1
|
Mahmoud AA, Shaaban MAM, Basal WT. Anacyclus pyrethrum enhances fertility in cadmium-intoxicated male rats by improving sperm functions. BMC Complement Med Ther 2024; 24:409. [PMID: 39604977 PMCID: PMC11600599 DOI: 10.1186/s12906-024-04711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Environmental pollutants, particularly heavy metals, have been frequently connected to male infertility. Cadmium was previously shown to reduce male fertility by causing oxidative stress. Anacyclus pyrethrum is a well-known medicinal plant. Most of its parts, notably the roots, have excellent antioxidant and anti-inflammatory properties. The present study investigated the potential ability of Anacyclus pyrethrum to protect male rats against cadmium reproductive toxicity. METHODS Twenty-eight adult Wistar male rats (8 weeks old) weighing (170-200g) were randomly divided into four groups (n = 7): group (1) the control, group (2) was orally administrated with Anacyclus pyrethrum extract (100mg/kg) for 56 consecutive days, group (3) received a single intraperitoneal (IP) injection of cadmium chloride (1mg/kg), and group (4) received a single IP dose of CdCl2 followed by 8 weeks of oral Anacyclus extract treatment. RESULTS Cadmium Cd toxicity resulted in a significant decrease in the concentration of antioxidant enzymes (superoxide dismutase SOD and glutathione peroxidase GPx) in the semen coupled with a significant rise in malondialdehyde MDA level. Consequently, sperm analysis parameters were significantly affected showing decreased motility, viability, concentration and increased morphological aberrations. DNA fragmentation was also detected in the sperms of rats exposed to Cd using comet assay. Serum levels of testosterone T, follicle stimulating hormone FSH, and luteinizing hormone LH were significantly decreased. The mRNA expression levels of sex hormone receptors (FSHR, LHR and AR) in the testis of the Cd exposed rats were significantly decreased. Expression levels of Bax and Bcl2 genes in the sperms of Cd intoxicated rats were also affected shifting the Bax/Bcl2 ratio towards the induction of apoptosis. Co-treatment with the Anacyclus pyrethrum extract restored the oxidative enzymes activities and decreased the formation of lipid peroxidation byproduct, which in turn ameliorated the effect of Cd on sperm parameters, sperm DNA damage, circulating hormone levels, gene expression and apoptosis. These results indicate that Anacyclus pyrethrum could serve as a protective agent against cadmium-induced sperm toxicity. CONCLUSION Taken together, it can be concluded that the antioxidant activities of Anacyclus pyrethrum restored the semen quality and enhanced fertility in Cd-intoxicated male rats.
Collapse
Affiliation(s)
- Aya A Mahmoud
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | | | - Wesam T Basal
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
2
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
3
|
Vana F, Szabo Z, Masarik M, Kratochvilova M. The interplay of transition metals in ferroptosis and pyroptosis. Cell Div 2024; 19:24. [PMID: 39097717 PMCID: PMC11297737 DOI: 10.1186/s13008-024-00127-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/05/2024] Open
Abstract
Cell death is one of the most important mechanisms of maintaining homeostasis in our body. Ferroptosis and pyroptosis are forms of necrosis-like cell death. These cell death modalities play key roles in the pathophysiology of cancer, cardiovascular, neurological diseases, and other pathologies. Transition metals are abundant group of elements in all living organisms. This paper presents a summary of ferroptosis and pyroptosis pathways and their connection to significant transition metals, namely zinc (Zn), copper (Cu), molybdenum (Mo), lead (Pb), cobalt (Co), iron (Fe), cadmium (Cd), nickel (Ni), mercury (Hg), uranium (U), platinum (Pt), and one crucial element, selenium (Se). Authors aim to summarize the up-to-date knowledge of this topic.In this review, there are categorized and highlighted the most common patterns in the alterations of ferroptosis and pyroptosis by transition metals. Special attention is given to zinc since collected data support its dual nature of action in both ferroptosis and pyroptosis. All findings are presented together with a brief description of major biochemical pathways involving mentioned metals and are visualized in attached comprehensive figures.This work concludes that the majority of disruptions in the studied metals' homeostasis impacts cell fate, influencing both death and survival of cells in the complex system of altered pathways. Therefore, this summary opens up the space for further research.
Collapse
Affiliation(s)
- Frantisek Vana
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Zoltan Szabo
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 656 53, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
4
|
Raeeszadeh M, Moradian M, Khademi N, Amiri AA. The Effectiveness of Time in Treatment with Vitamin C and Broccoli Extract on Cadmium Poisoning in Mice: Histological Changes of Testicular Tissue and Cell Apoptotic Index. Biol Trace Elem Res 2024; 202:3278-3292. [PMID: 37821783 DOI: 10.1007/s12011-023-03898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
The growth rate of reproductive system disorders caused by heavy metals is undeniable. The effect of time and interfering compounds are also of paramount importance. The main objective of this study was to compare the effects of broccoli extract and vitamin C in the context of cadmium poisoning on various reproductive parameters in mice, with a specific focus on the influence of time. A total of one hundred and forty-four male mice were randomly assigned to six groups. The control (C) group received only water and a standard diet without any interventions. The Cd group received a single intraperitoneal dose of cadmium chloride at 1.5 mg/kg. The cadmium intervention groups were administered broccoli extract at dosages of 100 mg/kg (Cd + B100), 200 mg/kg (Cd + B200), and 300 mg/kg (Cd + B300), respectively. Additionally, the Cd + VC group was treated with cadmium and vitamin C at 200 mg/kg intraperitoneally for a duration of 28 days. At the end of each week (four stages), five animals were randomly chosen from each group. Epididymal sperm were subjected to analysis for sperm parameters, while testicular tissue sections were examined for histological studies, apoptosis index, and markers of oxidative stress. The influence of time on body and testis weight gain was notably significant in the Cd + B300 and Cd + VC groups (p = 0.001). In all groups, except for Cd + B100, there were marked increases in spermatogenic cell lines and the Johnson coefficient compared to the Cd group (p = 0.001). These changes were particularly pronounced in the Cd + VC and Cd + B300 groups with respect to time (p < 0.001). Furthermore, there was a discernible positive impact of time on sperm count in the high-dose broccoli and vitamin C groups, although this effect did not reach significance in terms of sperm motility and vitality. Over time, the levels of superoxide dismutase (SOD) and catalase (CAT) enzymes increased, while malondialdehyde (MDA) levels decreased in the Cd + VC, Cd + B200, and Cd + B300 groups (p = 0.001). The apoptosis index in testicular tissue reached its highest level in the Cd group and its lowest level in the Cd + B300 and Cd + VC groups during the fourth week (p < 0.05). Linolenic acid, indole, and sulforaphane were identified as the most potent compounds in broccoli during this intervention. Consequently, vitamin C and broccoli extract at a dosage of 300 mg/kg demonstrated significant enhancements in reproductive performance in cases of cadmium poisoning. Overall, the influence of time significantly amplified the process of spermatogenesis and sperm production, with no observable changes in sperm viability and motility.
Collapse
Affiliation(s)
- Mahdieh Raeeszadeh
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran.
| | - Midia Moradian
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Nadia Khademi
- Graduate of Faculty of Veterinary Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Ali Akbar Amiri
- Department of Basic Sciences, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| |
Collapse
|
5
|
Zhang W, Zhang C, Lu D, Nie J, Hu Z, Xian C, He M. The mediation effect of Systemic Immunity Inflammation Index between urinary metals and TOFAT among adults in the NHANES dataset. Sci Rep 2024; 14:14940. [PMID: 38942999 PMCID: PMC11213905 DOI: 10.1038/s41598-024-65925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/25/2024] [Indexed: 06/30/2024] Open
Abstract
Systemic Immune Inflammatory Index (SII) is a novel indicator of inflammation. However, no studies have reported the effect of SII on the association between metals and total fat (TOFAT). We aim to investigate the mediated effect of SII on the relationship between urinary metals and TOFAT in a US adult population. This cross-sectional study was conducted among adults with complete information on SII, urine metal concentrations, and TOFAT from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). Multifactorial logistic regression and restricted cubic splines were used to explore the association between urine metal levels and TOFAT. Furthermore, serial mediation analyses were used to investigate the mediating effect of SII on metals and TOFAT. A total of 3324 subjects were included in this study. After adjusting for confounders, arsenic (As), cadmium (Cd), cobalt (Co), cesium (Cs), inorganic mercury (Hg), molybdenum (Mo), manganese (Mn), lead (Pb), antimony (Sb), and thallium(Tl) had negative decreased trends of odds ratios for TOFAT (all P for trend < 0.05). In the total population, we found that Cd, Co, and Tu were positively associated with SII (β = 29.70, 79.37, and 31.08), whereas As and Hg had a negative association with SII. The mediation analysis showed that SII mediated the association of Co with TOFAT, with the β of the mediating effect being 0.9% (95%CI: 0.3%, 1.6%). Our findings suggested that exposure to As, Cd, and Hg would directly decrease the level of TOFAT. However, Co would increase TOFAT, completely mediated by SII, mainly exerted in females rather than males.
Collapse
Affiliation(s)
- Weipeng Zhang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China.
| | - Cong Zhang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China
| | - Dengqiu Lu
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Junfeng Nie
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Zhumin Hu
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Cuiyao Xian
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| | - Minxing He
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, Guangdong, China
| |
Collapse
|
6
|
Wang TT, Zhu HL, Ouyang KW, Wang H, Luo YX, Zheng XM, Ling Q, Wang KW, Zhang J, Chang W, Lu Q, Zhang YF, Yuan Z, Li H, Xiong YW, Wei T, Wang H. Environmental cadmium inhibits testicular testosterone synthesis via Parkin-dependent MFN1 degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134142. [PMID: 38555669 DOI: 10.1016/j.jhazmat.2024.134142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Low testosterone (T) levels are associated with many common diseases, such as obesity, male infertility, depression, and cardiovascular disease. It is well known that environmental cadmium (Cd) exposure can induce T decline, but the exact mechanism remains unclear. We established a murine model in which Cd exposure induced testicular T decline. Based on the model, we found Cd caused mitochondrial fusion disorder and Parkin mitochondrial translocation in mouse testes. MFN1 overexpression confirmed that MFN1-dependent mitochondrial fusion disorder mediated the Cd-induced T synthesis suppression in Leydig cells. Further data confirmed Cd induced the decrease of MFN1 protein by increasing ubiquitin degradation. Testicular specific Parkin knockdown confirmed Cd induced the ubiquitin-dependent degradation of MFN1 protein through promoting Parkin mitochondrial translocation in mouse testes. Expectedly, testicular specific Parkin knockdown also mitigated testicular T decline. Mito-TEMPO, a targeted inhibitor for mitochondrial reactive oxygen species (mtROS), alleviated Cd-caused Parkin mitochondrial translocation and mitochondrial fusion disorder. As above, Parkin mitochondrial translocation induced mitochondrial fusion disorder and the following T synthesis repression in Cd-exposed Leydig cells. Collectively, our study elucidates a novel mechanism through which Cd induces T decline and provides a new treatment strategy for patients with androgen disorders.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qi Lu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian Wei
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
7
|
Ji H, Fan W, Kakar M, Alajmi RA, Bashir MA, Shakir Y. Effect of cadmium on the regulatory mechanism of steroidogenic pathway of Leydig cells during spermatogenesis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:31-40. [PMID: 37861072 DOI: 10.1002/jez.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Cadmium is a male reproductive toxicant that interacts with a variety of pathogenetic mechanisms. However, the effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis is still ambiguous. Light microscopy, Western blot, immunohistochemistry, immunofluorescence, and quantitative polymerase chain reaction were performed to study the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis. The results indicated that in the control group, Leydig cells showed dynamic immunoreactivity and immunosignaling action with a strong positive significant secretion of 3β-hydroxysteroid hydrogenase (3β-HSD) in the interstitial compartment of the testis. Leydig cells showed a high active regulator mechanism of the steroidogenic pathway with increased the proteins and genes expression level of steroidogenic acute regulatory protein (STAR), cytochrome P450 cholesterol (CYP11A1), cytochrome P450 cholesterol (CYP17A1), 3β-hydroxysteroid hydrogenase (3β-HSD) 17β-hydroxysteroid hydrogenase (17β-HSD), and androgen receptor (AR) that maintained the healthy and vigorous progressive motile spermatozoa. However, on treatment with cadmium, Leydig cells were irregularly dispersed in the interstitial compartment of the testis. Leydig cells showed reduced immunoreactivity and immunosignaling of 3β-HSD protein. Meanwhile, cadmium impaired the regulatory mechanism of the steroidogenic process of the Leydig cells with reduced protein and gene expression levels of STAR, CYP11A1, CYP17A1, 3β-HSD, 17β-HSD, and AR in the testis. Additionally, treatment with cadmium impaired the serum LH, FSH, and testosterone levels in blood as compared to control. This study explores the hazardous effect of cadmium on the regulatory mechanism of the steroidogenic pathway of Leydig cells during spermatogenesis.
Collapse
Affiliation(s)
- HengLi Ji
- Department of Nephrology, Huaian Cancer Hospital, Huai'an, Jiangsu, China
| | - Wei Fan
- Department of Laboratory Medicine, Huaian Cancer Hospital, Huai'an, Jiangsu, China
| | - Mohibullah Kakar
- Faculty of Marine Sciences, Lasbela University of Agriculture Water and Marine sciences, Uthal, Balochistan, Pakistan
| | - Reem Atalla Alajmi
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Amjad Bashir
- Department of Plant Protection, Faculty of Agriculture Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Khafaji SS. Comparing the effects of Cyperus esculentus hydroethanolic extract and Euterpe oleracea on reproductive efficacy against cadmium-induced testicular toxicity in male rats. J Adv Vet Anim Res 2023; 10:685-695. [PMID: 38370884 PMCID: PMC10868703 DOI: 10.5455/javar.2023.j724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 02/20/2024] Open
Abstract
Objective Cadmium chloride (CdCl2) is an environmentally toxic pollutant that can cause reprotoxicity. Cyperus esculentus and Euterpe oleracea are potent antioxidant plants currently used to counteract the action of harmful pollutants. The present experiment was intended to evaluate and comp are the role of C. esculentus hydroethanolic extract (CHE) and E. oleracea in treating the reprotoxicity induced by CdCl2 in rats. Materials and Methods Forty adult male rats (160-210 gm) were allocated into five groups equally. Control group: received 5 ml of normal saline (NS); the other treatment groups were injected with CdCl2 as a single dose for two weeks to induce testicular toxicity. After 14 days, the four groups were treated orally daily for two months as follows: The cadmium group (Cd) received NS, the third group (TC) was administered 800 mg/kg BW of CHE, the fourth group (TO) received 500 mg/kg BW of E. oleracea, and the fifth group (TCO) received CHE with E. oleracea. Results The live sperm and motility, serum testosterone, follicle-stimulating hormone (FSH), testicular superoxide dismutase (SOD), catalase (CAT), steroidogenic acute regulatory protein (StAR), 17β-hydroxysteroid dehydrogenase, and 3β-hydroxysteroid dehydrogenase (3β-HSD) were significantly increased in the TCO, TC, and TO groups compared with the Cd group. Testicular nitric oxide and malondialdehyde were elevated significantly in the Cd group compared to the TC, TO, TCO, and control groups. The fold changes of Fshβ, Lhβ, and Gnrh genes were upregulated in the TCO group compared to the Cd and control groups. Conclusion The combination of CHE with E. oleracea showed improvements in rat testicles affected by cadmium toxicity via upregulated reproductive gene expression and its antioxidant effects.
Collapse
Affiliation(s)
- Sura Safi Khafaji
- Department of Physiology, Biochemistry, and Pharmacology, College of Veterinary Medicine, Al-Qasim Green University, Al-Qasim City, Babylon Province, Ministry of Higher Education and Scientific Research, Iraq
| |
Collapse
|
9
|
Arteaga-Silva M, Limón-Morales O, Bonilla-Jaime H, Vigueras-Villaseñor RM, Rojas-Castañeda J, Hernández-Rodríguez J, Montes S, Hernández-González M, Ríos C. Effects of postnatal exposure to cadmium on male sexual incentive motivation and copulatory behavior: Estrogen and androgen receptors expression in adult brain rat. Reprod Toxicol 2023; 120:108445. [PMID: 37482142 DOI: 10.1016/j.reprotox.2023.108445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
There are numerous evidence showing that cadmium (Cd) is an endocrine disruptor that exerts multiple toxic effects at different reproductive levels, including male sexual behavior (MSB). The effect of early exposure to Cd on sexual incentive motivation (SIM) and MSB in adult stage, and the immunoreactivity of receptors for hormones such as estrogens and androgens in brain regions that are relevant for the SIM and MSB display, have not been studied until now. The present study evaluated the effects of 0.5 and 1 mg/kg CdCl2 from day 1-56 of postnatal life on SIM and MSB in adults rats, as well as serum testosterone concentrations, Cd concentration in blood, testis, and brain areas, and the immunoreactivity in estrogen receptors (ER-α and -β), and androgen receptor (AR) in the olfactory bulbs (OB), medial preoptic area (mPOA), and medial amygdala (MeA). Our results showed that both doses of Cd decreased SIM and MSB, accompanied by low serum concentrations of testosterone. Also, there was a significant reduction in immunoreactivity of ER-α and AR in mPOA, and a significant reduction in AR in MeA on male rats treated with Cd 1 mg/kg. These results show that exposure to high doses of Cd in early postnatal life could alter the correct integration of hormonal signals in the brain areas that regulate and display SIM and MSB in adult male rats.
Collapse
Affiliation(s)
- Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México.
| | - Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco No. 186, Col. Leyes de Reforma 1ª, Sección, Alcaldía Iztapalapa, C.P. 09340, A.P. 55-535, Ciudad de México, México
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Julio Rojas-Castañeda
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Colonia San Lorenzo Huipulco, Tlalpan, CP 14370 Ciudad de México, México
| | - Joel Hernández-Rodríguez
- Cuerpo Académico de Investigación en Salud de la Licenciatura en Quiropráctica (CA-UNEVE-01), Universidad Estatal del Valle de Ecatepec, Estado de México 55210, México
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Lago de Chapala y Calle 16, Aztlán, Reynosa 88740, México
| | - Marisela Hernández-González
- Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Francisco de Quevedo No. 180, Col. Arcos Vallarta, 44130 Guadalajara, Jalisco, México
| | - Camilo Ríos
- Dirección de Investigación, Instituto Nacional de Rehabilitación, Secretaría de Salud, Ciudad de México 14389, México
| |
Collapse
|
10
|
Liang J, Chen D, Xiao Z, Wei S, Liu Y, Wang C, Wang Z, Feng Y, Lei Y, Hu M, Deng J, Wang Y, Zhang Q, Yang Y, Huang Y. Role of miR-300-3p in Leydig cell function and differentiation: A therapeutic target for obesity-related testosterone deficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:879-895. [PMID: 37273781 PMCID: PMC10236194 DOI: 10.1016/j.omtn.2023.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/21/2023] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs) regulate various cellular functions, but their specific roles in the regulation of Leydig cells (LCs) have yet to be fully understood. Here, we found that the expression of miR-300-3p varied significantly during the differentiation from progenitor LCs (PLCs) to adult LCs (ALCs). High expression of miR-300-3p in PLCs inhibited testosterone production and promoted PLC proliferation by targeting the steroidogenic factor-1 (Sf-1) and transcription factor forkhead box O1 (FoxO1) genes, respectively. As PLCs differentiated into ALCs, the miR-300-3p expression level significantly decreased, which promoted testosterone biosynthesis and suppressed proliferation of ALCs by upregulating SF-1 and FoxO1 expression. The LH/METTL3/SMURF2/SMAD2 cascade pathway controlled miR-300-3p expression, in which luteinizing hormone (LH) upregulated SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2) expression through methyltransferase like 3 (METTL3)-mediated Smurf2 N6-methyladenosine modification. The Smurf2 then suppressed miR-300 transcription by inhibiting SMAD family member 2 (SMAD2) binding to the promoter of miR-300. Notably, miR-300-3p was associated with an obesity-related testosterone deficiency in men and the inhibition of miR-300-3p effectively rescued testosterone deficiency in obese mice. These findings suggested that miR-300-3p plays a pivotal role in LC differentiation and function, and could be a promising diagnostic or therapeutic target for obesity-related testosterone deficiency.
Collapse
Affiliation(s)
- Jinlian Liang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Derong Chen
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Ziyan Xiao
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Siying Wei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuan Liu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Chengzhi Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, People’s Republic of China
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Yuqing Feng
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yaling Lei
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Meirong Hu
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jingxian Deng
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yuxin Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Qihao Zhang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
- Department of Pharmacology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
11
|
Chen H, Liu M, Li Q, Zhou P, Huang J, Zhu Q, Li Z, Ge RS. Exposure to dipentyl phthalate in utero disrupts the adrenal cortex function of adult male rats by inhibiting SIRT1/PGC-1α and inducing AMPK phosphorylation. ENVIRONMENTAL TOXICOLOGY 2023; 38:997-1010. [PMID: 36715143 DOI: 10.1002/tox.23743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/23/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Di-n-pentyl phthalate (DPeP) is an endocrine-disrupting phthalate plasticizer. The objective of this study was to investigate the effect of DPeP on adrenocortical function in adult male rats following in utero exposure. DPeP (0, 10, 50, 100, and 500 mg/kg/day) was administered by gavage to pregnant Sprague-Dawley rats from gestational day 14 to 21. The morphology and function of the adrenal cortex in 56-day-old male offspring were studied. DPeP at 100 and 500 mg/kg/day significantly reduced serum aldosterone levels and at 500 mg/kg/day markedly reduced corticosterone and adrenocorticotropic hormone levels. DPeP at 10-500 mg/kg markedly reduced the thickness of zona glomerulosa without affecting the thickness of zona fasciculata. DPeP significantly downregulated the expression of Agtr1a, Mc2r, Scarb1, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, Cyp11b2, Nr5a1, Nr4a2, and Bcl2 genes as well as their proteins. DPeP at 500 mg/kg/day significantly increased phosphorylated AMPK, while DPeP at 100 mg/kg/day and higher doses reduced phosphorylated AKT1 and total SIRT1 level. DPeP at 100 and 500 μM markedly induced reactive oxygen species and apoptosis in H295R cells after 24 h of culture. In conclusion, in utero exposure to DPeP disrupts adrenocortical function of the adult male offspring by (1) increasing AMPK phosphorylation and decreasing AKT1 phosphorylation and SIRT1 levels, (2) reducing adrenocorticotropic hormone levels, and (3) possibly inducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Haiqiong Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Traumatology, The Children's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Miaoqing Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiyao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Pingjiang Zhou
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Huang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongrong Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Combined Protective Effects of Quercetin, Rutin, and Gallic Acid against Cadmium-Induced Testicular Damages in Young-Adult Rats. Andrologia 2023. [DOI: 10.1155/2023/9787664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a toxic metal that damages several tissues of animals and humans including the testis. The ameliorative effects of quercetin (QUE), rutin (RUT), and gallic acid (GAL) at 20 mg kg-1 body weight alone or in combination against testicular injury induced by Cd (24 mg kg-1 body weight) in male Wistar rats were evaluated in this study. Forty-two (42) rats were randomly grouped into six (6) groups: (1) vehicle control group, (2) Cd group, (3) RUT+Cd group, (4) GAL+Cd group, (5) QUE+Cd group, and (6) RUT+GAL+QUE+Cd group. At the end of the oral gavage of the tested chemicals, the rats were sacrificed, blood samples were collected, and testes were harvested and processed for biochemical assays. Cd exposure damaged the testis (smaller epithelium thickness and spermatogenesis index and sloughing of the epithelium); increased lipid peroxidation, glutathione S-transferase activity, and DNA fragmentation; and diminished glutathione reductase activity and serum testosterone level 40 days posttreatment. Treatment with the phenolics separately or in combination attenuated the effect of Cd on serum testosterone, glutathione reductase and glutathione S-transferase activities, lipid peroxidation, and percent fragmented DNA. The increased nitric oxide concentration in the QUE+Cd group was attenuated to control values in the combined (RUT+GAL+QUE+Cd) exposure group. Coadministration of the phenolics appears to have more substantial protective effects than their single effects against Cd-induced testicular DNA damage, glutathione S-transferase activity, and the recovery of testosterone levels and spermatogenesis index. Overall, the tested phenolics can reduce testicular damage more efficiently in their combined form than individual administration.
Collapse
|
13
|
Liang S, Li X, Liu R, Hu J, Li Y, Sun J, Bai W. Malvidin-3- O-Glucoside Ameliorates Cadmium-Mediated Cell Dysfunction in the Estradiol Generation of Human Granulosa Cells. Nutrients 2023; 15:nu15030753. [PMID: 36771459 PMCID: PMC9921828 DOI: 10.3390/nu15030753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) is a frequent environmental pollutant associated with biological toxicity that can harm female reproduction. Anthocyanins have been reported to reduce the toxicity of Cd. In the present study, the protective effects and underlying mechanisms of malvidin-3-O-glucoside (M3G) against the toxicity of Cd on female reproduction in KGN cells (human ovarian granulosa-like tumor cells) were investigated. After treating cells with 10 µmol/L cadmium chloride, the results showed that M3G lessened Cd-induced KGN cell cytotoxicity better than malvidin and malvidin-3,5-O-diglucoside. Additionally, M3G significantly decreased the Cd-induced generation of reactive oxygen species, inhibited the Cd-induced arrest of the G2/M phase of the cell cycle, and increased estradiol (E2) production. According to transcriptomic results, M3G reduced the abnormal expression of genes that responded to estrogen. Additionally, M3G promoted the endogenous synthesis and secretion of E2 by controlling the expression of CYP17A1 and HSD17B7. The current findings indicated that M3G is of great potential to prevent Cd-induced female reproductive impairment as a dietary supplement.
Collapse
Affiliation(s)
- Shuer Liang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- The Sixth Affiliated Hospital, Jinan University, Dongguan 523576, China
| | - Ruijing Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Jun Hu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yue Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Correspondence: author: (J.S.); (W.B.); Tel.: +86-150-13236805 (J.S.); +86-020-85226630 (W.B.)
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
- Correspondence: author: (J.S.); (W.B.); Tel.: +86-150-13236805 (J.S.); +86-020-85226630 (W.B.)
| |
Collapse
|
14
|
Yao Y, Chen Z, Zhang T, Tang M. Adverse reproductive and developmental consequences of quantum dots. ENVIRONMENTAL RESEARCH 2022; 213:113666. [PMID: 35697086 DOI: 10.1016/j.envres.2022.113666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs), with a size of 1-10 nm, are luminescent semiconductor nanocrystals characterized by a shell-core structure. Notably, QDs have potential application in bioimaging owing to their higher fluorescence performance than conventional fluorescent dyes. To date, QDs has been widely used in photovoltaic devices, supercapacitors, electrocatalysis, photocatalysis. In recent years, scientists have focused on whether the use of QDs can interfere with the reproductive and developmental processes of organisms, resulting in serious population and community problems. In this study, we first analyze the possible reproductive and development toxicity of QDs. Next, we summarize the possible mechanisms underlying QDs' interference with reproduction and development, including oxidative stress, altered gametogenesis and fetal development gene expression, autophagy and apoptosis, and release of metal ions. Thereafter, we highlight some potential aspects that can be used to eliminate or reduce QDs toxicity. Based on QDs' unique physical and chemical properties, a comprehensive range of toxicity test data is urgently needed to build structure-activity relationship to quickly evaluate the ecological safety of each kind of QDs.
Collapse
Affiliation(s)
- Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Zhaofang Chen
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Satarug S, Gobe GC, Vesey DA. Multiple Targets of Toxicity in Environmental Exposure to Low-Dose Cadmium. TOXICS 2022; 10:toxics10080472. [PMID: 36006151 PMCID: PMC9412446 DOI: 10.3390/toxics10080472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 05/06/2023]
Abstract
Dietary assessment reports and population surveillance programs show that chronic exposure to low levels of environmental cadmium (Cd) is inevitable for most people, and adversely impacts the health of children and adults. Based on a risk assessment model that considers an increase in the excretion of β2-microglobulin (β2M) above 300 μg/g creatinine to be the "critical" toxicity endpoint, the tolerable intake level of Cd was set at 0.83 µg/kg body weight/day, and a urinary Cd excretion rate of 5.24 µg/g creatinine was considered to be the toxicity threshold level. The aim of this review is to draw attention to the many other toxicity endpoints that are both clinically relevant and more appropriate to derive Cd exposure limits than a β2M endpoint. In the present review, we focus on a reduction in the glomerular filtration rate and diminished fecundity because chronic exposure to low-dose Cd, reflected by its excretion levels as low as 0.5 µg/g creatinine, have been associated with dose-dependent increases in risk of these pathological symptoms. Some protective effects of the nutritionally essential elements selenium and zinc are highlighted. Cd-induced mitochondrial dysfunction is discussed as a potential mechanism underlying gonadal toxicities and infertility.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Correspondence:
| | - Glenda C. Gobe
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane 4072, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - David A. Vesey
- Kidney Disease Research Collaborative, Translational Research Institute, Brisbane 4102, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane 4075, Australia
| |
Collapse
|
16
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
17
|
Wu X, Zhou L, Shi J, Cheng CY, Sun F. Multiomics analysis of male infertility. Biol Reprod 2022; 107:118-134. [PMID: 35639635 DOI: 10.1093/biolre/ioac109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Infertility affects 8-12% of couples globally, and the male factor is a primary cause in approximately 50% of couples. Male infertility is a multifactorial reproductive disorder, which can be caused by paracrine and autocrine factors, hormones, genes, and epigenetic changes. Recent studies in rodents and most notably in humans using multiomics approach have yielded important insights into understanding the biology of spermatogenesis. Nonetheless, the etiology and pathogenesis of male infertility are still largely unknown. In this review, we summarized and critically evaluated findings based on the use of advanced technologies to compare normal and obstructive azoospermia (OA) versus non-obstructive azoospermia (NOA) men, including whole-genome bisulfite sequencing (WGBS), single cell RNA-seq (scRNA-seq), whole exome sequencing (WES), and ATAC-seq. It is obvious that the multiomics approach is the method of choice for basic research and clinical studies including clinical diagnosis of male infertility.
Collapse
Affiliation(s)
- Xiaolong Wu
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Liwei Zhou
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Jie Shi
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - C Yan Cheng
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| | - Fei Sun
- Department of Urology & Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.,Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, Jiangsu 226001, China
| |
Collapse
|
18
|
Hu D, Tian L, Li X, Chen Y, Xu Z, Ge RS, Wang Y. Tetramethyl bisphenol a inhibits leydig cell function in late puberty by inducing ferroptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113515. [PMID: 35427877 DOI: 10.1016/j.ecoenv.2022.113515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Tetramethyl bisphenol A (TMBPA) is a commonly used bisphenol analog, used as a fire retardant. However, whether it inhibits the function of Leydig cells in late puberty remains unclear. In this study, 35-day-old male Sprague-Dawley rats were gavaged with 0, 10, 100, and 200 mg/kg body weight TMBPA for 21 days. TMBPA significantly reduced serum testosterone levels at 10 mg/kg and higher doses without altering serum luteinizing hormone and follicle-stimulating hormone levels. TMBPA significantly increased serum iron concentraion while reducing the ratio of serum glutathione (GSH) and GSH/GSSG (oxidized glutathione disulfide). In addition, TMBPA significantly increased testicular iron amount at 10 mg/kg and higher doses and malondialdehyde level at 200 mg/kg. TMBPA down-regulated the expression of Leydig cell genes, including Nr5a1, Star, Scarb1, Insl3, Cyp11a1, Cyp17a1, Hsd17b3, and Hsd11b1, and their proteins. In addition, TMBPA markedly down-regulated the expression of genes in the ferroptosis pathway (Tp53, Slc7a11, Sod1, Sod2, Cat, Sqstm1, Keap1, and Hmox1). TMBPA significantly reduced the levels of ferroptosis pathway proteins (TP53, SLC7A11, GPX4, SQSTM1, KEAP1, NRF2, and HMOX1) in Leydig cells in vivo. Immature and adult Leydig cell culture in vitro also showed that TMBPA significantly reduced testosterone concentrations in the medium, which can be reversed by a ferroptosis inhibitor. After 24 h of culture in primary Leydig cells at 10 and 50 μM, TMBPA significantly induced reactive oxygen species and lowered the mitochondrial membrane potential. TMBPA also altered protein levels in the ferroptosis pathway in Leydig cells in vitro. In conclusion, TMBPA directly inhibits the activity of rat Leydig cell steroidogenic enzymes and induces the ferroptosis of Leydig cells, thereby inhibiting the testosterone synthesis of Leydig cells in the late puberty.
Collapse
Affiliation(s)
- Dichao Hu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lili Tian
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xueyun Li
- Department of pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yirui Chen
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zheqing Xu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Zeng L, Zhou J, Zhang Y, Wang X, Wang M, Su P. Differential Expression Profiles and Potential Intergenerational Functions of tRNA-Derived Small RNAs in Mice After Cadmium Exposure. Front Cell Dev Biol 2022; 9:791784. [PMID: 35047503 PMCID: PMC8762212 DOI: 10.3389/fcell.2021.791784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal and ubiquitous environmental endocrine disruptor. Previous studies on Cd-induced damage to male fertility mainly focus on the structure and function of testis, including cytoskeleton, blood-testis barrier, and steroidogenesis. Nevertheless, to date, no studies have investigated the effects of Cd exposure on sperm epigenetic inheritance and intergenerational inheritance. In our study, we systematically revealed the changes in sperm tRNA-derived small RNAs (tsRNA) profiles and found that 14 tsRNAs (9 up-regulated and 5 down-regulated) were significantly altered after Cd exposure. Bioinformatics of tsRNA-mRNA-pathway interactions revealed that the altered biological functions mainly were related to ion transmembrane transport, lipid metabolism and cell membrane system. In addition, we focused on two stages of early embryo development and selected two organs to study the impact of these changes on cell membrane system, especially mitochondrion and lysosome, two typical membrane-enclosed organelles. Surprisingly, we found that the content of mitochondrion was significantly decreased in 2-cell stage, whereas remarkably increased in the morula stage. The contents of mitochondrion and lysosome were increased in the testes of 6-day-old offspring and livers of adult offspring, whereas remarkably decreased in the testes of adult offspring. This provides a possible basis to further explore the effects of paternal Cd exposure on offspring health.
Collapse
Affiliation(s)
- Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofei Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Wang
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Hasan H, Bhushan S, Fijak M, Meinhardt A. Mechanism of Inflammatory Associated Impairment of Sperm Function, Spermatogenesis and Steroidogenesis. Front Endocrinol (Lausanne) 2022; 13:897029. [PMID: 35574022 PMCID: PMC9096214 DOI: 10.3389/fendo.2022.897029] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Infection and inflammation are relevant entities of male reproductive disorders that can lead to sub-/infertility. Associated damage of the testis of affected men and in rodent models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and reduced androgen levels. Negative effects on spermatogenesis are thought to be elicited by oxidative stress sustained mostly by increased levels of ROS and pro-inflammatory cytokines. Under normal conditions these cytokines have physiological functions. However, increased levels as seen in inflammation and infection, but also in obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary, there is mounting evidence that the activation of inflammatory pathways is a rather common feature in various forms of male testicular disorders that extends beyond established infectious/inflammatory cues. This mini review will focus on relevant entities and the mechanisms of how a dysbalance of local testicular factors contributes to disturbances of spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
| | | | - Monika Fijak
- *Correspondence: Andreas Meinhardt, ; Monika Fijak,
| | | |
Collapse
|
21
|
Sakib S, Lara NDLEM, Huynh BC, Dobrinski I. Organotypic Rat Testicular Organoids for the Study of Testicular Maturation and Toxicology. Front Endocrinol (Lausanne) 2022; 13:892342. [PMID: 35757431 PMCID: PMC9218276 DOI: 10.3389/fendo.2022.892342] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022] Open
Abstract
An in vitro system to study testicular maturation in rats, an important model organism for reproductive toxicity, could serve as a platform for high-throughput drug and toxicity screening in a tissue specific context. In vitro maturation of somatic cells and spermatogonia in organ culture systems has been reported. However, this has been a challenge for organoids derived from dissociated testicular cells. Here, we report generation and maintenance of rat testicular organoids in microwell culture for 28 days. We find that rat organoids can be maintained in vitro only at lower than ambient O2 tension of 15% and organoids cultured at 34°C have higher somatic cell maturation and spermatogonial differentiation potential compared to cultures in 37°C. Upon exposure to known toxicants, phthalic acid mono-2-ethylhexyl ester and cadmium chloride, the organoids displayed loss of tight-junction protein Claudin 11 and altered transcription levels of somatic cell markers that are consistent with previous reports in animal models. Therefore, the microwell-derived rat testicular organoids described here can serve as a novel platform for the study of testicular cell maturation and reproductive toxicity in vitro.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Nathalia de Lima e Martins Lara
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Brandon Christopher Huynh
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Canada
| | - Ina Dobrinski
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
- *Correspondence: Ina Dobrinski,
| |
Collapse
|
22
|
Evidence for Ovarian and Testicular Toxicities of Cadmium and Detoxification by Natural Substances. STRESSES 2021. [DOI: 10.3390/stresses2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadmium (Cd) is an environmental toxicant, capable of reducing mitochondrial ATP production and promoting the formation of reactive oxygen species (ROS) with resultant oxidative stress conditions. The ovary and testis are the primary gonads in which female gametes (oocytes) and male gametes (spermatozoa), estrogen and testosterone are produced. These organs are particularly susceptible to Cd cytotoxicity due to their high metabolic activities and high energy demands. In this review, epidemiological and experimental studies examining Cd toxicities in gonads are highlighted together with studies using zinc (Zn), selenium (Se), and natural substances to reduce the effects of Cd on follicular genesis and spermatogenesis. Higher blood concentrations of Cd ([Cd]b) were associated with longer time-to-pregnancy in a prospective cohort study. Cd excretion rate (ECd) as low as 0.8 μg/g creatinine was associated with reduced spermatozoa vitality, while Zn and Se may protect against spermatozoa quality decline accompanying Cd exposure. ECd > 0.68 µg/g creatinine were associated with an increased risk of premature ovarian failure by 2.5-fold, while [Cd]b ≥ 0.34 µg/L were associated with a 2.5-fold increase in the risk of infertility in women. Of concern, urinary excretion of Cd at 0.68 and 0.8 μg/g creatinine found to be associated with fecundity are respectively 13% and 15% of the conventional threshold limit for Cd-induced kidney tubular effects of 5.24 μg/g creatinine. These findings suggest that toxicity of Cd in primary reproductive organs occurs at relatively low body burden, thereby arguing for minimization of exposure and environmental pollution by Cd and its transfer to the food web.
Collapse
|
23
|
Zhang S, Wen Z, Li X, Lin L, Zou C, Li Y, Wang Y, Ge RS. Short-term exposure to perfluorotetradecanoic acid affects the late-stage regeneration of Leydig cells in adult male rats. Toxicol Appl Pharmacol 2021; 433:115777. [PMID: 34736952 DOI: 10.1016/j.taap.2021.115777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/09/2021] [Accepted: 10/24/2021] [Indexed: 01/09/2023]
Abstract
Perfluorotetradecanoic acid (PFTeDA) is one of perfluoroalkyl substances widely found in the environment. PFTeDA may cause the dysfunction of male reproductive system. However, whether PFTeDA affects the regeneration of Leydig cells remains unclear. The objective of this study was to examine the effects of short-term exposure of PFTeDA on the late-stage maturation of Leydig cells. Fifty-four adult Sprague-Dawley male rats were daily gavaged with PFTeDA (0, 10, or 20 mg/kg body weight) for 10 days, and then were injected intraperitoneally with ethylene dimethane sulfonate (EDS, 75 mg/kg body weight/once) to ablate Leydig cells to induce their regeneration. On day 21 (early stage) and 56 (late stage) after EDS, hormone levels, gene expression, and protein levels were measured. PFTeDA did not affect the early stage of Leydig cell regeneration, because it had no effect on serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels, Leydig cell number, and its gene and protein expression. PFTeDA significantly reduced serum testosterone level and down-regulated the expression of Leydig cell genes (Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, and Insl3) and their proteins (CYP11A1, HSD3B1, CYP17A1, HSD17B3, and INSL3), decreased the phosphorylation of AKT1 and ERK1/2, as well as lowered sperm count in the epididymis at 20 mg/kg. In conclusion, short-term exposure to PFTeDA blocks the late-stage maturation of Leydig cells.
Collapse
Affiliation(s)
- Song Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Reproductive Medicine, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfeixiang, Mochou Road, Nanjing 210004, Jiangsu, China
| | - Zina Wen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liben Lin
- Department of Pathology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Zou
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Shan Ge
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
24
|
Physiological Roles of Red Carrot Methanolic Extract and Vitamin E to Abrogate Cadmium-Induced Oxidative Challenge and Apoptosis in Rat Testes: Involvement of the Bax/Bcl-2 Ratio. Antioxidants (Basel) 2021; 10:antiox10111653. [PMID: 34829524 PMCID: PMC8615202 DOI: 10.3390/antiox10111653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The precise analysis of the contents of the red carrot is still ambiguous and its role in the maintenance of male fertility needs to be further reconnoitered. Hence, this study targets the physiological impacts of either red carrot methanolic extract (RCME) or vitamin E (Vit. E), co-administrated with cadmium chloride (CdCl2) on rat testes, specifically those concerned with apoptosis and oxidative challenge. Four groups of adult male rats (n = 12) are used; control, CdCl2, CdCl2 + Vit. E and CdCl2 + RCME. LC-MS analysis of RCME reveals the presence of 20 different phytochemical compounds. Our data clarify the deleterious effects of CdCl2 on testicular weights, semen quality, serum hormonal profile, oxidative markers and Bax/Bcl-2 ratio. Histopathological changes in testicular, prostatic and semen vesicle glandular tissues are also observed. Interestingly, our data clearly demonstrate that co-administration of either RCME or Vit. E with CdCl2 significantly succeeded in the modulation (p < 0.05) of all of these negative effects. The most striking is that they were potent enough to modulate the Bax/Bcl-2 ratio as well as having the ability to correct the impaired semen picture, oxidant status and hormonal profile. Thus, RCME and Vit. E could be used as effective prophylactic treatments to protect the male reproductive physiology against CdCl2 insult.
Collapse
|
25
|
Liu ZJ, Liu YH, Huang SY, Zang ZJ. Insights into the Regulation on Proliferation and Differentiation of Stem Leydig Cells. Stem Cell Rev Rep 2021; 17:1521-1533. [PMID: 33598893 DOI: 10.1007/s12015-021-10133-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 11/26/2022]
Abstract
Male hypogonadism is a clinical syndrome caused by testosterone deficiency. Hypogonadism can be caused by testicular disease (primary hypogonadism) or hypothalamic-pituitary dysfunction (secondary hypogonadism). The present strategy for treating hypogonadism is the administration of exogenous testosterone. But exogenous testosterone is reported to have negative side effects including adverse cardiovascular events and disruption of physiological spermatogenesis probably due to its inability to mimic the physiological circadian rhythm of testosterone secretion in vivo. In recent years, a growing number of articles demonstrated that stem Leydig cells (SLCs) can not only differentiate into functional Leydig cells (LCs) in vivo to replace chemically disrupted LCs, but also secrete testosterone in a physiological pattern. The proliferation and differentiation of SLCs are regulated by various factors. However, the mechanisms involved in regulating the development of SLCs remain to be summarized. Factors involved in the regulation of SLCs can be divided into environmental pollutants, growth factors, cytokine and hormones. Environmental pollutants such as Perfluorooctanoic acid (PFOA) and Triphenyltin (TPT) could suppress SLCs proliferation or differentiation. Growth factors including FGF1, FGF16, NGF and activin A are essential for the maintenance of SLCs self-renewal and differentiation. Interleukin 6 family could inhibit differentiation of SLCs. Among hormones, dexamethasone suppresses SLCs differentiation, while aldosterone suppresses their proliferation. The present review focuses on new progress about factors regulating SLC's proliferation and differentiation which will undoubtedly deepen our insights into SLCs and help make better clinical use of them. Different factors affect on the proliferation and differentiation of stem Leydig cells. Firstly, each rat was intraperitoneally injected EDS so as to deplete Leydig cells from the adult testis. Secondly, the CD51+ or CD90+ cells from the testis of rats are SLCs, and the p75+ cells from human adult testes are human SLCs. These SLCs in the testis start to proliferate and some of them differentiate into LCs. Thirdly, during the SLCs regeneration period, researchers could explore different function of those factors (pollutants, growth factors, cytokines and hormones) towards SLCs.
Collapse
Affiliation(s)
- Zhuo-Jie Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Yong-Hui Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Sheng-Yu Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China
| | - Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, China.
| |
Collapse
|
26
|
Abd-Elhakim YM, El Sharkawy NI, El Bohy KM, Hassan MA, Gharib HSA, El-Metwally AE, Arisha AH, Imam TS. Iprodione and/or chlorpyrifos exposure induced testicular toxicity in adult rats by suppression of steroidogenic genes and SIRT1/TERT/PGC-1α pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56491-56506. [PMID: 34060014 DOI: 10.1007/s11356-021-14339-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
There is cumulative evidence that iprodione (IPR) fungicide and chlorpyrifos (CPF) insecticide are endocrine disruptors that can evoke reproductive toxicity. Yet, the underlying mechanisms are still unclear. Besides, the outcomes of their co-exposure to male sexual behavior and male fertility are still unknown. The effects of IPR (200 mg/kg b.wt) and CPF (7.45 mg/kg b.wt) single or mutual exposure for 65 days on sexual behavior, sex hormones, testicular enzymes, testis, and accessory sex gland histomorphometric measurements, apoptosis, and oxidative stress biomarkers were investigated. In addition, expression of nuclear receptor subfamily group A (NR5A1), 17β-hydroxysteroid dehydrogenase (HSD17B3), silent information regulator type-1 (SIRT1), telomerase reverse transcriptase (TERT), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) genes has been assessed. Our results revealed that the individual or concurrent IPR and CPF exposure significantly disturb the sexual behavior, semen characteristics, testicular enzymes, and male hormones level. Oxidative stress caused by IPR and CPF activates apoptosis by inducing Caspase-3 and reducing Bcl-2. Downregulation of HSD17B3, NR5A1, and SIRT1/TERT/PGC-1α pathway was evident. Of note, most of these disturbances were exaggerated in rats co-exposed to IPR and CPF compared to IPR or CPF alone. Conclusively, our findings verified that IPR and CPF possibly damage the male reproductive system, and concurrent exposure should be avoided.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Nabela I El Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Khlood M El Bohy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mona A Hassan
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Heba S A Gharib
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer E El-Metwally
- Department of Pathology, Animal Reproduction Research Institute, Giza, Egypt
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Sharkia, Zagazig, Egypt
| | - Tamer S Imam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Xu Q, Chen Q, Lin L, Zhang P, Li Z, Yu Y, Ma F, Ying Y, Li X, Ge RS. Triadimefon suppresses fetal adrenal gland development after in utero exposure. Toxicology 2021; 462:152932. [PMID: 34508824 DOI: 10.1016/j.tox.2021.152932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/19/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Triadimefon is a broad-spectrum antifungal agent, which is widely used in agriculture to control mold and fungal infections. It is considered an endocrine disruptor. Whether triadimefon exposure can inhibit the development of fetal adrenal glands and the underlying mechanism remain unclear. Thirty-two pregnant female Sprague-Dawley rats were randomly divided into four groups. Dams were gavaged triadimefon (0, 25, 50, and 100 mg/kg/day) daily for 10 days from gestational day (GD) 12 to GD 21. Triadimefon significantly reduced the thickness of the zona fasciculata of male fetuses at 100 mg/kg, although it did not change the thickness of the zona glomerulosa. It significantly reduced the serum aldosterone levels of male fetuses at a dose of 100 mg/kg, and significantly reduced serum corticosterone and adrenocorticotropic hormone levels at doses of 50 and 100 mg/kg. Triadimefon significantly down-regulated the expression of Agtr1, Mc2r, Star, Cyp11b1, Cyp11b2, Igf1, Nr5a1, Sod2, Gpx1, and Cat, but did not affect the mRNA levels of Scarb1, Cyp11a1, Cyp21, Hsd3b1, and Hsd11b2. Triadimefon markedly reduced AT1R, CYP11B2, IGF1, NR5A1, and MC2R protein levels. Triadimefon significantly reduced the phosphorylation of AKT1 and ERK1/2 at 100 mg/kg without affecting the phosphorylation of AKT2. In contrast, it significantly increased AMPK phosphorylation at 100 mg/kg. In conclusion, exposure to triadimefon during gestation inhibits the development of fetal adrenal cortex in male fetuses. This inhibition is possibly due to the reduction of several proteins required for the synthesis of steroid hormones, and may be involved in changes in antioxidant contents and the phosphorylation of AKT1, ERK1/2, and AMPK.
Collapse
Affiliation(s)
- Qiang Xu
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Quanxu Chen
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Liben Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Pu Zhang
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zengqiang Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yige Yu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feifei Ma
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yingfen Ying
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaoheng Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
28
|
Higuch K, Matsumura T, Akiyama H, Kanai Y, Ogawa T, Sato T. Sertoli cell replacement in explanted mouse testis tissue supporting host spermatogenesis. Biol Reprod 2021; 105:934-943. [PMID: 34057178 DOI: 10.1093/biolre/ioab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous tubules, starting from the spermatogonial stem cell and maturing into sperm through multiple stages of cell differentiation. Sertoli cells, the main somatic cell constituting the seminiferous tubule, are in close contact with every germ cell and play pivotal roles in the progression of spermatogenesis. In this study, we developed an in vitro Sertoli cell replacement method by combining an organ culture technique and a toxin receptor-mediated cell knockout (Treck) system. We used Amh- diphtheria toxin receptor (DTR) transgenic mice, whose Sertoli cells specifically express human DTR, which renders them sensitive to diphtheria toxin (DT). An immature Amh-DTR testis was transplanted with donor testis cells followed by culturing in a medium containing DT. This procedure successfully replaced the original Sertoli cells with the transplanted Sertoli cells, and spermatogenesis originating from resident germ cells was confirmed. In addition, Sertoli cells in the mouse testis tissues were replaced by transplanted rat Sertoli cells within culture conditions, without requiring immunosuppressive treatments. This method works as a functional assay system, making it possible to evaluate any cells that might function as Sertoli cells. It would also be possible to investigate interactions between Sertoli and germ cells more closely, providing a new platform for the study of spermatogenesis and its impairments.
Collapse
Affiliation(s)
- Kazusa Higuch
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Takafumi Matsumura
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University School of Medicine, Gifu, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takehiko Ogawa
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan.,Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| |
Collapse
|
29
|
Chen H, Xin X, Liu M, Ma F, Yu Y, Huang J, Dai H, Li Z, Ge RS. In utero exposure to dipentyl phthalate disrupts fetal and adult Leydig cell development. Toxicol Appl Pharmacol 2021; 419:115514. [PMID: 33798595 DOI: 10.1016/j.taap.2021.115514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 01/20/2023]
Abstract
Phthalates as plasticizers are widely used in many consumer products. Dipentyl phthalate (DPeP) is one of phthalates. However, there are currently few data on whether DPeP exposure affects rat Leydig cell development. In this study, we investigated the effects of in utero DPeP exposure on Leydig cell development in the testes of male newborn and adult rats. From gestational days 14 to 21, Sprague-Dawley pregnant rats were gavaged vehicle (corn oil, control) or DPeP (10, 50, 100, and 500 mg/kg body weight/day). Testosterone and the expression of Leydig cell genes and proteins in the testis at birth and at postnatal day 56 were examined. DPeP dose-dependently reduced serum testosterone levels of male offspring at birth and at postnatal day 56 at 100 and 500 mg/kg and lowered serum luteinizing hormone levels at adult males at ≥10 mg/kg when compared with the control. In addition, DPeP increased number of fetal Leydig cells by inducing their proliferation but down-regulated the expression of Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, and Insl3 in fetal Leydig cells per se. DPeP reduced number of adult Leydig cells by inducing cell apoptosis and down-regulated the expression of Lhcgr and Star in adult Leydig cells at postnatal day 56. DPeP lowered SIRT1 and BCL2 levels in the testis of adult rats. In conclusion, DPeP adversely affects both fetal and adult Leydig cell development after in utero exposure.
Collapse
Affiliation(s)
- Haiqiong Chen
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Miaoqing Liu
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jie Huang
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haipeng Dai
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongrong Li
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
30
|
ALTamimi JZ, AlFaris NA, Aljabryn DH, Alagal RI, Alshammari GM, Aldera H, Alqahtani S, Yahya MA. Ellagic acid improved diabetes mellitus-induced testicular damage and sperm abnormalities by activation of Nrf2. Saudi J Biol Sci 2021; 28:4300-4310. [PMID: 34354412 PMCID: PMC8324935 DOI: 10.1016/j.sjbs.2021.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 11/05/2022] Open
Abstract
Diabetes mellitus induces testicular damage, increases sperm abnormalities, and impairs reproductive dysfunction due to induction of endocrine disturbance and testicular oxidative stress. This study evaluated the reproductive protective effect of ellagic acid (EA) against testicular damage and abnormalities in sperm parameters in Streptozotocin (STZ)-induced diabetic rats (T1DM) and examined some possible mechanisms of protection. Adult male rats were segregated into 5 groups (n = 12 rat/each) as control, control + EA (50 mg/kg/day), T1DM, T1DM + EA, and T1DM + EA + brusatol (an Nrf-2 inhibitor) (2 mg/twice/week). All treatments were conducted for 12 weeks, daily. EA preserved the structure of the seminiferous tubules, prevented the reduction in sperm count, motility, and viability, reduced sperm abnormalities, and downregulated testicular levels of cleaved caspase-3 and Bax in diabetic rats. In the control and diabetic rats, EA significantly increased the circulatory levels of testosterone, reduced serum levels of FSH and LH, and upregulated Bcl-2 and all steroidogenic genes (StAr, 3β-HSD1, and 11β-HSD1). Besides, it reduced levels of ROS and MDA but increased levels of GSH and MnSOD and the transactivation of Nrf2. All these biochemical alterations induced by EA were associated with increased activity and nuclear accumulation of Nrf2. However, all these effects afforded by EA were weakened in the presence of brusatol. In conclusion, EA could be an effective therapy to alleviated DM-induced reproductive toxicity and dysfunction in rats by a potent antioxidant potential mediated by the upregulation of Nrf2.
Collapse
Affiliation(s)
- Jozaa Z ALTamimi
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nora A AlFaris
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal H Aljabryn
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Reham I Alagal
- Nutrition and Food Science, Department of Physical Sport Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussain Aldera
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Sultan Alqahtani
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Li H, Wen Z, Ni C, Chen X, Cheng Y, Liu Y, Li X, Zhu Q, Ge RS. Perfluorododecanoic acid delays Leydig cell regeneration from stem cells in adult rats. Food Chem Toxicol 2021; 151:112152. [PMID: 33774092 DOI: 10.1016/j.fct.2021.112152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 11/25/2022]
Abstract
Perfluorododecanoic acid (PFDoA) is an endocrine-damaging compound in contaminated food and water. However, the potential role and underlying mechanism of PFDoA in Leydig cell regeneration from stem Leydig cells remain unclear. The current study aims to investigate the effect of PFDoA on the regeneration of Leydig cells in the testis of rats treated with ethylene dimethane sulfonate (EDS). PFDoA (0, 5 or 10 mg/kg/day) was gavaged to adult Sprague-Dawley male rats for 8 days, and 75 mg/kg EDS was intraperitoneally injected to eliminate Leydig cells to initiate its regeneration from day 21-56 after EDS. The serum testosterone levels in the 5 and 10 mg/kg/day PFDoA groups were significantly reduced at day 21 after EDS and the levels of serum luteinizing hormone and follicle-stimulating hormone were significantly decreased in the 10 mg/kg/day PFDoA groups at day 56 after EDS. PFDoA significantly reduced Leydig cell number and proliferation at a dose of 10 mg/kg at days 21 and 56 after EDS. PFDoA significantly down-regulated the expression of Leydig cell-specific genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1 and Cyp17a1) and their proteins at both doses at days 21 and 56 after EDS. PFDoA significantly down-regulated the gene expression of Sertoli cells (Fshr, Dhh, and Sox9) at 5 mg/kg or higher at days 21 and 56 after EDS. In addition, we found that PFDoA significantly inhibited EdU incorporation into putative stem Leydig cells and their differentiation into the Leydig cell lineage in vitro. In conclusion, short-term PFDoA exposure in adulthood delayed the regeneration of Leydig cells by preventing Leydig cells from stem cells via multiple mechanisms.
Collapse
Affiliation(s)
- Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zina Wen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Chengdu Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Chaobo Ni
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, China
| | - Xianwu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yong Cheng
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yuxin Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
32
|
Low dose of fire retardant, 2,2',4,4'-tetrabromodiphenyl ether (BDE47), stimulates the proliferation and differentiation of progenitor Leydig cells of male rats during prepuberty. Toxicol Lett 2021; 342:6-19. [PMID: 33581290 DOI: 10.1016/j.toxlet.2021.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE47), a flame retardant, is extensively distributed in the food chain. However, whether BDE47 affects Leydig cell development during prepuberty remains unclear. BDE47 was daily gavaged to 21-day-old Sprague-Dawley male rats with 0 (corn oil), 0.1, 0.2, and 0.4 mg/kg for 14 days. BDE47 did not affect the body weight or testis weight of rats. It significantly increased serum testosterone level at 0.4 mg/kg, but decreased luteinizing hormone (LH) level without affecting estradiol level. BDE47 induced Leydig cell hyperplasia (the number of CYP11A1-positive Leydig cells increased), and up-regulated the expression of Scarb1, Star, Hsd11b1, Pcna, and Ccnd1 in the testis. BDE47 significantly reduced p53 and p21 levels but increased CCND1 level. It also markedly increased the phosphorylation of AKT1, AKT2, ERK1/2, and CREB. BDE47 significantly up-regulated the expression of Scarb1, Star, and Hsd11b1 and stimulated androgen production by immature Leydig cells from rats under basal, LH, and 8Br-cAMP stimulated conditions at 100 nM in vitro. In conclusion, BDE47 increased Leydig cell number and up-regulated the expression of Scarb1 and Star, thereby leading to increased testosterone synthesis.
Collapse
|
33
|
Zhu X, Hu M, Ji H, Huang T, Ge RS, Wang Y. Exposure to di-n-octyl phthalate during puberty induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function in male rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111432. [PMID: 33075588 DOI: 10.1016/j.ecoenv.2020.111432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Humans are exposed to phthalates ubiquitously, which may threaten health. However, whether di-n-octyl phthalate can prevent pubertal sexual maturity is still elusive. In this study, male Sprague Dawley rats (age 35 days) were treated daily by gavage with 0, 10, 100, and 1000 mg/kg body weight of di-n-octyl phthalate from day 35 to day 49 after birth. Di-n-octyl phthalate significantly reduced serum testosterone levels at doses of 100 and 1000 mg/kg, but increased serum luteinizing hormone levels of 1000 mg/kg and decreased testosterone/luteinizing hormone ratio at ≥10 mg/kg, without affecting serum follicle-stimulating hormone levels. Di-n-octyl phthalate significantly induced Leydig cell hyperplasia (increased number of CYP11A1-positive Leydig cells) at 100 and 1000 mg/kg. Di-n-octyl phthalate down-regulates the gene expression of Cyp11a1, Hsd3b1 and Insl3 in individual Leydig cells. Di-n-octyl phthalate can also reduce the number of sperm in the epididymis. Di-n-octyl phthalate increased phosphorylated AKT1/AKT2 without affecting their total proteins, but increased the total protein and phosphorylated protein of ERK1/2 and GSK-3β. Primary immature Leydig cells isolated from 35-day-old rats were treated with 0-50 μM di-n-octyl phthalate for 3 h. This phthalate inhibited androgen production under basal, LH-stimulated, and cAMP-stimulated conditions by 5 and 50 μM in vitro via down-regulating Cyp11a1 expression but up-regulating Srd5a1 expression in vitro. In conclusion, di-n-octyl phthalate induces hypergonadotropic hypogonadism caused by Leydig cell hyperplasia but reduced steroidogenic function and prevents sperm production.
Collapse
Affiliation(s)
- Xiayan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Miner Hu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Haosen Ji
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
34
|
Jia M, Li X, Jiang C, Wang K, Zuo T, He G, Qin L, Xu W. Testis-enriched circular RNA circ-Bbs9 plays an important role in Leydig cell proliferation by regulating a CyclinD2-dependent pathway. Reprod Fertil Dev 2021; 32:355-362. [PMID: 31708014 DOI: 10.1071/rd18474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Circular RNAs belong to a new category of non-coding RNAs, characterised by a circular structure, conservation, stability and high expression in eukaryotes. They often show tissue- or cell-specific expression. Here, we identified a testis-enriched circular RNA (circRNA), circular Bbs9 (circ-Bbs9) that is highly expressed in mouse testis. An RNase R treatment experiment confirmed that circ-Bbs9 is indeed a circRNA. In situ hybridisation experiments showed that circ-Bbs9 is expressed in Leydig cells along seminiferous tubules and in the cytoplasm of the TM3 Leydig cell line. Knocking down the circ-Bbs9 in TM3 cells by lentivirus vectors arrested cell proliferation, whereas overexpression of circ-Bbs9 induced cell proliferation significantly. Knocking down circ-Bbs9 inhibited the protein level of cyclin D2 (Ccnd2) and RNA immunoprecipitation results showed that circ-Bbs9 interacts with Ccnd2. Our results show that use of the Hedgehog pathway Smoothened Agonist (SAG) HCl and antagonists cyclopamine and gant6 affects the expression levels of Glioma-Associated Oncogene Homolog 1 (Gli1), Ccnd2 and other genes in this pathway. Our research reveals that a Leydig cell-specific circRNA, circ-Bbs9, plays a critical role in Leydig cell proliferation through regulating the levels of cell cycle-related Ccnd2. Thus, our results emphasise the important role of circRNA in the male reproductive system.
Collapse
Affiliation(s)
- Minzhi Jia
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Xiaoliang Li
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Chuan Jiang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Ke Wang
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Tao Zuo
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Guolin He
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Lang Qin
- Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China; and Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China; and Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China; and Department of Obstetrics and Gynaecology, West China Second University Hospital, Sichuan University, Chengdu 610041, P. R. China; and Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Hernández-Rodríguez J, López AL, Montes S, Bonilla-Jaime H, Morales I, Limón-Morales O, Ríos C, Hernández-González M, Vigueras-Villaseñor RM, Arteaga-Silva M. Delay in puberty indices of Wistar rats caused by Cadmium. Focus on the redox system in reproductive organs. Reprod Toxicol 2021; 99:71-79. [PMID: 33249230 DOI: 10.1016/j.reprotox.2020.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Abstract
Puberty is a transitional period from juvenile stage to adulthood, followed by the functional maturation of gonads and reproductive organs. This period is sensitive to environmental pollutants like cadmium (Cd), a heavy metal that represents a serious health risk. Cd is an endocrine disruptor that interferes with reproduction by causing oxidative stress in the reproductive organs, affecting the sexual function and decreasing testosterone (T) levels. However, little research has been done on the effects of Cd on puberty markers and antioxidant systems. In this study, we evaluated the effects of Cd on puberty markers: preputial separation, testes descent and T levels, and the antioxidant activity (SOD, CAT, GSH/GSSG and TAC) in the seminal vesicles, testis and epididymis. Male Wistar pups were treated with 1 mg/kg Cd or saline solution by i.p. injection from day 1 to 35; the other treatment was administrated for 49 days. At the end of treatment, the animals were sacrificed, and the tissues of interest dissected, weighed and prepared for the respective assays. Cd treated rats from birth to puberty showed a delay onset in the puberty markers and a low weight in reproductive organs. Also, Cd induced differential effects on the redox system in reproductive organs and decreased T levels, these effects played a pivotal role in the delay of puberty markers onset (testes descent and preputial separation), affecting the development and sexual maturity of the male rats.
Collapse
Affiliation(s)
- Joel Hernández-Rodríguez
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - Ana Laura López
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV Zacatenco, Ciudad de México, Mexico
| | - Sergio Montes
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Ciudad de México, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico
| | - Ivis Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico
| | - Ofelia Limón-Morales
- Departamento de Ciencias de la Salud. Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico
| | - Camilo Ríos
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Insurgentes Sur 3877, Col. La Fama, C.P. 14269, Ciudad de México, Mexico
| | - Marisela Hernández-González
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, C.P. 44130, Guadalajara, Jalisco, Mexico
| | - Rosa María Vigueras-Villaseñor
- Instituto Nacional de Pediatría, Calzada México Xochimilco No. 101, Col. San Lorenzo Huipulco, Tlalpan, C.P. 14370, Ciudad de México, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, C.P. 09340, Ciudad de México, Mexico.
| |
Collapse
|
36
|
Xiong L, Zhou B, Liu H, Cai L. Comprehensive Review of Cadmium Toxicity Mechanisms in Male Reproduction and Therapeutic Strategies. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 258:151-193. [PMID: 34618232 DOI: 10.1007/398_2021_75] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Cadmium (Cd) has been widely studied as an environmental pollutant for many years. Numerous studies have reported that Cd exposure causes damage to the heart, liver, kidneys, and thyroid in vivo. The emerging evidence suggests that Cd exposure induces damage on male reproductive system, which is related to oxidative stress, inflammation, steroidogenesis disruption, and epigenetics. Current preclinical animal studies have confirmed a large number of proteins and intracellular signaling pathways involved in the pathological process of Cd-induced male reproductive damage and potential measures for prophylaxis and treatment, which primarily include antioxidants, anti-inflammatory agents, and essential ion supplement. However, explicit pathogenesis and effective treatments remain uncertain. This review collects data from the literatures, discusses the underlying mechanisms of Cd-induced toxicity on male reproductive function, and summarizes evidence that may provide guidance for the treatment and prevention of Cd-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Lijuan Xiong
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China.
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Bin Zhou
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Hong Liu
- Department of Emergency, Jiangxi Provincial Children's Hospital, Nanchang, Jiangxi, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, USA.
- Departments of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
37
|
Zhang C, Huang Y, Talukder M, Ge J, Lv MW, Bi SS, Li JL. Selenium sources differ in their potential to alleviate the cadmium-induced testicular dysfunction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115610. [PMID: 33254640 DOI: 10.1016/j.envpol.2020.115610] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd), a major environmental contaminant, is closely associated with male reproductive health. Selenium (Se) has been recognized as an effective chemo-protectant against Cd toxicity, but the underlying mechanisms remain unclear. The objective of present study was to illustrate the toxic effect of Cd on testis, and then compare the antagonistic effect among different Se sources on growth performance, testicular damage, ion homeostasis, antioxidative potential, and the expression of selenotranscriptome and biosynthetic related factors in Cd-treated chicken. Male chickens were fed with (Ⅰ) Control group: basal diet; (Ⅱ) Cd group: basal diet with 140 mg/kg CdCl2; (Ⅲ) YSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Yeast-Se; (Ⅳ) NSe + Cd group: basal diet with 140 mg/kg CdCl2 and 1 mg/kg Nano-Se; (Ⅴ) SSe + Cd group: basal diet with 140 mg/kg CdCl2 and 3 mg/kg Na2SeO3. It was observed that different Se treatments dramatically alleviated Cd-induced testicular developmental disorder, ion homeostasis disorder, hormone secretion disorder and oxidative stress. Simultaneously, Se mitigated Cd-induced testicular toxicity by regulating selenoprotein biosynthetic related factors to promote selenoprotein transcription. Finally, this study indicated that dietary supplementation of Yeast-Se produced an acceptable Se form to protect testis from Cd exposure.
Collapse
Affiliation(s)
- Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR72701, USA
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
38
|
Wu K, Li Y, Pan P, Li Z, Yu Y, Huang J, Ma F, Tian L, Fang Y, Wang Y, Lin H, Ge RS. Gestational vinclozolin exposure suppresses fetal testis development in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:111053. [PMID: 32888615 DOI: 10.1016/j.ecoenv.2020.111053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Vinclozolin is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor and is thought to be related to abnormalities of the reproductive tract. However, its mechanism of inducing abnormalities of the male reproductive tract is still unclear. The purpose of this study was to study the effect of gestational vinclozolin exposure on the development of rat fetal Leydig cells. Female pregnant Sprague-Dawley rats were exposed to vinclozolin (0, 25, 50, and 100 mg/kg body weight/day) by gavage from gestational day 14-21. Vinclozolin dose-dependently reduced serum testosterone levels at doses of 50 and 100 mg/kg and the anogenital distance at 100 mg/kg. RNA-seq, qPCR, and Western blotting showed that vinclozolin down-regulated the expression of Nr5a1, Sox9, Lhcgr, Cyp11a1, Hsd3b1, Hsd17b3, Amh, Pdgfa, and Dhh and their encoded proteins. Vinclozolin reduced the number of NR2F2-positive stem Leydig cells at a dose of 100 mg/kg and enhanced autophagy in the testes. In conclusion, vinclozolin disrupts reproductive tract development and testis development in male fetal rats via several pathways.
Collapse
Affiliation(s)
- Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yige Yu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jianjian Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lili Tian
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yinghui Fang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Han Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
39
|
Zhan X, Zhang J, Li S, Zhang X, Li L, Song T, Liu Q, Lu J, Xu Y, Ge RS. Monocyte Chemoattractant Protein-1 stimulates the differentiation of rat stem and progenitor Leydig cells during regeneration. BMC DEVELOPMENTAL BIOLOGY 2020; 20:20. [PMID: 33023470 PMCID: PMC7541273 DOI: 10.1186/s12861-020-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Background Monocyte chemoattractant protein-1(MCP-1) is a chemokine secreted by Leydig cells and peritubular myoid cells in the rat testis. Its role in regulating the development of Leydig cells via autocrine and paracrine is still unclear. The objective of the current study was to investigate the effects of MCP-1 on Leydig cell regeneration from stem cells in vivo and on Leydig cell development in vitro. Results Intratesticular injection of MCP-1(10 ng/testis) into Leydig cell-depleted rat testis from post-EDS day 14 to 28 significantly increased serum testosterone and luteinizing hormone levels, up-regulated the expression of Leydig cell proteins, LHCGR, SCARB1, CYP11A1, HSD3B1, CYP17A1, and HSD17B3 without affecting progenitor Leydig cell proliferation, as well as increased ERK1/2 phosphorylation. MCP-1 (100 ng/ml) significantly increased medium testosterone levels and up-regulated LHCGR, CYP11A1, and HSD3B1 expression without affecting EdU incorporation into stem cells after in vitro culture for 7 days. RS102895, a CCR2 inhibitor, reversed MCP-1-mediated increase of testosterone level after culture in combination with MCP-1. Conclusion MCP-1 stimulates the differentiation of stem and progenitor Leydig cells without affecting their proliferation.
Collapse
Affiliation(s)
- Xiangcheng Zhan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Tongji University School of Medicine, Shanghai, 200092, China
| | - Jingwei Zhang
- Department of Urology, Yijishan Hospital, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Saiyang Li
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, China
| | - Xiaolu Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Linchao Li
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Tiantian Song
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qunlong Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Nanjing Medical University, Nanjing, China
| | - Jun Lu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China. .,Tongji University School of Medicine, Shanghai, 200092, China. .,Nanjing Medical University, Nanjing, China.
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
40
|
Ma L, Mo J, Chen Y, Li L, Xie L, Chen X, Li X, Wang Y, Lin Z, Ge RS. In utero cadmium and dibutyl phthalate combination exposure worsens the defects of fetal testis in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114842. [PMID: 32497820 DOI: 10.1016/j.envpol.2020.114842] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Testicular dysgenesis syndrome might be due to the fetal testis defects caused by endocrine disruptors. Here, we report the combined effects of in utero exposure to cadmium (CdCl2, Cd) and di-n-butyl phthalate (DBP) on fetal testis development in rats. Pregnant Sprague-Dawley rats were randomly divided into four groups: control, Cd, DBP (250 mg/kg/day), and Cd + DBP. Cd (0.25 mg/kg/once) was intraperitoneally injected to the dam on gestational day 12 and DBP (250 mg/kg) was daily gavaged to the dam on gestational day 12 for 10 days. