries as anti-cancer, anti-hyperglycemic and anti-inflammatory supplements.
Collapse
Affiliation(s)
- Achilleas Georgantopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Athanasios Vougioukas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Foteini D Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Ioannis Tsialtas
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Anna-Maria G Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| |
Collapse
|
15
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
16
|
Alwadi MAM, Sidhu A, Khaled MB, Aboul-Enein BH. Mastic (Pistacia lentiscus) gum and oral health: a state-of-the-art review of the literature. J Nat Med 2023; 77:430-445. [PMID: 37147480 DOI: 10.1007/s11418-023-01704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
The aim of this state-of-the-art review is to provide a comprehensive overview of the various therapeutic effects of Mastic (Pistacia lentiscus) gum on oral health. The search of the literature was conducted across thirteen databases for relevant publications published through May 2022 in English, Arabic, or Greek using a combination of keywords and phrases. Out of 246 papers, the search procedure identified 14 papers for inclusion. Mastic gum displayed antibacterial and antimicrobial properties and inhibited plaque accumulation, constituting a beneficial adjuvant in caries prevention. In the treatment and prevention of periodontal diseases, Pistacia lentiscus essential oil provided effective antibacterial activity against a variety of periodontal bacteria as well as anti-inflammatory properties. For oral cancer, several clinical trials revealed interesting results against cell proliferation, induction of apoptosis, and regulation of intracellular signaling pathways. This indicates the potential of Mastic gum to serve as a preventive and therapeutic agent for oral mucosa inflammation and oral cancer. No notable toxic or side effects were reported in the clinical trials reviewed. This review highlights the various beneficial effects of Mastic gum in the prevention and potential treatment of oral diseases. Further research targeting Pistacia lentiscus products is required in order to validate and utilize these products to prevent and to treat oral health diseases.
Collapse
Affiliation(s)
- Maram Ali M Alwadi
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Amrita Sidhu
- School of Public Health, Health Promotion and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1200 Pressler Street, Houston, TX, 77030, USA
| | - Méghit Boumédiène Khaled
- Department of Biology, Faculty of Life and Natural Science, Lab-NuPABS (Laboratoire de Nutrition, Pathologie, Agro-biotechnologie et Santé), Centre de recherche, route de Mascara, Djillali Liabes University, Sidi Bel Abbès, Algeria
| | - Basil H Aboul-Enein
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, 15-17 Tavistock Place, London, WC1H 9SH, UK.
| |
Collapse
|
17
|
Evaluation of the Anti-Inflammatory Properties of Mastic Oil Extracted from Pistacia lentiscus var. chia. IMMUNO 2023. [DOI: 10.3390/immuno3010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Mastic oil (MO) is extracted from the resin of the bark of Pistacia lentiscus var. chia, a tree abundantly grown in the Greek island of Chios. Various biological activities, such as antimicrobial, anticancer and antioxidant, have been associated with the dietary intake of MO. However, little is known about MO’s potential anti-inflammatory effects, while some of its main chemical constituents were reported to exert significant anti-inflammatory activity. This study aims to assay the bioactivity of MO on in vitro and in vivo experimental inflammation models, in particular on LPS-stimulated RAW264.7 macrophages, murine primary peritoneal macrophages and a model of zymosan-induced peritonitis in BALB/c mice. The per os administration of MO inhibited the recruitment of macrophages into the peritoneal cavity of zymosan-treated mice, but did not affect neutrophil mobilisation or the levels of IL-6 or TNF-α in the peritoneal fluid. Similarly, IL-6 and TNF-α secretion in primary LPS-stimulated macrophages was not affected by MO, but the levels of phosphoproteins that activate inflammation in macrophages were differentially regulated. Finally, MO and some of its individual constituents reduced nitric oxide (NO), prostaglandin E2 and TNF-α levels in supernatants of LPS-stimulated RAW264.7 cells and inhibited their phagocytosis rate. Our data imply that MO may promote an anti-inflammatory transition in macrophages due to the combined bioactivities of its individual constituents. Thus, as a mixture of various compounds, MO seems to affect multiple molecular mechanisms that are involved in the development of inflammation. Therefore, more research, focusing on MO’s individual constituents and employing various pre-clinical inflammation models that activate different mechanisms, is required for a detailed investigation of the oil’s potential anti-inflammatory activity.
Collapse
|
18
|
Species of the Genera Neopestalotiopsis and Alternaria as Dominant Pathogen Species Attacking Mastic Trees (Pistacia lentiscus var. Chia). MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Between 2018 and 2021, several mastic trees (Pistacia lentiscus var. Chia) sampled in the field and the nursery of the Chios Mastiha Growers Association (CMGA) were analyzed to determine the cause of dominant diseases. Symptoms included defoliation, leaf, and twig blight, wilting and/or apoplexy of trees and apoplexy of young hardwood cuttings. Moreover, brown discoloration had also been observed on older woody parts of the trees such as branches and tree trunks. Several pathogens have been isolated and identified as the causing agents. Neopestalotiopsis and Alternaria species were isolated consistently from necrotic tissues of mastic trees (branches, twigs, and leaves) in the field and the nursery. All fungal isolates’ pathogenicity was confirmed by applying Koch’s postulates on young mastic trees under glasshouse conditions. Fungal pathogens were identified by sequence analyses of the ITS, β-tubulin, and histone gene regions. Alternaria species were analyzed further by sequencing the endopolygalacturonase (endoPG) and the Alternaria major allergen (Alta1) genes. More specifically, the isolates were identified as Neopestalotiopsis clavispora, Alternaria arborescens, and A. alternata based on morphological features and sequence analyses. This is the first report of N. clavispora, A. arborescens, and A. alternata on P. lentiscus var. Chia.
Collapse
|
19
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
20
|
Comparative Volatilomic Profile of Three Finger Lime ( Citrus australasica) Cultivars Based on Chemometrics Analysis of HS-SPME/GC-MS Data. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227846. [PMID: 36431949 PMCID: PMC9697472 DOI: 10.3390/molecules27227846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Finger lime is receiving growing attention as an ingredient of gastronomic preparations of haute cuisine for its delicious flavor and fragrance and for its appealing aspect. Volatile compounds play a crucial role in determining the organoleptic characteristics of the fruit and its pleasantness for consumers. The aim of the present study was to investigate the volatile profiles by headspace solid phase micro-extraction (HS-SPME) coupled to gas chromatography-mass spectrometry (GC-MS) in the peel and, for the first time, in the pulp of three Australian finger lime cultivars grown in Sicily (southern Italy): Pink Pearl, Sanguinea, and Faustrime, allowing to overall identify 84 volatile organic compounds (VOCs). The analytical data showed that the three cultivars were characterized by distinct volatile chemotypes: limonene/sabinene/bicyclogermacrene in the Pink Pearl, limonene/γ-terpinene/bicyclogermacrene in the Sanguinea, and limonene/β-phellandrene/γ-terpinene in the Faustrime. Moreover, some volatiles, found exclusively in one cultivar, could be considered potential markers of the individual cultivar. PCA allowed us to clearly discriminate the samples into three clusters: the first related to the Sanguinea peel, the second to the Faustrime peel, and a third group associated with the Pink Pearl peel along with the pulp of the three cultivars. Accordingly, the VOCs that mostly contributed to the differentiation of the three finger lime cultivars were also identified. Among them, D-limonene, sabinene γ-terpinene, α-pinene, α-phellandrene, β-myrcene, p-cymene, linalool, δ-elemene, ledene, bicyclogermacrene β-citronellol, α-bergamotene, α-caryophillene, and β-bisabolene, have been previously reported to exhibit important biological activities, suggesting that these cultivars, in addition to possessing unique volatile profiles, can show promise for several applications in pharmaceutical and food industry, namely for development of functional foods.
Collapse
|
21
|
Assessment of Antimicrobial Efficiency of Pistacia lentiscus and Fortunella margarita Essential Oils against Spoilage and Pathogenic Microbes in Ice Cream and Fruit Juices. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nowadays, the use of antimicrobial natural agents as alternative food preservatives represents an intriguing case. The purpose of this study was to investigate possible antimicrobial activity of Pistacia lentiscus and Fortunella margarita essential oils (EOs) and to evaluate their commercial potential in the food industry. The main constituents identified by GC/MS in Pistacia lentiscus EO were a-pinene (67.7%), myrcene (18.8%), and β-pinene (3.0%), whereas limonene (93.8%) and myrcene (2.7%) were the dominant compounds in Fortunella margarita EO. The antimicrobial properties were initially assayed and the minimum inhibitory, non-inhibitory, and minimum lethal concentration values against the Escherichiacoli, Listeria monocytogenes, Pseudomonas fragi, Aspergillus niger, and Saccharomyces cerevisiae were determined using a previously published model, combining absorbance measurements with the common dilution method and non-linear regression analysis to fit the data. Their efficiency was further validated in ice cream containing 0.2% (w/w) Pistacia lentiscus, 0.006% (w/w) Fortunella margarita EOs and 2% (w/w) aqueous residue of F. margarita EO deliberately inoculated with 4 logcfu/g Escherichiacoli, Listeria monocytogenes or Pseudomonas fragi, separately. Similarly, the activity of the oils was monitored in fruit juice (lemon, apple, and blackcurrant) containing 0.2% (w/w) Pistacia lentiscus, 0.006% (w/w) Fortunella margarita EOs and 2% (w/w) aqueous residue of F. margarita EO deliberately spiked with 100 spores/mL of Aspergillus niger or 4 logcfu/mL of Saccharomyces cerevisiae, separately. The results showed that microbial viable counts in the supplemented products ranged at significantly lower levels compared to the control samples during storage. Overall, the data indicated that both EOs constitute effective antimicrobial sources with many potent applications in the food industry.
Collapse
|
22
|
Brice DP, Murray GI, Wilson HM, Porter RJ, Berry S, Durum SK, McLean MH. Interleukin-27 Regulates the Function of the Gastrointestinal Epithelial Barrier in a Human Tissue-Derived Organoid Model. BIOLOGY 2022; 11:biology11030427. [PMID: 35336801 PMCID: PMC8945023 DOI: 10.3390/biology11030427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
A treatment with direct healing effects on the gastrointestinal epithelial barrier is desirable for inflammatory bowel disease (IBD). Interleukin-27 (IL-27) is an immunoregulatory cytokine, and oral delivery is an effective treatment in murine models of IBD. We aimed to define IL-27 effects on the human gastrointestinal epithelial barrier. We characterised gene and protein expression of permeability mediators in a human colon-derived organoid model. Functional permeability was determined in an organoid-derived 2D monolayer by transepithelial electrical resistance. IL-27 effects on epithelial innate immune responses were assessed through expression of cytokines, anti-microbial peptides and MUC genes. IL-27 effects on wound healing and proliferation were determined in human colon epithelial cell lines. IL-27 led to restoration of permeability regulation following inflammatory cytokine insult (p = 0.001), associated with differential expression of tight junction mediators with decrease in claudin 2 (p = 0.024) and increase in claudin 4 (p < 0.001), E-cadherin (p < 0.001) and zona occludens (p = 0.0014). IL-27 evoked differential gene expression of epithelial-derived innate immune responses (reduced IL1B and IL18, and increased IL33, HBD1, MUC1 and MUC2; p < 0.012). IL-27 induced epithelial barrier wound healing through restitution (p < 0.001), and increased proliferation (p < 0.001) following injury. Overall, IL-27 provokes mucosal healing of the human gastrointestinal epithelial barrier.
Collapse
Affiliation(s)
- Daniel P. Brice
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Graeme I. Murray
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Heather M. Wilson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Ross J. Porter
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Susan Berry
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (D.P.B.); (G.I.M.); (H.M.W.); (S.B.)
| | - Scott K. Durum
- Cytokines and Immunity Section, Laboratory of Cancer Immunometabolism, National Cancer Institute (NCI), National Institute of Health (NIH), Frederick, MD 21702, USA;
| | - Mairi H. McLean
- Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Correspondence:
| |
Collapse
|
23
|
Cozzolino R, Stocchero M, Perestrelo R, Câmara JS. Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods 2022; 11:366. [PMID: 35159517 PMCID: PMC8834390 DOI: 10.3390/foods11030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The volatile profiles of eight saffron samples (seven cultivated and one spontaneous) grown in different geographical districts within the Campania region (southern Italy) were compared. Using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS), overall, 80 volatiles were identified in the eight landraces. Among them, safranal and its isomers and other related compounds such as isophorones, which are not only key odorants but also pharmacologically active metabolites, have been detected in all the investigated samples. Principal Component Analysis performed on the volatiles' compounds revealed that the spontaneous sample turned out to be an outlier. In particular, the volatile organic compounds (VOCs) profile of the spontaneous saffron presented four lilac aldehydes and four lilac alcohol isomers, which, to the authors' knowledge, have never been identified in the volatile signature of this spice. The multivariate statistical analysis allowed the discrimination of the seven cultivate saffron ecotypes in four well-separated clusters according to variety. Moreover, 20 VOCs, able to differentiate the clusters in terms of single volatile metabolite, were discovered. Altogether, these results could contribute to identifying possible volatile signature metabolites (biomarkers) or patterns that discriminate saffron samples grown in Campania region on a molecular basis, encouraging future biodiversity programs to preserve saffron landraces revealing valuable genetic resources.
Collapse
Affiliation(s)
- Rosaria Cozzolino
- National Research Council (CNR), Institute of Food Science, Via Roma 64, 83100 Avellino, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padova, 35122 Padova, Italy;
| | - Rosa Perestrelo
- Centro de Química da Madeira—CQM, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - José S. Câmara
- Centro de Química da Madeira—CQM, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
24
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
25
|
Spyridopoulou K, Aindelis G, Pappa A, Chlichlia K. Anticancer Activity of Biogenic Selenium Nanoparticles: Apoptotic and Immunogenic Cell Death Markers in Colon Cancer Cells. Cancers (Basel) 2021; 13:5335. [PMID: 34771499 PMCID: PMC8582357 DOI: 10.3390/cancers13215335] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer is a health problem with high mortality rates and prevalence. Thus, innovative treatment approaches need to be developed. Biogenic nanoparticles are nanomaterials that can be synthesised in biological systems and, compared to chemically synthesised nanoparticles, have better bioavailability while being more cost-effective, eco-friendlier, and less toxic. In our previous studies, the probiotic strain Lactobacillus casei ATCC 393 was used to synthesise selenium nanoparticles (SeNps), which were shown to inhibit colon cancer cell growth in vitro and in vivo. Herein, we have further investigated SeNps' pro-apoptotic activity and their ability to induce immunogenic cell death (ICD) in colon cancer cells. The SeNps' effect on Caco-2 cells growth was examined along with their potential to induce caspase activation. Moreover, the expression of typical pro-apoptotic and ICD markers were examined in SeNps-treated HT29 and CT26 cells by flow cytometry, Western blot, ELISA and fluorescence microscopy. Elevated caspase-3 activation and surface phosphatyldoserine, that subsided upon co-incubation with a pan-caspase inhibitor, were detected in SeNps-treated cells. Furthermore, nanoparticles induced modulation of the expression of various apoptosis-related proteins. We also report the detection of biomarkers involved in ICD, namely the translocation of calreticulin and ERp57, the release of HMGB1 and ATP, and the secretion of pro-inflammatory cytokines from SeNps-treated cells. Moreover, RAW246.7 macrophages exhibited a higher rate of phagocytosis against treated CT26 when compared to control cells. Taken together, our findings indicate that treatment with SeNps might be an efficient strategy to destroy tumour cells by inducing apoptotic cell death and triggering immune responses.
Collapse
Affiliation(s)
| | | | | | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus Dragana, 68100 Alexandroupolis, Greece; (K.S.); (G.A.); (A.P.)
| |
Collapse
|
26
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
27
|
Cavalli J, Freitas MA, Gonçalves ECD, Fadanni GP, Santos AA, Raposo NRB, Dutra RC. Chia oil prevents chemical and immune-mediated inflammatory responses in mice: Evidence for the underlying mechanisms. Food Res Int 2021; 149:110703. [PMID: 34600695 DOI: 10.1016/j.foodres.2021.110703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Chia (Salvia hispanica L.) is an herbaceous plant used as omega-3 polyunsaturated fatty acid (ω-3 PUFA) source that presents a range of beneficial effects on human health. Herein, it was used a chia oil containing over than 62% of α-linolenic acid (ALA), a compound widely related to anti-inflammatory actions. Chia oil effect was tested using paw edema and mechanical hyperalgesia induced by carrageenan, and ear edema induced by croton oil, histamine, and capsaicin. Croton oil was used in both preventive and therapeutic treatment schedules of chia oil while histamine and capsaicin were used only in preventive treatment schedule. Chia oil mechanism of action was investigated using nociception and paw edema response induced by intraplantar injection of acidified saline (ASIC activator), PGE2 (prostaglandin pathway), cinnamaldehyde (TRPA1 activator), bradykinin (BK pathway), menthol (TRPM8 activator), and capsaicin (TRPV1 activator). Further, RT-PCR for inflammatory mediators (TRPA1, NF-κB, PPAR-γ, COX-2, IL-6, TNF, FPR2, FAAH, MAGL, and IL-12A) induced by carrageenan, NLRP3 inflammasome activation, and the cell viability were then accessed. Later, chia oil actions were evaluated in the experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis (MS) model. Chia oil showed anti-edematogenic and anti-hyperalgesic effects when administered 1 h before pro-inflammatory stimulus - particularly carrageenan and croton oil. Moreover, chia oil upregulated the mRNA levels of COX-2 and formyl peptide receptor 2 (FPR2) while reduced IL-6 expression in the spinal cord of mice submitted to i.pl. injection of carrageenan. Interestingly, chia oil mediates antinociceptive effects in mice decreasing the nociceptive response induced by acidified saline, PGE2, and cinnamaldehyde, but not by bradykinin, menthol, and capsaicin. On the EAE model, chia oil preventively administered attenuated EAE-induced motor deficits and mechanical hyperalgesia in mice, suggesting a valuable effect of chia oil supplementation in regulating inflammatory responses and some immune functions during immune-mediated inflammatory disorders (IMID). Nonetheless, additional reports will need to assess the effect of chia oil in well-controlled clinical trials performed in MS patients.
Collapse
Affiliation(s)
- Juliana Cavalli
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Mariana A Freitas
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil
| | - Elaine C D Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Guilherme P Fadanni
- Center of Innovation and Preclinical Research, 88056-000 Florianópolis, SC, Brazil
| | - Adara A Santos
- Center of Innovation and Preclinical Research, 88056-000 Florianópolis, SC, Brazil
| | - Nádia R B Raposo
- Center for Research and Innovation in Health Sciences (NUPICS), Faculty of Pharmacy, Universidade Federal de Juiz de Fora, 36036-330 Juiz de Fora, MG, Brazil
| | - Rafael C Dutra
- Laboratory of Autoimmunity and Immunopharmacology, Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, 88906-072 Araranguá, SC, Brazil; Post-Graduate Program of Neuroscience, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil; Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
28
|
Brieudes V, Mikropoulou EV, Kallergis E, Kaliora AC, Papada E, Gkiouvetidis P, Angelis A, Halabalaki M. Development, Validation and Application of a UHPLC-MS Method for the Quantification of Chios Mastic Gum Triterpenoids in Human Plasma. PLANTA MEDICA 2021; 87:1101-1109. [PMID: 33784768 DOI: 10.1055/a-1408-9338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Chios mastic gum is the resinous secretion obtained from the barks of the shrub Pistacia lentiscus var. Chia, which is endemic to the Greek island of Chios. Since antiquity, Chios mastic gum has found several uses as a phytotherapeutic remedy, primarily for the treatment of gastrointestinal disorders while recently, Chios mastic gum was also recognized by EMA as an herbal medicinal product with specific indications. Chios mastic gum's biological properties are attributed to triterpenes which comprise the major chemical group (approx. 70%) and notably isomasticadienonic acid and masticadienonic acid. However, due to their structural characteristics, the isolation thereof in high yield and purity is challenging and since they are not commercially available, pharmacological studies aiming to assess their biological properties are limited. In the present work, mastic's phytochemical investigation by UPLC-HRMS is followed by the isolation and characterization of isomasticadienonic acid and masticadienonic acid to be used as analytical standards for their accurate and reliable quantification in human plasma. A UHPLC-tQ-MS method that was developed and validated (in terms of specificity, linearity, limit of quantification, accuracy and precision), for the direct quantification of the targeted compounds in the low ng/mL range of concentration, was subsequently implemented on plasma samples of healthy volunteers thus demonstrating its fitness for purpose. The results presented herein might provide insight to the understanding of this traditional natural product consumed notably for its anti-inflammatory, antioxidant and lipid lowering properties. Moreover, this method might serve as a starting point for any study aiming to monitor bioactive triterpenes in biological fluids.
Collapse
Affiliation(s)
- Vincent Brieudes
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Eleni V Mikropoulou
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Errikos Kallergis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Andriana C Kaliora
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Efstathia Papada
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University, Athens, Greece
| | - Petros Gkiouvetidis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Apostolis Angelis
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| |
Collapse
|
29
|
Spyridopoulou K, Aravidou T, Lampri E, Effraimidou E, Pappa A, Chlichlia K. Antitumor Potential of Lippia citriodora Essential Oil in Breast Tumor-Bearing Mice. Antioxidants (Basel) 2021; 10:875. [PMID: 34070804 PMCID: PMC8228289 DOI: 10.3390/antiox10060875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Lippia citriodora is a flowering plant cultivated for its lemon-scented leaves and used in folk medicine for the preparation of tea for the alleviation of symptoms of gastrointestinal disorders, cold, and asthma. The oil extracted from the plant leaves was shown to possess antioxidant potential and to exert antiproliferative activity against breast cancer. The aim of this study was to further investigate potential antitumor effects of L. citriodora oil (LCO) on breast cancer. The in vitro antiproliferative activity of LCO was examined against murine DA3 breast cancer cells by the sulforhodamine B assay. We further explored the LCO's pro-apoptotic potential with the Annexin-PI method. The LCO's anti-migratory effect was assessed by the wound-healing assay. LCO was found to inhibit the growth of DA3 cells in vitro, attenuate their migration, and induce apoptosis. Finally, oral administration of LCO for 14 days in mice inhibited by 55% the size of developing tumors in the DA3 murine tumor model. Noteworthy, in the tumor tissue of LCO-treated mice the apoptotic marker cleaved caspase-3 was elevated, while a reduced protein expression of survivin was observed. These results indicate that LCO, as a source of bioactive compounds, has a very interesting nutraceutical potential.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (K.S.); (T.A.); (E.L.); (A.P.)
| | - Tamara Aravidou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (K.S.); (T.A.); (E.L.); (A.P.)
| | - Evangeli Lampri
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (K.S.); (T.A.); (E.L.); (A.P.)
| | - Eleni Effraimidou
- Department of Medicine, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece;
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (K.S.); (T.A.); (E.L.); (A.P.)
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece; (K.S.); (T.A.); (E.L.); (A.P.)
| |
Collapse
|
30
|
Spyridopoulou K, Tryfonopoulou E, Aindelis G, Ypsilantis P, Sarafidis C, Kalogirou O, Chlichlia K. Biogenic selenium nanoparticles produced by Lactobacillus casei ATCC 393 inhibit colon cancer cell growth in vitro and in vivo. NANOSCALE ADVANCES 2021; 3:2516-2528. [PMID: 36134160 PMCID: PMC9417964 DOI: 10.1039/d0na00984a] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 05/10/2023]
Abstract
Selenium compounds exhibit excellent anticancer properties but have a narrow therapeutic window. Selenium nanoparticles, however, are less toxic compared to other selenium forms, and their biogenic production leads to improved bioavailability. Herein, we used the probiotic strain Lactobacillus casei ATCC 393, previously shown to inhibit colon cancer cell growth, to synthesize biogenic selenium nanoparticles. We examined the anticancer activity of orally administered L. casei, L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei, and investigated their antitumor potential in the CT26 syngeneic colorectal cancer model in BALB/c mice. Our results indicate that L. casei-derived selenium nanoparticles and selenium nanoparticle-enriched L. casei exert cancer-specific antiproliferative activity in vitro. Moreover, the nanoparticles were found to induce apoptosis and elevate reactive oxygen species levels in cancer cells. It is noteworthy that, when administered orally, selenium nanoparticle-enriched L. casei attenuated the growth of colon carcinoma in mice more effectively than the isolated nanoparticles or L. casei, suggesting a potential additive effect of the nanoparticles and the probiotic. To the best of our knowledge this is the first comparative study examining the anticancer effects of selenium nanoparticles synthesized by a microorganism, the selenium nanoparticle-enriched microorganism and the sole microorganism.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Eleni Tryfonopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Georgios Aindelis
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| | - Petros Ypsilantis
- Laboratory of Experimental Surgery and Surgical Research, Department of Medicine, Democritus University of Thrace 68100 Alexandroupolis Greece
| | - Charalampos Sarafidis
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Orestis Kalogirou
- Department of Physics, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace University Campus Dragana 68100 Alexandroupolis Greece
| |
Collapse
|
31
|
Chemical Profiling of Pistacia lentiscus var. Chia Resin and Essential Oil: Ageing Markers and Antimicrobial Activity. Processes (Basel) 2021. [DOI: 10.3390/pr9030418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chios Mastic Gum (CMG) and Chios Mastic Oil (CMO) are two unique products of the tree Pistacia lentiscus var. Chia, cultivated exclusively on the Greek island of Chios. In the present study, the method proposed by the European Pharmacopoeia for mastic identification was employed using HPTLC together with an in-house method. A GC-MS methodology was also developed for the chemical characterization of CMOs. α-Pinene and β-myrcene were found in abundance in the fresh oils; however, in the oil of the aged collection, oxygenated monoterpenes and benzenoids such as verbenone, pinocarveol, and α-campholenal were found at the highest rates. Additionally, the antimicrobial activity of Chios Mastic Gums (CMGs) with their respective Chios Mastic Oils (CMOs) was evaluated, with growth tests against the fungi Aspergillus nidulans, Aspergillus fumigatus, Candida albicans, Mucor circinelloides, and Rhizopus oryzae, and the bacteria Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis, with the samples exhibiting a moderate activity. To our knowledge, this is the first time that an HPTLC method is proposed for the analysis of mastic and its essential oil and that a standardized methodology is followed for the distillation of CMO with a parallel assessment of the ageing effect on the oil’s composition.
Collapse
|
32
|
Xanthis V, Fitsiou E, Voulgaridou GP, Bogadakis A, Chlichlia K, Galanis A, Pappa A. Antioxidant and Cytoprotective Potential of the Essential Oil Pistacia lentiscus var . chia and Its Major Components Myrcene and α-Pinene. Antioxidants (Basel) 2021; 10:antiox10010127. [PMID: 33477450 PMCID: PMC7830477 DOI: 10.3390/antiox10010127] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/31/2022] Open
Abstract
The antioxidant, cytoprotective, and wound-healing potential of the essential oil from the resin of Pistacia lentiscus var. chia (mastic oil) was evaluated, along with that of its major components, myrcene and α-pinene. Antioxidant potential was monitored as: (i) direct antioxidant activity as assessed by 2,2-di-phenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and ABTS assays; (ii) DNA damage protection activity; and (iii) cytoprotective activity as assessed via induction of transcription of genes related to the antioxidant response in human keratinocyte cells (HaCaT). The cytoprotective potential of the test substances was further evaluated against ultraviolet radiation B (UVB)- or H2O2-induced oxidative damage, whereas their regenerative capability was accessed by monitoring the wound closure rate in HaCaT. Μastic oil and major components did not show significant direct antioxidant activity, however they increased the mRNA levels of antioxidant response genes, suggesting indirect antioxidant activity. Treatment of HaCaT with the test substances before and after UVB irradiation resulted in increased cell viability in the cases of pre-treatment with mastic oil or post-treatment with myrcene. Increased cytoprotection was also observed in the case of cell treatment with mastic oil or its major components prior to H2O2 exposure. Finally, mastic oil and myrcene demonstrated a favorable dose-dependent effect for cell migration and wound closure. Collectively, mastic essential oil may exert its promising cytoprotective properties through indirect antioxidant mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex Galanis
- Correspondence: (A.G.); (A.P.); Tel.: +30-25510-30634 (A.G.); +30-25510-30625 (A.P.)
| | - Aglaia Pappa
- Correspondence: (A.G.); (A.P.); Tel.: +30-25510-30634 (A.G.); +30-25510-30625 (A.P.)
| |
Collapse
|
33
|
Kim DI, Cho YB, Lim Y, Hong SH, Hahm B, Lee SM, Kang SC, Seo YJ. Chios mastic gum inhibits influenza A virus replication and viral pathogenicity. J Gen Virol 2021; 102. [PMID: 33416468 DOI: 10.1099/jgv.0.001550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Chios mastic gum (CMG), a resin of the mastic tree (Pistacia lentiscus var. chia), has been used to treat multiple disorders caused by gastrointestinal malfunctions and bacterial infections for more than 2500 years. However, little is known about CMG's antiviral activity. CMG is known to influence multiple cellular processes such as cell proliferation, differentiation and apoptosis. As virus replication is largely dependent on the host cellular metabolism, it is conceivable that CMG regulates virus infectivity. Therefore, in this study, we evaluated CMG's potential as an antiviral drug to treat influenza A virus (IAV) infection. CMG treatment dramatically reduced the cytopathogenic effect and production of RNAs, proteins and infectious particles of IAV. Interestingly, CMG interfered with the early stage of the virus life cycle after viral attachment. Importantly, the administration of CMG greatly ameliorated morbidity and mortality in IAV-infected mice. The results suggest that CMG displays a potent anti-IAV activity by blocking the early stage of viral replication. Thus, mastic gum could be exploited as a novel therapeutic agent against IAV infection.
Collapse
Affiliation(s)
- Dong-In Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Yong-Bin Cho
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Younghyun Lim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - So-Hee Hong
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Bumsuk Hahm
- Departments of Surgery and Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, Republic of Korea
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Siano F, Cutignano A, Moccia S, Russo GL, Volpe MG, Picariello G. Phytochemical Characterization and Effects on Cell Proliferation of Lentisk (Pistacia lentiscus) Berry Oil: a Revalued Source of Phenolics. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:487-494. [PMID: 32671681 DOI: 10.1007/s11130-020-00835-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ethno-pharmaceutical use of the edible fixed oil produced from lentisk (Pistacia lentiscus) berries covers a long tradition in several Mediterranean regions. Many of the health-promoting properties of lentisk berry oil (LBO) have been associated with the content of polar (poly)phenolic compounds. However, the polar fraction (methanol 80%, v/v) of LBO (LBO-pf) remains poorly and inadequately characterized. We assessed the phytochemical composition (fatty acids, phytosterols and polyphenols) of cold-pressed LBO produced in Cilento (Campania region, Italy) over four years of production (2015-2018). Main phenolic compounds present in LBO-pf were identified and semi-quantified combining ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) and HPLC with diode array detection. Phenolic compounds, also responsible for oil stability and antioxidant properties, are relatively abundant in LBO, compared to other edible oils. LBO-pf induced clear dose-dependent effects on the growth of HT-29 cell line derived from human colorectal adenocarcinoma, as evidenced by the cell cycle arrest. Our data support the health-promoting properties of cold-pressed LBO, which is obtained with good yield from spontaneous plants growing in semiarid regions.
Collapse
Affiliation(s)
- Francesco Siano
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy
| | - Adele Cutignano
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche (CNR), Via Campi Flegrei 34, 80078, Pozzuoli, Napoli, Italy
| | - Stefania Moccia
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy
| | - Gian Luigi Russo
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy
| | - Maria Grazia Volpe
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy.
| | - Gianluca Picariello
- Istituto di Scienze dell'Alimentazione, Consiglio Nazionale delle Ricerche (CNR), Via Roma 64, 83100, Avellino, Italy.
| |
Collapse
|
35
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
36
|
Tangerines Cultivated on Madeira Island-A High Throughput Natural Source of Bioactive Compounds. Foods 2020; 9:foods9101470. [PMID: 33076393 PMCID: PMC7602526 DOI: 10.3390/foods9101470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022] Open
Abstract
Tangerines (Citrus reticulata) are popular fruits worldwide, being rich in many bioactive metabolites. The setubalense variety cultivated on Madeira Island has an intense aroma easily distinguishable from other tangerines, being traditionally used to enrich several foods and beverages. Nonetheless, setubalense volatile composition has never been characterized, and we aimed to unveil the bioactive potential of peels and juices of setubalense tangerines and compare them with the murcott variety grown in Portugal mainland. Using headspace solid-phase microextraction coupled to gas chromatography mass spectrometry (HS-SPME/GC-MS), we identified a total of 128 volatile organic metabolites (VOMs) in the juice and peels, with d-limonene, γ-terpinene, β-myrcene, α- and β-pinene, o-cymene, and terpinolene, the most dominant in both cultivars. In contrast, setubalense juices are richer in terpenes, many of them associated with health protection. Discriminant analysis revealed a pool of VOMs, including β-caryophyllene and E-ocimene, with bioactive properties able to differentiate among tangerines according to variety and sample type (peel vs. juice). This is the first report on the volatile composition of setubalense tangerines grown on Madeira Island revealing that its pungent aroma is constituted by secondary metabolites with specific aroma notes and health properties. This is strong evidence of the higher nutraceutical value of such fruit for the human diet.
Collapse
|
37
|
Figueira JA, Porto-Figueira P, Pereira JA, Câmara JS. A comprehensive methodology based on NTME/GC-MS data and chemometric tools for lemons discrimination according to geographical origin. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Bouslama L, Benzekri R, Nsaibia S, Papetti A, Limam F. Identification of an antiviral compound isolated from Pistacia lentiscus. Arch Microbiol 2020; 202:2569-2578. [PMID: 32671418 DOI: 10.1007/s00203-020-01980-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
This study screened mastic gum (Pistacia lentiscus L.) for antiviral activity against herpes simplex virus type 2 (HSV-2), coxsackievirus type B3, and adenovirus type 5. The organs of this plant (leaves, stem, and seed) were macerated sequentially using solvents of increasing polarity (hexane, dichloromethane, ethyl acetate, and methanol). Only the methanol extract of stem exhibited significant activity against HSV-2. This extract showed anti-HSV-2 activity with a selectivity index of 51 (50% cytotoxic concentration = 186 µg/mL; 50% inhibitory concentration = 3.63 µg/mL), and demonstrated direct inhibition against this virus with a virucidal selectivity index of 620 (50% virucidal concentration = 0.30 µg/mL). A bio-guided assay involving thin-layer chromatography led to the isolation of two active compounds, which have been identified as dammaradienone and dammaradienol using high-performance liquid chromatography-diode array detection coupled with electrospray ionization mass spectrometry. P. lentiscus has been widely studied for other biological activities. However, to our knowledge, this is the first report of P. lentiscus L. exhibiting antiviral activity.
Collapse
Affiliation(s)
- Lamjed Bouslama
- Laboratory of Bioactive Substances-LR15CBBC03, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, BP 901, Hammam Lif, 2050, Tunis, Tunisia.
| | - Roudaina Benzekri
- Laboratory of Bioactive Substances-LR15CBBC03, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, BP 901, Hammam Lif, 2050, Tunis, Tunisia
| | - Siwar Nsaibia
- Regional Laboratory of Public Health, 8000, Nabeul, Tunisia
| | - Adele Papetti
- Nutraceutical and Food Chemical-Toxicological Analysis Laboratory, Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Ferid Limam
- Laboratory of Bioactive Substances-LR15CBBC03, Center of Biotechnology of Borj Cedria, University of Tunis El Manar, BP 901, Hammam Lif, 2050, Tunis, Tunisia
| |
Collapse
|
39
|
Pachi VK, Mikropoulou EV, Gkiouvetidis P, Siafakas K, Argyropoulou A, Angelis A, Mitakou S, Halabalaki M. Traditional uses, phytochemistry and pharmacology of Chios mastic gum (Pistacia lentiscus var. Chia, Anacardiaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112485. [PMID: 32092498 DOI: 10.1016/j.jep.2019.112485] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chios mastic gum constitutes a unique Greek product, produced exclusively in the southern part of the island of Chios. References about its use from local populations for the treatment of gastrointestinal disorders or as a cosmetic agent can even be encountered in ancient texts of Galen, Theophrastus and Dioscorides. Nowadays, this versatile resin has been rediscovered, not only as a traditional remedy and aromatic agent, but as a potent phytotherapeutic product with various biological properties. AIM OF THE STUDY The aim of this study is to quote the summation of the ethnopharmacology, phytochemical profile and pharmacological properties of the resin of Pistacia lentiscus var. Chia and thus provide the scientific community with a summary of the research conducted so far. Furthermore, perspectives and uses are being discussed and studied so as to broaden the field of its applications. MATERIALS AND METHODS A comprehensive review of the literature on Pistacia lentiscus var. Chia was performed using as resources scientific databases such as Scopus, Sciencedirect, Pubmed and Web of science, studies and traditional books provided by the Chios Mastiha Growers Association as well as PhD and Master' s theses. RESULTS Chios mastic gum has been used as a traditional medicine over the last 2500 years. More than 120 chemical compounds have been identified in the resin and the major components are a natural polymer, acidic and neutral triterpenes and volatile secondary metabolites. Several plant extracts and compounds have been studied for their antibacterial, anti-inflammatory, antioxidant, anti-ulcer, anti-diabetic, cardioprotective and anti-cancer properties in vitro and in vivo. Clinical interventions and trials have also showed the therapeutic potential of Chios mastic gum. In 2015 Pistacia lentiscus L., resin (mastic) was recognized as a herbal medicinal product with traditional use by the European Medicines Agency (EMA) with two therapeutic indications (mild dyspeptic disorders & skin inflammation/healing of minor wounds). Over the last years, Chios mastic gum is widely involved in medicinal products, food supplements and cosmetics and has become object of study, also in the field of Pharmacotechnology. CONCLUSIONS Chios mastic's beneficial properties have been demonstrated in the treatment of gastrointestinal disorders, wound healing, skin inflammations, plasma lipid and blood sugar reduction and oral care. These properties are attributed to triterpenes and volatile compounds. However, because of the resin's chemical complexity and the lack of commercial standards for its main compounds, there is a notable gap in literature concerning the biological evaluation of CMG's isolated components. Therefore, future research should focus on the development of efficient extraction, isolation and analysis techniques in order to unravel CMG's full pharmacological potential.
Collapse
Affiliation(s)
- Vasiliki K Pachi
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Eleni V Mikropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Petros Gkiouvetidis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Konstantinos Siafakas
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Apostolis Angelis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Sofia Mitakou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
40
|
Tabanca N, Nalbantsoy A, Kendra PE, Demirci F, Demirci B. Chemical Characterization and Biological Activity of the Mastic Gum Essential Oils of Pistacia lentiscus Var. Chia from Turkey. Molecules 2020; 25:molecules25092136. [PMID: 32370246 PMCID: PMC7248992 DOI: 10.3390/molecules25092136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
The essential oils (EOs) were isolated by hydrodistillation from wild and cultivated Pistacia lentiscus L. var. chia-mastic gum tree (Anacardiaceae) from two natural habitats, namely from Cesme-Uzunkoy (1) and Mordogan (2), and one cultivated source, Cesme-Germiyan (3), in Izmir, Turkey. This comparative study evaluated the chemical composition and biological activity of mastic gum essential oils (MGEOs). For this purpose, MGEOs 1-3 were analyzed by gas chromatography-flame ionization detection (GC-FID), gas chromatography-mass spectrometry (GC-MS), and chiral GC for α-pinene. Laboratory assays were conducted to assess for potential in vitro cytotoxicity (multiple in vitro cancer cell lines), antimicrobial properties (five bacterial species and yeast), anti-inflammatory activity (inhibition of inducible nitric oxide synthase, iNOS), and the attraction of Ceratitis capitata (Mediterranean fruit fly, medfly), respectively. Chemical analysis indicated that MGEOs 1 and 2 were rich in α-pinene (56.2% and 51.9%), myrcene (20.1% and 18.6%), and β-pinene (2.7% and 3.1%), respectively; whereas MGEO-3 was characterized by a high level of α-pinene (70.8%), followed by β-pinene (5.7%) and myrcene (2.5%). Chiral GC analyses showed that concentration ratios between (-)/(+)-α-pinene and (-)-α-pinene/myrcene allowed for differentiation between wild and cultivated MGEO sources. In biological assays, MGEOs 1-3 did not exhibit significant antimicrobial effects against the pathogens evaluated and were not strong attractants of male medflies; however, all three MGEOs displayed a dose-dependent inhibition of iNOS, and MGEOs 1 and 2 exhibited selective in vitro cytotoxicity against human cancer cells. These results suggest that wild-type mastic gum oils from Cesme and Mordogan (MGEOs 1 and 2) are potential sources of beneficial products and warrant further investigation.
Collapse
Affiliation(s)
- Nurhayat Tabanca
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA;
- Correspondence: (N.T.); (A.N.); Tel.: +1-(786)-5737077 (N.T.); +90-(232)-3115807 (A.N.)
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir 35100, Turkey
- Correspondence: (N.T.); (A.N.); Tel.: +1-(786)-5737077 (N.T.); +90-(232)-3115807 (A.N.)
| | - Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA;
| | - Fatih Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (F.D.); (B.D.)
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Cyprus
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (F.D.); (B.D.)
| |
Collapse
|
41
|
Essential Oils of Lemongrass ( Cymbopogon citratus Stapf) Induces Apoptosis and Cell Cycle Arrest in A549 Lung Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5924856. [PMID: 32420353 PMCID: PMC7201560 DOI: 10.1155/2020/5924856] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 11/09/2019] [Indexed: 01/21/2023]
Abstract
Essential oils were extracted from the culm and leaf of Cymbopogon citratus collected from different regions of Vietnam and analyzed using GC/MS. The results showed that citral is the major component accounting for 61.20%–76.46% of the essential oils. The citral content was higher in the essential oil obtained from the leaf than in that from the culm of lemongrass in all regions. In particular, camphene, valerianol, and epi-α-muurolol can be used to differentiate essential oils originating from leaves versus culms. The cytotoxic effects of the essential oils on various lung cancer cell lines were evaluated in the present study. All essential oils exhibited cytotoxicity in the tested cells. The Ha Loc leaf essential oil (HLL) exhibited the most potent effects on A549 and H1975 cells, with IC50 values of 1.73 ± 0.37 and 4.01 ± 0.30 μg/mL, respectively. The Hy Cuong leaf essential oil (HCL) showed the strongest effect on H1299 cells, with an IC50 value of 2.45 ± 0.21 μg/mL. The Kim Duc culm (KDC) essential oil exerted the strongest cytotoxic effects against H1650 cells, with an IC50 value of 4.86 ± 0.29 μg/mL. The HLL induced apoptosis and cycle arrest in A549 cells according to flow cytometric analysis and fluorescent nuclear staining assays. The western blot analysis indicated that HLL induced the apoptotic effect by altering the regulating proteins of the apoptosis process such as caspase-3, Bcl-2, and Bax. The data strongly suggested that the intrinsic pathway may play an important role in the apoptotic effects of HLL.
Collapse
|
42
|
Terzo S, Mulè F, Caldara GF, Baldassano S, Puleio R, Vitale M, Cassata G, Ferrantelli V, Amato A. Pistachio Consumption Alleviates Inflammation and Improves Gut Microbiota Composition in Mice Fed a High-Fat Diet. Int J Mol Sci 2020; 21:ijms21010365. [PMID: 31935892 PMCID: PMC6981517 DOI: 10.3390/ijms21010365] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022] Open
Abstract
High-fat diet (HFD) induces inflammation and microbial dysbiosis, which are components of the metabolic syndrome. Nutritional strategies can be a valid tool to prevent metabolic and inflammatory diseases. The aim of the present study was to evaluate if the chronic intake of pistachio prevents obesity-associated inflammation and dysbiosis in HFD-fed mice. Three groups of male mice (four weeks old; n = 8 per group) were fed for 16 weeks with a standard diet (STD), HFD, or HFD supplemented with pistachios (HFD-P; 180 g/kg of HFD). Serum, hepatic and adipose tissue inflammation markers were analyzed in HFD-P animals and compared to HFD and STD groups. Measures of inflammation, obesity, and intestinal integrity were assessed. Fecal samples were collected for gut microbiota analysis. Serum TNF-α and IL-1β levels were significantly reduced in HFD-P compared to HFD. Number and area of adipocytes, crown-like structure density, IL-1β, TNF-α, F4-80, and CCL-2 mRNA expression levels were significantly reduced in HFD-P subcutaneous and visceral adipose tissues, compared to HFD. A significant reduction in the number of inflammatory foci and IL-1β and CCL-2 gene expression was observed in the liver of HFD-P mice compared with HFD. Firmicutes/Bacteroidetes ratio was reduced in HFD-P mice in comparison to the HFD group. A pistachio diet significantly increased abundance of healthy bacteria genera such as Parabacteroides, Dorea, Allobaculum, Turicibacter, Lactobacillus, and Anaeroplasma, and greatly reduced bacteria associated with inflammation, such as Oscillospira, Desulfovibrio, Coprobacillus, and Bilophila. The intestinal conductance was lower in HFD-P mice than in the HFD mice, suggesting an improvement in the gut barrier function. The results of the present study showed that regular pistachio consumption improved inflammation in obese mice. The positive effects could be related to positive modulation of the microbiota composition.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Experimental Biomedicine and Clinical Neuroscience (BioNec), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy;
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (F.M.); (G.F.C.); (S.B.)
| | - Flavia Mulè
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (F.M.); (G.F.C.); (S.B.)
| | - Gaetano Felice Caldara
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (F.M.); (G.F.C.); (S.B.)
| | - Sara Baldassano
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (F.M.); (G.F.C.); (S.B.)
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (R.P.); (M.V.); (G.C.); (V.F.)
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (R.P.); (M.V.); (G.C.); (V.F.)
| | - Giovanni Cassata
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (R.P.); (M.V.); (G.C.); (V.F.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Via Gino Marinuzzi 3, 90129 Palermo, Italy; (R.P.); (M.V.); (G.C.); (V.F.)
| | - Antonella Amato
- Department of Biological- Chemical- Pharmaceutical Science and Technology (STEBICEF), University of Palermo- Viale delle Scienze, Edificio 16, 90128 Palermo, Italy; (F.M.); (G.F.C.); (S.B.)
- Correspondence: ; Tel.: +39-091-23897506
| |
Collapse
|
43
|
Effects of the Essential Oil from Pistacia lentiscus Var. chia on the Lateral Line System and the Gene Expression Profile of Zebrafish ( Danio rerio). Molecules 2019; 24:molecules24213919. [PMID: 31671694 PMCID: PMC6864543 DOI: 10.3390/molecules24213919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022] Open
Abstract
Mastic essential oil exhibits anti-bacterial, anti-inflammatory, and anti-oxidant properties. With the growing interest of the use of mastic oil in the food and pharmaceutical industry, systematic in vivo studies are needed to address controlled usage and safety issues. In the present work we evaluated the safety of mastic oil using as a model the zebrafish lateral line system. In addition, we studied the gene expression profile of zebrafish fed with mastic oil-supplemented diet using microarray analysis. Our results showed that the hair cells of lateral line neuromasts are functional upon exposure of zebrafish larvae up to 20 ppm of mastic essential oil, while treatment with higher concentrations, 100 and 200 ppm, resulted in increased larvae mortality. Dietary supplementation of zebrafish with mastic essential oil led to differential expression of interferon response-related genes as well as the immune responsive gene 1 (irg1) that links cellular metabolism with immune defense. Notably, mucin 5.2, a constituent of the mucus hydrogel that protects the host against invading pathogens, was up-regulated. Our in vivo work provides information concerning the safety of mastic essential oil use and suggests dietary effects on gene expression related with the physical and immunochemical properties of the gastrointestinal system.
Collapse
|
44
|
Tiptiri-Kourpeti A, Fitsiou E, Spyridopoulou K, Vasileiadis S, Iliopoulos C, Galanis A, Vekiari S, Pappa A, Chlichlia K. Evaluation of Antioxidant and Antiproliferative Properties of Cornus mas L . Fruit Juice. Antioxidants (Basel) 2019; 8:antiox8090377. [PMID: 31491997 PMCID: PMC6770960 DOI: 10.3390/antiox8090377] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/21/2022] Open
Abstract
Cornus mas L. (Cornelian cherry) is a flowering plant indigenous to Europe and parts of Asia, mostly studied for the antimicrobial activity of its juice. In this report, we investigated the composition and the in vitro antioxidant capacity of Cornus mas L. fruit juice from Greece, as well as its antiproliferative properties in vitro and in vivo. The fruits showed a high content of citric, malic, and succinic acid, in contrast to their juice, which had a low concentration of organic acids. The juice demonstrated significant antioxidant activity against the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and modest antiproliferative potential against four human cancer cells lines and one murine: mammary adenocarcinoma MCF-7, hepatocellular carcinoma HepG2 and colon adenocarcinomas Caco2, HT-29, as well as murine colon carcinoma CT26. Cell viability was reduced by 40-50% following incubation of the cells with the highest concentration of the juice. Although Cornelian cherry juice exhibited in vitro growth inhibitory effects against colon carcinoma cells, no tumor growth inhibition was observed in an in vivo experimental colon carcinoma model in mice following prophylactic oral administration of a daily dose of 100 L juice for a period of 10 days. Thus, our findings raise interesting questions for further research on Cornus mas L. fruit juice, and in parallel, the strong antioxidant potential implies that the plant could be further explored and exploited for its protective effect against oxidative damage.
Collapse
Affiliation(s)
- Angeliki Tiptiri-Kourpeti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Eleni Fitsiou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Stavros Vasileiadis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Christos Iliopoulos
- ELGO-DEMETER, Institute of Technology of Agricultural Products, 14123 Lykovrisi, Athens, Greece.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Stavroula Vekiari
- ELGO-DEMETER, Institute of Technology of Agricultural Products, 14123 Lykovrisi, Athens, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece.
| |
Collapse
|
45
|
Anticancer Activity of Essential Oils and Other Extracts from Aromatic Plants Grown in Greece. Antioxidants (Basel) 2019; 8:antiox8080290. [PMID: 31394842 PMCID: PMC6720353 DOI: 10.3390/antiox8080290] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Aromatic plants have a long and significant history in the traditional medicine of many countries. Nowadays, there is an increasing interest in investigating the biological properties of aromatic plant extracts mainly due to their diversity, high availability, and low toxicity. Greece is abundant in aromatic plants, which can be attributed to the country’s geographical position, the morphology of its landscape, and its numerous mountainous and insular areas. In the past 15 years, a number of aromatic plant extracts of Greek origin have been studied for their bioactivities, including their antiproliferative potential against different types of cancer. Although the pharmacological activities of specific species of Greek origin have been reviewed before, no gathered information on explicitly Greek species exist. In this review, we summarize existing data on the antiproliferative activity of extracts isolated from Greek aromatic plants and discuss their molecular mode(s) of action, where available, in order to identify promising extracts for future research and link chemical constituents responsible for their activity. We conclude that essentials oils are the most frequently studied plant extracts exhibiting high diversity in their composition and anticancer potential, but also other extracts appear to be worthy of further investigation for cancer chemoprevention.
Collapse
|
46
|
Spyridopoulou K, Fitsiou E, Bouloukosta E, Tiptiri-Kourpeti A, Vamvakias M, Oreopoulou A, Papavassilopoulou E, Pappa A, Chlichlia K. Extraction, Chemical Composition, and Anticancer Potential of Origanum onites L. Essential Oil. Molecules 2019; 24:molecules24142612. [PMID: 31323754 PMCID: PMC6680447 DOI: 10.3390/molecules24142612] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Origanum species are plants rich in volatile oils that are mainly used for culinary purposes. In recent years, there has been a growing interest in the biological activities of their essential oils. Origanum onites L. is a plant mainly found in Greece, Turkey, and Sicily, whose oil is rich in carvacrol, a highly bioactive phytochemical. The aim of this study was to analyze the chemical composition of Origanum onites essential oil (OOEO), and investigate its potential anticancer effects in vitro and in vivo. GC/MS analysis identified carvacrol as OOEO's main constituent. In vitro antiproliferative activity was assayed with the sulforhodamine B (SRB) assay against human cancer cell lines from four tumor types. HT-29, a colorectal cancer cell line, was the most sensitive to the antiproliferative activity of OOEO. Wound-healing assay and Annexin V-PI staining were employed to investigate the antimigratory and the pro-apoptotic potential of OOEO, respectively, against human (HT-29) and murine (CT26) colon cancer cells. Notably, OOEO attenuated migration and induced apoptosis-related morphological changes in both cell lines. Prophylactic oral administration of the oil in a BALB/c experimental mouse model inhibited the growth of syngeneic CT26 colon tumors. As far as we know, this is the first report on the antitumor potential of orally administered OOEO.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece
| | - Eleni Fitsiou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece
| | - Eleni Bouloukosta
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece
| | - Angeliki Tiptiri-Kourpeti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece
| | - Manolis Vamvakias
- VIORYL S.A., Chemical & Agricultural Industry, Research S.A., 19014 Afidnes, Greece
| | - Antigoni Oreopoulou
- VIORYL S.A., Chemical & Agricultural Industry, Research S.A., 19014 Afidnes, Greece
| | | | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, 68100 Alexandroupolis, Greece.
| |
Collapse
|
47
|
Hazan Z, Adamsky K, Lucassen A, Levin LA. A First-in-Human Phase 1 Randomized Single and Multiple Ascending Dose Study of RPh201 in Healthy Volunteers. Clin Pharmacol Drug Dev 2019; 9:366-374. [PMID: 31250992 PMCID: PMC7187404 DOI: 10.1002/cpdd.720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/03/2019] [Indexed: 01/17/2023]
Abstract
RPh201 is a drug extracted from gum mastic that has been studied for its anti‐inflammatory and antibacterial properties. Preclinical studies of RPh201 demonstrated neuroprotective and neuroenhancing effects. Toxicology studies in animals did not reveal safety concerns or genotoxic effects. This single‐center, phase 1, randomized, placebo‐controlled, double‐masked study in healthy volunteers assessed the safety and tolerability of RPh201, and determined the highest tolerated dose. There were 2 parts: a single ascending dose (SAD) stage, followed by a multiple ascending dose (MAD) stage. Three dosing arms were included in each stage (5 mg, 10 mg, and 20 mg). Safety data in the lower dosing arms were evaluated before higher doses were initiated. Eighteen participants were randomized in the SAD stage: 12 to RPh201 (4 at each dose) and 4 to placebo. Twenty‐one participants were randomized in the MAD stage, of which 13 received RPh201. All 18 participants in the SAD stage completed treatment. Sixteen of the 21 participants in the MAD stage completed treatment. The most frequently reported adverse events were local injection site pain and erythema. No deaths or adverse events related to changes in vital signs or electrocardiograms were reported. No occurrences of suicidal behavior or ideation were reported.
Collapse
Affiliation(s)
| | | | | | - Leonard A Levin
- Departments of Ophthalmology & Visual Sciences and Neurology & Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
48
|
Hakimi F, Choopani R, Asghari M, Namdar H, Parsa E, Jafari P, Movahhed M. A Historical Review of Persian Medicine Studies into Saliva Manifestations for Potential Applications for Diagnosis and Management of Metabolic Syndrome. Endocr Metab Immune Disord Drug Targets 2019; 20:182-188. [PMID: 31237220 DOI: 10.2174/1871530319666190618155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Regarding the development of diagnostic tests based on saliva and the prevalence of metabolic syndrome (MetS), the aim of this study is to review Persian Medicine manuscripts in the field of saliva manifestations, its relation to metabolic syndrome, and treatment recommendations. METHODS This study is a mini-review. We investigated the canon of medicine and some important Persian medical or pharmaceutical manuscripts from the 9th to the 19th centuries. PubMed and Google Scholar databases were explored for finding relevant information about the relationship between saliva and metabolic syndrome and its treatment. RESULTS Studies have suggested that maldigestion is one of the important causes of MetS. Sialorrhea may be an early symptom of maldigestion. Attention to sialorrhea and its treatment may be useful in the prevention and treatment of metabolic syndrome based on PM sources. In PM, sialorrhea is treated with 3 major approaches: lifestyle modification along with simple or compound medicines. CONCLUSION Saliva manifestations could be considered as early symptoms of metabolic syndrome. As mentioned in WHO strategies, traditional medicine can be used along with modern medicine due to its effectiveness in the management of various ailments.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasool Choopani
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Asghari
- Traditional Medicine Research Center, School of Traditional Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Hasan Namdar
- Department of Traditional Medicine, School of Medicine, Shahed University of Medical Sciences, Tehran, Iran
| | - Elham Parsa
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Jafari
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Movahhed
- Department of Traditional Medicine, School of Traditional Medicine. Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Mitsiogianni M, Amery T, Franco R, Zoumpourlis V, Pappa A, Panayiotidis MI. From chemo-prevention to epigenetic regulation: The role of isothiocyanates in skin cancer prevention. Pharmacol Ther 2018; 190:187-201. [DOI: 10.1016/j.pharmthera.2018.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Drosopoulou E, Vlastos D, Efthimiou I, Kyrizaki P, Tsamadou S, Anagnostopoulou M, Kofidou D, Gavriilidis M, Mademtzoglou D, Mavragani-Tsipidou P. In vitro and in vivo evaluation of the genotoxic and antigenotoxic potential of the major Chios mastic water constituents. Sci Rep 2018; 8:12200. [PMID: 30111795 PMCID: PMC6093890 DOI: 10.1038/s41598-018-29810-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Chios mastic products are well-known for their broad applications in food industry, cosmetics, and healthcare since the antiquity. Given our recent finding that Chios mastic water (CMW) exerts antigenotoxic action, in the present study, we evaluated the genotoxic as well as the antigenotoxic potential of the four major compounds of CMW, namely, verbenone, α-terpineol, linalool, and trans-pinocarveol. The cytokinesis block micronucleus (CBMN) assay in cultured human lymphocytes and the Drosophila Somatic Mutation And Recombination Test (SMART), also known as the wing spot test, were employed. None of the four major CMW's constituents or their mixtures showed genotoxic or recombinogenic activity in either of the assays used. Co-treatment of each of the constituents with MMC revealed that all except trans-pinocarveol exerted antigenotoxic potential. Moreover, co-administration of verbenone with linalool or α-terpineol presented statistically significant reduction of MMC-induced mutagenicity. In conclusion, the major CMW constituents were shown to be free of genotoxic effects, while some exerted antigenotoxic activity either alone or in combinations, suggesting synergistic phenomena. Our results provide evidence on the key antigenotoxicity effectors of the plant extract CMW.
Collapse
Affiliation(s)
- Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Paraskevi Kyrizaki
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Tsamadou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Anagnostopoulou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Danai Kofidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maxim Gavriilidis
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Mademtzoglou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope Mavragani-Tsipidou
- Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|