1
|
Huang L, Wei M, Li H, Yu M, Wan L, Zhao R, Gao Q, Sun L, Hou X, Mo Y, Huang Q, Zhen L, Yang X, Li J, Wang N, Zhang C, Jin H, Zhou L, Xu Y, Lin H, Zhang X, Li B, Han Y, Yuan J, Zhang R, Wu F, Zhong H, Wei C. GP73-dependent regulation of exosome biogenesis promotes colorectal cancer liver metastasis. Mol Cancer 2025; 24:151. [PMID: 40414849 DOI: 10.1186/s12943-025-02350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 05/09/2025] [Indexed: 05/27/2025] Open
Abstract
Colorectal cancer (CRC) liver metastasis is the main cause of cancer-related mortality. How liver influences intercellular communication to support CRC liver metastasis remains unknown. Herein, we link GP73, whose chronic upregulation in hepatocytes triggers non-obese metabolic-dysfunction associated steatotic liver disease (MASLD) in mice, with exosome biogenesis and CRC liver metastasis. Mice with high liver GP73 expression exhibited increased CRC liver metastasis in an exosome-dependent manner. GP73 modulated the cholesterol contents in endosomal compartments to promote exosome production. Quantitative proteomics revealed GP73 reshaped hepatocyte exosomal proteome and produced NAV2-rich exosomes. Clinically, serum GP73 levels positively correlated with exosomal NAV2 levels in CRC patients with liver metastasis. Knockdown of liver NAV2 suppressed enhanced CRC liver metastasis in GP73-induced non-obese mice, and GP73 blockade mitigated the increased CRC liver metastasis in obese mice fed by high-fat diet or high-fructose diet. Our findings suggest GP73 blockade as a potential therapeutic strategy for mitigating CRC liver metastasis.
Collapse
Affiliation(s)
- Linfei Huang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Meng Wei
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Huilong Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Mingxin Yu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, State Key Laboratory of Digestive Health, Beijing Key Laboratory of Early Gastrointestinal Cancer Medicine and Medical Devices, No. 95 Yong'an Road, Xicheng District, Beijing, 100050, China
| | - Luming Wan
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Ruzhou Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Qi Gao
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Lijuan Sun
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Xufeng Hou
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Yunhai Mo
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Qing Huang
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Lan Zhen
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Xiaopan Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Jingfei Li
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Nan Wang
- Department of Radiotherapy, Changzhi People's Hospital, No. 502, Changxing Middle Road, Luzhou District, Changzhi, Shanxi, 046000, China
| | - Chundong Zhang
- Department of Surgical Oncology and Central Laboratory, the Fourth Affiliated Hospital of China Medical University, No. 4, Chongshan East Road, Huanggu District, Shenyang, Liaoning, 110032, China
| | - Haoran Jin
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China
| | - Li Zhou
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Yixin Xu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China
| | - Haotian Lin
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China
| | - Xuhui Zhang
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China
| | - Boan Li
- Clinical Laboratory, the Fifth Medical Center of Chinese People's Liberation Army General Hospital, No. 100 Xisihuan Middle Road, Beijing, 100039, China.
| | - Yue Han
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan South Road, Chaoyang District, Beijing, 100021, China.
| | - Jing Yuan
- Capital Institute of Pediatrics, Capital Center for Children's Health, Capital Medical University, No. 2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Rui Zhang
- Department of Colorectal Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, No. 44 Xiaoheyan Road, Dadong Distrct, Shenyang, Liaoning, 110042, China.
| | - Feixiang Wu
- Hepatobiliary Surgery Department, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Qingxiu District, Nanning, Guangxi, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, Guangxi, 530021, China.
| | - Hui Zhong
- Beijing Youngen Technology Co. Ltd, No. 55 Qingfeng West Road, Daxing District, Beijing, 102629, China.
| | - Congwen Wei
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, No. 20 Dongdajie, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
2
|
Han R, Gao C, Tang R, Gui X, Chen W, Fu J, Wang T, Bai D, Guo Y, Zhou C. A comprehensive study on Herba Epimedium-derived extracellular nanovesicles as a prospective therapy for alveolar bone regeneration in postmenopausal osteoporosis. NANOSCALE 2025; 17:12270-12289. [PMID: 40266676 DOI: 10.1039/d5nr00508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Natural products rich in phytoestrogens, particularly those derived from traditional Chinese medicine (TCM) herbs, have garnered increased attention. Plant-derived extracellular vesicles are emerging as a promising strategy in cell communication and disease defense. Here, a comprehensive study on Herba Epimedium-derived extracellular nanovesicles (EELNs) for postmenopausal osteoporosis treatment was conducted. The results showed that EELNs exhibit a typical exosome morphology with an average diameter of 130 nm and are rich in specific small-molecule metabolites and miRNAs. Network pharmacology and KEGG analysis highlighted the therapeutic potential of EELNs in osteoporosis through multiple classical osteogenic pathways. In vitro experiments proved that EELNs potentiated the osteogenic differentiation of BMSCs by targeting the Pi3k/Akt/mTOR pathway. In vivo, EELN-loaded hydroxyapatite nano-whisker (E-GW) composites were used to repair mandibular defects in an OVX-induced osteoporosis rat model. The results indicate that EELNs are promising therapeutic agents for the regeneration and bone mass maintenance of alveolar defects in postmenopausal osteoporosis patients and offer potential perspectives for natural products in postmenopausal osteoporosis treatment.
Collapse
Affiliation(s)
- Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Canyu Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Rong Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xingyu Gui
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Wanxi Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jiarun Fu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Changchun Zhou
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
3
|
Zhong H, Zhou S, Yin S, Qiu Y, Liu B, Yu H. Tumor microenvironment as niche constructed by cancer stem cells: Breaking the ecosystem to combat cancer. J Adv Res 2025; 71:279-296. [PMID: 38866179 DOI: 10.1016/j.jare.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a distinct subpopulation of cancer cells with the capacity to constantly self-renew and differentiate, and they are the main driver in the progression of cancer resistance and relapse. The tumor microenvironment (TME) constructed by CSCs is the "soil" adapted to tumor growth, helping CSCs evade immune killing, enhance their chemical resistance, and promote cancer progression. AIM OF REVIEW We aim to elaborate the tight connection between CSCs and immunosuppressive components of the TME. We attempt to summarize and provide a therapeutic strategy to eradicate CSCs based on the destruction of the tumor ecological niche. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three main key concepts. First, we highlight that CSCs recruit and transform normal cells to construct the TME, which further provides ecological niche support for CSCs. Second, we describe the main characteristics of the immunosuppressive components of the TME, targeting strategies and summarize the progress of corresponding drugs in clinical trials. Third, we explore the multilevel insights of the TME to serve as an ecological niche for CSCs.
Collapse
Affiliation(s)
- Hao Zhong
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Haiyang Yu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, China.
| |
Collapse
|
4
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous Process for Isolation of Gut-Derived Extracellular Vesicles (EVs) and the Effect on Latent HIV. Cells 2025; 14:568. [PMID: 40277894 PMCID: PMC12025545 DOI: 10.3390/cells14080568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/26/2025] Open
Abstract
The human gastrointestinal (GI) track host trillions of microorganisms that secrete molecules, including extracellular vesicles (EVs) and extracellular condensates (ECs) that may affect physiological and patho-physiological activities in the host. However, efficient protocols for the isolation of pure and functional GI-derived EVs|ECs is lacking. Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate EVs from colonic content (ColEVs). PVPP facilitates the isolation of pure, non-toxic, and functionally active ColEVs that were internalized by cells and functionally activate HIV LTR promoter. ColEVs isolated without PVPP have a reductive effect on MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) without living cells, suggesting that ColEVs contain reductases capable of catalyzing the reduction of MTT to formazan. The assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ~12 h (5 h preprocessing, 7 h isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. This protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Additionally, GI-derived EVs may serve as a window into the pathogenesis of diseases.
Collapse
Affiliation(s)
- Nneoma C. J. Anyanwu
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Lakmini S. Premadasa
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Wasifa Naushad
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Bryson C. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
| | - Mohan Mahesh
- Host Pathogen Interaction Program, Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227-5302, USA
| | - Chioma M. Okeoma
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY 10595-1524, USA (W.N.)
- Lovelace Biomedical Institute, Albuquerque, NM 87108-5127, USA
| |
Collapse
|
5
|
Mivehchi H, Eskandari-Yaghbastlo A, Emrahoglu S, Saeidpour Masouleh S, Faghihinia F, Ayoubi S, Nabi Afjadi M. Tiny messengers, big Impact: Exosomes driving EMT in oral cancer. Pathol Res Pract 2025; 268:155873. [PMID: 40022766 DOI: 10.1016/j.prp.2025.155873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Exosomes are indispensable extracellular vesicles that facilitate intercellular communication and are crucial for both healthy and pathological conditions, including cancer. The capacity of exosomes to echo the molecular characteristics of their cells of origin, including malignant cells, makes them indispensable tools for diagnosing and tracking disease progression in the field of oncology. Oral squamous cell carcinoma (OSCC), which has been identified as the sixth most prevalent cancer worldwide, has been linked to numerous risk factors, including tobacco use, alcohol consumption, human papillomavirus (HPV) infection, and inadequate oral hygiene. Exosomes pointedly influence the advancement of oral cancer via promoting tumor cell growth, invasion, angiogenesis, and immune evasion through the alteration of the tumor microenvironment. A critical apparatus in cancer metastasis is the epithelial-to-mesenchymal transition (EMT), during which cancer cells acquire improved migratory and invasive properties. EMT plays a role in metastasis, resistance to treatment, and evasion of the immune response. Exosomes facilitate EMT in oral cancer by delivering bioactive molecules that influence EMT signaling pathways. These exosomes inspire EMT in recipient cells, by this means enhancing tumor invasion and metastasis. This study aims to identify the specific exosomal components and signaling pathways that are tangled in EMT, in that way providing new avenues for targeted therapies designed to hinder the metastasis of oral cancer.
Collapse
Affiliation(s)
- Hassan Mivehchi
- Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | | | - Sahand Emrahoglu
- School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Farbod Faghihinia
- School of Dentistry, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saminalsadat Ayoubi
- School of Dental Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Cortés-Hernández LE, Eslami-S Z, Attina A, Batista S, Cayrefourcq L, Vialeret J, Di Vizio D, Hirtz C, Costa-Silva B, Alix-Panabières C. Proteomic profiling and functional analysis of extracellular vesicles from metastasis-competent circulating tumor cells in colon cancer. J Exp Clin Cancer Res 2025; 44:102. [PMID: 40119417 PMCID: PMC11929255 DOI: 10.1186/s13046-025-03360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/09/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) are pivotal in cancer progression, and in vitro CTC models are crucial for understanding their biological mechanisms. This study focused on the characterization of extracellular vesicles (EVs) from CTC lines derived from a patient with metastatic colorectal cancer (mCRC) at different stages of progression who progressed despite therapy (thus mirroring the clonal evolution of cancer). METHODS AND RESULTS Morphological and size analyses revealed variations among EVs derived from different CTC lines. Compared with the Vesiclepedia database, proteomic profiling of these EVs revealed enrichment of proteins related to stemness, endosomal biogenesis, and mCRC prognosis. Integrin family proteins were significantly enriched in EVs from CTC lines derived after therapy failure. The role of these EVs in cancer progression was analyzed by assessing their in vivo distribution, particularly in the liver, lungs, kidneys, and bones. EVs accumulate significantly in the liver, followed by the lungs, kidneys and femurs. CONCLUSIONS This study is a pioneering effort in highlighting therapy progression-associated changes in EVs from mCRC patients via an in vitro CTC model. The results offer insights into the role of metastasis initiator CTC-derived EVs in cancer spread, suggesting their utility for studying cancer tissue distribution mechanisms. However, these findings must be confirmed and extended to patients with mCRC. This work underscores the potential of CTC-derived EVs as tools for understanding cancer dissemination.
Collapse
Affiliation(s)
- Luis Enrique Cortés-Hernández
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Aurore Attina
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Silvia Batista
- Systems Oncology Group, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Jérôme Vialeret
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Dolores Di Vizio
- Department of Urology, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Christophe Hirtz
- IRMB-PPC, INM, Univ Montpellier, CHU Montpellier, INSERM CNRS, Montpellier, France
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, Montpellier, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| |
Collapse
|
7
|
Karbanová J, Thamm K, Fargeas CA, Deniz IA, Lorico A, Corbeil D. Prominosomes - a particular class of extracellular vesicles containing prominin-1/CD133? J Nanobiotechnology 2025; 23:61. [PMID: 39881297 PMCID: PMC11776279 DOI: 10.1186/s12951-025-03102-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Extracellular membrane vesicles (EVs) offer promising values in various medical fields, e.g., as biomarkers in liquid biopsies or as native (or bioengineered) biological nanocarriers in tissue engineering, regenerative medicine and cancer therapy. Based on their cellular origin EVs can vary considerably in composition and diameter. Cell biological studies on mammalian prominin-1, a cholesterol-binding membrane glycoprotein, have helped to reveal new donor membranes as sources of EVs. For instance, small EVs can originate from microvilli and primary cilia, while large EVs might be produced by transient structures such as retracting cellular extremities of cancer cells during the mitotic rounding process, and the midbody at the end of cytokinesis. Here, we will highlight the various subcellular origins of prominin-1+ EVs, also called prominosomes, and the potential mechanism(s) regulating their formation. We will further discuss the molecular and cellular characteristics of prominin-1, notably those that have a direct effect on the release of prominin-1+ EVs, a process that might be directly implicated in donor cell reprogramming of stem and cancer stem cells. Prominin-1+ EVs also mediate intercellular communication during embryonic development and adult homeostasis in healthy individuals, while disseminating biological information during diseases.
Collapse
Affiliation(s)
- Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| | - Kristina Thamm
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- denovoMATRIX GmbH, Tatzberg 47, 01307, Dresden, Germany
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Ilker A Deniz
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Aurelio Lorico
- College of Osteopathic Medicine, Touro University Nevada, 874 American Pacific Drive, Henderson, NV, 89014, USA
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-49, 01307, Dresden, Germany.
| |
Collapse
|
8
|
Anyanwu NCJ, Premadasa LS, Naushad W, Okeoma BC, Mahesh M, Okeoma CM. Rigorous process for isolation of gut-derived extracellular vesicles and the effect on latent HIV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632234. [PMID: 39829800 PMCID: PMC11741325 DOI: 10.1101/2025.01.09.632234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aim Extracellular particles (EPs) are produced/secreted by cells from all domains of life and are present in all body fluids, brain, and gut. EPs consist of extracellular vesicles (EVs) made up of exosomes, microvesicles, and other membranous vesicles; and extracellular condensates (ECs) that are non-membranous carriers of lipid-protein-nucleic acid aggregates. The purity of EVs|ECs, which ultimately depends on the isolation method used to obtain them is critical, particularly EVs|ECs from the gastrointestinal (GI) tract that is colonized by a huge number of enteric bacteria. Therefore, identifying GI derived EVs|ECs of bacterial and host origin may serve as a window into the pathogenesis of diseases and as a potential therapeutic target. Methods Here, we describe the use of high-resolution particle purification liquid chromatography (PPLC) gradient-bead-column integrated with polyvinylpolypyrrolidone (PVPP)-mediated extraction of impurities to isolate GI-derived EPs. Results and Conclusion PVPP facilitates isolation of pure and functionally active, non-toxic EVs ColEVs from colonic contents. ColEVs are internalized by cells and they activate HIV LTR promoter. In the absence of PVPP, ColEVs have a direct reductive potential of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) absorbance in a cell-free system. Assessment of the origin of ColEVs reveals that they are composed of both bacteria and host particles. This protocol requires ∼12 hours (5 hours preprocessing, 7 hours isolation) to complete and should be used to purify EVs from sources contaminated with microbial agents to improve rigor. Additionally, this protocol provides a robust tool for researchers and clinicians investigating GI-derived EVs and the translational use of GI-derived EVs for diagnostic and therapeutic use. Highlight ColEVs but not ColECs are present in colonic content (GI tract) and can be isolated with gradient or single bead PPLC column.ColEVs isolated without PVPP are toxic to cells and they have a direct reductive potential of MTT. Addition of PVPP treatment in the isolation protocol results in clean and non-toxic ColEVs that transactivate the HIV LTR promoter.
Collapse
|
9
|
Jiang Q, Wang L, Tian J, Zhang W, Cui H, Gui H, Zang Z, Li B, Si X. Food-derived extracellular vesicles: natural nanocarriers for active phytoconstituents in new functional food. Crit Rev Food Sci Nutr 2024; 64:11701-11721. [PMID: 37548408 DOI: 10.1080/10408398.2023.2242947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Extracellular vesicles (EVs) are naturally occurring non-replicating particles released from cells, known for their health-promoting effects and potential as carriers for drug delivery. Extensive research has been conducted on delivery systems based on culture-cell-derived EVs. Nevertheless, they have several limitations including low production yield, high expenses, unsuitability for oral administration, and safety concerns in applications. Conversely, food-derived EVs (FDEVs) offer unique advantages that cannot be easily substituted. This review provides a comprehensive analysis of the biogenesis pathways, composition, and health benefits of FDEVs, as well as the techniques required for constructing oral delivery systems. Furthermore, it explores the advantages and challenges associated with FDEVs as oral nanocarriers, and discusses the current research advancements in delivering active phytoconstituents. FDEVs, functioning as a nanocarrier platform for the oral delivery of active molecules, present numerous benefits such as convenient administration, high biocompatibility, low toxicity, and inherent targeting. Nevertheless, numerous unresolved issues persist in the isolation, characterization, drug loading, and application of FDEVs. Technical innovation and standardization of quality control are the key points to promote the development of FDEVs. The review aimed to provide frontier ideas and basic quality control guidelines for developing new functional food based on FDEVs oral drug delivery system.
Collapse
Affiliation(s)
- Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hailong Gui
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Zhihuan Zang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
10
|
Dowaidar M. Drug delivery based exosomes uptake pathways. Neurochem Int 2024; 179:105835. [PMID: 39147203 DOI: 10.1016/j.neuint.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Most cells secrete a material called extracellular vesicles (EVs), which play a crucial role in cellular communication. Exosomes are one of the most studied types of EVs. Recent research has shown the many functions and substrates of cellular exosomes. Multiple studies have shown the efficacy of exosomes in transporting a wide variety of cargo to their respective target cells. As a result, they are often utilized to transport medicaments to patients. Natural exosomes as well as exosomes modified with other compounds to enhance transport capabilities have been employed. In this article, we take a look at how different types of exosomes and modified exosomes may transport different types of cargo to their respective targets. Exosomes have a lot of potential as drug delivery vehicles for many synthetic compounds, proteins, nucleic acids, and gene repair specialists because they can stay in the body for a long time, are biocompatible, and can carry natural materials. A good way to put specific protein particles into exosomes is still not clear, though, and the exosomes can't be used in many situations yet. The determinants for exosome production, as well as ways for loading certain therapeutic molecules (proteins, nucleic acids, and small compounds), were covered in this paper. Further study and the development of therapeutic exosomes may both benefit from the information collected in this review.
Collapse
Affiliation(s)
- Moataz Dowaidar
- Bioengineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia; Biosystems and Machines Research Center, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
11
|
Carbone D, Santos MF, Corbeil D, Vistoli G, Parrino B, Karbanová J, Cascioferro S, Pecoraro C, Bauson J, Eliwat W, Aalam F, Cirrincione G, Lorico A, Diana P. Triazole derivatives inhibit the VOR complex-mediated nuclear transport of extracellular particles: Potential application in cancer and HIV-1 infection. Bioorg Chem 2024; 150:107589. [PMID: 38941696 DOI: 10.1016/j.bioorg.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Extracellular vesicles (EVs) appear to play an important role in intercellular communication in various physiological processes and pathological conditions such as cancer. Like enveloped viruses, EVs can transport their contents into the nucleus of recipient cells, and a new intracellular pathway has been described to explain the nuclear shuttling of EV cargoes. It involves a tripartite protein complex consisting of vesicle-associated membrane protein-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3) and late endosome-associated Rab7 allowing late endosome entry into the nucleoplasmic reticulum. Rab7 binding to ORP3-VAP-A complex can be blocked by the FDA-approved antifungal drug itraconazole. Here, we design a new series of smaller triazole derivatives, which lack the dioxolane moiety responsible for the antifungal function, acting on the hydrophobic sterol-binding pocket of ORP3 and evaluate their structure-activity relationship through inhibition of VOR interactions and nuclear transfer of EV and HIV-1 cargoes. Our investigation reveals that the most effective compounds that prevent nuclear transfer of EV cargo and productive infection by VSV-G-pseudotyped HIV-1 are those with a side chain between 1 and 4 carbons, linear or branched (methyl) on the triazolone region. These potent chemical drugs could find clinical applications either for nuclear transfer of cancer-derived EVs that impact metastasis or viral infection.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Jodi Bauson
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Waleed Eliwat
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
12
|
Ramos R, Vinyals A, Campos-Martin R, Cabré E, Bech JJ, Vaquero J, Gonzalez-Sanchez E, Bertran E, Ferreres JR, Lorenzo D, De La Torre CG, Fabregat I, Caminal JM, Fabra À. New Insights into the Exosome-Induced Migration of Uveal Melanoma Cells and the Pre-Metastatic Niche Formation in the Liver. Cancers (Basel) 2024; 16:2977. [PMID: 39272836 PMCID: PMC11394004 DOI: 10.3390/cancers16172977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
UM is an aggressive intraocular tumor characterized by high plasticity and a propensity to metastasize in the liver. However, the underlying mechanisms governing liver tropism remain poorly understood. Given the emerging significance of exosomes, we sought to investigate the contribution of UM-derived exosomes to specific steps of the metastatic process. Firstly, we isolated exosomes from UM cells sharing a common genetic background and different metastatic properties. A comparison of protein cargo reveals an overrepresentation of proteins related to cytoskeleton remodeling and actin filament-based movement in exosomes derived from the parental cells that may favor the detachment of cells from the primary site. Secondly, we assessed the role of macrophages in reprogramming the HHSCs by exosomes. The activation of HHSCs triggered a pro-inflammatory and pro-fibrotic environment through cytokine production, upregulation of extracellular matrix molecules, and the activation of signaling pathways. Finally, we found that activated HHSCs promote increased adhesion and migration of UM cells. Our findings shed light on the pivotal role of exosomes in pre-metastatic niche construction in the liver.
Collapse
Affiliation(s)
- Raquel Ramos
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Antònia Vinyals
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, 50937 Cologne, Germany
| | - Eduard Cabré
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Joan Josep Bech
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Javier Vaquero
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ester Gonzalez-Sanchez
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- HepatoBiliary Tumors Lab, Centro de Investigación del Cancer and Instituto de Biologia Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Physiological Sciences, Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Josep Ramon Ferreres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
- Dermatology Service, IDIBELL, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Daniel Lorenzo
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Carolina G De La Torre
- Clinical Proteomics Unit, IDIBELL, 08908 Barcelona, Spain
- Proteomic Unit, Josep Carreras Leukaemia Research Institute (IJC), Ctra de Can Ruti, 08916 Badalona, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| | - Jose Maria Caminal
- Ocular Translational Eye Research Unit, Ophthalmology Department, Spanish Ocular Oncology National Referral Center (CSUR), Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Àngels Fabra
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
13
|
Zeng M, Liu M, Tao X, Yin X, Shen C, Wang X. Emerging Trends in the Application of Extracellular Vesicles as Novel Oral Delivery Vehicles for Therapeutics in Inflammatory Diseases. Int J Nanomedicine 2024; 19:8573-8601. [PMID: 39185348 PMCID: PMC11345024 DOI: 10.2147/ijn.s475532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation involves complex immune responses where cytokines such as TNF-α, IL-1, and IL-6 promote vasodilation and increased vascular permeability to facilitate immune cell migration to inflammation sites. Persistent inflammation is linked to diseases like cancer, arthritis, and neurodegenerative disorders. Although oral anti-inflammatory drugs are favored for their non-invasiveness and cost-effectiveness, their efficacy is often compromised due to gastrointestinal degradation and limited bioavailability. Recent advancements highlight the potential of extracellular vesicles (EVs) as nanocarriers that enhance drug delivery by encapsulating therapeutic agents, ensuring targeted release and reduced toxicity. These EVs, derived from dietary sources and cell cultures, exhibit excellent biocompatibility and stability, presenting a novel approach in anti-inflammatory therapies. This review discusses the classification and advantages of orally administered EVs (O-EVs), their mechanism of action, and their emerging role in treating inflammatory conditions, positioning them as promising vectors in the development of innovative anti-inflammatory drug delivery systems.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Maozhu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xuelin Tao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xi Yin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chao Shen
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Xueyan Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| |
Collapse
|
14
|
Lu K, Wang W, Liu Y, Xie C, Liu J, Xing L. Advancements in microenvironment-based therapies: transforming the landscape of multiple myeloma treatment. Front Oncol 2024; 14:1413494. [PMID: 39087026 PMCID: PMC11288838 DOI: 10.3389/fonc.2024.1413494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Multiple myeloma (MM) is the most prevalent malignant monoclonal disease of plasma cells. There is mounting evidence that interactions with the bone marrow (BM) niche are essential for the differentiation, proliferation, survival, migration, and treatment resistance of myeloma cells. For this reason, gaining a deeper comprehension of how BM microenvironment compartments interact with myeloma cells may inspire new therapeutic ideas that enhance patient outcomes. This review will concentrate on the most recent findings regarding the mechanisms of interaction between microenvironment and MM and highlight research on treatment targeting the BM niche.
Collapse
Affiliation(s)
- Ke Lu
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wen Wang
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuntong Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Chao Xie
- Department of Respiratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiye Liu
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Lijie Xing
- Department of Lymphoma, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan, Shandong, China
| |
Collapse
|
15
|
Yang LY, Li CQ, Zhang YL, Ma MW, Cheng W, Zhang GJ. Emerging Drug Delivery Vectors: Engineering of Plant-Derived Nanovesicles and Their Applications in Biomedicine. Int J Nanomedicine 2024; 19:2591-2610. [PMID: 38505167 PMCID: PMC10949304 DOI: 10.2147/ijn.s454794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular vesicles can transmit intercellular information and transport biomolecules to recipient cells during various pathophysiological processes in the organism. Animal cell exosomes have been identified as potential nanodrugs delivery vehicles, yet they have some shortcomings such as high immunogenicity, high cytotoxicity, and complicated preparation procedures. In addition to exosomes, plant-derived extracellular vesicles (PDVs), which carry a variety of active substances, are another promising nano-transport vehicles emerging in recent years due to their stable physicochemical properties, wide source, and low cost. This work briefly introduces the collection and characterization of PDVs, then focuses on the application of PDVs as natural or engineered drug carriers in biomedicine, and finally discusses the development and challenges of PDVs in future applications.
Collapse
Affiliation(s)
- Lu-Yao Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
| | - Chao-Qing Li
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Yu-Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| | - Meng-Wen Ma
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Wan Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People’s Republic of China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, 430065, People’s Republic of China
| |
Collapse
|
16
|
Guarnerio S, Tempest R, Maani R, Hunt S, Cole LM, Le Maitre CL, Chapple K, Peake N. Cellular Responses to Extracellular Vesicles as Potential Markers of Colorectal Cancer Progression. Int J Mol Sci 2023; 24:16755. [PMID: 38069076 PMCID: PMC10706375 DOI: 10.3390/ijms242316755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The development of novel screening tests aims to support early asymptomatic diagnosis and subtyping patients according to similar traits in the heterogeneous cancer cohort. Extracellular vesicles (EVs) are promising candidates for the detection of disease markers from bodily fluids, but limitations in the standardisation of isolation methods and the intrinsic EV heterogeneity obtained from liquid biopsies are currently obstacles to clinical adoption. Here, cellular responses to cancer EVs were initially explored as potential complementary biomarkers for stage separation using colorectal cancer (CRC) SW480 and SW620 cell line models. A pilot study on a small cohort of CRC patients and controls was then developed by performing a multivariate analysis of cellular responses to plasma-derived EVs. Several cell activities and markers involved in tumour microenvironment pathways were influenced by the treatment of cell line EVs in a stage-dependent manner. The multivariate analysis combining plasma EV markers and cellular responses to plasma EVs was able to separate patients according to disease stage. This preliminary study offers the potential of considering cellular responses to EVs in combination with EV biomarkers in the development of screening methods.
Collapse
Affiliation(s)
- Sonia Guarnerio
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Rawan Maani
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | - Stuart Hunt
- School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TN, UK;
| | - Laura M. Cole
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| | | | - Keith Chapple
- Colorectal Surgical Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK; (S.G.); (R.M.)
| |
Collapse
|
17
|
Lee Y, Ni J, Wasinger VC, Graham P, Li Y. Comparison Study of Small Extracellular Vesicle Isolation Methods for Profiling Protein Biomarkers in Breast Cancer Liquid Biopsies. Int J Mol Sci 2023; 24:15462. [PMID: 37895140 PMCID: PMC10607056 DOI: 10.3390/ijms242015462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Small extracellular vesicles (sEVs) are an important intercellular communicator, participating in all stages of cancer metastasis, immunity, and therapeutic resistance. Therefore, protein cargoes within sEVs are considered as a superior source for breast cancer (BC) biomarker discovery. Our study aimed to optimise the approach for sEV isolation and sEV proteomic analysis to identify potential sEV protein biomarkers for BC diagnosis. sEVs derived from BC cell lines, BC patients' plasma, and non-cancer controls were isolated using ultracentrifugation (UC), a Total Exosome Isolation kit (TEI), and a combined approach named UCT. In BC cell lines, the UC isolates showed a higher sEV purity and marker expression, as well as a higher number of sEV proteins. In BC plasma samples, the UCT isolates showed the highest proportion of sEV-related proteins and the lowest percentage of lipoprotein-related proteins. Our data suggest that the assessment of both the quantity and quality of sEV isolation methods is important in selecting the optimal approach for the specific sEV research purpose, depending on the sample types and downstream analysis.
Collapse
Affiliation(s)
- Yujin Lee
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Jie Ni
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Valerie C. Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, UNSW Sydney, Kensington, NSW 2052, Australia;
| | - Peter Graham
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| | - Yong Li
- School of Clinical Medicine, St George and Sutherland Clinical Campuses, UNSW Sydney, Kensington, NSW 2052, Australia; (Y.L.); (J.N.); (P.G.)
- Cancer Care Centre, St George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
18
|
Yeo J. Food-Derived Extracellular Vesicles as Multi-Bioactive Complex and Their Versatile Health Effects. Antioxidants (Basel) 2023; 12:1862. [PMID: 37891941 PMCID: PMC10604675 DOI: 10.3390/antiox12101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound organelles that are generally released by eukaryotic cells and enclose various cellular metabolic information, such as RNA, meta-proteins, and versatile metabolites. The physiological properties and diverse functions of food-derived EVs have been extensively elucidated, along with a recent explosive upsurge in EV research. Therefore, a concise review of the health effects of food-derived EVs is necessary. This review summarizes the structural stability and uptake pathways of food-derived EVs to target cells and their health benefits, including antioxidant, anti-inflammatory, and anticarcinogenic effects, gut microbiome modulation, and intestinal barrier enhancement.
Collapse
Affiliation(s)
- JuDong Yeo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
19
|
Nguyen TNG, Pham CV, Chowdhury R, Patel S, Jaysawal SK, Hou Y, Xu H, Jia L, Duan A, Tran PHL, Duan W. Development of Blueberry-Derived Extracellular Nanovesicles for Immunomodulatory Therapy. Pharmaceutics 2023; 15:2115. [PMID: 37631329 PMCID: PMC10458573 DOI: 10.3390/pharmaceutics15082115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past decade, there has been a significant expansion in the development of plant-derived extracellular nanovesicles (EVs) as an effective drug delivery system for precision therapy. However, the lack of effective methods for the isolation and characterization of plant EVs hampers progress in the field. To solve a challenge related to systemic separation and characterization in the plant-derived EV field, herein, we report the development of a simple 3D inner filter-based method that allows the extraction of apoplastic fluid (AF) from blueberry, facilitating EV isolation as well as effective downstream applications. Class I chitinase (PR-3) was found in blueberry-derived EVs (BENVs). As Class I chitinase is expressed in a wide range of plants, it could serve as a universal marker for plant-derived EVs. Significantly, the BENVs exhibit not only higher drug loading capacity than that reported for other EVs but also possess the ability to modulate the release of the proinflammatory cytokine IL-8 and total glutathione in response to oxidative stress. Therefore, the BENV is a promising edible multifunctional nano-bio-platform for future immunomodulatory therapies.
Collapse
Affiliation(s)
- Tuong Ngoc-Gia Nguyen
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Cuong Viet Pham
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Rocky Chowdhury
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Shweta Patel
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Satendra Kumar Jaysawal
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang’an Avenue, Xi’an 710119, China;
| | - Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (H.X.); (L.J.)
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; (H.X.); (L.J.)
| | - Andrew Duan
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Phuong Ha-Lien Tran
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Geelong, VIC 3216, Australia; (T.N.-G.N.); (C.V.P.); (R.C.); (S.P.); (S.K.J.)
| |
Collapse
|
20
|
Arena GO, Forte S, Abdouh M, Vanier C, Corbeil D, Lorico A. Horizontal Transfer of Malignant Traits and the Involvement of Extracellular Vesicles in Metastasis. Cells 2023; 12:1566. [PMID: 37371036 PMCID: PMC10297028 DOI: 10.3390/cells12121566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Metastases are responsible for the vast majority of cancer deaths, yet most therapeutic efforts have focused on targeting and interrupting tumor growth rather than impairing the metastatic process. Traditionally, cancer metastasis is attributed to the dissemination of neoplastic cells from the primary tumor to distant organs through blood and lymphatic circulation. A thorough understanding of the metastatic process is essential to develop new therapeutic strategies that improve cancer survival. Since Paget's original description of the "Seed and Soil" hypothesis over a hundred years ago, alternative theories and new players have been proposed. In particular, the role of extracellular vesicles (EVs) released by cancer cells and their uptake by neighboring cells or at distinct anatomical sites has been explored. Here, we will outline and discuss these alternative theories and emphasize the horizontal transfer of EV-associated biomolecules as a possibly major event leading to cell transformation and the induction of metastases. We will also highlight the recently discovered intracellular pathway used by EVs to deliver their cargoes into the nucleus of recipient cells, which is a potential target for novel anti-metastatic strategies.
Collapse
Affiliation(s)
- Goffredo O. Arena
- Department of Surgery, McGill University, Montréal, QC H3A 0G4, Canada;
- Fondazione Istituto G. Giglio, 90015 Cefalù, Italy
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute, McGill University Health Centre, Montréal, QC H3A 0G4, Canada;
| | - Cheryl Vanier
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Aurelio Lorico
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| |
Collapse
|
21
|
Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP, Trejo J, Benard K, Seneda AL, Minutentag IW, Erkan M, Stewart GL, Hasimoto EN, Garnis C, Lam WL, Martinez VD, Reis PP. Liquid Biopsy in Lung Cancer: Biomarkers for the Management of Recurrence and Metastasis. Int J Mol Sci 2023; 24:ijms24108894. [PMID: 37240238 DOI: 10.3390/ijms24108894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.
Collapse
Affiliation(s)
- Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Iael W Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erica N Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Cathie Garnis
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Victor D Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| |
Collapse
|
22
|
Jo H, Shim K, Jeoung D. Exosomes: Diagnostic and Therapeutic Implications in Cancer. Pharmaceutics 2023; 15:pharmaceutics15051465. [PMID: 37242707 DOI: 10.3390/pharmaceutics15051465] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles produced by all cells, and they are present in various body fluids. Exosomes play crucial roles in tumor initiation/progression, immune suppression, immune surveillance, metabolic reprogramming, angiogenesis, and the polarization of macrophages. In this work, we summarize the mechanisms of exosome biogenesis and secretion. Since exosomes may be increased in the cancer cells and body fluids of cancer patients, exosomes and exosomal contents can be used as cancer diagnostic and prognostic markers. Exosomes contain proteins, lipids, and nucleic acids. These exosomal contents can be transferred into recipient cells. Therefore, this work details the roles of exosomes and exosomal contents in intercellular communications. Since exosomes mediate cellular interactions, exosomes can be targeted for developing anticancer therapy. This review summarizes current studies on the effects of exosomal inhibitors on cancer initiation and progression. Since exosomal contents can be transferred, exosomes can be modified to deliver molecular cargo such as anticancer drugs, small interfering RNAs (siRNAs), and micro RNAs (miRNAs). Thus, we also summarize recent advances in developing exosomes as drug delivery platforms. Exosomes display low toxicity, biodegradability, and efficient tissue targeting, which make them reliable delivery vehicles. We discuss the applications and challenges of exosomes as delivery vehicles in tumors, along with the clinical values of exosomes. In this review, we aim to highlight the biogenesis, functions, and diagnostic and therapeutic implications of exosomes in cancer.
Collapse
Affiliation(s)
- Hyein Jo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kyeonghee Shim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
23
|
Schiano C, Balbi C, de Nigris F, Napoli C. Basic Pathogenic Mechanisms and Epigenetic Players Promoted by Extracellular Vesicles in Vascular Damage. Int J Mol Sci 2023; 24:ijms24087509. [PMID: 37108672 PMCID: PMC10138986 DOI: 10.3390/ijms24087509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Both progression from the early pathogenic events to clinically manifest cardiovascular diseases (CVD) and cancer impact the integrity of the vascular system. Pathological vascular modifications are affected by interplay between endothelial cells and their microenvironment. Soluble factors, extracellular matrix molecules and extracellular vesicles (EVs) are emerging determinants of this network that trigger specific signals in target cells. EVs have gained attention as package of molecules with epigenetic reversible activity causing functional vascular changes, but their mechanisms are not well understood. Valuable insights have been provided by recent clinical studies, including the investigation of EVs as potential biomarkers of these diseases. In this paper, we review the role and the mechanism of exosomal epigenetic molecules during the vascular remodeling in coronary heart disease as well as in cancer-associated neoangiogenesis.
Collapse
Affiliation(s)
- Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Carolina Balbi
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino Institute, 6807 Taverne-Torricella, Switzerland
| | - Filomena de Nigris
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania Luigi Vanvitelli, 80138 Naples, Italy
- Clinical Department of Internal Medicine and Specialistic Units, Division of Clinical Immunology and Immunohematology, Transfusion Medicine and Transplant Immunology (SIMT), Azienda Universitaria Policlinico (AOU), 80138 Naples, Italy
| |
Collapse
|
24
|
Pucci M, Moschetti M, Urzì O, Loria M, Conigliaro A, Di Bella MA, Crescitelli R, Olofsson Bagge R, Gallo A, Santos MF, Puglisi C, Forte S, Lorico A, Alessandro R, Fontana S. Colorectal cancer-derived small extracellular vesicles induce TGFβ1-mediated epithelial to mesenchymal transition of hepatocytes. Cancer Cell Int 2023; 23:77. [PMID: 37072829 PMCID: PMC10114452 DOI: 10.1186/s12935-023-02916-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS Our study shows for the first time that TGFβ1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFβ1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.
Collapse
Affiliation(s)
- Marzia Pucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT, Palermo, Italy
| | - Mark F Santos
- Touro University College of Medicine, Henderson, NV, USA
| | | | | | - Aurelio Lorico
- Touro University College of Medicine, Henderson, NV, USA
- IOM Ricerca, Viagrande, Catania, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| |
Collapse
|
25
|
Santos MF, Rappa G, Fontana S, Karbanová J, Aalam F, Tai D, Li Z, Pucci M, Alessandro R, Morimoto C, Corbeil D, Lorico A. Anti-Human CD9 Fab Fragment Antibody Blocks the Extracellular Vesicle-Mediated Increase in Malignancy of Colon Cancer Cells. Cells 2022; 11:2474. [PMID: 36010551 PMCID: PMC9406449 DOI: 10.3390/cells11162474] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 12/08/2022] Open
Abstract
Intercellular communication between cancer cells themselves or with healthy cells in the tumor microenvironment and/or pre-metastatic sites plays an important role in cancer progression and metastasis. In addition to ligand-receptor signaling complexes, extracellular vesicles (EVs) are emerging as novel mediators of intercellular communication both in tissue homeostasis and in diseases such as cancer. EV-mediated transfer of molecular activities impacting morphological features and cell motility from highly metastatic SW620 cells to non-metastatic SW480 cells is a good in vitro example to illustrate the increased malignancy of colorectal cancer leading to its transformation and aggressive behavior. In an attempt to intercept the intercellular communication promoted by EVs, we recently developed a monovalent Fab fragment antibody directed against human CD9 tetraspanin and showed its effectiveness in blocking the internalization of melanoma cell-derived EVs and the nuclear transfer of their cargo proteins into recipient cells. Here, we employed the SW480/SW620 model to investigate the anti-cancer potential of the anti-CD9 Fab antibody. We first demonstrated that most EVs derived from SW620 cells contain CD9, making them potential targets. We then found that the anti-CD9 Fab antibody, but not the corresponding divalent antibody, prevented internalization of EVs from SW620 cells into SW480 cells, thereby inhibiting their phenotypic transformation, i.e., the change from a mesenchymal-like morphology to a rounded amoeboid-like shape with membrane blebbing, and thus preventing increased cell migration. Intercepting EV-mediated intercellular communication in the tumor niche with an anti-CD9 Fab antibody, combined with direct targeting of cancer cells, could lead to the development of new anti-cancer therapeutic strategies.
Collapse
Affiliation(s)
- Mark F. Santos
- Department of Basic Sciences, Touro University College of Medicine, Henderson, NV 89014, USA
| | - Germana Rappa
- Department of Basic Sciences, Touro University College of Medicine, Henderson, NV 89014, USA
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Jana Karbanová
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Feryal Aalam
- Department of Basic Sciences, Touro University College of Medicine, Henderson, NV 89014, USA
| | - Derek Tai
- Department of Basic Sciences, Touro University College of Medicine, Henderson, NV 89014, USA
| | - Zhiyin Li
- Department of Basic Sciences, Touro University College of Medicine, Henderson, NV 89014, USA
| | - Marzia Pucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Denis Corbeil
- Tissue Engineering Laboratories, Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Aurelio Lorico
- Department of Basic Sciences, Touro University College of Medicine, Henderson, NV 89014, USA
| |
Collapse
|
26
|
Forster S, Radpour R. Molecular Impact of the Tumor Microenvironment on Multiple Myeloma Dissemination and Extramedullary Disease. Front Oncol 2022; 12:941437. [PMID: 35847862 PMCID: PMC9284036 DOI: 10.3389/fonc.2022.941437] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is the most common malignant monoclonal disease of plasma cells. Aside from classical chemotherapy and glucocorticoids, proteasome inhibitors, immunomodulatory agents and monoclonal antibodies are used in the current treatment scheme of MM. The tumor microenvironment (TME) plays a fundamental role in the development and progression of numerous solid and non-solid cancer entities. In MM, the survival and expansion of malignant plasma cell clones heavily depends on various direct and indirect signaling pathways provided by the surrounding bone marrow (BM) niche. In a number of MM patients, single plasma cell clones lose their BM dependency and are capable to engraft at distant body sites or organs. The resulting condition is defined as an extramedullary myeloma (EMM). EMMs are highly aggressive disease stages linked to a dismal prognosis. Emerging literature demonstrates that the dynamic interactions between the TME and malignant plasma cells affect myeloma dissemination. In this review, we aim to summarize how the cellular and non-cellular BM compartments can promote plasma cells to exit their BM niche and metastasize to distant intra-or extramedullary locations. In addition, we list selected therapy concepts that directly target the TME with the potential to prevent myeloma spread.
Collapse
Affiliation(s)
- Stefan Forster
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ramin Radpour
- Tumor Immunology, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- *Correspondence: Ramin Radpour,
| |
Collapse
|
27
|
Overview and Update on Extracellular Vesicles: Considerations on Exosomes and Their Application in Modern Medicine. BIOLOGY 2022; 11:biology11060804. [PMID: 35741325 PMCID: PMC9220244 DOI: 10.3390/biology11060804] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 12/11/2022]
Abstract
In recent years, there has been a rapid growth in the knowledge of cell-secreted extracellular vesicle functions. They are membrane enclosed and loaded with proteins, nucleic acids, lipids, and other biomolecules. After being released into the extracellular environment, some of these vesicles are delivered to recipient cells; consequently, the target cell may undergo physiological or pathological changes. Thus, extracellular vesicles as biological nano-carriers, have a pivotal role in facilitating long-distance intercellular communication. Understanding the mechanisms that mediate this communication process is important not only for basic science but also in medicine. Indeed, extracellular vesicles are currently seen with immense interest in nanomedicine and precision medicine for their potential use in diagnostic, prognostic, and therapeutic applications. This paper aims to summarize the latest advances in the study of the smallest subtype among extracellular vesicles, the exosomes. The article is divided into several sections, focusing on exosomes' nature, characteristics, and commonly used strategies and methodologies for their separation, characterization, and visualization. By searching an extended portion of the relevant literature, this work aims to give a quick outline of advances in exosomes' extensive nanomedical applications. Moreover, considerations that require further investigations before translating them to clinical applications are summarized.
Collapse
|
28
|
ALCAM/CD166 Is Involved in the Binding and Uptake of Cancer-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23105753. [PMID: 35628559 PMCID: PMC9143639 DOI: 10.3390/ijms23105753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) and ovarian cancer (OvC) patients frequently develop peritoneal metastasis, a condition associated with a very poor prognosis. In these cancers, tumor-derived extracellular vesicles (EVs) cause immunosuppression, facilitate the direct attachment and invasion of cancer cells through the mesothelium, induce the conversion of peritoneal mesothelial cells (PMCs) into cancer-associated fibroblasts (CAFs) and transfer a more aggressive phenotype amongst cancer cells. Although the promoting role of EVs in CRC and OvC peritoneal metastasis is well established, the specific molecules that mediate the interactions between tumor-derived EVs and immune and non-immune target cells remain elusive. Here, we employed the SKOV-3 (ovarian adenocarcinoma) and Colo-320 (colorectal adenocarcinoma) human cell lines as model systems to study the interactions and uptake of EVs produced by ovarian carcinoma and colorectal carcinoma cells, respectively. We established that the adhesion molecule ALCAM/CD166 is involved in the interaction of cancer-derived EVs with recipient cancer cells (a process termed “EV binding” or “EV docking”) and in their subsequent uptake by these cells. The identification of ALCAM/CD166 as a molecule mediating the docking and uptake of CRC and OvC-derived EVs may be potentially exploited to block the peritoneal metastasis cascade promoted by EVs in CRC and OvC patients.
Collapse
|
29
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
30
|
Chen X, Wan Z, Yang L, Song S, Fu Z, Tang K, Chen L, Song Y. Exosomes derived from reparative M2-like macrophages prevent bone loss in murine periodontitis models via IL-10 mRNA. J Nanobiotechnology 2022; 20:110. [PMID: 35248085 PMCID: PMC8898524 DOI: 10.1186/s12951-022-01314-y] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Periodontitis is characterized by progressive inflammation and alveolar bone loss resulting in tooth loss finally. Macrophages including pro-inflammatory M1-like macrophages and reparative M2-like macrophages play a vital role in inflammation and tissue homeostasis in periodontitis. Among them, reparative M2-like macrophages have been shown to promote tissue repair and prevent bone loss. However, the mechanism of reparative M2 macrophages-induced osteoprotective effect remains elusive.
Results
Exosomes from reparative M2-like macrophages (M2-Exos) were isolated and identified successfully. M2-Exos could promote bone marrow stromal cells (BMSCs) osteogenic differentiation while suppressing bone marrow derived macrophage (BMDM) osteoclast formation, and prohibit pathological alveolar bone resorption because of the intercellular communication via exosomes. High expression level of IL-10 mRNA was detected not only in reparative M2-like macrophages but also in M2-Exos. Meanwhile, IL-10 expression level in BMSCs or BMDM was also upregulated significantly after co-culturing with M2-Exos in a concentration-dependent manner. In vitro, recombinant IL-10 proteins had the ability to selectively promote osteogenic differentiation of BMSCs and hinder osteoclast differentiation of BMDM. Moreover, after treatment with M2-Exos and IL-10R antibody together, the capacity of promoting osteogenesis and suppressing osteoclastogenesis of M2-Exos was significantly reversed. In vivo experiments further showed that M2-Exos reduced alveolar bone resorption in mice with periodontitis via IL-10/IL-10R pathway.
Conclusion
In conclusion, our results demonstrate that the reparative M2-like macrophages could promote osteogenesis while inhibiting osteoclastogenesis in vitro as well as protect alveolar bone against resorption in vivo significantly. M2-Exos could upregulate the IL-10 cytokines expression of BMSCs and BMDM via delivering exosomal IL-10 mRNA to cells directly, leading to activation of the cellular IL-10/IL-10R pathway to regulate cells differentiation and bone metabolism. These results might partly account for the mechanism of osteoprotective effect of reparative M2-like macrophages and provide a novel perspective and a potential therapeutic approach on improving alveolar resorption by M2-Exos.
Graphical Abstract
Collapse
|
31
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
32
|
Chang LC, Chiu HM, Wu MS, Shen TL. The Role of Small Extracellular Vesicles in the Progression of Colorectal Cancer and Its Clinical Applications. Int J Mol Sci 2022; 23:1379. [PMID: 35163305 PMCID: PMC8835972 DOI: 10.3390/ijms23031379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and a longstanding critical challenge for public health. Screening has been suggested to effectively reduce both the incidence and mortality of CRC. However, the drawback of the current screening modalities, both stool-based tests and colonoscopies, is limited screening adherence, which reduces the effectiveness of CRC screening. Blood tests are more acceptable than stool tests or colonoscopy as a first-line screening approach. Therefore, identifying blood biomarkers for detecting CRC and its precancerous neoplasms is urgently needed to fulfill the unmet clinical need. Currently, many kinds of blood contents, such as circulating tumor cells, circulating tumor nucleic acids, and extracellular vesicles, have been investigated as biomarkers for CRC detection. Among these, small extracellular vesicles (sEVs) have been demonstrated to detect CRC effectively in recent reports. sEVs enable intercellular shuttling-for instance, trafficking between recipient cancer cells and stromal cells-which can affect tumor initiation, proliferation, angiogenesis, immune regulation; metastasis, the cancer-specific molecules, such as proteins, microRNAs, long noncoding RNAs, and circular RNAs, loaded into cancer-derived sEVs may serve as biomarkers for the detection of cancers, including CRC. Indeed, accumulating evidence has shown that nucleic acids and proteins contained in CRC-derived sEVs are effective as blood biomarkers for CRC detection. However, investigations of the performance of sEVs for diagnosing CRC in clinical trials remains limited. Thus, the effectiveness of sEV biomarkers for diagnosing CRC needs further validation in clinical trials.
Collapse
Affiliation(s)
- Li-Chun Chang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
- Health Management Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Han-Mo Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
- Health Management Center, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; (L.-C.C.); (H.-M.C.); (M.-S.W.)
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 100, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 100, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
33
|
Decoding Single Cell Morphology in Osteotropic Breast Cancer Cells for Dissecting Their Migratory, Molecular and Biophysical Heterogeneity. Cancers (Basel) 2022; 14:cancers14030603. [PMID: 35158871 PMCID: PMC8833404 DOI: 10.3390/cancers14030603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer. High-resolution microscopy revealed a heterogeneous and specific spectrum of single cell morphologies in bone-seeking cells, which correlated with differential migration and stiffness. While parental MDA-MB-231 cells showed long and dynamic membrane protrusions and were enriched in motile cells with continuous and mesenchymal cell migration, bone-seeking cells appeared with discontinuous mesenchymal or amoeboid-like migration. Although non-responsive to CXCL12, bone-seeking cells responded to epidermal growth factor with a morphotype shift and differential expression of genes controlling cell shape and directional migration. Hence, single cell morphology encodes the molecular, migratory and biophysical architecture of breast cancer cells and is specifically altered among osteotropic phenotypes. Quantitative morpho-profiling could aid in dissecting breast cancer heterogeneity and in refining clinically relevant intrinsic breast cancer subtypes.
Collapse
|
34
|
Ruivo CF, Bastos N, Adem B, Batista I, Duraes C, Melo CA, Castaldo SA, Campos‐Laborie F, Moutinho-Ribeiro P, Morão B, Costa-Pinto A, Silva S, Osorio H, Ciordia S, Costa JL, Goodrich D, Cavadas B, Pereira L, Kouzarides T, Macedo G, Maio R, Carneiro F, Cravo M, Kalluri R, Machado JC, Melo SA. Extracellular Vesicles from Pancreatic Cancer Stem Cells Lead an Intratumor Communication Network (EVNet) to fuel tumour progression. Gut 2022; 71:gutjnl-2021-324994. [PMID: 35012996 PMCID: PMC9271144 DOI: 10.1136/gutjnl-2021-324994] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Intratumor heterogeneity drives cancer progression and therapy resistance. However, it has yet to be determined whether and how subpopulations of cancer cells interact and how this interaction affects the tumour. DESIGN We have studied the spontaneous flow of extracellular vesicles (EVs) between subpopulations of cancer cells: cancer stem cells (CSC) and non-stem cancer cells (NSCC). To determine the biological significance of the most frequent communication route, we used pancreatic ductal adenocarcinoma (PDAC) orthotopic models, patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMMs). RESULTS We demonstrate that PDAC tumours establish an organised communication network between subpopulations of cancer cells using EVs called the EVNet). The EVNet is plastic and reshapes in response to its environment. Communication within the EVNet occurs preferentially from CSC to NSCC. Inhibition of this communication route by impairing Rab27a function in orthotopic xenographs, GEMMs and PDXs is sufficient to hamper tumour growth and phenocopies the inhibition of communication in the whole tumour. Mechanistically, we provide evidence that CSC EVs use agrin protein to promote Yes1 associated transcriptional regulator (YAP) activation via LDL receptor related protein 4 (LRP-4). Ex vivo treatment of PDXs with antiagrin significantly impairs proliferation and decreases the levels of activated YAP.Patients with high levels of agrin and low inactive YAP show worse disease-free survival. In addition, patients with a higher number of circulating agrin+ EVs show a significant increased risk of disease progression. CONCLUSION PDAC tumours establish a cooperation network mediated by EVs that is led by CSC and agrin, which allows tumours to adapt and thrive. Targeting agrin could make targeted therapy possible for patients with PDAC and has a significant impact on CSC that feeds the tumour and is at the centre of therapy resistance.
Collapse
Affiliation(s)
- Carolina F Ruivo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Nuno Bastos
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Barbara Adem
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ines Batista
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- ICBAS Instituto de Ciencias Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Cecilia Duraes
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Stephanie A Castaldo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Department of Oncology, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | | | - Pedro Moutinho-Ribeiro
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | | | - Ana Costa-Pinto
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Soraia Silva
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osorio
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | - Sergio Ciordia
- Proteomics Facility, Spanish National Center for Biotechnology, Madrid, Spain
| | - Jose Luis Costa
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | | | - Bruno Cavadas
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Luisa Pereira
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Guilherme Macedo
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Rui Maio
- Hospital Beatriz Ângelo, Loures, Portugal
- Hospital da Luz, Lisbon, Portugal
- NOVA Medical School, Lisbon, Portugal
| | - Fatima Carneiro
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
- CHUSJ Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Marília Cravo
- Hospital da Luz, Lisbon, Portugal
- FMUL Faculty of Medicine University of Lisbon, Lisbon, Portugal
| | - Raghu Kalluri
- Cancer Biology, University Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jose Carlos Machado
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| | - Sonia A Melo
- i3S Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- FMUP Faculty of Medicine University of Porto, Porto, Portugal
| |
Collapse
|
35
|
Wang K, Li Y, Ren C, Wang Y, He W, Jiang Y. Extracellular Vesicles as Innovative Treatment Strategy for Amyotrophic Lateral Sclerosis. Front Cell Dev Biol 2021; 9:754630. [PMID: 34858980 PMCID: PMC8632491 DOI: 10.3389/fcell.2021.754630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 12/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron degenerative disease, and it is hard to diagnose in the early stage, and treatment means are limited, and the treatment effect is unsatisfactory. Therefore, exploring a new effective treatment strategy is urgently needed for ALS patients. Extracellular vesicles (EVs) are a heterogeneous group of natural membrane vesicles containing many bioactive substances, and they play important roles in the paracrine pathway and exhibit neuroprotection effects. A growing body of evidence shows that EVs have great application potential in diagnosis, treatment, and drug delivery in ALS, and they represent an innovative treatment strategy for ALS. In this review, we will briefly introduce the biogenesis of EVs and focus on discussing the role of EVs in ALS treatment to further enrich and boost the development of EVs as an innovative treatment strategy for ALS.
Collapse
Affiliation(s)
- Ke Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yu Li
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chao Ren
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yongjing Wang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wenshan He
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
36
|
Graziani V, Rodriguez-Hernandez I, Maiques O, Sanz-Moreno V. The amoeboid state as part of the epithelial-to-mesenchymal transition programme. Trends Cell Biol 2021; 32:228-242. [PMID: 34836782 DOI: 10.1016/j.tcb.2021.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023]
Abstract
Cell migration is essential for many biological processes, while abnormal cell migration is characteristic of cancer cells. Epithelial cells become motile by undergoing epithelial-to-mesenchymal transition (EMT), and mesenchymal cells increase migration speed by adopting amoeboid features. This review highlights how amoeboid behaviour is not merely a migration mode but rather a cellular state - within the EMT spectra - by which cancer cells survive, invade and colonise challenging microenvironments. Molecular biomarkers and physicochemical triggers associated with amoeboid behaviour are discussed, including an amoeboid associated tumour microenvironment. We reflect on how amoeboid characteristics support metastasis and how their liabilities could turn into therapeutic opportunities.
Collapse
Affiliation(s)
- Vittoria Graziani
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | | |
Collapse
|
37
|
Pucci M, Raimondo S, Urzì O, Moschetti M, Di Bella MA, Conigliaro A, Caccamo N, La Manna MP, Fontana S, Alessandro R. Tumor-Derived Small Extracellular Vesicles Induce Pro-Inflammatory Cytokine Expression and PD-L1 Regulation in M0 Macrophages via IL-6/STAT3 and TLR4 Signaling Pathways. Int J Mol Sci 2021; 22:12118. [PMID: 34829995 PMCID: PMC8621495 DOI: 10.3390/ijms222212118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor-associated macrophages play a key role in promoting tumor progression by exerting an immunosuppressive phenotype associated with the expression of programmed cell death ligand 1 (PD-L1). It is well known that tumor-derived small extracellular vesicles (SEVs) affect the tumor microenvironment, influencing TAM behavior. The present study aimed to examine the effect of SEVs derived from colon cancer and multiple myeloma cells on macrophage functions. Non-polarized macrophages (M0) differentiated from THP-1 cells were co-cultured with SEVs derived from a colorectal cancer (CRC) cell line, SW480, and a multiple myeloma (MM) cell line, MM1.S. The expression of PD-L1, interleukin-6 (IL-6), and other inflammatory cytokines as well as of the underlying molecular mechanisms were evaluated. Our results indicate that SEVs can significantly upregulate the expressions of PD-L1 and IL-6 at both the mRNA and protein levels and can activate the STAT3 signaling pathway. Furthermore, we identified the TLR4/NF-kB pathway as a convergent mechanism for SEV-mediated PD-L1 expression. Overall, these preliminary data suggest that SEVs contribute to the formation of an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Marzia Pucci
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Stefania Raimondo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Ornella Urzì
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Marta Moschetti
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Maria Antonietta Di Bella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research, 90133 Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research, 90133 Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D), University of Palermo, 90133 Palermo, Italy; (M.P.); (S.R.); (O.U.); (M.M.); (M.A.D.B.); (A.C.); (N.C.); (M.P.L.M.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| |
Collapse
|
38
|
Extracellular Vesicles in Airway Homeostasis and Pathophysiology. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11219933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The epithelial–mesenchymal trophic unit (EMTU) is a morphofunctional entity involved in the maintenance of the homeostasis of airways as well as in the pathogenesis of several diseases, including asthma and chronic obstructive pulmonary disease (COPD). The “muco-microbiotic layer” (MML) is the innermost layer of airways made by microbiota elements (bacteria, viruses, archaea and fungi) and the surrounding mucous matrix. The MML homeostasis is also crucial for maintaining the healthy status of organs and its alteration is at the basis of airway disorders. Nanovesicles produced by EMTU and MML elements are probably the most important tool of communication among the different cell types, including inflammatory ones. How nanovesicles produced by EMTU and MML may affect the airway integrity, leading to the onset of asthma and COPD, as well as their putative use in therapy will be discussed here.
Collapse
|
39
|
Fontana S, Mauceri R, Novara ME, Alessandro R, Campisi G. Protein Cargo of Salivary Small Extracellular Vesicles as Potential Functional Signature of Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:11160. [PMID: 34681822 PMCID: PMC8539015 DOI: 10.3390/ijms222011160] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023] Open
Abstract
The early diagnosis of oral squamous cell carcinoma (OSCC) is still an investigative challenge. Saliva has been proposed as an ideal diagnostic medium for biomarker detection by mean of liquid biopsy technique. The aim of this pilot study was to apply proteomic and bioinformatic strategies to determine the potential use of saliva small extracellular vesicles (S/SEVs) as a potential tumor biomarker source. Among the twenty-three enrolled patients, 5 were free from diseases (OSCC_FREE), 6 were with OSCC without lymph node metastasis (OSCC_NLNM), and 12 were with OSCC and lymph node metastasis (OSCC_LNM). The S/SEVs from patients of each group were pooled and properly characterized before performing their quantitative proteome comparison based on the SWATH_MS (Sequential Window Acquisition of all Theoretical Mass Spectra) method. The analysis resulted in quantitative information for 365 proteins differentially characterizing the S/SEVs of analyzed clinical conditions. Bioinformatic analysis of the proteomic data highlighted that each S/SEV group was associated with a specific cluster of enriched functional network terms. Our results highlighted that protein cargo of salivary small extracellular vesicles defines a functional signature, thus having potential value as novel predict biomarkers for OSCC.
Collapse
Affiliation(s)
- Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, 98124 Messina, Italy
- Department of Dental Surgery, Faculty of Dental Surgery, University of Malta, 2090 Msida, Malta
| | - Maria Eugenia Novara
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (M.E.N.); (R.A.)
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), 90146 Palermo, Italy
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (R.M.); (G.C.)
| |
Collapse
|
40
|
Crosas-Molist E, Samain R, Kohlhammer L, Orgaz J, George S, Maiques O, Barcelo J, Sanz-Moreno V. RhoGTPase Signalling in Cancer Progression and Dissemination. Physiol Rev 2021; 102:455-510. [PMID: 34541899 DOI: 10.1152/physrev.00045.2020] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.
Collapse
Affiliation(s)
- Eva Crosas-Molist
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Leonie Kohlhammer
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jose Orgaz
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.,Instituto de Investigaciones Biomédicas 'Alberto Sols', CSIC-UAM, 28029, Madrid, Spain
| | - Samantha George
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
41
|
Santos MF, Rappa G, Karbanová J, Fontana S, Bella MAD, Pope MR, Parrino B, Cascioferro SM, Vistoli G, Diana P, Cirrincione G, Arena GO, Woo G, Huang K, Huynh T, Moschetti M, Alessandro R, Corbeil D, Lorico A. Itraconazole inhibits nuclear delivery of extracellular vesicle cargo by disrupting the entry of late endosomes into the nucleoplasmic reticulum. J Extracell Vesicles 2021; 10:e12132. [PMID: 34429859 PMCID: PMC8363911 DOI: 10.1002/jev2.12132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pathological conditions, including the induction of pro-metastatic traits, but it is not yet known how and where functional cargoes of EVs are delivered to their targets in host cell compartments. We have described that after endocytosis, EVs reach Rab7+ late endosomes and a fraction of these enter the nucleoplasmic reticulum and transport EV biomaterials to the host cell nucleoplasm. Their entry therein and docking to outer nuclear membrane occur through a tripartite complex formed by the proteins VAP-A, ORP3 and Rab7 (VOR complex). Here, we report that the antifungal compound itraconazole (ICZ), but not its main metabolite hydroxy-ICZ or ketoconazole, disrupts the binding of Rab7 to ORP3-VAP-A complexes, leading to inhibition of EV-mediated pro-metastatic morphological changes including cell migration behaviour of colon cancer cells. With novel, smaller chemical drugs, inhibition of the VOR complex was maintained, although the ICZ moieties responsible for antifungal activity and interference with intracellular cholesterol distribution were removed. Knowing that cancer cells hijack their microenvironment and that EVs derived from them determine the pre-metastatic niche, small-sized inhibitors of nuclear transfer of EV cargo into host cells could find cancer therapeutic applications, particularly in combination with direct targeting of cancer cells.
Collapse
Affiliation(s)
- Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Germana Rappa
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Jana Karbanová
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | | | | | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Stella Maria Cascioferro
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Giulio Vistoli
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoMilanItaly
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Goffredo O. Arena
- Department of SurgeryMcGill UniversityMontréalQuébecCanada
- Fondazione Istituto G. GiglioCefalùItaly
| | - Gyunghwi Woo
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Kevin Huang
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Tony Huynh
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
- Institute for Biomedical Research and Innovation (IRIB)National Research Council (CNR)PalermoItaly
| | - Denis Corbeil
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
- Mediterranean Institute of OncologyViagrandeItaly
| |
Collapse
|
42
|
Abdouh M, Tabah R, Arena V, Arena M, Gao ZH, Lorico A, Arena GO. Oncosuppressor-Mutated Cell-Based Diagnostic Platform for Liquid Biopsy Diagnoses Benign Head and Neck Masses and Predicts Malignancy in Thyroid Nodules: Results from a Consecutive Cohort of Patients. Eur Thyroid J 2021; 10:285-294. [PMID: 34395300 PMCID: PMC8314779 DOI: 10.1159/000516421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We reported that a novel oncosuppressor-mutated cell (OMC)-based platform has the potential for early cancer detection in healthy individuals and for identification of cancer patients at risk of developing metachronous metastases. OBJECTIVE Herein, we sought to determine the diagnostic accuracy of this novel OMC-based platform in a consecutive cohort of patients operated for suspicious head and neck masses. METHODS OMCs (BRCA1-deficient fibroblasts) were exposed to blood serum from patients with head and neck nodules before surgical removal. These cells were analyzed for their proliferation and survival. Treated OMCs were inoculated subcutaneously in NOD/SCID mice, and tumor growth was monitored over time. RESULTS OMCs exposed to serum from patients with malignant lesions displayed increased proliferation compared to those exposed to serum from patients with benign lesions. Only OMCs exposed to serum from patients diagnosed with malignant thyroid neoplasia generated a cancerous mass. The sensitivity of the test was 92%, with only 1 false negative out of 34 patients. Immunohistochemical staining showed that the cancerous masses were poorly differentiated adenocarcinomas with high proliferative index. CONCLUSIONS These data show that liquid biopsy combined with an OMC-based in vivo platform has the potential to diagnose benign head and neck masses and predict whether a thyroid nodule is malignant. These results strengthen the concept that OMCs can be used to detect circulating malignant factors in cancer patients.
Collapse
Affiliation(s)
- Mohamed Abdouh
- Cancer Research Program, McGill University Health Centre-Research Institute, Montreal, Québec, Canada
| | - Roger Tabah
- Department of Surgery and Department of Oncology, McGill University Health Centre, Montreal, Québec, Canada
| | - Vincenzo Arena
- Department of Obstetrics and Gynecology, Santo Bambino Hospital, Catania, Italy
| | - Manuel Arena
- Fondazione Istituto G. Giglio Cefalù, Pisciotto, Italy
| | - Zu-hua Gao
- Department of Pathology, McGill University Health Centre-Research Institute, Montreal, Québec, Canada
| | - Aurelio Lorico
- College of Medicine, Touro University Nevada, Henderson, Nevada, USA
- Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | - Goffredo Orazio Arena
- Fondazione Istituto G. Giglio Cefalù, Pisciotto, Italy
- Istituto Oncologico del Mediterraneo, Viagrande, Italy
- Department of Surgery, McGill University, St. Mary Hospital, Montreal, Québec, Canada
- *Goffredo Orazio Arena,
| |
Collapse
|
43
|
Zhu D, Fang H, Kusuma GD, Schwab R, Barabadi M, Chan ST, McDonald H, Leong CM, Wallace EM, Greening DW, Lim R. Impact of chemically defined culture media formulations on extracellular vesicle production by amniotic epithelial cells. Proteomics 2021; 21:e2000080. [PMID: 34081834 DOI: 10.1002/pmic.202000080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
The therapeutic properties of cell derived extracellular vesicles (EVs) make them promising cell-free alternative to regenerative medicine. However, clinical translation of this technology relies on the ability to manufacture EVs in a scalable, reproducible, and cGMP-compliant manner. To generate EVs in sufficient quantity, a critical step is the selection and development of culture media, where differences in formulation may influence the EV manufacturing process. In this study, we used human amniotic epithelial cells (hAECs) as a model system to explore the effect of different formulations of chemically defined, commercially sourced media on EV production. Here, we determined that cell viability and proliferation rate are not reliable quality indicators for EV manufacturing. The levels of tetraspanins and epitope makers of EVs were significantly impacted by culture media formulations. Mass spectrometry-based proteomic profiling revealed proteome composition of hAEC-EVs and the influence of media formulations on composition of EV proteome. This study has revealed critical aspects including cell viability and proliferation rate, EV yield, and tetraspanins, surface epitopes and proteome composition of EVs influenced by media formulations, and further insight into standardised EV production culture media that should be considered in clinical-grade scalable EV manufacture for generation of therapeutic EVs.
Collapse
Affiliation(s)
- Dandan Zhu
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Gina D Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Renate Schwab
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Hannah McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Cheng Mee Leong
- Thermo Fisher Scientific Australia Pty Ltd, Scoresby, Victoria, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.,Central Clinical School, Monash University, Clayton, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
44
|
Wang LF, Lee CH, Liang SS, Hung CC, Wu YR, Chien CY, Lee CH, Chen JYF. Mucin 5AC is significantly upregulated in exosomes from the nasal lavage fluid and may promote the expression of COX-2, VEGF and MMP-9: an implication in nasal polyp pathogenesis. Rhinology 2021; 59:328-336. [PMID: 34091656 DOI: 10.4193/rhin20.564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Exosomes are critical mediators of intercellular communication and could be involved in many human diseases; however, little is known about the role of exosomes in nasal polyps (NP). METHODS Exosomes in nasal lavage fluids (NLF) were isolated by ultracentrifugation. Exosome identity was validated by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM) and specific exosomal markers. The exosome proteome was revealed by LC-MS/MS, and the expression of the candidate exosomal protein, mucin 5AC, was confirmed by Western blot analysis and immunohistochemistry (IHC). Cellular uptake of the exosomes was monitored by fluorescence confocal microscopy and the ensuing effects on COX-2, VEGF and MMP-2/MMP-9 were determined by Western blotting, ELISA and gelatin zymography, respectively. RESULTS Mass spectrometry analysis and subsequent verification by Western blotting identified that mucin 5AC was significantly upregulated in exosomes from NLFs of NP patients. Moreover, the expression of mucin 5AC was increased in the tissue specimens of the NP patients. Functional assays suggest that the mucin 5 AC-enriched exosomes could be effectively taken up by chronic rhinosinusitis without NP (CRSsNP)-derived fibroblasts, the control cells, resulting in a significant increase in the expression of COX-2, VEGF and MMP-9. CONCLUSIONS Mucin 5AC, the major airway mucin, cannot only be carried and transferred by nasal exosomes, but may also promote tissue remodeling and angiogenesis and thus could be a potential therapeutic target of NP.
Collapse
Affiliation(s)
- L-F Wang
- Department of Otolaryngology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - C-H Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - S-S Liang
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - C-C Hung
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Y-R Wu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - C-Y Chien
- Department of Otolaryngology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Otolaryngology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - C-H Lee
- National Yujing Senior Vocational School of Technology and Commerce, Tainan, Taiwan
| | - J Y-F Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
45
|
Shen X, Wang C, Zhu H, Wang Y, Wang X, Cheng X, Ge W, Lu W. Exosome-mediated transfer of CD44 from high-metastatic ovarian cancer cells promotes migration and invasion of low-metastatic ovarian cancer cells. J Ovarian Res 2021; 14:38. [PMID: 33627162 PMCID: PMC7905574 DOI: 10.1186/s13048-021-00776-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 01/18/2023] Open
Abstract
Objective To investigate the detailed roles and mechanisms of tumor-derived exosomes in progression and metastasis of ovarian cancer in vitro. Methods Exosomes were isolated by differential centrifugation method; the morphology, size and biological markers of exosomes were separately defined by transmission electron microscopy, nanoS90 and Western blotting; Trans-well chambers assay was used to assess the ability of migration and invasion of recipient cells uptaking the exosomes from HO8910PM cells. The downstream molecule was screened by mass spectrometry.CD44 was identified by western blotting and the function of CD44 was identified by trans-well chambers assay and CCK8 assay. Results Exosomes derived from HO8910PM cells could be transferred to HO8910 cells and promote cell migration and invasion in the recipient cells of ovarian cancer. And CD44 could be transferred to the HO8910 cells through exosomes from HO8910PM cells and influence the migration and invasion ability of HO8910 cells. Conclusion The more aggressive subpopulation can transfer a metastatic phenotype to the less one via secreting exosomes within a heterogeneous tumor. CD44 may be a potential therapeutic approach for ovarian cancer.
Collapse
Affiliation(s)
- Xiameng Shen
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China
| | - Conghui Wang
- Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Huihui Zhu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China
| | - Yaping Wang
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China
| | - Xinyu Wang
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China.,Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiaodong Cheng
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China.,Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Wanzhong Ge
- Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital School of Medicine Zhejiang University, No. 1 Xueshi Road, Hangzhou, 310006, China. .,Women's Reproductive Health Research Laboratory of Zhejiang Province, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China. .,Zhejiang University Cancer Center, Hangzhou, China.
| |
Collapse
|
46
|
Zhang Y, Chen B, Xu N, Xu P, Lin W, Liu C, Huang P. Exosomes Promote the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manner Through Up-Regulating the Heme Oxygenase-1. Int J Nanomedicine 2021; 16:315-327. [PMID: 33469288 PMCID: PMC7811443 DOI: 10.2147/ijn.s281710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/28/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is still considered incurable, even though the mechanisms of CRPC had been extensively researched. Studies have demonstrated that exosomes in the tumor microenvironment contribute to prostate cancer development and progression. However, the role of exosomes in the process of CRPC progression has not yet been determined. METHODS Co-culturing and exosome treatment assays combined with in vitro and in vivo assays were performed to determine the function of exosomes in the transformation of androgen-dependent prostate cancer (ADPC) cells into androgen-independent cells. Then, the mRNA expression profiles of ADPC cells and ADPC cells co-cultured with androgen-independent prostate cancer (AIPC) cell-derived exosomes were studied using microarrays. After silencing the expression of heme oxygenase-1 (HMOX1), Western blotting, quantitative real-time PCR, immunohistochemistry (IHC) studies, and MTS assay were used to confirm the mechanisms of exosome participation in CRPC progression. RESULTS The results showed that ADPC cells acquired tolerance for androgen deprivation due to the exosome-mediated communication between cells. AIPC cell-derived exosomes promoted the transformation of ADPC cells into androgen-independent cells in vivo and in vitro. Microarray analysis revealed that HMOX1 in ADPC cells was up-regulated after treatment with AIPC cell-derived exosomes. Further results showed that HMOX1 is overexpressed in human AIPC specimens and protects ADPC cells from androgen deprivation. CONCLUSIONS Our findings revealed that exosomes contribute to CRPC progression via promoting the transition of prostate cancer cells into an androgen-independent growth stage by activating HMOX1.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Binshen Chen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Naijin Xu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Peng Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Wenfeng Lin
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chunxiao Liu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Peng Huang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangzhou Key Laboratory of Inflammatory and Immune Diseases, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
47
|
Dad HA, Gu TW, Zhu AQ, Huang LQ, Peng LH. Plant Exosome-like Nanovesicles: Emerging Therapeutics and Drug Delivery Nanoplatforms. Mol Ther 2020; 29:13-31. [PMID: 33278566 DOI: 10.1016/j.ymthe.2020.11.030] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/09/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022] Open
Abstract
Plant exosome-like nanovesicles, being innately replete with bioactive lipids, proteins, RNA, and other pharmacologically active molecules, offer unique morphological and compositional characteristics as natural nanocarriers. Furthermore, their compelling physicochemical traits underpin their modulative role in physiological processes, all of which have fostered the concept that these nanovesicles may be highly proficient in the development of next-generation biotherapeutic and drug delivery nanoplatforms to meet the ever-stringent demands of current clinical challenges. This review systemically deals with various facets of plant exosome-like nanovesicles ranging from their origin and isolation to identification of morphological composition, biological functions, and cargo-loading mechanisms. Efforts are made to encompass their biotherapeutic roles by elucidating their immunological modulating, anti-tumor, regenerative, and anti-inflammatory roles. We also shed light on re-engineering these nanovesicles into robust, innocuous, and non-immunogenic nanovectors for drug delivery through multiple stringent biological hindrances to various targeted organs such as intestine and brain. Finally, recent advances centered around plant exosome-like nanovesicles along with new insights into transdermal, transmembrane and targeting mechanisms of these vesicles are also elucidated. We expect that the continuing development of plant exosome-like nanovesicle-based therapeutic and delivery nanoplatforms will promote their clinical applications.
Collapse
Affiliation(s)
- Haseeb Anwar Dad
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ting-Wei Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Ao-Qing Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Lu-Qi Huang
- National Resource Centre for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.
| |
Collapse
|
48
|
Chatterjee V, Yang X, Ma Y, Wu MH, Yuan SY. Extracellular vesicles: new players in regulating vascular barrier function. Am J Physiol Heart Circ Physiol 2020; 319:H1181-H1196. [PMID: 33035434 PMCID: PMC7792704 DOI: 10.1152/ajpheart.00579.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) have attracted rising interests in the cardiovascular field not only because they serve as serological markers for circulatory disorders but also because they participate in important physiological responses to stress and inflammation. In the circulation, these membranous vesicles are mainly derived from blood or vascular cells, and they carry cargos with distinct molecular signatures reflecting the origin and activation state of parent cells that produce them, thus providing a powerful tool for diagnosis and prognosis of pathological conditions. Functionally, circulating EVs mediate tissue-tissue communication by transporting bioactive cargos to local and distant sites, where they directly interact with target cells to alter their function. Recent evidence points to the critical contributions of EVs to the pathogenesis of vascular endothelial barrier dysfunction during inflammatory response to injury or infection. In this review, we provide a brief summary of the current knowledge on EV biology and advanced techniques in EV isolation and characterization. This is followed by a discussion focusing on the role and mechanisms of EVs in regulating blood-endothelium interactions and vascular permeability during inflammation. We conclude with a translational perspective on the diagnostic and therapeutic potential of EVs in vascular injury or infectious diseases, such as COVID-19.
Collapse
Affiliation(s)
- Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
49
|
He X, Zhong X, Hu Z, Zhao S, Wei P, Li D. An insight into small extracellular vesicles: Their roles in colorectal cancer progression and potential clinical applications. Clin Transl Med 2020; 10:e249. [PMID: 33377655 PMCID: PMC7733319 DOI: 10.1002/ctm2.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of mortality worldwide. Small extracellular vesicles (sEVs) are nano-sized extracellular vesicles containing a variety of bioactive molecules, such as nucleic acids, proteins, lipids, and metabolites. Recent evidence from CRC has revealed that sEVs contribute to tumorigenesis, progression, and drug resistance, and serve as a tool for "liquid biopsy" and a drug delivery system for therapy. In this review, we summarize information about the roles of sEVs in the proliferation, invasion, migration, epithelial-mesenchymal transition, formation of the premetastatic niche, and drug resistance to elucidate the mechanisms governing sEVs in CRC and to identify novel targets for therapy and prognostic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuefeng He
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xinyang Zhong
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Zijuan Hu
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Senlin Zhao
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Ping Wei
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Institute of PathologyFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Dawei Li
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
50
|
Choi JU, Park IK, Lee YK, Hwang SR. The Biological Function and Therapeutic Potential of Exosomes in Cancer: Exosomes as Efficient Nanocommunicators for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21197363. [PMID: 33028046 PMCID: PMC7582692 DOI: 10.3390/ijms21197363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer therapeutics must be delivered to their targets for improving efficacy and reducing toxicity, though they encounter physiological barriers in the tumor microenvironment. They also face limitations associated with genetic instability and dynamic changes of surface proteins in cancer cells. Nanosized exosomes generated from the endosomal compartment, however, transfer their cargo to the recipient cells and mediate the intercellular communication, which affects malignancy progression, tumor immunity, and chemoresistance. In this review, we give an overview of exosomes' biological aspects and therapeutic potential as diagnostic biomarkers and drug delivery vehicles for oncotherapy. Furthermore, we discuss whether exosomes could contribute to personalized cancer immunotherapy drug design as efficient nanocommunicators.
Collapse
Affiliation(s)
- Jeong Uk Choi
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea;
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 322 Seoyang-ro, Hwasun 58128, Korea;
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, 50 Daehak-ro, Chungju, Chungbuk 27469, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-6365
| |
Collapse
|