1
|
Moktip T, Salaipeth L, Cope AE, Taherzadeh MJ, Watanabe T, Phitsuwan P. Current Understanding of Feather Keratin and Keratinase and Their Applications in Biotechnology. Biochem Res Int 2025; 2025:6619273. [PMID: 40308531 PMCID: PMC12041636 DOI: 10.1155/bri/6619273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/29/2025] [Indexed: 05/02/2025] Open
Abstract
The food industry generates substantial keratin waste, particularly chicken feathers, which are rich in amino acids and essential nutrients. However, the insolubility of keratin presents a significant challenge to its conversion. Keratinase, an enzyme produced by certain fungi and bacteria, offers a promising solution by degrading feather keratin into amino acids and soluble proteins. Among these, bacterial keratinase is notable for its superior stability and activity, although its production remains constrained, necessitating continued research to identify efficient microbial strains. Keratin-derived hydrolyzates, recognized for their biological and immunological properties, have garnered significant research interest. This review examines the structural characteristics of chicken feather keratin, its resistance to conventional proteases, and advances in keratinase production and purification techniques. Additionally, the keratin degradation mechanism and the adoption of environmentally friendly technologies for managing feather waste are explored. Finally, the review highlights the potential applications of keratinase across diverse industries, including animal feed and cosmetics.
Collapse
Affiliation(s)
- Thanakorn Moktip
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Lakha Salaipeth
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Natural Resource Management and Sustainability, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| | - Ana Eusebio Cope
- Future Genetic Resources Cluster, Rice Breeding Innovation Platform, IRRI, Los Banos, Philippines
| | | | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 611-0011, Japan
| | - Paripok Phitsuwan
- LigniTech-Lignin Technology Research Group, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkuntien, Bangkok 10150, Thailand
| |
Collapse
|
2
|
J L BJ, Dhanasingh I. An update on thermostable keratinases for protein engineering against feather pollutants. Appl Microbiol Biotechnol 2025; 109:75. [PMID: 40131452 PMCID: PMC11937091 DOI: 10.1007/s00253-025-13459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Every year, the poultry business worldwide produces at least 8.5 billion tonnes of chicken feathers, making it one of the major landfill pollutants in the world. Biodegradation and recycling of native feathers is difficult due to the presence of numerous disulfide linkages in the feather's major constituent, keratin. Denaturation of such recalcitrant protein is thermodynamically favored at high temperatures. Therefore, the lookout for the enzymes that degrade keratin (keratinases) from thermophilic bacteria resulted in the identification of thermostable enzymes favoring feather degradation at high temperatures. This review presents a comprehensive analysis of the biochemical properties and structural attributes of thermostable keratinases, emphasizing their catalytic mechanisms, stability at high temperatures, and substrate specificity. Our exploration of structural features enables us to understand the molecular architecture of these enzymes for protein engineering that might enhance the keratinolytic activity and thermostability further. As the field of protein engineering advances, there exists a pressing requirement for integration of structural data with pragmatic engineering applications. Our review addresses for the first time the detailed structural aspects of thermostable bacterial keratinolytic enzymes that will facilitate the development of modified keratinases through protein engineering for a broad range of industrial applications, such as in the production of biofuels, leather processing, and waste management. KEYPOINTS: • Efficient eco-friendly bioremediation of feather landfill pollutant using thermophilic keratinases. • Detailed structural and biochemical aspects of different thermophilic bacterial keratinases. • Combinations of thermostable keratinases for the enhanced feather degradation process.
Collapse
Affiliation(s)
- Bhagya Jyothi J L
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Immanuel Dhanasingh
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
Yan X, Zhou H, Wang R, Chen H, Wen B, Dong M, Xue Q, Jia L, Yan H. Biochemical characterization and molecular docking of a novel alkaline-stable keratinase from Amycolatopsis sp. BJA-103. Int J Biol Macromol 2025; 295:139669. [PMID: 39793787 DOI: 10.1016/j.ijbiomac.2025.139669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/08/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Amycolatopsis sp. BJA-103 was isolated for its exceptional feather-degradation capability, leading to the purification, cloning, and heterologous expression of the keratinase enzyme, KER0199. Sequence analysis places KER0199 within the S8 protease family, revealing <60 % sequence similarity to known proteases. The recombinant KER0199-His6 demonstrates a broad substrate range, along with remarkable thermostability and alkaline stability, exhibiting optimal activity at pH 11.0 and 60 °C, despite the absence of cysteine residues essential for disulfide bonding. Structural modeling reveals a predominantly negatively charged surface and a flat, low-electrostatic-potential substrate-binding pocket. Substrate-binding models, predicted using AlphaFold3 and molecular dynamics simulations, indicate that substrates such as casein, chicken feather β-keratin P2450, and hemoglobin bind to this pocket, forming anti-parallel β-sheets with residues G97 to G99 and establishing extensive hydrogen bonds with key residues near the enzyme's active site. These findings suggest that AlphaFold-based substrate binding predictions, combined with an analysis of intermolecular forces, provide a valuable tool for assisting in the elucidation of enzyme specificity and substrate recognition. KER0199, the first characterized S8 family keratinase from the Amycolatopsis genus, shows great potential for industrial applications.
Collapse
Affiliation(s)
- Xia Yan
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| | - Hanqi Zhou
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Huan Chen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Bingjie Wen
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Mengmeng Dong
- College of Life Science, Northwest A&F University, Yangling 712100, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lianghui Jia
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| | - Hua Yan
- College of Life Science, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Denesyuk AI, Denessiouk K, Johnson MS, Uversky VN. Structural Catalytic Core in Subtilisin-like Proteins and Its Comparison to Trypsin-like Serine Proteases and Alpha/Beta-Hydrolases. Int J Mol Sci 2024; 25:11858. [PMID: 39595929 PMCID: PMC11593635 DOI: 10.3390/ijms252211858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
Subtilisin-like proteins are serine proteases that use two types of catalytic triads: Ser-His-Asp and Ser-Glu-Asp. Here, we investigate the two known families of subtilisin-like proteins, the subtilases (Ser-His-Asp triad) and the serine-carboxyl proteinases (Ser-Glu-Asp triad), and describe the local structural arrangements (cores) that govern the catalytic residues in these proteins. We show the separation of the cores into conserved structural zones, which can be repeatedly found in different structures, and compare the structural cores in subtilisin-like proteins with those in trypsin-like serine proteases and alpha/beta-hydrolases.
Collapse
Affiliation(s)
- Alexander I. Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Aktayeva S, Khassenov B. High keratinase and other types of hydrolase activity of the new strain of Bacillus paralicheniformis. PLoS One 2024; 19:e0312679. [PMID: 39453952 PMCID: PMC11508186 DOI: 10.1371/journal.pone.0312679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/11/2024] [Indexed: 10/27/2024] Open
Abstract
Keratinases, a subclass of proteases, are used to degrade keratin thereby forming peptones and free amino acids. Bacillus paralicheniformis strain T7 was isolated from soil and exhibited high keratinase, protease, collagenase, amylase, xylanase, lipase, and phosphatase activities. Keratinases of the strain showed maximum activity at 70°C and pH 9.0 as well as high thermal stability. A mass-spectrometric analysis identified seven peptidases with molecular masses of 26.8-154.8 kDa in the secretory proteome. These peptidases are members of S8 and S41 serine peptidase families and of M14, M42, and M55 metallopeptidase families. Additionally, α-amylase (55.2 kDa), alkaline phosphatase (59.8 kDa), and esterase (26.8 kDa) were detected. The strong keratinolytic properties of the strain were confirmed by degradation of chicken and goose feathers, which got completely hydrolyzed within 4 days. Submerged fermentation by strain B. paralicheniformis T7 was carried out in a pilot bioreactor, where the highest keratinase production was noted after 19 h of cultivation. After the fermentation, in the culture fluid, the keratinase activity toward keratin azure was 63.6 ± 5.8 U/mL. The protease activity against azocasein was 715.7 ± 40.2 U/mL. The possibility of obtaining enzyme preparations in liquid and powder form was demonstrated, and their comparative characteristics are given. In the concentrate, the keratinase, protease, α-amylase, phosphatase, and esterase/lipase activities were 2,656.7 ± 170.4, 29,886.7 ± 642.9, 176.1 ± 16.3, 23.9 ± 1.8, and 510.9 ± 12.2 U/mL, respectively. In the lyophilizate, these activities were 57,733.3 ± 8,911.4, 567,066.7 ± 4,822.2, 2,823.0 ± 266.8, 364.2 ± 74.8, and 17,618.0 ± 610.3 U/g, respectively. In the preparation obtained by air flow drying at 55°C, these activities were 53,466.7 ± 757.2, 585,333.3 ± 4,277.1, 2,395.8 ± 893.7, 416.7 ± 52.4, and 15,328.1 ± 528.6 U/g, respectively. The results show high potential of B. paralicheniformis strain T7 as a producer of keratinases and other enzymes for applications in agricultural raw materials and technologies for processing of keratin-containing animal waste.
