1
|
Xie Z, Yang T, Zhou C, Xue Z, Wang J, Lu F. Integrative Bioinformatics Analysis and Experimental Study of NLRP12 Reveal Its Prognostic Value and Potential Functions in Ovarian Cancer. Mol Carcinog 2025; 64:383-398. [PMID: 39601513 DOI: 10.1002/mc.23854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
NLRP12 plays a significant role in cellular functional behavior and immune homeostasis, influencing inflammation, tumorigenesis, and prognosis. This study aimed to explore its specific effects on the tumor microenvironment (TME) and its contribution to heterogeneity in ovarian cancer (OV) through bioinformatics analysis and experimental verification. Utilizing various bioinformatics databases and clinical specimens, we investigated NLRP12 expression and its relationship with OV prognosis and immune infiltration. In vitro assays were conducted to assess the impact of NLRP12 on the proliferation and invasion of OV cells. Our findings indicate that NLRP12 is upregulated in OV, with high expression correlating with a negative prognosis. Furthermore, NLRP12 expression demonstrated a positive correlation with the infiltration of various immune cells and the expression of immune checkpoint molecules in OV. Analysis of The Cancer Immunome Atlas (TCIA) database revealed that OV patients with lower NLRP12 expression may exhibit an enhanced response to immunotherapy, particularly CTLA4 blockers, a finding validated in animal experiments. Additionally, the study emphasized the role of NLRP12 in influencing the prognosis of OV patients by promoting epithelial-mesenchymal transition (EMT) in ovarian cancer cells. Finally, we identified a potential therapeutic compound, Schisandrin B (Schi B), which decreases NLRP12 expression in ovarian cancer cells by binding to the transcription factor SPI1 associated with NLRP12. Our findings suggest that NLRP12 serves as a crucial immune-related biomarker predicting poor outcomes in OV, and targeting NLRP12 may represent a promising therapeutic approach for OV patients in the future.
Collapse
Affiliation(s)
- Zhihui Xie
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiantian Yang
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| | - Chuchu Zhou
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| | - Zixin Xue
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| | - Jianjun Wang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Feng Lu
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
- Department of Immunology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Joint National Laboratory for Antibody Drug Engineering, Medical School, Henan University, Kaifeng, China
| |
Collapse
|
2
|
Miyauchi T, Narita S, Saiki Y, Kudo-Asabe Y, Horii A, Fukushige S, Habuchi T, Nanjo H, Goto A. Association between NLRP3 Inflammasome and Tumor-Node-Metastasis Staging in Prostate Cancer: Immunohistochemical Studies of Prostate Needle Biopsy and Radical Prostatectomy Specimens. TOHOKU J EXP MED 2025; 264:203-213. [PMID: 39085121 DOI: 10.1620/tjem.2024.j074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The pathological role of NLRP3 inflammasome in prostate cancer (PCa) remains unclear. This study aimed to elucidate the expression of its major components in PCa by immunohistochemistry and its clinicopathological significance. An immunohistochemical analysis of 184 prostate needle biopsy and 38 radical prostatectomy specimens from PCa revealed the expression status of NLRP3, PYCARD, and caspase-1, which form NLRP3 inflammasome. Furthermore, the association between the expression of these 3 proteins and the clinical parameters at diagnosis and operation was analyzed. In biopsy specimens, the Cochran-Armitage test demonstrated that the proportion of the high expression of NLRP3 (P < 0.001) and PYCARD (P < 0.001) in cancerous tissue tended to increase as the value of the Gleason Grade Group increased, and immunohistochemistry of NLRP3 and PYCARD helped to distinguish cancerous tissue from adjacent noncancerous tissue in some cases. Furthermore, a univariable logistic regression analysis revealed the high expression of NLRP3 to be associated with clinical T3-4 (P = 0.0056) and distant metastasis at diagnosis (P = 0.011), while the high expression of PYCARD was associated with clinical T3-4 (P < 0.001), regional lymph node metastasis (P < 0.001), and distant metastasis at diagnosis (P < 0.001). However, a multivariable logistic regression analysis showed no significant association. In prostatectomy specimens, no significant association existed between the expression of NLRP3 inflammasome and the clinical parameters at operation, partly due to the influence of neoadjuvant chemohormonal or hormone therapy. In conclusion, these results suggest that NLRP3 inflammasome may promote disease progression and metastasis in PCa, therefore immunohistochemistry of NLRP3 and PYCARD could be useful for diagnosing PCa accurately.
Collapse
Affiliation(s)
- Toshiya Miyauchi
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
- Department of Clinical Pathology, Akita University Hospital
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
| | - Shintaro Narita
- Department of Urology, Graduate School of Medicine, Akita University
| | - Yuriko Saiki
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
- Office of Medical Education, Graduate School of Medicine, Tohoku University
- Department of Investigative Pathology, Graduate School of Medicine, Tohoku University
| | - Yukitsugu Kudo-Asabe
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
| | - Akira Horii
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
| | - Shinichi Fukushige
- Department of Molecular Pathology, Graduate School of Medicine, Tohoku University
- Department of Metabolism and Diabetes, Graduate School of Medicine, Tohoku University
| | - Tomonori Habuchi
- Department of Urology, Graduate School of Medicine, Akita University
| | - Hiroshi Nanjo
- Department of Clinical Pathology, Akita University Hospital
| | - Akiteru Goto
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University
| |
Collapse
|
3
|
Sharma U, Sahu A, Shekhar H, Sharma B, Haque S, Kaur D, Tuli HS, Mishra A, Ahmad F. The heat of the battle: inflammation's role in prostate cancer development and inflammation-targeted therapies. Discov Oncol 2025; 16:108. [PMID: 39891849 PMCID: PMC11787145 DOI: 10.1007/s12672-025-01829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
In prostate cancer (PC), chronic inflammation silently guides disease progression, playing a significant role. As a major global health concern, PC contributes to high mortality rates and rising new cases worldwide, highlighting the urgent need for research into the molecular mechanisms behind this disease. Notably, the persistence of inflammation actively promotes cancer development, including in PC. This review explores the complex relationship between inflammation and PC, examining the molecular pathways, genetic and environmental factors, and clinical implications involved in inflammation-driven carcinogenesis. From cellular and molecular elements of the inflammatory microenvironment to mechanisms like epithelial-to-mesenchymal transition (EMT), reactive oxygen species (ROS) generation, and inflammasome activation, these processes highlight inflammation's influence on PC progression and metastasis. Furthermore, this review discusses current therapeutic strategies targeting inflammation in PC management and identifies future research directions aimed at unraveling the complexities of inflammation-induced PC (Supplementary Fig. 1). It defines the complex relationship between inflammation and PC, emphasizes the importance of targeting inflammation therapeutically and highlights innovative approaches in PC treatment.
Collapse
Affiliation(s)
- Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Anidrisha Sahu
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Himanshu Shekhar
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Bunty Sharma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- School of Medicine, Universidad Espiritu Santo, Samborondon, 091952, Ecuador
| | - Damandeep Kaur
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Astha Mishra
- Department of Optometry, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
5
|
Rajkhowa S, Jha S. The role of NLRP3 and NLRP12 inflammasomes in glioblastoma. Genes Immun 2024; 25:541-551. [PMID: 39604503 DOI: 10.1038/s41435-024-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Glioblastoma (GBM) is the deadliest malignant brain tumor, with a survival of less than 14 months after diagnosis. The highly invasive nature of GBM makes total surgical resection challenging, leading to tumor recurrence and declined survival. The heterocellular composition of the GBM reprograms its microenvironment, favoring tumor growth, proliferation, and migration. The innate immune cells in the GBM tumor microenvironment, including microglia, astrocytes, and macrophages, express pattern recognition receptors such as NLRs (Nucleotide-binding domain and leucine-rich repeat-containing) that sense pathogen- and damage-associated molecular patterns initiating inflammation. Upon activation, NLRP3 promotes inflammation by NLRP3 inflammasome formation. Auto-proteolytic cleavage and activation of Caspase-1 within the inflammasome leads to caspase-1-mediated cleavage, activation, and conversion of pro-IL-1ß and pro-IL-18 to IL-1ß and IL-18, leading to pyroptosis. In contrast, NLRP12 downregulates inflammatory responses in microglia and macrophages by regulating the NF-κB pathway. NLRP3 and NLRP12 have been implicated in the disease pathophysiology of several cancers with cell-context-dependent, pro- or anti-tumorigenic roles. In this review, we discuss the current literature on the mechanistic roles of NLRP3 and NLRP12 in GBM and the gaps in the scientific literature in the context of GBM pathophysiology with potential for targeted therapeutics.
Collapse
Affiliation(s)
- Sushmita Rajkhowa
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India.
| |
Collapse
|
6
|
Liu Z, Xu S, Chen L, Gong J, Wang M. The role of pyroptosis in cancer: key components and therapeutic potential. Cell Commun Signal 2024; 22:548. [PMID: 39548573 PMCID: PMC11566483 DOI: 10.1186/s12964-024-01932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Pyroptosis is a lytic and inflammatory form of gasdermin protein-mediated programmed cell death that is typically initiated by inflammasomes. The inflammasome response is an effective mechanism for eradicating germs and cancer cells in the event of cellular injury. The gasdermin family is responsible for initiating pyroptosis, a process in which holes are made in the cell membrane to allow inflammatory chemicals to escape. Mounting evidence indicates that pyroptosis is critical for controlling the development of cancer. In this review, we provide a general overview of pyroptosis, examine the relationship between the primary elements of pyroptosis and tumors, and stress the necessity of pyroptosis-targeted therapy in tumors. Furthermore, we explore its dual nature as a double-edged sword capable of both inhibiting and facilitating the growth of cancer, depending on the specific conditions. Ultimately, pyroptosis is a phenomenon that has both positive and negative effects on tumors. Using this dual impact in a reasonable manner may facilitate investigation into the initiation and progression of tumors and offer insights for the development of novel treatments centered on pyroptosis.
Collapse
Affiliation(s)
- Zixi Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Simiao Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lin Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
7
|
Yin J, Song Y, Fu Y, Wang J, Zhang Z, Ruan S, Liu G, Zhang B. NLRP12/C1qA positive feedback in tumor-associated macrophages regulates immunosuppression through LILRB4/NF-κB pathway in lung adenocarcinoma. Cancer Immunol Immunother 2024; 74:16. [PMID: 39527158 PMCID: PMC11554950 DOI: 10.1007/s00262-024-03880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
The anti-tumor immune response is greatly hindered by the protumor polarization of tumor-associated macrophages (TAMs). Cancer-related inflammation plays a central role in TAMs protumor polarization. Our study explored the unique positive feedback loop between inflammasome and complement in TAMs. The present study identified NOD-like receptors family pyrin domain containing 12 (NLRP12) formed positive feedback with C1qA and drove TAMs protumor polarization via the LILRB4/NF-κB pathway. In addition, NLRP12 was predominantly expressed in TAMs and was associated with poorer prognosis in lung adenocarcinoma (LUAD) patients. Knocking down LILRB4 inhibited TAMs protumor polarization. NLRP12-overexpressing TAMs promoted tumor cells' malignant progression and inhibited T cells' proliferation and cytotoxic function. Lastly, NLRP12 knockout (NLRP12-/-) reversed macrophage polarization, enhanced T-cell anti-tumor immunity, and suppressed tumor growth. Our findings highlighted the essential role of NLRP12/C1qA positive feedback loop and the LILRB4/NF-κB pathway in promoting TAMs protumor polarization. Inhibition of NLRP12 suppressed tumor development and promoted immune response. NLRP12 may be a promising target for LUAD immunotherapy.
Collapse
Affiliation(s)
- Jiaxin Yin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuxiao Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Fu
- Department of Oncology, Xiangyang Hospital, Hubei University of Chinese Medicine, Xiangyang, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Zhimin Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Ruan
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaoli Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bicheng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Grabiec M, Sobstyl M, Skirecki T. Nod-like receptors: The relevant elements of glioblastoma`s prognostic puzzle. Pharmacol Res 2024; 208:107411. [PMID: 39270948 DOI: 10.1016/j.phrs.2024.107411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Despite considerable improvements in understanding the biology of glioblastoma (GB), it still remains the most lethal type of brain tumor in adults. The role of innate immune cells in the development of GB was recently described. In particular, the tumor-immune cell interactions are thought to be critical in enabling tumor tolerance and even protection against therapeutics. Interestingly, the GB cells express proteins belonging to the family of intracellular pattern-recognition receptors, namely the NOD-like receptors (NLRs). Their activation may trigger the formation of the inflammasome complex leading to the secretion of mature IL-1β and IL-18 and thus resulting in cell death. Intrudingly, the expression of most NLRs was found to be correlated with tumor progression and poor prognosis. We speculate that recognizing the role of NOD-like receptors in GB has the potential to improve the effectiveness of diagnostic tools and prognosis, while also encouraging the development of novel precision medicine-based therapies.
Collapse
Affiliation(s)
- Marta Grabiec
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland.
| | - Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
9
|
Wang J, He W, Li C, Ma Y, Liu M, Ye J, Sun L, Su J, Zhou L. Focus on negatively regulated NLRs in inflammation and cancer. Int Immunopharmacol 2024; 136:112347. [PMID: 38820966 DOI: 10.1016/j.intimp.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Nucleotide-binding and oligomerization structural domain (NOD)-like receptors (NLRs) play an important role in innate immunity as cytoplasmic pattern recognition receptors (PRRs). Over the past decade, considerable progress has been made in understanding the mechanisms by which NLR family members regulate immune system function, particularly the formation of inflammasome and downstream inflammatory signals. However, recent studies have shown that some members of the NLRs, including Nlrp12, NLRX1, and NLRC3, are important in the negative regulation of inflammatory signaling and are involved in the development of various diseases, including inflammatory diseases and cancer. Based on this, in this review, we first summarize the interactions between canonical and non-canonical nuclear factor-κB (NF-κB) signaling pathways that are mainly involved in NLRs, then highlight the mechanisms by which the above NLRs negatively regulate inflammatory signaling responses as well as their roles in tumor progression, and finally summarize the synthetic and natural derivatives with therapeutic effects on these NLRs, which are considered as potential therapeutic agents for overcoming inflammatory diseases.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China; Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Wenjing He
- Medical Intensive Care Unit, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Chunhua Li
- Department of Endocrinology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Yue Ma
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Mingjun Liu
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Jinxiang Ye
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China
| | - Lei Sun
- Changchun Tongyuan Hospital, Changchun 130012, China
| | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
| | - Lei Zhou
- Department of Pathology, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130012, China.
| |
Collapse
|
10
|
Liu H, Liu H, Huang G, Yuan H, Zhang X. The roles of pyroptosis in genitourinary diseases. Int Urol Nephrol 2024; 56:1515-1523. [PMID: 38103146 PMCID: PMC11001749 DOI: 10.1007/s11255-023-03894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Pyroptosis, a form of programmed cell death distinct from apoptosis and necrosis, is thought to be closely associated with the pathogenesis of diseases. Recently, the association between pyroptosis and urinary diseases has attracted considerable attention, and a comprehensive review focusing on this issue is not available. In this study, we reviewed the role of pyroptosis in the development and progression of benign urinary diseases and urinary malignancies. Based on this, pyroptosis has been implicated in the development of urinary diseases. In summary, this review sheds light on future research directions and provides novel ideas for using pyroptosis as a powerful tool to fight urinary diseases.
Collapse
Affiliation(s)
- Haopeng Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Guoshuai Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China
| | - Hexing Yuan
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| | - Xuefeng Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi Road, Suzhou, China.
| |
Collapse
|
11
|
Wang W, Chang S, He X, Zhou X, Shang P, Chen Y, Wang X, Chen L, Zhang Q, Qiao Y, Feng F. Sulforaphane inhibits the migration and invasion of BPDE-induced lung adenocarcinoma cells by regulating NLRP12. Toxicol Appl Pharmacol 2024; 485:116916. [PMID: 38537874 DOI: 10.1016/j.taap.2024.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/07/2024]
Abstract
This study aims to explore the impact and underlying mechanism of sulforaphane (SFN) intervention on the migration and invasion of lung adenocarcinoma induced by 7, 8-dihydroxy-9, 10-epoxy-benzo (a) pyrene (BPDE). Human lung adenocarcinoma A549 cells were exposed to varying concentrations of BPDE (0.25, 0.50, and 1.00 μM) and subsequently treated with 5 μM SFN. Cell viability was determined using CCK8 assay, while migration and invasion were assessed using Transwell assays. Lentivirus transfection was employed to establish NLRP12 overexpressing A549 cells. ELISA was utilized to quantify IL-33, CXCL12, and CXCL13 levels in the supernatant, while quantitative real-time PCR (qRT-PCR) and Western Blot were used to analyze the expression of NLRP12 and key factors associated with canonical and non-canonical NF-κB pathways. Results indicated an increase in migratory and invasive capabilities, concurrent with heightened expression of IL-33, CXCL12, CXCL13, and factors associated with both canonical and non-canonical NF-κB pathways. Moreover, mRNA and protein levels of NLRP12 were decreased in BPDE-stimulated A549 cells. Subsequent SFN intervention attenuated BPDE-induced migration and invasion of A549 cells. Lentivirus-mediated NLRP12 overexpression not only reversed the observed phenotype in BPDE-induced cells but also led to a reduction in the expression of critical factors associated with both canonical and non-canonical NF-κB pathways. Collectively, we found that SFN could inhibit BPDE-induced migration and invasion of A549 cells by upregulating NLRP12, thereby influencing both canonical and non-canonical NF-κB pathways.
Collapse
Affiliation(s)
- Wei Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shufan Chang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xi He
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - XiaoLei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNC, Zhengzhou, China
| | - Yusong Chen
- Quality Supervision & Test Center, China National Tobacco Corporation Shandong Branch, Jinan, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Lijuan Chen
- Department of Pulmonary Medicine, Tumor Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yahong Qiao
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Liu Z, Kuang S, Chen Q. A review focusing on the role of pyroptosis in prostate cancer. Medicine (Baltimore) 2023; 102:e36605. [PMID: 38115248 PMCID: PMC10727670 DOI: 10.1097/md.0000000000036605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
As one of the types of programmed cell death, pyroptosis has become a focus of research in recent years. Numerous studies have shown that pyroptosis plays a regulatory role in tumor cell invasiveness, differentiation, proliferation, and metastasis. It has been demonstrated that pyroptosis is involved in the regulation of signaling pathways implicated in the pathogenesis of prostate cancer (PCa). Furthermore, the loss of expression of pyroptosis-related genes in PCa has been reported, and pyroptosis-related genes have demonstrated a considerable ability in predicting the prognosis of PCa. Therefore, the potential role of pyroptosis in regulating the development of PCa warrants further investigation and attention. In this review, we summarize the basics of the role of pyroptosis and also discuss research into the mechanisms of action associated with pyroptosis in PCa. It is hoped that by exploring the potential of the pyroptosis pathway in intervening in PCa, it will provide a viable direction for the diversification of PCa treatment.
Collapse
Affiliation(s)
- Zhewen Liu
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Shida Kuang
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qihua Chen
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
13
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
14
|
Kuang W, Gu Q, Zhou Y, Xiao X, He D, Deng Q. Inhibited Expression of NLRP12 Promotes the Development of Triple-Negative Breast Cancer by Activating the NF-κB Pathway. Cell Biochem Biophys 2023; 81:727-735. [PMID: 37658975 PMCID: PMC10611651 DOI: 10.1007/s12013-023-01166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
NLRP12 can affect the progression of different diseases, including hepatocellular carcinoma. However, no report on triple-negative breast cancer (TNBC) has been found. Thus, this study aimed to explore the role of NLRP12 in TNBC. In our study, immunohistochemistry, real-time quantitative PCR (qPCR), and Western blot assays were used to evaluate NLRP12 expression in TNBC tissues and cells. Then, NLRP12 lentivirus was constructed and infected into MDA-MB-231 and MDA-MB-157 cells with or without PTD-p65-P1 treatment. Next, cells were collected for cell function detection using the following procedures: colony formation assay for proliferation, Transwell for migration and invasion, and Western blot for NF-κB and MAPK pathway-associated proteins. Finally, a xenograft mouse model was applied; the tumor volume and weight were determined, and NLRP12, p-IκBb-α, and p-IκBb-α expressions were evaluated using qPCR and Western blot. Results indicated that NLRP12 was lowly expressed in TNBC tissues and cells. The inhibition of NLRP12 could induce the proliferation, migration, and invasion of TNBC cells, which also could be reversed by inhibiting the NF-κB pathway (PTD-p65-P1). Moreover, silencing of NLRP12 could upregulate p-IκBb-α, while IκBb-α, p-ERK, ERK, p-p38, p38, p-JNK, and JNK expressions remained unchanged, thereby indicating that only the NF-κB pathway could be activated by NLRP12 silencing. Furthermore, the xenograft mouse model confirmed the abovementioned findings. Therefore, the low expression of NLRP12 promoted the proliferation, migration, and invasion in TNBC cells by activating the NF-κB pathway. This study might provide insights into TNBC therapy.
Collapse
Affiliation(s)
- Wenbin Kuang
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Qingdan Gu
- Laboratory Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Ying Zhou
- Laboratory Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xiaoqin Xiao
- Department of Pathology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Dabao He
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China
| | - Qiuchan Deng
- Department of Clinical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, 518110, China.
| |
Collapse
|
15
|
Zhu M, Liu D, Liu G, Zhang M, Pan F. Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules 2023; 13:1715. [PMID: 38136586 PMCID: PMC10741419 DOI: 10.3390/biom13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a complex disease and the cause of one of the highest cancer-related mortalities in men worldwide. Annually, more than 1.2 million new cases are diagnosed globally, accounting for 7% of newly diagnosed cancers in men. Programmed cell death (PCD) plays an essential role in removing infected, functionally dispensable, or potentially neoplastic cells. Apoptosis is the canonical form of PCD with no inflammatory responses elicited, and the close relationship between apoptosis and PCa has been well studied. Necroptosis and pyroptosis are two lytic forms of PCD that result in the release of intracellular contents, which induce inflammatory responses. An increasing number of studies have confirmed that necroptosis and pyroptosis are also closely related to the occurrence and progression of PCa. Recently, a novel form of PCD named PANoptosis, which is a combination of apoptosis, necroptosis, and pyroptosis, revealed the attached connection among them and may be a promising target for PCa. Apoptosis, necroptosis, pyroptosis, and PANoptosis are good examples to better understand the mechanism underlying PCD in PCa. This review aims to summarize the emerging roles and therapeutic potential of apoptosis, necroptosis, pyroptosis, and PANoptosis in PCa.
Collapse
Affiliation(s)
- Minggang Zhu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Guoqiang Liu
- Urology Department of Guangzhou First People’s Hospital, Guangzhou 510000, China;
| | - Mingrui Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| | - Feng Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (M.Z.); (D.L.); (M.Z.)
| |
Collapse
|
16
|
Huang L, Tao Y, Wu X, Wu J, Shen M, Zheng Z. The role of NLRP12 in inflammatory diseases. Eur J Pharmacol 2023; 956:175995. [PMID: 37572944 DOI: 10.1016/j.ejphar.2023.175995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
Nucleotide-binding leucine-rich repeat-containing receptor 12 (NLRP12), a highly conserved protein containing an N-terminal pyrin domain (PYD), a nucleotide-binding domain and a C-terminal leucine-rich repeat region, belongs to the nucleotide-binding oligomerization domain-like receptor-containing PYD (NLRP) family and is a cytoplasmic sensor that plays a negative role in inflammation. NLRP12 is involved in multiple disease processes, including formation of inflammasomes and regulation of both canonical and noncanonical inflammatory signaling pathways. NLRP12 and pathogenic infections are closely linked, and alterations in NLRP12 expression and activity are associated with inflammatory diseases. In this review, we begin with a summary of the mechanisms of negative regulation by NLRP12. We then underscore the important roles of NLRP12 in the onset and progression of inflammation, infectious disease, host defense, carcinogenesis and COVID-19. Finally, we highlight factors that influence NLRP12 activity, including synthetic and naturally derived agonists, and are regarded as potential therapeutic agents to overcome inflammatory diseases.
Collapse
Affiliation(s)
- Lili Huang
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Youli Tao
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Xiping Wu
- Lihuili Hospital Affiliated to Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Jianzhang Wu
- The Eye Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Mengya Shen
- Affiliated Hospital of Jiaxing University, Jiaxing Maternity and Child Health Care Hospital in Zhejiang Province, Jiaxing, 314000, Zhejiang, China.
| | - Zhiwei Zheng
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
17
|
Dai B, Cao H, Hu Y, Gong Z, Huang X, Chen Y, Liu F, Peng X, Zhang Y, Lei X. Role of NLRP3 inflammasome activation in HCC cell progression. Heliyon 2023; 9:e19542. [PMID: 37681160 PMCID: PMC10481302 DOI: 10.1016/j.heliyon.2023.e19542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a globally prevalent and fatal malignancy worldwide, and identifying therapeutic strategies is time-consuming. Numerous reports have suggested the involvement of the NLRP3 inflammasome in the progression of various cancers. However, the detailed mechanisms underlying the role of NLRP3 inflammasome in HCC progression remain unclear. In this study, we observed low expression levels of the NLRP3 inflammasome in a subset of HCC cells. Furthermore, we demonstrated that the NLRP3 inflammasome can be activated by LPS + ATP through the nuclear factor kappa B signaling pathway, as confirmed by western blotting and immunofluorescence staining. To assess the impact of NLRP3 inflammasome activation on HCC cell behavior, we employed Edu staining, cell cycle assay, Annexin V/PI staining, and wound healing assay. Our results revealed that NLRP3 inflammasome activation inhibited the proliferation of Bel-7402 and SMMC-7721 cells, arrested the cell cycle at the G1 phase, and suppressed cell migration, while apoptosis remained unaffected. In summary, our findings suggest that targeting the NLRP3 inflammasome could have therapeutic potential for HCC.
Collapse
Affiliation(s)
- Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Hanbing Cao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Xiaoyue Huang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Yanbin Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Feng Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Xiujuan Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, PR China
- Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, PR China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, PR China
| | - Xinjun Lei
- Department of Cardiology, First affiliated hospital, Xi'an Jiaotong University, Xi'an 710061, PR China
| |
Collapse
|
18
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
19
|
Oseni SO, Naar C, Pavlović M, Asghar W, Hartmann JX, Fields GB, Esiobu N, Kumi-Diaka J. The Molecular Basis and Clinical Consequences of Chronic Inflammation in Prostatic Diseases: Prostatitis, Benign Prostatic Hyperplasia, and Prostate Cancer. Cancers (Basel) 2023; 15:3110. [PMID: 37370720 DOI: 10.3390/cancers15123110] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation is now recognized as one of the major risk factors and molecular hallmarks of chronic prostatitis, benign prostatic hyperplasia (BPH), and prostate tumorigenesis. However, the molecular mechanisms by which chronic inflammation signaling contributes to the pathogenesis of these prostate diseases are poorly understood. Previous efforts to therapeutically target the upstream (e.g., TLRs and IL1-Rs) and downstream (e.g., NF-κB subunits and cytokines) inflammatory signaling molecules in people with these conditions have been clinically ambiguous and unsatisfactory, hence fostering the recent paradigm shift towards unraveling and understanding the functional roles and clinical significance of the novel and relatively underexplored inflammatory molecules and pathways that could become potential therapeutic targets in managing prostatic diseases. In this review article, we exclusively discuss the causal and molecular drivers of prostatitis, BPH, and prostate tumorigenesis, as well as the potential impacts of microbiome dysbiosis and chronic inflammation in promoting prostate pathologies. We specifically focus on the importance of some of the underexplored druggable inflammatory molecules, by discussing how their aberrant signaling could promote prostate cancer (PCa) stemness, neuroendocrine differentiation, castration resistance, metabolic reprogramming, and immunosuppression. The potential contribution of the IL1R-TLR-IRAK-NF-κBs signaling molecules and NLR/inflammasomes in prostate pathologies, as well as the prospective benefits of selectively targeting the midstream molecules in the various inflammatory cascades, are also discussed. Though this review concentrates more on PCa, we envision that the information could be applied to other prostate diseases. In conclusion, we have underlined the molecular mechanisms and signaling pathways that may need to be targeted and/or further investigated to better understand the association between chronic inflammation and prostate diseases.
Collapse
Affiliation(s)
- Saheed Oluwasina Oseni
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Corey Naar
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Mirjana Pavlović
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Department of Computer and Electrical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James X Hartmann
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, and I-HEALTH, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Nwadiuto Esiobu
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - James Kumi-Diaka
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
20
|
Wang D, Wan X. Progress in the study of molecular mechanisms of cell pyroptosis in tumor therapy. Int Immunopharmacol 2023; 118:110143. [PMID: 37030114 DOI: 10.1016/j.intimp.2023.110143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
Pyroptosis, also known as cellular inflammatory necrosis, is a programmed cell death mediated by the Gasdermin family of proteins. The mechanisms by which pyroptosis occurs are divided into the GSDMD-mediated Caspase-1 and Caspase-4/-5/-11-dependent classical inflammatory vesicle pathway and the GSDME-mediated Caspase-3 and granzyme-dependent non-classical inflammatory vesicle pathways, among others. Recent studies have shown that pyroptosis has both inhibitory and promotive effects on tumor development. Pyroptosis induction also plays a dual role in antitumor immunotherapy: on the one hand, it suppresses antitumor immunity by promoting the release of inflammatory factors, and on the other hand, it inhibits tumor cell proliferation by triggering antitumor inflammatory responses. In addition, cell scorching plays an essential role in chemotherapy. It has been found that natural drugs modulating the induction of cell scorch are necessary to treat tumors. Therefore, studying the specific mechanisms of cell pyroptosis in different tumors can provide more ideas for developing oncology drugs. In this paper, we review the molecular mechanisms of pyroptosis and the role of pyroptosis in tumor development and treatment to provide new targets for clinical tumor treatment, prognosis, and antitumor drug development.
Collapse
|
21
|
Reynaud D, Alfaidy N, Collet C, Lemaitre N, Sergent F, Miege C, Soleilhac E, Assi AA, Murthi P, Courtois G, Fauvarque MO, Slim R, Benharouga M, Abi Nahed R. NLRP7 Enhances Choriocarcinoma Cell Survival and Camouflage in an Inflammasome Independent Pathway. Cells 2023; 12:857. [PMID: 36980199 PMCID: PMC10099745 DOI: 10.3390/cells12060857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND Gestational choriocarcinoma (GC) is a highly malignant trophoblastic tumor that often develops from a complete hydatidiform mole (HM). NLRP7 is the major gene responsible for recurrent HM and is involved in the innate immune response, inflammation and apoptosis. NLRP7 can function in an inflammasome-dependent or -independent pathway. Recently, we have demonstrated that NLRP7 is highly expressed in GC tumor cells and contributes to their tumorigenesis. However, the underlying mechanisms are still unknown. Here, we investigated the mechanism by which NLRP7 controls these processes in malignant (JEG-3) and non-tumor (HTR8/SVneo) trophoblastic cells. Cell survival, dedifferentiation, camouflage, and aggressiveness were compared between normal JEG-3 cells or knockdown for NLRP7, JEG-3 Sh NLRP7. In addition, HTR8/SVneo cells overexpressing NLRP7 were used to determine the impact of NLRP7 overexpression on non-tumor cells. NLRP7 involvement in tumor cell growth and tolerance was further characterized in vivo using the metastatic mouse model of GC. RESULTS We demonstrate that NLRP7 (i) functions in an inflammasome-dependent and -independent manners in HTR8/SVneo and JEG-3 cells, respectively; (ii) differentially regulates the activity of NF-κB in tumor and non-tumor cells; (iii) increases malignant cell survival, dedifferentiation, and camouflage; and (iv) facilitates tumor cells colonization of the lungs in the preclinical model of GC. CONCLUSIONS This study demonstrates for the first time the mechanism by which NLRP7, independently of its inflammasome machinery, contributes to GC growth and tumorigenesis. The clinical relevance of NLRP7 in this rare cancer highlights its potential therapeutic promise as a molecular target to treat resistant GC patients.
Collapse
Affiliation(s)
- Déborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Céline Miege
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | | | - Alaa Al Assi
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne VIC 3800, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Gilles Courtois
- University Grenoble Alpes, Inserm, CEA, UA13 BGE, 38000 Grenoble, France
| | | | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique, University Grenoble Alpes and Centre Hospitalo-Universitaire Grenoble Alpes, CS 10217, CEDEX 9, 38043 Grenoble, France
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Univeristy Grenoble Alpes, Inserm, 38000 Grenoble, France
| |
Collapse
|
22
|
Wang S, Liao X, Xiong X, Feng D, Zhu W, Zheng B, Li Y, Yang L, Wei Q. Pyroptosis in urinary malignancies: a literature review. Discov Oncol 2023; 14:12. [PMID: 36702978 PMCID: PMC9880131 DOI: 10.1007/s12672-023-00620-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Urinary neoplasms refer to malignant tumours occurring in any part of the urinary system, including the kidney, renal pelvis, ureter, bladder, prostate, etc. The worldwide incidence of urinary system tumours has been increasing yearly. Available methods include surgical treatment, radiotherapy, chemotherapy, endocrine therapy, molecular targeted therapy, and immune therapy. In recent years, emerging evidence has demonstrated that cell pyroptosis plays an important role in the occurrence and progression of malignant urinary tumours. Pyroptosis is a new type of cell death that involves inflammatory processes regulated by gasdermins (GSDMs) and is characterized by membrane perforation, cell swelling and cell rupture. Recent studies have shown that pyroptosis can inhibit and promote the development of tumours. This manuscript reviews the role of pyroptosis in the development and progression of prostate cancer, kidney cancer and bladder cancer and introduces the latest research results in these fields to discuss the therapeutic potential of the pyroptosis pathway in urinary malignancies.
Collapse
Affiliation(s)
- Sheng Wang
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Xinyang Liao
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Xingyu Xiong
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Dechao Feng
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Weizhen Zhu
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Bojue Zheng
- The Department of Clinical Medicine, West China Medical School, Sichuan University, Chengdu, China
| | - Yifan Li
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Lu Yang
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| | - Qiang Wei
- The Department of Urology, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan China
| |
Collapse
|
23
|
Zhao M, Guo J, Gao QH, Wang H, Wang F, Wang ZR, Liu SJ, Deng YJ, Zhao ZW, Zhang YY, Yu WX. Relationship between pyroptosis-mediated inflammation and the pathogenesis of prostate disease. Front Med (Lausanne) 2023; 10:1084129. [PMID: 36744134 PMCID: PMC9892550 DOI: 10.3389/fmed.2023.1084129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
The largest solid organ of the male genitalia, the prostate gland, is comprised of a variety of cells such as prostate epithelial cells, smooth muscle cells, fibroblasts, and endothelial cells. Prostate diseases, especially prostate cancer and prostatitis, are often accompanied by acute/chronic inflammatory responses or even cell death. Pyroptosis, a cell death distinct from necrosis and apoptosis, which mediate inflammation may be closely associated with the development of prostate disease. Pyroptosis is characterized by inflammasome activation via pattern recognition receptors (PRR) upon recognition of external stimuli, which is manifested downstream by translocation of gasdermin (GSDM) protein to the membrane to form pores and release of inflammatory factors interleukin (IL)-1β and IL-18, a process that is Caspase-dependent. Over the past number of years, many studies have investigated the role of inflammation in prostate disease and have suggested that pyroptosis may be an important driver. Understanding the precise mechanism is of major consequence for the development of targeted therapeutic strategies. This review summarizes the molecular mechanisms, regulation, and cellular effects of pyroptosis briefly and then discuss the current pyroptosis studies in prostate disease research and the inspiration for us.
Collapse
Affiliation(s)
- Ming Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-He Gao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zi-Rui Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng-Jing Liu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying-Jun Deng
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zi-Wei Zhao
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Yang Zhang
- Department of Andrology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Xiao Yu
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Wen-Xiao Yu,
| |
Collapse
|
24
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
25
|
Dai B, Fan M, Huang X, Gong Z, Cao H, Hu Y, Su Q, Yang T, Chen Y, Peng X, Liu F, Zhang Y. Shuanghua decoction exerts anticancer activity by activating NLRP3 inflammasome via ROS and inhibiting NF-κB signaling in hepatocellular carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154249. [PMID: 35716538 DOI: 10.1016/j.phymed.2022.154249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/19/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major subtype of liver cancer, with a high mortality rate, and close relation to chronic hepatitis. The components of the NLRP3 inflammasome are poorly expressed or even lost in HCC. Downregulation of the NLRP3 inflammasome expression significantly affects the clinical stages and pathological grade of HCC. According to previous research, Shuanghua decoction (SHD), a traditional folk prescription, has an inhibitory effect on nasopharyngeal cancer. PURPOSE This study aimed to reveal the therapeutic potential of the traditional folk recipe, SHD and its demolition recipe for HCC, and to explore the underlying mechanism. METHODS The effect of SHD and its demolition recipe on HCC cell biological behaviors was assessed using the MTT assay, colony formation, LDH release assay, KFluor-Edu staining, annexin V-FITC/PI staining assay, Hoechst staining, wound-healing assay, transwell assay, reactive oxygen species (ROS) release assay, HPLC, nude mice model, HE staining, IHC, western blot, and immunofluorescence staining in vitro and in vivo. RESULTS SHD was found to inhibit HCC, and Oldenlandia and OP (Oldenlandia: Prunella spike = 2.5:1) were identified as the main ingredients that inhibited the proliferation and migration of HCC cells via the activation of the ROS-mediated NLRP3 inflammasome and inhibition of the NF-κB signaling pathway in vitro and in vivo. CONCLUSION Overall, Chinese medicine theory and pharmacology research revealed that SHD, Oldenlandia and OP may be promising traditional Chinese medicine for the treatment of HCC.
Collapse
Affiliation(s)
- Bingling Dai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Mengying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Xiaoyue Huang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Hanbing Cao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Yu Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China
| | - Yanbin Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; Shaanxi Institute of International Trade & Commerce, Xianyang 712046, P.R. China; Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Xiujuan Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; Shaanxi Institute of International Trade & Commerce, Xianyang 712046, P.R. China
| | - Feng Liu
- Shaanxi Institute of International Trade & Commerce, Xianyang 712046, P.R. China; Shaanxi Buchang Pharmaceutical Co. Ltd, Xi'an 710075, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, P.R. China; State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, 710061, P. R. China.
| |
Collapse
|
26
|
Abi Nahed R, Elkhoury Mikhael M, Reynaud D, Collet C, Lemaitre N, Michy T, Hoffmann P, Sergent F, Marquette C, Murthi P, Raia-Barjat T, Alfaidy N, Benharouga M. Role of NLRP7 in Normal and Malignant Trophoblast Cells. Biomedicines 2022; 10:252. [PMID: 35203462 PMCID: PMC8868573 DOI: 10.3390/biomedicines10020252] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Gestational choriocarcinoma (CC) is an aggressive cancer that develops upon the occurrence of abnormal pregnancies such as Hydatidiform moles (HMs) or upon non-molar pregnancies. CC cells often metastasize in multiple organs and can cause maternal death. Recent studies have established an association between recurrent HMs and mutations in the Nlrp7 gene. NLRP7 is a member of a new family of proteins that contributes to innate immune processes. Depending on its level of expression, NLRP7 can function in an inflammasome-dependent or independent pathway. To date, the role of NLRP7 in normal and in malignant human placentation remains to be elucidated. We have recently demonstrated that NLRP7 is overexpressed in CC trophoblast cells and may contribute to their acquisition of immune tolerance via the regulation of key immune tolerance-associated factors, namely HLA family, βCG and PD-L1. We have also demonstrated that NLRP7 increases trophoblast proliferation and decreases their differentiation, both in normal and tumor conditions. Actual findings suggest that NLRP7 expression may ensure a strong tolerance of the trophoblast by the maternal immune system during normal pregnancy and may directly affect the behavior and aggressiveness of malignant trophoblast cells. The proposed review summarizes recent advances in the understanding of the significance of NLRP7 overexpression in CC and discusses its multifaceted roles, including its function in an inflammasome-dependent or independent pathways.
Collapse
Affiliation(s)
- Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Maya Elkhoury Mikhael
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
| | - Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Constance Collet
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Thierry Michy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Christel Marquette
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Padma Murthi
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tiphaine Raia-Barjat
- Department of Gynecology and Obstetrics, University Hospital, 42100 Saint Etienne, France;
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38054 Grenoble, France; (R.A.N.); (M.E.M.); (D.R.); (C.C.); (N.L.); (T.M.); (P.H.); (F.S.); (C.M.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| |
Collapse
|
27
|
Nie Z, Chen M, Gao Y, Huang D, Cao H, Peng Y, Guo N, Zhang S. Regulated Cell Death in Urinary Malignancies. Front Cell Dev Biol 2021; 9:789004. [PMID: 34869390 PMCID: PMC8633115 DOI: 10.3389/fcell.2021.789004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary malignancies refer to a series of malignant tumors that occur in the urinary system and mainly include kidney, bladder, and prostate cancers. Although local or systemic radiotherapy and chemotherapy, immunotherapy, castration therapy and other methods have been applied to treat these diseases, their high recurrence and metastasis rate remain problems for patients. With in-depth research on the pathogenesis of urinary malignant tumors, this work suggests that regulatory cell death (RCD) plays an important role in their occurrence and development. These RCD pathways are stimulated by various internal and external environmental factors and can induce cell death or permit cell survival under the control of various signal molecules, thereby affecting tumor progression or therapeutic efficacy. Among the previously reported RCD methods, necroptosis, pyroptosis, ferroptosis, and neutrophil extracellular traps (NETs) have attracted research attention. These modes transmit death signals through signal molecules, such as cysteine-aspartic proteases (caspase) family and tumor necrosis factor-α (TNF-α) that have a wide and profound influence on tumor proliferation or death and even change the sensitivity of tumor cells to therapy. This review discussed the effects of necroptosis, pyroptosis, ferroptosis, and NETs on kidney, bladder and prostate cancer and summarized the latest research and achievements in these fields. Future directions and possibility of improving the denouement of urinary system tumors treatment by targeting RCD therapy were also explored.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
28
|
Reynaud D, Abi Nahed R, Lemaitre N, Bolze PA, Traboulsi W, Sergent F, Battail C, Filhol O, Sapin V, Boufettal H, Hoffmann P, Aboussaouira T, Murthi P, Slim R, Benharouga M, Alfaidy N. NLRP7 Promotes Choriocarcinoma Growth and Progression through the Establishment of an Immunosuppressive Microenvironment. Cancers (Basel) 2021; 13:2999. [PMID: 34203890 PMCID: PMC8232770 DOI: 10.3390/cancers13122999] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 12/14/2022] Open
Abstract
The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.
Collapse
Affiliation(s)
- Deborah Reynaud
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Roland Abi Nahed
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Nicolas Lemaitre
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Pierre-Adrien Bolze
- Department of Gynecological Surgery and Oncology, Obstetrics, French Reference Center for Gestational Trophoblastic Diseases, University Hospital Lyon Sud, University of Lyon 1, 69000 Lyon, France;
| | - Wael Traboulsi
- Laboratory for Immuno-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 2005, USA;
| | - Frederic Sergent
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Christophe Battail
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Odile Filhol
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Vincent Sapin
- Genetics, Reproduction and Development (GReD) Laboratory, CNRS UMR 6293, Inserm U1103, Translational Approach to Epithelial Injury and Repair Team, Clermont Auvergne University, 63000 Clermont-Ferrand, France;
- Medical Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Houssine Boufettal
- Obstetrics and Gynecology Department, Ibn Rochd University Hospital, Hassan 2 University, Faculty of Medicine and Pharmacy, 20360 Casablanca, Morocco; (H.B.); (T.A.)
| | - Pascale Hoffmann
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
- Centre Hospitalo-Universitaire Grenoble Alpes, Service Obstétrique, CS 10217, Université Grenoble Alpes, CEDEX 9, 38043 Grenoble, France
| | - Touria Aboussaouira
- Obstetrics and Gynecology Department, Ibn Rochd University Hospital, Hassan 2 University, Faculty of Medicine and Pharmacy, 20360 Casablanca, Morocco; (H.B.); (T.A.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash, Clayton, VIC 3168, Australia;
- Department of Obstetrics and Gynecology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rima Slim
- Departments of Human Genetics and Obstetrics and Gynecology, McGill University Health Centre Research Institute, Montréal, QC H4A 3J1, Canada;
| | - Mohamed Benharouga
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale, Inserm U1292, Université Grenoble-Alpes, 38000 Grenoble, France; (D.R.); (R.A.N.); (N.L.); (F.S.); (C.B.); (O.F.); (P.H.); (M.B.)
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, CEDEX 9, 38054 Grenoble, France
| |
Collapse
|
29
|
Targeting the NLRP3 Inflammasome as a New Therapeutic Option for Overcoming Cancer. Cancers (Basel) 2021; 13:cancers13102297. [PMID: 34064909 PMCID: PMC8151587 DOI: 10.3390/cancers13102297] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasomes are multiprotein complexes that regulate the maturation and secretion of the proinflammatory cytokines interleukin-1beta (IL-1β and interleukin-18 (IL-18) in response to various intracellular stimuli. As a member of the inflammasomes family, NLRP3 is the most studied and best characterized inflammasome and has been shown to be involved in several pathologies. Recent findings have made it increasingly apparent that the NLRP3 inflammasome may also play a central role in tumorigenesis, and it has attracted attention as a potential anticancer therapy target. In this review, we discuss the role of NLRP3 in the development and progression of cancer, offering a detailed summary of NLRP3 inflammasome activation (and inhibition) in the pathogenesis of various forms of cancer. Moreover, we focus on the therapeutic potential of targeting NLRP3 for cancer therapy, emphasizing how understanding NLRP3 inflammasome-dependent cancer mechanisms might guide the development of new drugs that target the inflammatory response of tumor-associated cells.
Collapse
|
30
|
Human Prostate Epithelial Cells Activate the AIM2 Inflammasome upon Cellular Senescence: Role of POP3 Protein in Aging-Related Prostatic Inflammation. Life (Basel) 2021; 11:life11040366. [PMID: 33923931 PMCID: PMC8073538 DOI: 10.3390/life11040366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Increased levels of type I (T1) interferon (IFN)-inducible POP3 protein in myeloid cells inhibit activation of the AIM2 inflammasome and production of IL-1β and IL-18 proinflammatory cytokines. The AIM2 mRNA levels were significantly higher in benign prostate hyperplasia (BPH) than the normal prostate. Further, human normal prostate epithelial cells (PrECs), upon becoming senescent, activated an inflammasome. Because in aging related BPH senescent PrECs accumulate, we investigated the role of POP3 and AIM2 proteins in pre-senescent and senescent PrECs. Here we report that the basal levels of the POP3 mRNA and protein were lower in senescent (versus young or old) PrECs that exhibited activation of the T1 IFN response. Further, treatment of PrECs and a BPH cell line (BPH-1) that expresses the androgen receptor (AR) with the male sex hormone dihydrotestosterone (DHT) increased the basal levels of POP3 mRNA and protein, but not AIM2, and inhibited activation of the AIM2 inflammasome. Of interest, a stable knockdown of POP3 protein expression in the BPH-1 cell line increased cytosolic DNA-induced activation of AIM2 inflammasome. These observations suggest a potential role of POP3 protein in aging-related prostatic inflammation.
Collapse
|
31
|
Wang Y, Huang XX, Leng D, Li JF, Liang Y, Jiang T. Effect of EZH2 on pulmonary artery smooth muscle cell migration in pulmonary hypertension. Mol Med Rep 2020; 23:129. [PMID: 33313943 PMCID: PMC7751464 DOI: 10.3892/mmr.2020.11768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a life‑threatening disease that often involves vascular remodeling. Although pulmonary arterial smooth muscle cells (PASMCs) are the primary participants in vascular remodeling, their biological role is not entirely clear. The present study analyzed the role of enhancer of zeste homolog 2 (EZH2) in vascular remodeling of PH by investigating the behavior of PASMCs. The expression levels of EZH2 in PASMCs in chronic thromboembolic pulmonary hypertension (CTEPH), a type of PH, were detected. The role of EZH2 in PASMC migration was investigated by wound‑healing assay following overexpression and knockdown. Functional enrichment analysis of the whole‑genome expression profiles of PASMCs with EZH2 overexpression was performed using an mRNA Human Gene Expression Microarray. Quantitative (q)PCR was performed to confirm the results of the microarray. EZH2 expression levels increased in CTEPH cell models. The overexpression of EZH2 enhanced PASMC migration compared with control conditions. Functional enrichment analysis of the differentially expressed genes following EZH2 overexpression indicated a strong link between EZH2 and the immune inflammatory response and oxidoreductase activity in PASMCs. mRNA expression levels of superoxide dismutase 3 were verified by qPCR. The results suggested that EZH2 was involved in the migration of PASMCs in PH, and may serve as a potential target for the treatment of PH.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Laboratory, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiao-Xi Huang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing 100020, P.R. China
| | - Dong Leng
- Department of Clinical Laboratory, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Ji-Feng Li
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing 100020, P.R. China
| | - Yan Liang
- Department of Clinical Laboratory, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
32
|
Zhang YF, Bu FT, Yin NN, Wang A, You HM, Wang L, Jia WQ, Huang C, Li J. NLRP12 negatively regulates EtOH-induced liver macrophage activation via NF-κB pathway and mediates hepatocyte apoptosis in alcoholic liver injury. Int Immunopharmacol 2020; 88:106968. [PMID: 33182058 DOI: 10.1016/j.intimp.2020.106968] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/31/2020] [Indexed: 12/29/2022]
Abstract
Alcohol-induced liver injury is characterized by abnormal liver dysfunction and excessive inflammation response. Recent years a wealth of data have been yielded indicating that EtOH (ethyl alcohol)-induced macrophage activation along with liver inflammation plays a dominating role in the progression of alcohol-induced liver injury. Here we found high expression of NLRP12 (Nucleotide-binding oligomerization domain protein 12, which is generally considered to be a negative regulator of inflammatory response) in EtOH-fed mouse liver tissue, primary Kupffer cells and EtOH-induced RAW264.7 cells. Additionally, overexpression of NLRP12 following Ad (adenovirus)-NLRP12-EGFP contributed to the attenuation of steatosis and inflammation in EtOH-fed mice model and EtOH-primed RAW264.7 cells. In parallel, Knockdown of NLRP12 aggravated the inflammatory response in RAW264.7 cells triggered by EtOH. Meanwhile, after administration of overexpression or inhibition of NLRP12 expression in vitro, the expression of phosphorylated protein of NF-kB signaling pathway was significantly affected. After increasing or decreasing the expression of NLRP12 in RAW264.7 cells, AML-12 cells were cultured with the supernatant of RAW264.7 cells stimulated by EtOH, and the percent of apoptosis ratio of AML-12 cells was remarkably altered. The study suggested that reduced inflammatory response induced by NLRP12-mediated inhibition of NF-kB pathway participated in the decrease of hepatocyte apoptosis in alcohol-induced liver injury. Collectively, these findings suggested the significance of NLRP12-mediated macrophage activation in alcohol-induced liver injury.
Collapse
Affiliation(s)
- Ya-Fei Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Fang-Tian Bu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Na-Na Yin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong-Mei You
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Ling Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Wen-Qian Jia
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| |
Collapse
|
33
|
Circulatory MIC-1 as a Determinant of Prostate Cancer Racial Disparity. Cancers (Basel) 2020; 12:cancers12103033. [PMID: 33081054 PMCID: PMC7603134 DOI: 10.3390/cancers12103033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/25/2020] [Accepted: 10/11/2020] [Indexed: 01/01/2023] Open
Abstract
Simple Summary African American men are diagnosed with more aggressive prostate cancer and have worse outcomes than Caucasians. This study examined the role of MIC-1 as a risk factor and demonstrated a conceptual observation for the differential level of MIC-1 in circulation (serum and urine) and tumor tissues from prostate cancer patients of racial disparity. The circulatory MIC-1 levels in serum and urine are significantly higher in prostate cancer patients of African American ethnicity, with higher sensitivity and specificity than Caucasians. The validation of circulatory MIC-1 in a larger cohort of patients may help identify high-risk prostate cancer patients and develop race-oriented therapies to reduce the observed cancer outcome gaps between the races. Abstract In this study, we investigated the potential of MIC-1 (macrophage inhibitory cytokine-1) on the severity of prostate cancer between African American men and Caucasians. Differences between the races were examined using Mann–Whitney tests for continuous variables and Fisher’s exact tests for categorical variables. Pearson’s correlation coefficient was used to identify associations between continuous measures across all samples and within each race. Analysis of variance, including clinical parameters, was used to identify differences in serum and urine MIC-1 levels between races. We found significant differences between the two races for age (p = 0.01), Gleason scores (p = 0.01), and stage of disease (p = 0.03). African American men in the study had higher Gleason scores (mean = 6.9) than Caucasians (mean = 6.5), during earlier stages of the disease. In Caucasian men with prostate cancer, serum MIC-1 expression was positively associated with age (r = 0.7, p < 0.01). However, African American men had highly expressed MIC-1 and high Gleason scores (r = 0.16, p = 0.3). Interestingly, the urine MIC-1 level was significantly higher in African American men with prostate cancer than in Caucasian patients. It appeared to be more sensitive and specific for African Americans (AUC = 0.85 vs. 0.56). Thus, high circulatory MIC-1 in prostate cancer patients may indicate MIC-1 as a potential biomarker to improve the diagnostic ability of an aggressive stage of prostate cancer in African American men. However, a larger cohort of sample analysis is required to validate these observations.
Collapse
|
34
|
Jacob N, Dasharathy SS, Bui V, Benhammou JN, Grody WW, Singh RR, Pisegna JR. Generalized Cytokine Increase in the Setting of a Multisystem Clinical Disorder and Carcinoid Syndrome Associated with a Novel NLRP12 Variant. Dig Dis Sci 2019; 64:2140-2146. [PMID: 30788684 PMCID: PMC6707534 DOI: 10.1007/s10620-019-05525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are a group of cytoplasmic sensors that survey danger signals released by invading pathogens or damaged tissue. Mutations in the NLRP subfamily affect pro-inflammatory mediators and cause nonspecific systemic symptoms. AIMS We sought to identify a potential genetic etiology of an inflammatory syndrome in a patient that presented with an atypical multisystem illness with carcinoid syndrome as well as atopic and autoimmune features. METHODS Exome sequencing was performed using the Agilent SureSelect Clinical Research Exome XT kit on an Illumina HiSeq 2500. Longitudinal monitoring of pro-inflammatory cytokines was performed. RESULTS We identified a novel variant (heterozygous c.536C > T [p.Thr179Ile]) in the NLRP12 gene in a 63-year-old woman and her daughter, who presented with an unusual clinical syndrome that differs from autoinflammatory disorders previously reported in association with the NLRP subfamily gene mutations. This NLRP12 variant was predicted to be pathogenic by functional analysis through Hidden Markov Models (FATHMM). Both the mother and the daughter had episodes of abdominal pain, fever, diarrhea, skin rash, hypothyroidism, and elevated urine 5-hydroxyindoleacetic acid (5-HIAA) levels. The proband also had elevated serum levels of pro-inflammatory (IL-1β, IL-6, IL-12, and TNF-α), Th1 (IL-2, IFN-γ), and Th2 (IL-4, IL-5, IL-13) cytokines, but not of Th17 (IL-17) and IL-10. CONCLUSION This report adds to the expanding spectrum of clinical manifestations attributed to the NLRP subfamily gene variants and suggests a role of NLRP12 in the regulation of multiple cytokines.
Collapse
Affiliation(s)
- Noam Jacob
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Veterans Affairs, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System (691/111C), 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA
| | - Sonya S Dasharathy
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Viet Bui
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Jihane N Benhammou
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Veterans Affairs, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System (691/111C), 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA
| | - Wayne W Grody
- Departments of Human Genetics and Pediatrics, and the UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ram Raj Singh
- UCLA Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at University of California at Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- Autoimmunity and Tolerance Laboratory, Division of Rheumatology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Molecular Toxicology Interdepartmental Program, UCLA, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Veterans Affairs, David Geffen School of Medicine at UCLA, VA Greater Los Angeles Healthcare System (691/111C), 11301 Wilshire Blvd., Los Angeles, CA, 90073, USA.
- Departments of Human Genetics and Pediatrics, and the UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
35
|
Sharma N, Saxena S, Agrawal I, Singh S, Srinivasan V, Arvind S, Epari S, Paul S, Jha S. Differential Expression Profile of NLRs and AIM2 in Glioma and Implications for NLRP12 in Glioblastoma. Sci Rep 2019; 9:8480. [PMID: 31186453 PMCID: PMC6559951 DOI: 10.1038/s41598-019-44854-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/22/2019] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most prevalent primary brain tumors with immense clinical heterogeneity, poor prognosis and survival. The nucleotide-binding domain, and leucine-rich repeat containing receptors (NLRs) and absent-in-melanoma 2 (AIM2) are innate immune receptors crucial for initiation and progression of several cancers. There is a dearth of reports linking NLRs and AIM2 to glioma pathology. NLRs are expressed by cells of innate immunity, including monocytes, macrophages, dendritic cells, endothelial cells, and neutrophils, as well as cells of the adaptive immune system. NLRs are critical regulators of major inflammation, cell death, immune and cancer-associated pathways. We used a data-driven approach to identify NLRs, AIM2 and NLR-associated gene expression and methylation patterns in low grade glioma and glioblastoma, using The Cancer Genome Atlas (TCGA) patient datasets. Since TCGA data is obtained from tumor tissue, comprising of multiple cell populations including glioma cells, endothelial cells and tumor-associated microglia/macrophages we have used multiple cell lines and human brain tissues to identify cell-specific effects. TCGA data mining showed significant differential NLR regulation and strong correlation with survival in different grades of glioma. We report differential expression and methylation of NLRs in glioma, followed by NLRP12 identification as a candidate prognostic marker for glioma progression. We found that Nlrp12 deficient microglia show increased colony formation while Nlrp12 deficient glioma cells show decreased cellular proliferation. Immunohistochemistry of human glioma tissue shows increased NLRP12 expression. Interestingly, microglia show reduced migration towards Nlrp12 deficient glioma cells.
Collapse
Affiliation(s)
- Nidhi Sharma
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Shivanjali Saxena
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Ishan Agrawal
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Shalini Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Varsha Srinivasan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - S Arvind
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital, Mumbai, Maharashtra, India
| | - Sushmita Paul
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India.
| |
Collapse
|
36
|
Hao L, Thomas S, Greer T, Vezina CM, Bajpai S, Ashok A, De Marzo AM, Bieberich CJ, Li L, Ricke WA. Quantitative proteomic analysis of a genetically induced prostate inflammation mouse model via custom 4-plex DiLeu isobaric labeling. Am J Physiol Renal Physiol 2019; 316:F1236-F1243. [PMID: 30995113 PMCID: PMC6620594 DOI: 10.1152/ajprenal.00387.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Inflammation is involved in many prostate pathologies including infection, benign prostatic hyperplasia, and prostate cancer. Preclinical models are critical to our understanding of disease mechanisms, yet few models are genetically tractable. Here, we present a comparative quantitative proteomic analysis of urine from mice with and without prostate-specific inflammation induced by conditional prostate epithelial IL-1β expression. Relative quantification and sample multiplexing was achieved using custom 4-plex N,N-dimethyl leucine (DiLeu) isobaric tags and nanoflow ultrahigh-performance liquid chromatography coupled to high-resolution tandem mass spectrometry. Each set of 4-plex DiLeu reagents allows four urine samples to be analyzed simultaneously, providing high-throughput and accurate quantification of urinary proteins. Proteins involved in the acute phase response, including haptoglobin, inter-α-trypsin inhibitor, and α1-antitrypsin 1-1, were differentially represented in the urine of mice with prostate inflammation. Mass spectrometry-based quantitative urinary proteomics represents a promising bioanalytical strategy for biomarker discovery and the elucidation of molecular mechanisms in urological research.
Collapse
Affiliation(s)
- Ling Hao
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin
| | - Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Tyler Greer
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
- School of Veterinary Medicine, University of Wisconsin-Madison , Madison, Wisconsin
- George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison , Madison, Wisconsin
| | - Sagar Bajpai
- Department of Biological Sciences, University of Maryland-Baltimore County , Baltimore, Maryland
| | - Arya Ashok
- Department of Biological Sciences, University of Maryland-Baltimore County , Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland-Baltimore County , Baltimore, Maryland
- University of Maryland Marlene and Stewart Greenebaum Cancer Center , Baltimore, Maryland
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin
| | - William A Ricke
- School of Pharmacy, University of Wisconsin-Madison , Madison, Wisconsin
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
- George M. O'Brien Center of Research Excellence, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
37
|
Abstract
Inflammasomes are molecular platforms that assemble upon sensing various intracellular stimuli. Inflammasome assembly leads to activation of caspase 1, thereby promoting the secretion of bioactive interleukin-1β (IL-1β) and IL-18 and inducing an inflammatory cell death called pyroptosis. Effectors of the inflammasome efficiently drive an immune response, primarily providing protection against microbial infections and mediating control over sterile insults. However, aberrant inflammasome signalling is associated with pathogenesis of inflammatory and metabolic diseases, neurodegeneration and malignancies. Chronic inflammation perpetuated by inflammasome activation plays a central role in all stages of tumorigenesis, including immunosuppression, proliferation, angiogenesis and metastasis. Conversely, inflammasome signalling also contributes to tumour suppression by maintaining intestinal barrier integrity, which portrays the diverse roles of inflammasomes in tumorigenesis. Studies have underscored the importance of environmental factors, such as diet and gut microbiota, in inflammasome signalling, which in turn influences tumorigenesis. In this Review, we deliver an overview of the interplay between inflammasomes and tumorigenesis and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | |
Collapse
|
38
|
Karan D. Inflammasomes: Emerging Central Players in Cancer Immunology and Immunotherapy. Front Immunol 2018; 9:3028. [PMID: 30631327 PMCID: PMC6315184 DOI: 10.3389/fimmu.2018.03028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/07/2018] [Indexed: 01/04/2023] Open
Abstract
Inflammation has an established role in cancer development and progression and is a key player in regulating the entry and exit of immune cells in the tumor microenvironment, mounting a significant impact on anti-tumor immunity. Recent studies have shed light on the role of inflammasomes in the regulation of inflammation with a focus on the subsequent effects on the immunobiology of tumors. To generate strong anti-tumor immunity, cross-talk between innate, and adaptive immune cells is necessary. Interestingly, inflammasome bridges both arms of the immune system representing a unique opportunity to manipulate the role of inflammation in favor of tumor suppression. In this review, we discuss the impact of inflammasomes on the regulation of the levels of inflammatory cytokines-chemokines and the efficacy of immunotherapy response in cancer treatment.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, MCW Cancer Center and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
39
|
Akosile W, Voisey J, Lawford B, Colquhounc D, Young RM, Mehta D. The inflammasome NLRP12 is associated with both depression and coronary artery disease in Vietnam veterans. Psychiatry Res 2018; 270:775-779. [PMID: 30551324 DOI: 10.1016/j.psychres.2018.10.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/05/2018] [Accepted: 10/21/2018] [Indexed: 12/21/2022]
Abstract
Several studies have established that Major depressive disorder is associated with excess inflammation with an elevation of both pro and anti-inflammatory cytokines in major depressive disorder. In addition, individuals with major depressive disorder are at higher risk of developing coronary artery disease. The role of innate immunity and NFκB-mediated inflammation in depression and its increased association with coronary artery disease is yet to be fully elucidated. Polymorphisms in the Nucleotide-Binding Oligomerization Domain, Leucine Rich Repeat and Pyrin Domain Containing 12 (NLRP12), are associated with depression and coronary artery disease in trauma exposed individuals. In a cohort of Vietnam War veterans (n = 299) NLRP12 polymorphisms were analysed for association with depression and coronary calcium scores. The NLRP12 polymorphism, rs34436714 was associated with a higher DASS21 Score for depression (p = 0.037). NLRP12 polymorphisms rs34971363 and rs6509825 (p = 0.022 and p = 0.020) were associated with raised coronary calcium score. To our knowledge, this is the first time rs34436714 has been investigated in Vietnam veterans identifying AC as a risk genotype for depression in Caucasian cohorts. It is also the first time the rs34971363 (CG) and rs6509825 (CT) genotype have been associated with raised coronary calcium score.
Collapse
Affiliation(s)
- Wole Akosile
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, Queensland 4120, Australia.
| | - Joanne Voisey
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - Bruce Lawford
- School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| | - David Colquhounc
- Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, Queensland 4120, Australia
| | - Ross McD Young
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia; Gallipoli Medical Research Institute, Greenslopes Private Hospital, Newdegate Street, Greenslopes, Queensland 4120, Australia
| | - Divya Mehta
- School of Psychology and Counselling, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, Australia
| |
Collapse
|
40
|
Moossavi M, Parsamanesh N, Bahrami A, Atkin SL, Sahebkar A. Role of the NLRP3 inflammasome in cancer. Mol Cancer 2018; 17:158. [PMID: 30447690 PMCID: PMC6240225 DOI: 10.1186/s12943-018-0900-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are large intracellular multi-protein signalling complexes that are formed in the cytosolic compartment as an inflammatory immune response to endogenous danger signals. The formation of the inflammasome enables activation of an inflammatory protease caspase-1, pyroptosis initiation with the subsequent cleaving of the pro-inflammatory cytokines interleukin (IL)-1β and proIL-18 to produce active forms. The inflammasome complex consists of a Nod-like receptor (NLR), the adapter apoptosis-associated speck-like (ASC) protein, and Caspase-1. Dysregulation of NLRP3 inflammasome activation is involved tumor pathogenesis, although its role in cancer development and progression remains controversial due to the inconsistent findings described. In this review, we summarize the current knowledge on the contribution of the NLRP3 inflammasome on potential cancer promotion and therapy.
Collapse
Affiliation(s)
- Maryam Moossavi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Stephen L Atkin
- Weill Cornell Medicine Qatar, Education City, PO Box 24144, Doha, Qatar.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
41
|
Hao L, Shi Y, Thomas S, Vezina CM, Bajpai S, Ashok A, Bieberich CJ, Ricke WA, Li L. Comprehensive urinary metabolomic characterization of a genetically induced mouse model of prostatic inflammation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2018; 434:185-192. [PMID: 30872949 PMCID: PMC6414212 DOI: 10.1016/j.ijms.2018.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Dysfunction of the lower urinary tract commonly afflicts the middle-aged and aging male population. The etiology of lower urinary tract symptoms (LUTS) is multifactorial. Benign prostate hyperplasia, fibrosis, smooth muscle contractility, and inflammation likely contribute. Here we aim to characterize the urinary metabolomic profile associated with prostatic inflammation, which could inform future personalized diagnosis or treatment, as well as mechanistic research. Quantitative urinary metabolomics was conducted to examine molecular changes following induction of inflammation via conditional Interleukin-1β expression in prostate epithelia using a novel transgenic mouse strain. To advance method development for urinary metabolomics, we also compared different urine normalization methods and found that normalizing urine samples based on osmolality prior to LC-MS most completely separated urinary metabolite profiles of mice with and without prostate inflammation via principal component analysis. Global metabolomics was combined with advanced machine learning feature selection and classification for data analysis. Key dysregulated metabolites and pathways were identified and were relevant to prostatic inflammation, some of which overlapped with our previous study of human LUTS patients. A binary classification model was established via the support vector machine algorithm to accurately differentiate control and inflammation groups, with an area-under-the-curve value of the receiver operating characteristic of 0.81, sensitivity of 0.974 and specificity of 0.995, respectively. This study generated molecular profiles of non-bacterial prostatic inflammation, which could assist future efforts to stratify LUTS patients and develop new therapies.
Collapse
Affiliation(s)
- Ling Hao
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA
| | - Chad M. Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-Madison, WI, USA
- George M. O’Brien Urology Research Center, University of Wisconsin-Madison, WI, USA
| | - Sagar Bajpai
- Department of Biological Sciences, University of Maryland-Baltimore, MD, USA
| | - Arya Ashok
- Department of Biological Sciences, University of Maryland-Baltimore, MD, USA
| | | | - William A. Ricke
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA
- George M. O’Brien Urology Research Center, University of Wisconsin-Madison, WI, USA
- Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
42
|
Staal J, Beyaert R. Inflammation and NF-κB Signaling in Prostate Cancer: Mechanisms and Clinical Implications. Cells 2018; 7:E122. [PMID: 30158439 PMCID: PMC6162478 DOI: 10.3390/cells7090122] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a highly prevalent form of cancer that is usually slow-developing and benign. Due to its high prevalence, it is, however, still the second most common cause of death by cancer in men in the West. The higher prevalence of prostate cancer in the West might be due to elevated inflammation from metabolic syndrome or associated comorbidities. NF-κB activation and many other signals associated with inflammation are known to contribute to prostate cancer malignancy. Inflammatory signals have also been associated with the development of castration resistance and resistance against other androgen depletion strategies, which is a major therapeutic challenge. Here, we review the role of inflammation and its link with androgen signaling in prostate cancer. We further describe the role of NF-κB in prostate cancer cell survival and proliferation, major NF-κB signaling pathways in prostate cancer, and the crosstalk between NF-κB and androgen receptor signaling. Several NF-κB-induced risk factors in prostate cancer and their potential for therapeutic targeting in the clinic are described. A better understanding of the inflammatory mechanisms that control the development of prostate cancer and resistance to androgen-deprivation therapy will eventually lead to novel treatment options for patients.
Collapse
Affiliation(s)
- Jens Staal
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
43
|
Qian B, Zhao LJ, Teng F, Gao LJ, Shen R. Role of the tumour protein P53 gene in human cervical squamous carcinoma cells: Discussing haematopoietic cell-specific protein 1-associated protein X-1-induced survival, migration and proliferation. Oncol Lett 2018; 16:2629-2637. [PMID: 30013658 DOI: 10.3892/ol.2018.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/12/2018] [Indexed: 11/06/2022] Open
Abstract
The haematopoietic cell-specific protein 1-associated protein X-1 (HAX-1), as a mitochondrial membrane protein, induces cancer progression and metastasis. The present study aimed to investigate the role of HAX-1-induced survival, migration and proliferation of human cervical squamous carcinoma cells and to elucidate its potential molecular mechanisms. The level of HAX-1 was examined by quantitative polymerase chain reaction and western blot analyses. The survival, migration and proliferation of the human cervical squamous carcinoma SiHa cell line were measured by the water-soluble tetrazolium salt (WST-1) assay, Transwell assay and 3H-thymidine incorporation into DNA (3H-TdR) assay, respectively. The intracellular reactive oxygen species (ROS) was estimated by the fluorescence of H2DCFDA, and the mitochondrial membrane potential was tested using a JC-1 probe. The expression of the HAX-1 gene was significantly increased in human cervical carcinoma tissues relative to non-cancerous cervix tissues. Overexpression of HAX-1 increased the survival, migration and proliferation ability of SiHa cells, decreased the production of ROS, and maintained the integrity of the mitochondrial membrane and morphology. The effect brought on these cells could be abrogated by the addition of wild-type tumour protein P53 (p53) or carbonyl cyanide-p-trifluoro methoxyphenylhydrazone-induced mitochondrial dysfunction. In summary, these data support the notion that HAX-1 induced the survival, migration and proliferation of human cervical squamous carcinoma cells by inhibiting its downstream regulatory factor p53 in SiHa cells.
Collapse
Affiliation(s)
- Bing Qian
- Department of Gynaecological Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Li-Jun Zhao
- Department of Gynaecological Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, Jiangsu 210009, P.R. China
| | - Fang Teng
- Department of Gynaecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Ling-Juan Gao
- Department of Gynaecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| | - Rong Shen
- Department of Gynaecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China
| |
Collapse
|
44
|
Wang H, Luo Q, Feng X, Zhang R, Li J, Chen F. NLRP3 promotes tumor growth and metastasis in human oral squamous cell carcinoma. BMC Cancer 2018; 18:500. [PMID: 29716544 PMCID: PMC5930757 DOI: 10.1186/s12885-018-4403-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
Background Inflammasomes are reported to be abnormally expressed and activated in several malignancies and play important roles in tumor development. The present study was designed to investigate the expression and function of the NLR family pyrin domain containing protein 3 (NLRP3) inflammasome in oral squamous cell carcinoma (OSCC). Methods NLRP3 expression in OSCC cell lines and the normal human immortalized oral epithelial cells (HIOEC) was determined by real-time PCR and western blot. Immunohistochemistry was used to examine the expression of NLRP3 and IL-1β in the paraffin-embedded OSCC tissues. The proliferation of OSCC cells was detected by the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and cell colony formation ability of the OSCC cells was also evaluated. Tumor cell migration or invasion was measured by the transwell assay and related protein markers were determined by western blot. A mouse xenograft model was established to investigate the OSCC tumor growth in vivo. Results Significant higher expression of NLRP3 was observed in the OSCC cells. Obvious expression of NLRP3 and IL-1β was found in the paraffin-embedded OSCC tissues, and the NLRP3 expression levels were correlated with the tumor size, lymphonode metastatic status and IL-1β expression. Downregulating NLRP3 expression markedly reduced the cleavage of caspase-1 and production of IL-1β in OSCC cells. NLRP3 knockdown also inhibited the proliferation, migration and invasion of OSCC cells. Further investigation indicated that expressions of E-cadherin and vimentin in OSCC cells were increased, while N-cadherin expression was decreased after NLRP3 knockdown. Downregulating NLRP3 expression in OSCC cells significantly reduced the tumor growth in vivo. Conclusions Our data suggested that the increased expression of NLRP3 in OSCC was associated with tumor growth and metastasis. NLRP3 may be considered as a potential target for OSCC therapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4403-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Wang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qingqiong Luo
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xiaodong Feng
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Ruiyang Zhang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Jiang Li
- Department of Oral Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
45
|
Lehmann S, Esch E, Hartmann P, Goswami A, Nikolin S, Weis J, Beyer C, Johann S. Expression profile of pattern recognition receptors in skeletal muscle of SOD1 (G93A) amyotrophic lateral sclerosis (ALS) mice and sporadic ALS patients. Neuropathol Appl Neurobiol 2018; 44:606-627. [PMID: 29575052 DOI: 10.1111/nan.12483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 02/20/2018] [Indexed: 12/14/2022]
Abstract
AIMS Amyotrophic lateral sclerosis (ALS) is characterized by degeneration of motoneurons and progressive muscle wasting. Inflammatory processes, mediated by non-neuronal cells, such as glial cells, are known to contribute to disease progression. Inflammasomes consist of pattern recognition receptors (PRRs), apoptosis-associated speck-like protein (ASC) and caspase 1 and are essential for interleukin (IL) processing and a rapid immune response after tissue damage. Recently, we described inflammasome activation in the spinal cord of ALS patients and in SOD1(G93A) ALS mice. Since pathological changes in the skeletal muscle are early events in ALS, we hypothesized that PRRs might be abnormally expressed in muscle fibre degeneration. METHODS Western blot analysis, real-time PCR and immunohistochemistry were performed with muscle tissue from presymptomatic and early-symptomatic male SOD1(G93A) mice and with muscle biopsies of control and sporadic ALS (sALS) patients. Analysed PRRs include nucleotide-binding oligomerization domain-like (NOD-like) receptor protein 1 (NLRP1), NLR protein 3 (NLRP3), NLR family CARD domain-containing 4 (NLRC4) and absent in melanoma 2. Additionally, expression levels of ASC, caspase 1, interleukin 1 beta (IL1β) and interleukin 18 (IL18) were evaluated. RESULTS Expression of PRRs and ASC was detected in murine and human tissue. The PRR NLRC4, caspase 1 and IL1β were significantly elevated in denervated muscle of SOD1(G93A) mice and sALS patients. Furthermore, levels of caspase 1 and IL1β were already increased in presymptomatic animals. CONCLUSION Our findings suggest that increased inflammasome activation may be involved in skeletal muscle pathology in ALS. Furthermore, elevated levels of NLRC4, caspase 1 and IL1β reflect early changes in the skeletal muscle and may contribute to the denervation process.
Collapse
Affiliation(s)
- S Lehmann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,Institute Molecular and Cellular Anatomy (MOCA), Medical Clinic RWTH Aachen University, Aachen, Germany
| | - E Esch
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - P Hartmann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - A Goswami
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - S Nikolin
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - J Weis
- Institute of Neuropathology, Medical Clinic RWTH Aachen University, Aachen, Germany
| | - C Beyer
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,JARA - Translational Brain Medicine, Aachen, Germany
| | - S Johann
- Institute of Neuroanatomy, Medical Clinic RWTH Aachen University, Aachen, Germany.,Institute of Anatomy II, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
46
|
Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, Amselem S, Giurgea I, Karabina SA. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 2018; 187:133-149. [PMID: 29466702 DOI: 10.1016/j.pharmthera.2018.02.011] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammasomes are intracellular multiprotein signaling complexes, mainly present in myeloid cells. They commonly assemble around a cytoplasmic receptor of the nucleotide-binding leucine-rich repeat containing receptor (NLR) family, although other cytoplasmic receptors like pyrin have been shown to form inflammasomes. The nucleation of the multiprotein scaffolding platform occurs upon detection of a microbial, a danger or a homeostasis pattern by the receptor that will, most commonly, associate with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) through homotypic domain interactions resulting in recruitment of procaspase-1. This will lead to the autoproteolytic activation of caspase-1, which regulates the secretion of proinflammatory IL1β and IL18 cytokines and pyroptosis, a caspase-1-mediated form of cell death. Pyroptosis occurs through cleavage of Gasdermin D, a membrane pore forming protein. Recently, non-canonical inflammasomes have been described, which directly sense intracellular pathogens through caspase-4 and -5 in humans, leading to pyroptosis. Inflammasomes are important in host defense; however, a deregulated activity is associated with a number of inflammatory, immune and metabolic disorders. Furthermore, mutations in inflammasome receptor coding genes are causal for an increasing number of rare autoinflammatory diseases. Biotherapies targeting the products of inflammasome activation as well as molecules that directly or indirectly inhibit inflammasome nucleation and activation are promising therapeutic areas. This review discusses recent advances in inflammasome biology, the molecular pathology of several inflammasomes, and current therapeutic approaches in autoinflammatory diseases and in selected common multifactorial inflammasome-mediated disorders.
Collapse
Affiliation(s)
- Fawaz Awad
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Eman Assrawi
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Camille Louvrier
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Claire Jumeau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France
| | - Sophie Georgin-Lavialle
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Gilles Grateau
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Hôpital Tenon, Service de Médecine interne, Paris, F-75012, France
| | - Serge Amselem
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Irina Giurgea
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| | - Sonia-Athina Karabina
- Sorbonne Université, INSERM, UMR_S 933, Assistance Publique Hôpitaux de Paris, Département de Génétique médicale, Hôpital Trousseau, Paris, F-75012, France.
| |
Collapse
|
47
|
Santoni M, Cheng L, Conti A, Mariani C, Lopez-Beltran A, Montironi R, Battelli N. Activity and Functions of Tumor-associated Macrophages in Prostate Carcinogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.eursup.2017.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|