Collapse
Affiliation(s)
- Saniya Aktayeva
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
- Faculty of Natural Sciences, L.N. Gumilyev Eurasian National University, Astana, Kazakhstan
| | - Bekbolat Khassenov
- Laboratory for Genetics and Biochemistry of Microorganisms, National Center for Biotechnology, Astana, Kazakhstan
| |
Collapse
|
6
|
Das S, Das A, Das N, Nath T, Langthasa M, Pandey P, Kumar V, Choure K, Kumar S, Pandey P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57478-57507. [PMID: 38985428 DOI: 10.1007/s11356-024-34233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Tamanna Nath
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | | | - Prisha Pandey
- Department of Biotechnology, Royal Global University, Guwahati, 781035, Assam, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India, 248016
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, 485001, Madhya Pradesh, India
| | - Sanjeev Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
7
|
Kumari P, Abhinand CS, Kumari R, Upadhyay A, Satheeshkumar PK. Design, development and characterization of a chimeric protein with disulfide reductase and protease domain showing keratinase activity. Int J Biol Macromol 2024; 278:135025. [PMID: 39187103 DOI: 10.1016/j.ijbiomac.2024.135025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Keratin is one of the major components of solid waste, and the degradation products have extensive applications in various commercial industries. Due to the complexity of the structure of keratin, especially the disulfide bonds between keratin polypeptides, keratinolytic activity is efficient with a mixture of proteins with proteases, peptidases, and oxidoreductase activity. The present work aimed to create an engineered chimeric protein with a disulfide reductase domain and a protease domain connected with a flexible linker. The structure, stability, and substrate interaction were analyzed using the protein modeling tools and codon-optimized synthetic gene cloned, expressed, and purified using Ni2+-NTA chromatography. The keratinolytic activity of the protein was at its maximum at 70 °C. The suitable pH for the enzyme activity was pH 8. While Ni2+, Mg2+, and Na+ inhibited the keratinolytic activity, Cu2+, Ca2+, and Mn2+ enhanced it significantly. Biochemical characterization of the protease domain indicated significant keratinolytic activity at 70 °C at pH 10.0 but was less efficient than the chimeric protein. Experiments using feathers as the substrate showed a clear degradation pattern in the SEM analysis. The samples collected from the degradation experiments indicated the release of proteins (2-fold) and amino acids (8.4-fold) in a time-dependent manner. Thus, the protease with an added disulfide reductase domain showed excellent keratin degradation activity and has the potential to be utilized in the commercial industries.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ritu Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Astha Upadhyay
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
8
|
Gerlicz W, Sypka M, Jodłowska I, Białkowska AM. Isolation, Selection, and Identification of Keratinolytic Bacteria for Green Management of Keratin Waste. Molecules 2024; 29:3380. [PMID: 39064958 PMCID: PMC11280386 DOI: 10.3390/molecules29143380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The volume of difficult-to-process keratin waste is increasing as a result of rising global meat production. If not properly managed, this waste can contribute to environmental pollution and pose a threat to human and animal welfare. An interesting and more sustainable alternative is therefore the bioconversion of keratin using microorganisms and their enzymes. This work aimed to isolate bacteria from soil samples and zoonotic keratins and to evaluate their enzymatic capacity to degrade α- and β-keratin wastes. A total of 113 bacterial strains were isolated from environmental samples and subjected to taxonomic identification using the MALDI-TOF MS technique and to a two-step screening for proteolytic and keratinolytic activity. The ability to degrade a β-rich keratin substrate was observed in almost all of the strains isolated from soil and horsehairs. In contrast, when an α-rich keratin substrate was used, the highest levels of hydrolysis were observed only for Ker39, Ker66, Ker85, Ker100, and Ker101. Strains with the highest biodegradation potential were identified using molecular biology methods. Phylogenetic analysis of 16S rDNA gene sequences allowed the assignment of selected keratinolytic microorganisms to the genera Exiguobacterium, Priestia, Curtobacterium, Stenotrophomonas, Bacillus, Kocuria, or Pseudomonas. The results of this study are a promising precursor for the development of new, more sustainable methods of managing keratin waste to produce high-value hydrolysates.
Collapse
Affiliation(s)
| | | | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-537 Lodz, Poland; (W.G.); (M.S.); (I.J.)
| |
Collapse
|
9
|
Khan A, Mehmood K, Nadhman A, Khan SU, Shah AA, Shah Z. Microbial production of keratinase from Bacillus velezensis strain MAMA: A novel enzyme for eco-friendly degradation of keratin waste. Heliyon 2024; 10:e32338. [PMID: 38988557 PMCID: PMC11233875 DOI: 10.1016/j.heliyon.2024.e32338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 07/12/2024] Open
Abstract
Keratin waste has become an increasingly serious environmental and health hazard. Keratin waste is mainly composed of keratin protein, which is one of the most difficult polymers to break down in nature and is resistant to many physical, chemical, and biological agents. With physical and chemical methods being environment damaging and costly, microbial degradation of keratin using keratinase enzyme is of great significance as it is both environment friendly and cost-effective. The aim of this study was to extract and purify keratinase from bacterial species isolated from the soil. Among the organisms, an isolate of Bacillus velezensis, coded as MAMA could break down chicken feathers within 72 hours (h). The isolated strain produced significant levels of keratinase in mineral salt medium by supplying chicken feathers as the sole source of nitrogen and carbon. Feather deterioration was observed with the naked eye, and enzyme activity was evaluated using a spectrophotometric assay. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymography results revealed that the keratinase protein produced by Bacillus velezensis had a molecular weight between 40 and 55 kilodalton (kDa).
Collapse
Affiliation(s)
- Aimon Khan
- Institute of Integrative Biosciences, CECOS University Peshawar, Pakistan
| | - Kashif Mehmood
- Institute of Integrative Biosciences, CECOS University Peshawar, Pakistan
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University Peshawar, Pakistan
| | - Sami Ullah Khan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ziaullah Shah
- Department of Pharmacy, CECOS University Peshawar, Pakistan
| |
Collapse
|
10
|
Gahatraj I, Roy R, Sharma A, Phukan BC, Kumar S, Kumar D, Pandey P, Bhattacharya P, Borah A. Identification of molecular interactions of pesticides with keratinase for their potential to inhibit keratin biodegradation. In Silico Pharmacol 2024; 12:54. [PMID: 38860143 PMCID: PMC11162408 DOI: 10.1007/s40203-024-00229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
The recalcitrant, fibrous protein keratin is found in the outermost layer of vertebrate skin, feathers, hair, horn, and hooves. Approximately, 10 million tons of keratin wastes are produced annually worldwide, of which around 8.5 million tons are from feather wastes. The biodegradation of keratin has been a challenge due to the lack of understanding of biological parameters that modulate the process. Few soil-borne microbes are capable of producing keratinase enzyme which has the potential to degrade the hard keratin. However, various pesticides are abundantly used for the management of poultry farms and reports suggest the presence of the pesticide residues in feather. Hence, it was hypothesized that pesticides would interact with the substrate-binding or allosteric sites of the keratinase enzyme and interferes with the keratin-degradation process. In the present study, molecular interactions of 20 selected pesticides with the keratinase enzyme were analyzed by performing molecular docking. In blind docking, 14 out of 20 pesticides showed higher inhibitory potential than the known inhibitor phenylmethylsulfonyl flouride, all of which exhibited higher inhibitory potential in site-specific docking. The stability and strength of the protein complexes formed by the top best potential pesticides namely fluralaner, teflubenzuron, cyhalothrin, and cyfluthrin has been further validated by molecular dynamic simulation studies. The present study is the first report for the preliminary investigation of the keratinase-inhibitory potential of pesticides and highlights the plausible role of these pesticides in hindering the biological process of keratin degradation and thereby their contribution in environmental pollution. Graphical abstract Illustration depicting the hypothesis, experimental procedure, and the resultant keratinase-inhibitory potential of selected pesticides.
Collapse
Affiliation(s)
- Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| | - Anupama Sharma
- Department of Computational Sciences, Central University of Punjab, Bathinda, 151401 India
| | | | - Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, 788011 India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011 India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, 382355 Gandhinagar, Gujarat India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011 India
| |
Collapse
|
11
|
Zhou B, Guo Y, Xue Y, Ji X, Huang Y. Comprehensive insights into the mechanism of keratin degradation and exploitation of keratinase to enhance the bioaccessibility of soybean protein. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:177. [PMID: 37978558 PMCID: PMC10655438 DOI: 10.1186/s13068-023-02426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Keratin is a recalcitrant protein and can be decomposed in nature. However, the mechanism of keratin degradation is still not well understood. In this study, Bacillus sp. 8A6 can completely degrade the feather in 20 h, which is an efficient keratin degrader reported so far. Comprehensive transcriptome analysis continuously tracks the metabolism of Bacillus sp. 8A6 throughout its growth in feather medium. It reveals for the first time how the strain can acquire nutrients and energy in an oligotrophic feather medium for proliferation in the early stage. Then, the degradation of the outer lipid layer of feather can expose the internal keratin structure for disulfide bonds reduction by sulfite from the newly identified sulfite metabolic pathway, disulfide reductases and iron uptake. The resulting weakened keratin has been further proposedly de-assembled by the S9 protease and hydrolyzed by synergistic effects of the endo, exo and oligo-proteases from S1, S8, M3, M14, M20, M24, M42, M84 and T3 families. Finally, bioaccessible peptides and amino acids are generated and transported for strain growth. The keratinase has been applied for soybean hydrolysis, which generates 2234 peptides and 559.93 mg/L17 amino acids. Therefore, the keratinases, inducing from the poultry waste, have great potential to be further applied for producing bioaccessible peptides and amino acids for feed industry.
Collapse
Affiliation(s)
- Beiya Zhou
- College of Mathematical Sciences, Bohai University, Jinzhou, 121013, Liaoning, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- Huizhou Institute of Green Energy and Advanced Materials, Huizhou, 516000, Guangdong, China
| | - Yandong Guo
- College of Mathematical Sciences, Bohai University, Jinzhou, 121013, Liaoning, China.
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
12
|
Huang A, Lu F, Liu F. Discrimination of psychrophilic enzymes using machine learning algorithms with amino acid composition descriptor. Front Microbiol 2023; 14:1130594. [PMID: 36860491 PMCID: PMC9968940 DOI: 10.3389/fmicb.2023.1130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Psychrophilic enzymes are a class of macromolecules with high catalytic activity at low temperatures. Cold-active enzymes possessing eco-friendly and cost-effective properties, are of huge potential application in detergent, textiles, environmental remediation, pharmaceutical as well as food industry. Compared with the time-consuming and labor-intensive experiments, computational modeling especially the machine learning (ML) algorithm is a high-throughput screening tool to identify psychrophilic enzymes efficiently. Methods In this study, the influence of 4 ML methods (support vector machines, K-nearest neighbor, random forest, and naïve Bayes), and three descriptors, i.e., amino acid composition (AAC), dipeptide combinations (DPC), and AAC + DPC on the model performance were systematically analyzed. Results and discussion Among the 4 ML methods, the support vector machine model based on the AAC descriptor using 5-fold cross-validation achieved the best prediction accuracy with 80.6%. The AAC outperformed than the DPC and AAC + DPC descriptors regardless of the ML methods used. In addition, amino acid frequencies between psychrophilic and non-psychrophilic proteins revealed that higher frequencies of Ala, Gly, Ser, and Thr, and lower frequencies of Glu, Lys, Arg, Ile,Val, and Leu could be related to the protein psychrophilicity. Further, ternary models were also developed that could classify psychrophilic, mesophilic, and thermophilic proteins effectively. The predictive accuracy of the ternary classification model using AAC descriptor via the support vector machine algorithm was 75.8%. These findings would enhance our insight into the cold-adaption mechanisms of psychrophilic proteins and aid in the design of engineered cold-active enzymes. Moreover, the proposed model could be used as a screening tool to identify novel cold-adapted proteins.
Collapse
Affiliation(s)
- Ailan Huang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Fuping Lu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China
| | - Fufeng Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China,Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, Tianjin, China,*Correspondence: Fufeng Liu, ✉ ;
| |
Collapse
|
13
|
Akram F, Aqeel A, Shoaib M, Haq IU, Shah FI. Multifarious revolutionary aspects of microbial keratinases: an efficient green technology for future generation with prospective applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:86913-86932. [PMID: 36271998 DOI: 10.1007/s11356-022-23638-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Since the dawn of century, tons of keratin bio-waste is generated by the poultry industry annually, and they end up causing environmental havoc. Keratins are highly flexible fibrous proteins which exist in α- and β- forms and provide mechanical strength and stability to structural appendages. The finding of broad-spectrum protease, keratinase, from thermophilic bacteria and fungi, has provided an eco-friendly solution to hydrolyze the peptide bonds in highly recalcitrant keratinous substances such as nails, feathers, claws, and horns into valuable amino acids. Microorganisms produce these proteolytic enzymes by techniques of solid-state and submerged fermentation. However, solid-state fermentation is considered as a yielding approach for the production of thermostable keratinases. This review prioritized the molecular and biochemical properties of microbial keratinases, and the role of keratinases in bringing prodigious impact for the sustainable progress of the economy. It also emphasizes on the current development in keratinase production with the focus to improve the biochemical properties related to enzyme's catalytic activity and stability, and production of mutant and cloned microbial strains to improve the yield of keratinases. Recently, multitude molecular approaches have been employed to enhance enzyme's productivity, activity, and thermostability which makes them suitable for pharmaceutical industry and for the production of animal feed, organic fertilizers, biogas, clearing of animal hides, and detergent formulation. Hence, it can be surmised that microbial keratinolytic enzymes are the conceivable candidates for numerous commercial and industrial applications.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Minahil Shoaib
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Science, Islamabad, Pakistan
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
14
|
Parametrically optimized feather degradation by Bacillus velezensis NCIM 5802 and delineation of keratin hydrolysis by multi-scale analysis for poultry waste management. Sci Rep 2022; 12:17118. [PMID: 36224206 PMCID: PMC9556542 DOI: 10.1038/s41598-022-21351-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023] Open
Abstract
Enormous amounts of keratinaceous waste make a significant and unexploited protein reserve that can be utilized through bioconversion into high-value products using microbial keratinases. This study was intended to assess the keratinase production from a newly isolated B. velezensis NCIM 5802 that can proficiently hydrolyze chicken feathers. Incubation parameters used to produce keratinase enzyme were optimized through the Response Surface Methodology (RSM) with chicken feathers as substrate. Optimization elevated the keratinase production and feather degradation by 4.92-folds (109.7 U/mL) and 2.5 folds (95.8%), respectively. Time-course profile revealed a direct correlation among bacterial growth, feather degradation, keratinase production and amino acid generation. Biochemical properties of the keratinase were evaluated, where it showed optimal activity at 60 °C and pH 10.0. The keratinase was inhibited by EDTA and PMSF, indicating it to be a serine-metalloprotease. Zymography revealed the presence of four distinct keratinases (Mr ~ 100, 62.5, 36.5 and 25 kDa) indicating its multiple forms. NMR and mass spectroscopic studies confirmed the presence of 18 free amino acids in the feather hydrolysates. Changes in feather keratin brought about by the keratinase action were studied by X-ray diffraction (XRD) and spectroscopic (FTIR, Raman) analyses, which showed a decrease in the total crystallinity index (TCI) (1.00-0.63) and confirmed the degradation of its crystalline domain. Scanning electron microscopy (SEM) revealed the sequential structural changes occurring in the feather keratin during degradation. Present study explored the use of keratinolytic potential of the newly isolated B. velezensis NCIM 5802 in chicken feather degradation and also, unraveled the underlying keratin hydrolysis mechanism through various analyses.
Collapse
|
15
|
Lien YC, Lai SJ, Lin CY, Wong KP, Chang MS, Wu SH. High-efficiency decomposition of eggshell membrane by a keratinase from Meiothermus taiwanensis. Sci Rep 2022; 12:14684. [PMID: 36038640 PMCID: PMC9424195 DOI: 10.1038/s41598-022-18474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Eggshell membrane (ESM), a plentiful biological waste, consists of collagen-like proteins and glycosaminoglycans (GAGs) such as hyaluronic acid (HA). Here we used a keratinase (oeMtaker)-mediated system to decompose ESM. The best reaction condition was established by incubating the solution containing oeMtaker, sodium sulfite, and ESM with a weight ratio of 1:120:600. ESM enzymatic hydrolysate (ESM-EH) showed a high proportion of essential amino acids and type X collagen peptides with 963–2259 Da molecular weights. The amounts of GAGs and sulfated GAGs in ESM-EH were quantified as 6.4% and 0.7%, respectively. The precipitated polysaccharides with an average molecular weight of 1300–1700 kDa showed an immunomodulatory activity by stimulating pro-inflammatory cytokines (IL-6 and TNF-α) production. In addition, a microorganism-based system was established to hydrolyze ESM by Meiothermus taiwanensis WR-220. The amounts of GAGs and sulfated GAGs in the system were quantified as 0.9% and 0.1%, respectively. Based on our pre-pilot tests, the system shows great promise in developing into a low-cost and high-performance process. These results indicate that the keratinase-mediated system could hydrolyze ESM more efficiently and produce more bioactive substances than ever for therapeutical applications and dietary supplements.
Collapse
Affiliation(s)
- Ya-Chu Lien
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Shu-Jung Lai
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.,Research Center for Cancer Biology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| | - Chai-Yi Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ken-Pei Wong
- I-MEI FOODS Company Limited, 1 F., No. 31, Sec. 2, Yanping N. Rd., Datong Dist., Taipei City, 10346, Taiwan
| | - Matt S Chang
- I-MEI FOODS Company Limited, 1 F., No. 31, Sec. 2, Yanping N. Rd., Datong Dist., Taipei City, 10346, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
16
|
Rios P, Bezus B, Cavalitto S, Cavello I. Production and characterization of a new detergent-stable keratinase expressed by Pedobacter sp. 3.14.7, a novel Antarctic psychrotolerant keratin-degrading bacterium. J Genet Eng Biotechnol 2022; 20:81. [PMID: 35612674 PMCID: PMC9133294 DOI: 10.1186/s43141-022-00356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Antarctica is one of the harshest environments in the world. Despite this fact, it has been colonized by microorganisms, which had to develop different adaptations in order to survive. By studying their enzymes, we can harness these adaptations in order to use them in various industrial processes. Keratinases (E.C. 3.4.99.11) are characterized by their robustness in withstanding extreme conditions and, along with other enzymes, are commonly added to laundry detergents, which makes their study of industrial interest. RESULTS In this work, a novel keratinase producer, Pedobacter sp. 3.14.7 (MF 347939.1), isolated from Antarctic birds' nests, was identified. This psychrotolerant isolate displays a typical psychrotolerant growth pattern, with an optimal temperature of 20 °C (μmax=0.23 h-1). After 238 h, maximum proteolytic (22.00 ± 1.17 U ml-1) and keratinolytic (33.04 ± 1.09 U ml-1) activities were achieved with a feather sample conversion of approximately 85%. The keratinase present in crude extract was characterized as a metalloprotease with a molecular weight of 25 kDa, stable in a wide range of pH, with an optimum pH of 7.5. Optimum temperature was 55 °C. Wash performance at 20 °C using this crude extract could remove completely blood stain from cotton cloth. CONCLUSION We report a new keratinolytic bacteria from maritime Antarctica. Among its biochemical characteristics, its stability in the presence of different detergents and bleaching agents and its wash performance showed promising results regarding its potential use as a laundry detergent additive.
Collapse
Affiliation(s)
- P Rios
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas (CINDEFI, CCT La Plata-CONICET, UNLP), Universidad Nacional de la Plata, Calle 47 y 115, (B1900ASH), 1900, La Plata, Argentina
| | - B Bezus
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas (CINDEFI, CCT La Plata-CONICET, UNLP), Universidad Nacional de la Plata, Calle 47 y 115, (B1900ASH), 1900, La Plata, Argentina
| | - S Cavalitto
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas (CINDEFI, CCT La Plata-CONICET, UNLP), Universidad Nacional de la Plata, Calle 47 y 115, (B1900ASH), 1900, La Plata, Argentina
| | - I Cavello
- Centro de Investigación y Desarrollo en Fermentaciones Industriales, Facultad de Ciencias Exactas (CINDEFI, CCT La Plata-CONICET, UNLP), Universidad Nacional de la Plata, Calle 47 y 115, (B1900ASH), 1900, La Plata, Argentina.
| |
Collapse
|
17
|
Sharma C, Timorshina S, Osmolovskiy A, Misri J, Singh R. Chicken Feather Waste Valorization Into Nutritive Protein Hydrolysate: Role of Novel Thermostable Keratinase From Bacillus pacificus RSA27. Front Microbiol 2022; 13:882902. [PMID: 35547122 PMCID: PMC9083118 DOI: 10.3389/fmicb.2022.882902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial keratinases exhibit a momentous role in converting keratin biowastes into exceedingly valuable protein supplements. This study reports a novel, highly stable keratinase from Bacillus pacificus RSA27 for the production of pure peptides rich in essential amino acids from chicken feathers. Purified keratinase showed a specific activity of 38.73 U/mg, 2.58-fold purification, and molecular weight of 36 kDa. Kinetic studies using a chicken feather as substrate report Km and Vmax values of 5.69 mg/ml and 142.40 μg/ml/min, respectively, suggesting significant enzyme-substrate affinity/biocatalysis. Identification and in silico structural-functional analysis of keratinase discovered the presence of distinct amino acid residues and their positions. Besides, keratinase possesses a high-affinity calcium-binding site (Asp128, Leu162, Asn164, Ile166, and Val168) and a catalytic triad of Asp119, His151, and Ser308, known attributes of serine protease (subtilisin family). Furthermore, a scale-up to 5 L fermenter revealed complete feather hydrolysis (94.5%) within 24 h with high activity (789 U/ml) and total amino acid of 153.97 μmol/ml. Finally, cytotoxicity evaluation of protein hydrolysate resulted in negligible cytotoxic effects (1.02%) on the mammalian hepatoblastoma cell line, signifying its potential biotechnological applications.
Collapse
Affiliation(s)
- Chhavi Sharma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Svetlana Timorshina
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Osmolovskiy
- Department of Microbiology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Jyoti Misri
- Division of Animal Science, Indian Council of Agricultural Research, New Delhi, India
| | - Rajni Singh
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
18
|
Ye TJ, Huang KF, Ko TP, Wu SH. Synergic action of an inserted carbohydrate-binding module in a glycoside hydrolase family 5 endoglucanase. Acta Crystallogr D Struct Biol 2022; 78:633-646. [PMID: 35503211 PMCID: PMC9063844 DOI: 10.1107/s2059798322002601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
Most known cellulase-associated carbohydrate-binding modules (CBMs) are attached to the N- or C-terminus of the enzyme or are expressed separately and assembled into multi-enzyme complexes (for example to form cellulosomes), rather than being an insertion into the catalytic domain. Here, by solving the crystal structure, it is shown that MtGlu5 from Meiothermus taiwanensis WR-220, a GH5-family endo-β-1,4-glucanase (EC 3.2.1.4), has a bipartite architecture consisting of a Cel5A-like catalytic domain with a (β/α)8 TIM-barrel fold and an inserted CBM29-like noncatalytic domain with a β-jelly-roll fold. Deletion of the CBM significantly reduced the catalytic efficiency of MtGlu5, as determined by isothermal titration calorimetry using inactive mutants of full-length and CBM-deleted MtGlu5 proteins. Conversely, insertion of the CBM from MtGlu5 into TmCel5A from Thermotoga maritima greatly enhanced the substrate affinity of TmCel5A. Bound sugars observed between two tryptophan side chains in the catalytic domains of active full-length and CBM-deleted MtGlu5 suggest an important stacking force. The synergistic action of the catalytic domain and CBM of MtGlu5 in binding to single-chain polysaccharides was visualized by substrate modeling, in which additional surface tryptophan residues were identified in a cross-domain groove. Subsequent site-specific mutagenesis results confirmed the pivotal role of several other tryptophan residues from both domains of MtGlu5 in substrate binding. These findings reveal a way to incorporate a CBM into the catalytic domain of an existing enzyme to make a robust cellulase.
Collapse
Affiliation(s)
- Ting-Juan Ye
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 115, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
19
|
Molecular Identification of Keratinase DgokerA from Deinococcus gobiensis for Feather Degradation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Keratin is a tough fibrous structural protein that is difficult to digest with pepsin and trypsin because of the presence of a large number of disulfide bonds. Keratin is widely found in agricultural waste. In recent years, especially, the development of the poultry industry has resulted in a large accumulation of feather keratin resources, which seriously pollute the environment. Keratinase can specifically attack disulfide bridges in keratin, converting them from complex to simplified forms. The keratinase thermal stability has drawn attention to various biotechnological industries. It is significant to identify keratinases and improve their thermostability from microorganism in extreme environments. In this study, the keratinases DgoKerA was identified in Deinococcus gobiensis I-0 from the Gobi desert. The amino acid sequence analysis revealed that DgoKerA was 58.68% identical to the keratinase MtaKerA from M. thermophila WR-220 and 40.94% identical to the classical BliKerA sequence from B. licheniformis PWD-1. In vitro enzyme activity analysis showed that DgoKerA exhibited an optimum temperature of 60 °C, an optimum pH of 7 and a specific enzyme activity of 51147 U/mg. DgoKerA can degrade intact feathers at 60 °C and has good potential for industrial applications. The molecular modification of DgoKerA was also carried out using site-directed mutagenesis, in which the mutant A350S enzyme activity was increased by nearly 30%, and the results provide a theoretical basis for the development and optimization of keratinase applications.
Collapse
|
20
|
Sypka M, Jodłowska I, Białkowska AM. Keratinases as Versatile Enzymatic Tools for Sustainable Development. Biomolecules 2021; 11:1900. [PMID: 34944542 PMCID: PMC8699090 DOI: 10.3390/biom11121900] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
To reduce anthropological pressure on the environment, the implementation of novel technologies in present and future economies is needed for sustainable development. The food industry, with dairy and meat production in particular, has a significant environmental impact. Global poultry production is one of the fastest-growing meat producing sectors and is connected with the generation of burdensome streams of manure, offal and feather waste. In 2020, the EU alone produced around 3.2 million tonnes of poultry feather waste composed primarily of keratin, a protein biopolymer resistant to conventional proteolytic enzymes. If not managed properly, keratin waste can significantly affect ecosystems, contributing to environmental pollution, and pose a serious hazard to human and livestock health. In this article, the application of keratinolytic enzymes and microorganisms for promising novel keratin waste management methods with generation of new value-added products, such as bioactive peptides, vitamins, prion decontamination agents and biomaterials were reviewed.
Collapse
Affiliation(s)
| | | | - Aneta M. Białkowska
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (M.S.); (I.J.)
| |
Collapse
|
21
|
Brenner M, Weichold O. Autogenous Cross-Linking of Recycled Keratin from Poultry-Feather Waste to Hydrogels for Plant-Growth Media. Polymers (Basel) 2021; 13:polym13203581. [PMID: 34685338 PMCID: PMC8540439 DOI: 10.3390/polym13203581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
The global rise in atmospheric temperature is leading to an increasing spread of semi-arid and arid regions and is accompanied by a deterioration of arable land. Polymers can help in a number of ways, but they must not be a burden to the environment. In this context, we present herein a method by which goose feathers, representative of keratin waste in general, can be transformed into hydrogels for use as a plant growth medium. The treatment of shredded feathers in Na2S solution at ambient conditions dissolves approx. 80% of the keratin within 30 min. During evaporation, the thiol groups of cysteine reoxidise to disulphide bridges. Additionally, the protein chains form β-sheets. Both act as cross-links that enables the formation of gels. The drying conditions were found to be crucial as slower evaporation affords gels with higher degrees of swelling at the cost of reduced gel yields. The cress germination test indicated the absence of toxic substances in the gel, which strongly adheres to the roots. Thereby, the plants are protected from drought stress as long as the gel still contains moisture.
Collapse
|
22
|
Goda DA, Bassiouny AR, Abdel Monem NM, Soliman NA, Abdel-Fattah YR. Feather protein lysate optimization and feather meal formation using YNDH protease with keratinolytic activity afterward enzyme partial purification and characterization. Sci Rep 2021; 11:14543. [PMID: 34267231 PMCID: PMC8282803 DOI: 10.1038/s41598-021-93279-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Incubation parameters used for the creation of a protein lysate from enzymatically degraded waste feathers using crude keratinase produced by the Laceyella sacchari strain YNDH were optimized using the Response Surface Methodology (RSM); amino acids quantification was also estimated. The optimization elevated the total protein to 2089.5 µg/ml through the application of the following optimal conditions: a time of 20.2 h, a feather concentration (conc.) of 3 g%, a keratinase activity of 24.5 U/100 ml, a pH of 10, and a cultivation temperature of 50 °C. The produced Feather Protein Lysate (FPL) was found to be enriched with essential and rare amino acids. Additionally, this YNDH enzyme group was partially purified, and some of its characteristics were studied. Crude enzymes were first concentrated with an Amicon Ultra 10-k centrifugal filter, and then concentrated proteins were applied to a "Q FF" strong anion column chromatography. The partially purified enzyme has an estimated molecular masses ranging from 6 to 10 kDa. The maximum enzyme activity was observed at 70 °C and for a pH of 10.4. Most characteristics of this protease/keratinase group were found to be nearly the same when the activity was measured with both casein and keratin-azure as substrates, suggesting that these three protein bands work together in order to degrade the keratin macromolecule. Interestingly, the keratinolytic activity of this group was not inhibited by ethylenediamine tetraacetic acid (EDTA), phenylmethanesulfonyl fluoride (PMSF), or iron-caused activation, indicating the presence of a mixed serine-metallo enzyme type.
Collapse
Affiliation(s)
- Doaa A Goda
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt.
| | - Ahmad R Bassiouny
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nihad M Abdel Monem
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nadia A Soliman
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| | - Yasser R Abdel-Fattah
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Burg El-Arab City, Universities and Research Institutes Zone, Alexandria, 21934, Egypt
| |
Collapse
|
23
|
Li Q. Structure, Application, and Biochemistry of Microbial Keratinases. Front Microbiol 2021; 12:674345. [PMID: 34248885 PMCID: PMC8260994 DOI: 10.3389/fmicb.2021.674345] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Keratinases belong to a class of proteases that are able to degrade keratins into amino acids. Microbial keratinases play important roles in turning keratin-containing wastes into value-added products by participating in the degradation of keratin. Keratin is found in human and animal hard tissues, and its complicated structures make it resistant to degradation by common proteases. Although breaking disulfide bonds are involved in keratin degradation, keratinase is responsible for the cleavage of peptides, making it attractive in pharmaceutical and feather industries. Keratinase can serve as an important tool to convert keratin-rich wastes such as feathers from poultry industry into diverse products applicable to many fields. Despite of some progress made in isolating keratinase-producing microorganisms, structural studies of keratinases, and biochemical characterization of these enzymes, effort is still required to expand the biotechnological application of keratinase in diverse fields by identifying more keratinases, understanding the mechanism of action and constructing more active enzymes through molecular biology and protein engineering. Herein, this review covers structures, applications, biochemistry of microbial keratinases, and strategies to improve its efficiency in keratin degradation.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
24
|
Gurunathan R, Huang B, Ponnusamy VK, Hwang JS, Dahms HU. Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Sci Rep 2021; 11:12007. [PMID: 34099743 PMCID: PMC8185006 DOI: 10.1038/s41598-021-90375-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/20/2021] [Indexed: 11/25/2022] Open
Abstract
Microbial secondary metabolites from extreme environments like hydrothermal vents are a promising source for industrial applications. In our study the protease gene from Bacillus cereus obtained from shallow marine hydrothermal vents in the East China Sea was cloned, expressed and purified. The protein sequence of 38 kDa protease SLSP-k was retrieved from mass spectrometry and identified as a subtilisin serine proteinase. The novel SLSP-k is a monomeric protein with 38 amino acid signal peptides being active over wide pH (7-11) and temperature (40-80 °C) ranges, with maximal hydrolytic activities at pH 10 and at 50 °C temperature. The hydrolytic activity is stimulated by Ca2+, Co2+, Mn2+, and DTT. It is inhibited by Fe2+, Cd2+, Cu2+, EDTA, and PMSF. The SLSP-k is stable in anionic, non-anionic detergents, and solvents. The ability to degrade keratin in chicken feather and hair indicates that this enzyme is suitable for the degradation of poultry waste without the loss of nutritionally essential amino acids which otherwise are lost in hydrothermal processing. Therefore, the proteinase is efficient in environmental friendly bioconversion of animal waste into fertilizers or value added products such as secondary animal feedstuffs.
Collapse
Affiliation(s)
- Revathi Gurunathan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung City, 80708, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan.
| |
Collapse
|
25
|
An Integrative Bioinformatic Analysis for Keratinase Detection in Marine-Derived Streptomyces. Mar Drugs 2021; 19:md19060286. [PMID: 34063876 PMCID: PMC8224001 DOI: 10.3390/md19060286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Keratinases present promising biotechnological applications, due to their ability to degrade keratin. Streptomyces appears as one of the main sources of these enzymes, but complete genome sequences of keratinolytic bacteria are still limited. This article reports the complete genomes of three marine-derived streptomycetes that show different levels of feather keratin degradation, with high (strain G11C), low (strain CHD11), and no (strain Vc74B-19) keratinolytic activity. A multi-step bioinformatics approach is described to explore genes encoding putative keratinases in these genomes. Despite their differential keratinolytic activity, multiplatform annotation reveals similar quantities of ORFs encoding putative proteases in strains G11C, CHD11, and Vc74B-19. Comparative genomics classified these putative proteases into 140 orthologous groups and 17 unassigned orthogroup peptidases belonging to strain G11C. Similarity network analysis revealed three network communities of putative peptidases related to known keratinases of the peptidase families S01, S08, and M04. When combined with the prediction of cellular localization and phylogenetic reconstruction, seven putative keratinases from the highly keratinolytic strain Streptomyces sp. G11C are identified. To our knowledge, this is the first multi-step bioinformatics analysis that complements comparative genomics with phylogeny and cellular localization prediction, for the prediction of genes encoding putative keratinases in streptomycetes.
Collapse
|
26
|
Yahaya RSR, Normi YM, Phang LY, Ahmad SA, Abdullah JO, Sabri S. Molecular strategies to increase keratinase production in heterologous expression systems for industrial applications. Appl Microbiol Biotechnol 2021; 105:3955-3969. [PMID: 33937928 DOI: 10.1007/s00253-021-11321-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022]
Abstract
Keratinase is an important enzyme that can degrade recalcitrant keratinous wastes to form beneficial recyclable keratin hydrolysates. Keratinase is not only important as an alternative to reduce environmental pollution caused by chemical treatments of keratinous wastes, but it also has industrial significance. Currently, the bioproduction of keratinase from native keratinolytic host is considered low, and this hampers large-scale usage of the enzyme. Straightforward approaches of cloning and expression of recombinant keratinases from native keratinolytic host are employed to elevate the amount of keratinase produced. However, this is still insufficient to compensate for the lack of its large-scale production to meet the industrial demands. Hence, this review aimed to highlight the various sources of keratinase and the strategies to increase its production in native keratinolytic hosts. Molecular strategies to increase the production of recombinant keratinase such as plasmid selection, promoter engineering, chromosomal integration, signal peptide and propeptide engineering, codon optimization, and glycoengineering were also described. These mentioned strategies have been utilized in heterologous expression hosts, namely, Escherichia coli, Bacillus sp., and Pichia pastoris, as they are most widely used for the heterologous propagations of keratinases to further intensify the production of recombinant keratinases adapted to better suit the large-scale demand for them. KEY POINTS: • Molecular strategies to enhance keratinase production in heterologous hosts. • Construction of a prominent keratinolytic host from a native strain. • Patent analysis of keratinase production shows rapid high interest in molecular field.
Collapse
Affiliation(s)
- Radin Shafierul Radin Yahaya
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Lai Yee Phang
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
27
|
Recombinant Production and Characterization of an Extracellular Subtilisin-Like Serine Protease from Acinetobacter baumannii of Fermented Food Origin. Protein J 2021; 40:419-435. [PMID: 33870461 PMCID: PMC8053418 DOI: 10.1007/s10930-021-09986-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii is a ubiquitous bacteria that is increasingly becoming a formidable nosocomial pathogen. Due to its clinical relevance, studies on the bacteria's secretory molecules especially extracellular proteases are of interest primarily in relation to the enzyme's role in virulence. Besides, favorable properties that extracellular proteases possess may be exploited for commercial use thus there is a need to investigate extracellular proteases from Acinetobacter baumannii to gain insights into their catalytic properties. In this study, an extracellular subtilisin-like serine protease from Acinetobacter baumannii designated as SPSFQ that was isolated from fermented food was recombinantly expressed and characterized. The mature catalytically active form of SPSFQ shared a high percentage sequence identity of 99% to extracellular proteases from clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae as well as a moderately high percentage identity to other bacterial proteases with known keratinolytic and collagenolytic activity. The homology model of mature SPSFQ revealed its structure is composed of 10 β-strands, 8 α-helices, and connecting loops resembling a typical architecture of subtilisin-like α/β motif. SPSFQ is catalytically active at an optimum temperature of 40 °C and pH 9. Its activity is stimulated in the presence of Ca2+ and severely inhibited in the presence of PMSF. SPSFQ also displayed the ability to degrade several tissue-associated protein substrates such as keratin, collagen, and fibrin. Accordingly, our study shed light on the catalytic properties of a previously uncharacterized extracellular serine protease from Acinetobacter baumannii that warrants further investigations into its potential role as a virulence factor in pathogenicity and commercial applications.
Collapse
|
28
|
A Novel Thermostable Keratinase from Deinococcus geothermalis with Potential Application in Feather Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11073136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Keratinase can specifically attack disulfide bridges in keratin to convert them from complex to simplified forms. Keratinase thermal stability has drawn attention to various biotechnological industries. In this study, a keratinase DgeKer was identified from a slightly thermophilic species, D. geothermalis. The in silico analysis showed that DgeKer is composed of signal peptide, N-terminal propeptide, mature domain, and C-terminal extension. DgeKer and its C-terminal extension-truncated enzyme (DgeKer-C) were cloned and expressed in E. coli. The purified DgeKer and DgeKer-C showed maximum activity at 70 °C and pH 9–The thermal stability assay (60 °C) showed that the half-life value of DgeKer and DgeKer-C were 103.45 min and 169.10 min, respectively. DgeKer and DgeKer-C were stable at the range of pH from 9 to 11 and showed good tolerance to some metal ions, surfactants and organic solvent. Furthermore, DgeKer could degrade feathers at 70 °C for 60 min. However, the medium became turbid with obvious softening of barbules after being treated with DgeKer-C, which might be due to C-terminal extension. In summary, a thermostable keratinase DgeKer with high efficiency degradation of feathers may have great potential in industry.
Collapse
|
29
|
Zhang Z, Wang W, Li D, Xiao J, Wu L, Geng X, Wu G, Zeng Z, Hu J. Decolorization of molasses alcohol wastewater by thermophilic hydrolase with practical application value. BIORESOURCE TECHNOLOGY 2021; 323:124609. [PMID: 33387709 DOI: 10.1016/j.biortech.2020.124609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 11/21/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of this work was to explore the ability of cutinase in the decolorization of molasses wastewater. Thermophilic cutinase from Thermobifida alba eliminated 76.1-78.2% of colorants and exhibited the highest decolorization efficiency amongst all of the cutinases tested. Cutinase from Thermobifida alba was immobilized on an affordable and efficient modified chitosan carrier and achieved a decolorization yield of 79.3-81.2%. This cutinase removed 66.3-71.1% of pigments and lasted continuously for 5 days. Importantly, it was also shown to continuously and effectively remove COD and BOD5. Compared to other enzymes, the immobilized cutinase from Thermobifida alba had the advantage of being low-cost and had a high expression level and activity. The results confirmed the decolorization occurred by destroying the conjugated system of melanoidins via an addition reaction by cutinase from Thermobifida alba. Thus, this study contributes a more practical and efficient approach to enzymatic decolorization of molasses wastewater.
Collapse
Affiliation(s)
- Zedong Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China; College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| | - Wenjun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Dongming Li
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jianhui Xiao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiang Geng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoqiang Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zicong Zeng
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jie Hu
- College of Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China; Jiangxi Engineering Research Center of Animal Husbandry Facility Technology Exploitation, Nanchang 330045, PR China
| |
Collapse
|
30
|
Nnolim NE, Udenigwe CC, Okoh AI, Nwodo UU. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front Microbiol 2020; 11:580164. [PMID: 33391200 PMCID: PMC7775373 DOI: 10.3389/fmicb.2020.580164] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The search for novel renewable products over synthetics hallmarked this decade and those of the recent past. Most economies that are prospecting on biodiversity for improved bio-economy favor renewable resources over synthetics for the potential opportunity they hold. However, this field is still nascent as the bulk of the available resources are non-renewable based. Microbial metabolites, emphasis on secondary metabolites, are viable alternatives; nonetheless, vast microbial resources remain under-exploited; thus, the need for a continuum in the search for new products or bio-modifying existing products for novel functions through an efficient approach. Environmental distress syndrome has been identified as a factor that influences the emergence of genetic diversity in prokaryotes. Still, the process of how the change comes about is poorly understood. The emergence of new traits may present a high prospect for the industrially viable organism. Microbial enzymes have prominence in the bio-economic space, and proteases account for about sixty percent of all enzyme market. Microbial keratinases are versatile proteases which are continuously gaining momentum in biotechnology owing to their effective bio-conversion of recalcitrant keratin-rich wastes and sustainable implementation of cleaner production. Keratinase-assisted biodegradation of keratinous materials has revitalized the prospects for the utilization of cost-effective agro-industrial wastes, as readily available substrates, for the production of high-value products including amino acids and bioactive peptides. This review presented an overview of keratin structural complexity, the potential mechanism of keratin biodegradation, and the environmental impact of keratinous wastes. Equally, it discussed microbial keratinase; vis-à-vis sources, production, and functional properties with considerable emphasis on the ecological implication of microbial producers and catalytic tendency improvement strategies. Keratinase applications and prospective high-end use, including animal hide processing, detergent formulation, cosmetics, livestock feed, and organic fertilizer production, were also articulated.
Collapse
Affiliation(s)
- Nonso E. Nnolim
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Anthony I. Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Uchechukwu U. Nwodo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
31
|
Microbial enzymes catalyzing keratin degradation: Classification, structure, function. Biotechnol Adv 2020; 44:107607. [PMID: 32768519 PMCID: PMC7405893 DOI: 10.1016/j.biotechadv.2020.107607] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Keratin is an insoluble and protein-rich epidermal material found in e.g. feather, wool, hair. It is produced in substantial amounts as co-product from poultry processing plants and pig slaughterhouses. Keratin is packed by disulfide bonds and hydrogen bonds. Based on the secondary structure, keratin can be classified into α-keratin and β-keratin. Keratinases (EC 3.4.-.- peptide hydrolases) have major potential to degrade keratin for sustainable recycling of the protein and amino acids. Currently, the known keratinolytic enzymes belong to at least 14 different protease families: S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, M55 (MEROPS database). The various keratinolytic enzymes act via endo-attack (proteases in families S1, S8, S16, M4, M16, M36), exo-attack (proteases in families S9, S10, M14, M28, M38, M55) or by action only on oligopeptides (proteases in families M3, M32), respectively. Other enzymes, particularly disulfide reductases, also play a key role in keratin degradation as they catalyze the breakage of disulfide bonds for better keratinase catalysis. This review aims to contribute an overview of keratin biomass as an enzyme substrate and a systematic analysis of currently sequenced keratinolytic enzymes and their classification and reaction mechanisms. We also summarize and discuss keratinase assays, available keratinase structures and finally examine the available data on uses of keratinases in practical biorefinery protein upcycling applications.
Collapse
|
32
|
Su C, Gong JS, Qin J, Li H, Li H, Xu ZH, Shi JS. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnol Adv 2020; 45:107655. [PMID: 33186607 DOI: 10.1016/j.biotechadv.2020.107655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
Keratinases are unique among proteolytic enzymes for their ability to degrade recalcitrant insoluble proteins, and they are of critical importance in keratin waste management. Over the past few decades, researchers have focused on discovering keratinase producers, as well as producing and characterizing keratinases. The application potential of keratinases has been investigated in the feed, fertilizer, leathering, detergent, cosmetic, and medical industries. However, the commercial availability of keratinases is still limited due to poor productivity and properties, such as thermostability, storage stability and resistance to organic reagents. Advances in molecular biotechnology have provided powerful tools for enhancing the production and functional properties of keratinase. This critical review systematically summarizes the application potential of keratinase, and in particular certain newly discovered catalytic capabilities. Furthermore, we provide comprehensive insight into mechanistic and molecular aspects of keratinases including analysis of gene sequences and protein structures. In addition, development and current advances in protein engineering of keratinases are summarized and discussed, revealing that the engineering of protein domains such as signal peptides and pro-peptides has become an important strategy to increase production of keratinases. Finally, prospects for further development are also proposed, indicating that advanced protein engineering technologies will lead to improved and additional commercial keratinases for various industrial applications.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
33
|
Larvae of the Clothing Moth Tineola bisselliella Maintain Gut Bacteria that Secrete Enzyme Cocktails to Facilitate the Digestion of Keratin. Microorganisms 2020; 8:microorganisms8091415. [PMID: 32937935 PMCID: PMC7563610 DOI: 10.3390/microorganisms8091415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
The evolutionary success of insects is promoted by their association with beneficial microbes that enable the utilization of unusual diets. The synanthropic clothing moth Tineola bisselliella provides an intriguing example of this phenomenon. The caterpillars of this species have adapted to feed on keratin-rich diets such as feathers and wool, which cannot be digested by most other animals and are resistant to common digestive enzymes. Inspired by the hypothesis that this ability may be conferred by symbiotic microbes, we utilized a simple assay to detect keratinase activity and a method to screen gut bacteria for candidate enzymes, which were isolated from feather-fed larvae. The isolation of DNA from keratin-degrading bacterial strains followed by de novo genome sequencing resulted in the identification of a novel bacterial strain related to Bacillus sp. FDAARGOS_235. Genome annotation identified 20 genes with keratinase domains. Proteomic analysis of the culture supernatant from this gut bacterium grown in non-nutrient buffer supplemented with feathers revealed several candidate enzymes potentially responsible for keratin degradation, including a thiol-disulfide oxidoreductase and multiple proteases. Our results suggest that the unusual diet of T. bisselliella larvae promotes their association with keratinolytic microorganisms and that the ability of larvae to feed on keratin can at least partially be attributed to bacteria that produce a cocktail of keratin-degrading enzymes.
Collapse
|
34
|
Duffeck CE, de Menezes CLA, Boscolo M, da Silva R, Gomes E, da Silva RR. Keratinases from Coriolopsis byrsina as an alternative for feather degradation: applications for cloth cleaning based on commercial detergent compatibility and for the production of collagen hydrolysate. Biotechnol Lett 2020; 42:2403-2412. [PMID: 32642979 DOI: 10.1007/s10529-020-02963-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/03/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Keratinases are proteolytic enzymes that emerge as an alternative for dealing with the disposal of chicken feathers. In this study, we aimed to investigate the keratin-degrading enzymes secreted by the fungus Coriolopsis byrsina and their partial biochemical characterization to adapt their use for keratin decomposition, detergent additive applications, and collagen degradation. RESULTS We observed the secretion of different proteolytic enzymes that possessed caseinolytic activity that peaked at pH 7.0-9.0 and 60-70 °C and at pH 10.5 and 55-60 °C, and keratinolytic activity that reached a maximum at pH 7.0-7.5 and 40-55 ºC and at pH 9.0 and 55 °C. Keratinolytic activity was maintained at approximately 63% of residual activity for 1 h at 50 °C. The caseinolytic activity at pH 10.5 remains stable until 1 h at 50 °C, and this is in contrast to the activity at pH 8.5, where the residual activity was 50%. Caseinolytic activity was inhibited only by PMSF, while keratinolytic activity was inhibited by PMSF and EDTA. When investigating the application of C. byrsina peptidases as an additive to commercial detergent, we observed an egg stain removal performance that was similar to that demonstrated by the commercial detergent. CONCLUSIONS Based on their activity and stability at alkaline pH, these enzymes appear to be attractive candidates for use in the detergent industry. Additionally, the collagenolytic activity of these enzymes potentially allows for their use in a wide array of industrial sectors that require collagenolytic enzymes, such as for the production of collagen hydrolysates from residues derived from the meat industry.
Collapse
Affiliation(s)
- Carlos Eduardo Duffeck
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Cíntia Lionela Ambrosio de Menezes
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Maurício Boscolo
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Roberto da Silva
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Eleni Gomes
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil
| | - Ronivaldo Rodrigues da Silva
- Instituto de Biociências, Letras e Ciências Exatas-Universidade Estadual Paulista Júlio de Mesquita Filho -São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
35
|
Biochemical characterization of an alkaline surfactant-stable keratinase from a new keratinase producer, Bacillus zhangzhouensis. Extremophiles 2020; 24:693-704. [PMID: 32617734 DOI: 10.1007/s00792-020-01187-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/26/2020] [Indexed: 01/20/2023]
Abstract
A new keratinase producer, Bacillus sp. BK111, isolated from a poultry feather was identified as Bacillus zhangzhouensis, which is the first report for its keratinolytic activity. The keratinase production was optimized, followed by the enzyme purification and characterization using biochemical assays. A 2.34-fold increase was observed in the enzyme production under optimized conditions. The enzyme was characterized as a serine protease with 42 kDa molecular weight, stable in a wide range of temperature and pH with maximum keratinolytic activity at 60 °C and pH 9.5. The enzyme had a wide range of different substrates with the best performance on the feather meal substrate. Metal ions of Ca2+, K+, Na+ and Mn2+ enhanced the enzyme activity. The enzyme showed a great deal of stability in the presence of ethanol, methanol, acetone, 2-propanol, dimethyl sulfoxide, Tween-80 and Triton X-100. Dithiothreitol (DTT), as a reducing agent, caused a twofold increase in keratinolytic activity. The half-life of the enzyme at optimum temperature was calculated to be 125 min and the ratio of keratinolytic:caseinolytic for the enzyme was 0.8. Our results showed the remarkable features of the enzyme that make it suitable for biotechnological usages.
Collapse
|
36
|
Gonzalo M, Espersen R, Al‐Soud WA, Cristiano Falco F, Hägglund P, Sørensen SJ, Svensson B, Jacquiod S. Azo dying of α-keratin material improves microbial keratinase screening and standardization. Microb Biotechnol 2020; 13:984-996. [PMID: 32110845 PMCID: PMC7264887 DOI: 10.1111/1751-7915.13541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 11/30/2022] Open
Abstract
Microbial conversion through enzymatic reactions has received a lot of attention as a cost-effective and environmentally friendly way to recover amino acids and short peptides from keratin materials. However, accurate assessment of microbial keratinase activity is not straightforward, and current available methods lack sensitivity and standardization. Here, we suggest an optimized Azokeratin assay, with substrate generated directly from azo-dyed raw keratin material. We introduced supernatant filtration in the protocol for optimal stopping of keratinase reactions instead of the widely used trichloroacetic acid (TCA), as it generated biases and impacted the sensitivity. We furthermore suggest a method for standardization of keratinase activity signals using proteinase K, a well-known keratinase, as a reference enabling reproducibility between studies. Lastly, we evaluated our developed method with several bacterial isolates through benchmarking against a commercial assay (Keratin Azure). Under different setups, the Azokeratin method was more sensitive than commonly used Keratin Azure-based assays (3-fold). We argue that this method could be applied with any type of keratin substrate, enabling more robust and sensitive results which can be used for further comparison with other studies, thus representing an important progress within the field of microbial keratin degradation.
Collapse
Affiliation(s)
- Milena Gonzalo
- Section of MicrobiologyUniversity of CopenhagenDK‐2100CopenhagenDenmark
- Present address:
Interactions Arbres/Micro‐organismesINRA/Univ. de LorraineChampenouxFrance
| | - Roall Espersen
- Department of Biotechnology and BiomedicineTechnical University of DenmarkDK‐2800LyngbyDenmark
| | - Waleed A. Al‐Soud
- Section of MicrobiologyUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Francesco Cristiano Falco
- Department of Chemical and Biochemical EngineeringTechnical University of DenmarkDK‐2800LyngbyDenmark
| | - Per Hägglund
- Department of Biotechnology and BiomedicineTechnical University of DenmarkDK‐2800LyngbyDenmark
- Present address:
Department of Biomedical SciencesPanum Institute 12.6University of CopenhagenCopenhagenDenmark
| | - Søren J. Sørensen
- Section of MicrobiologyUniversity of CopenhagenDK‐2100CopenhagenDenmark
| | - Birte Svensson
- Department of Biotechnology and BiomedicineTechnical University of DenmarkDK‐2800LyngbyDenmark
| | - Samuel Jacquiod
- Section of MicrobiologyUniversity of CopenhagenDK‐2100CopenhagenDenmark
- Present address:
AgroécologieAgroSup DijonINRAEUniv. BourgogneUniv. Bourgogne Franche‐ComtéF‐21000DijonFrance
| |
Collapse
|
37
|
Keratinase Activity of A Newly Keratinolytic Bacteria, Azotobacter chroococcum B4. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Huang Y, Łężyk M, Herbst FA, Busk PK, Lange L. Novel keratinolytic enzymes, discovered from a talented and efficient bacterial keratin degrader. Sci Rep 2020; 10:10033. [PMID: 32572051 PMCID: PMC7308268 DOI: 10.1038/s41598-020-66792-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/21/2020] [Indexed: 11/30/2022] Open
Abstract
Huge quantities of keratinaceous waste are a substantial and almost totally unexploited protein resource which could be upgraded for use as high value-added products by efficient keratinolytic enzymes. In this study, we found that Bacillus sp. 8A6 can efficiently degrade chicken feather after 24 h growth. According to phylogenetic analysis, the strain (formerly identified as Bacillus pumilus 8A6) belongs to the B. pumilus species clade but it is more closely related to B. safensis. Hotpep predicted 233 putative proteases from Bacillus sp. 8A6 genome. Proteomic analysis of culture broths from Bacillus sp. 8A6 cultured on chicken feathers or on a mixture of bristles and hooves showed high abundance of proteins with functions related to peptidase activity. Five proteases (one from family M12, one from family S01A, two from family S08A and one from family T3) and four oligopeptide and dipeptide binding proteins were highly expressed when Bacillus sp. 8A6 was grown in keratin media compared to LB medium. This study is the first to report that bacterial proteases in families M12, S01A and T3 are involved in keratin degradation together with proteases from family S08.
Collapse
Affiliation(s)
- Yuhong Huang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mateusz Łężyk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Florian-Alexander Herbst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg East, Denmark
| | - Peter Kamp Busk
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Lene Lange
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, Søltofts Plads, 2800, Kongens Lyngby, Denmark.
- Bioeconomy, Research & Advisory, Karensgade 5, DK-2500, Valby, Denmark.
| |
Collapse
|
39
|
Challenges and Opportunities in Identifying and Characterising Keratinases for Value-Added Peptide Production. Catalysts 2020. [DOI: 10.3390/catal10020184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Keratins are important structural proteins produced by mammals, birds and reptiles. Keratins usually act as a protective barrier or a mechanical support. Millions of tonnes of keratin wastes and low value co-products are generated every year in the poultry, meat processing, leather and wool industries. Keratinases are proteases able to breakdown keratin providing a unique opportunity of hydrolysing keratin materials like mammalian hair, wool and feathers under mild conditions. These mild conditions ameliorate the problem of unwanted amino acid modification that usually occurs with thermochemical alternatives. Keratinase hydrolysis addresses the waste problem by producing valuable peptide mixes. Identifying keratinases is an inherent problem associated with the search for new enzymes due to the challenge of predicting protease substrate specificity. Here, we present a comprehensive review of twenty sequenced peptidases with keratinolytic activity from the serine protease and metalloprotease families. The review compares their biochemical activities and highlights the difficulties associated with the interpretation of these data. Potential applications of keratinases and keratin hydrolysates generated with these enzymes are also discussed. The review concludes with a critical discussion of the need for standardized assays and increased number of sequenced keratinases, which would allow a meaningful comparison of the biochemical traits, phylogeny and keratinase sequences. This deeper understanding would facilitate the search of the vast peptidase family sequence space for novel keratinases with industrial potential.
Collapse
|
40
|
Li Q. Progress in Microbial Degradation of Feather Waste. Front Microbiol 2019; 10:2717. [PMID: 31866957 PMCID: PMC6906142 DOI: 10.3389/fmicb.2019.02717] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/08/2019] [Indexed: 12/31/2022] Open
Abstract
Feathers are a major by-product of the poultry industry. They are mainly composed of keratins which have wide applications in different fields. Due to the increasing production of feathers from poultry industries, the untreated feathers could become pollutants because of their resistance to protease degradation. Feathers are rich in amino acids, which makes them a valuable source for fertilizer and animal feeds. Numerous bacteria and fungi exhibited capabilities to degrade chicken feathers by secreting enzymes such as keratinases, and accumulated evidence shows that feather-containing wastes can be converted into value-added products. This review summarizes recent progress in microbial degradation of feathers, structures of keratinases, feather application, and microorganisms that are able to secrete keratinase. In addition, the enzymes critical for keratin degradation and their mechanism of action are discussed. We also proposed the strategy that can be utilized for feather degradation. Based on the accumulated studies, microbial degradation of feathers has great potential to convert them into various products such as biofertilizer and animal feeds.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
41
|
Zhang Z, Li D, Zhang X. Enzymatic decolorization of melanoidins from molasses wastewater by immobilized keratinase. BIORESOURCE TECHNOLOGY 2019; 280:165-172. [PMID: 30771571 DOI: 10.1016/j.biortech.2019.02.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to study the ability of commercial immobilized hydrolases in the decolorization of molasses wastewater. Commercial immobilized keratinase obtained the highest decolorization yield (86.6-91.1%) among all of commercial immobilized enzymes tested. Immobilized keratinase had the potential to replace immobilized oxidoreductase to decolorize molasses wastewater. Keratinase from Meiothermus taiwanensis WR-220 (KMT) immobilized on modified bagasse cellulose obtained a decolorization yield of 84.7-90.2%. It removed 60.2-65.6% of colorants and 61.4-69.8% of chemical oxygen demand (COD) for 5 days continuously. Notably, the treatment cost was less than 0.15 dollar per ton. Immobilized KMT-wt had similar performance with commercial immobilized keratinase in bleaching molasses wastewater. Importantly, it was more economic. Finally, the results confirmed that additional reaction catalyzing the unsaturated bonds to destroy the conjugated system by keratinase, weakening the chromogenic group of melanoidins. Accordingly, this work is meaningful to the industrial decolorization of molasses wastewater.
Collapse
Affiliation(s)
- Zedong Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, PR China.
| | - Delin Li
- Fujian Sugar Industry Company, Zhangzhou 363000, PR China
| | - Xin Zhang
- Yongxin Sugar Industry Company, Laibin 546100, PR China
| |
Collapse
|
42
|
K. V. A. KERATINOLYTIC ENZYMES: PRODUCERS, PHYSICAL AND CHEMICAL PROPERTIES. APPLICATION FOR BIOTECHNOLOGY. BIOTECHNOLOGIA ACTA 2019. [DOI: 10.15407/biotech12.02.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
43
|
Adelere IA, Lateef A. Degradation of Keratin Biomass by Different Microorganisms. KERATIN AS A PROTEIN BIOPOLYMER 2019. [DOI: 10.1007/978-3-030-02901-2_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Wang T, Liang C, Sun Y, Gao W, Luo X, Gao Q, Li R, Fu S, Xu H, He T, Yuan H. Strategical isolation of efficient chicken feather-degrading bacterial strains from tea plantation soil sample. Int Microbiol 2018; 22:227-237. [PMID: 30810985 DOI: 10.1007/s10123-018-00042-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 11/28/2022]
Abstract
Chicken feather waste is generally insufficiently utilized despite its high content of protein, constituting an environmental issue. Biodegradation of the waste with enabling microbes provides an advantageous option among the available solutions. In this study, an efficient whole feather-degrading strain was strategically isolated from a soil sample taken from a local tea plantation that has little or nothing to do with feathers. The strain was identified as Bacillus thuringiensis (designated as FDB-10) according to the cloned complete 16S rRNA sequence. The FDB-10 could efficiently degrade briefly heat-treated whole feather (102 °C, 5 min; up to 90% of a maximum concentration of 30 g/L) in a salt medium supplemented with 0.1 g/L yeast extract within 24 h (37 °C, 150 rpm). Addition of carbon sources (glycerol, glucose, starch, Tween 20, Tween 80, 1.25 g/L as glycerol) to the fermentation medium could improve the degradation. However, significant inhibition could be observed when the added carbon source reached the amount usually adopted in the investigation of carbon source preference (1%). Nitrogen source (NH4Cl, (NH4)2SO4, peptone) adversely influenced the performance of the strain. When the molar concentrations of NH4+ were equal for the two salt, the inhibitory effect on degradation of whole feathers was similar. Entirely different from other reported feather-degrading strains showing a preference to melanin-free feather substrates, the strain isolated in this study could degrade melanin-containing feather equally efficiently, and higher protease activity could be detected in the digest mix. As a plus, the strain could degrade feathers in rice wash produced in daily cooking, indicating its potential use in the simultaneous treatment of rice cooker wastewater produced by a rice processing plant. All these results imply that the FDB-10 is a strain with great potential in the biodegradation of feather waste.
Collapse
Affiliation(s)
- Tianwen Wang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China.
| | - Chen Liang
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Yan Sun
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Wanru Gao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Xinqi Luo
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Qian Gao
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Rong Li
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Shuang Fu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Hongjv Xu
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Ting He
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Hongyu Yuan
- College of Life Sciences, and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China.
| |
Collapse
|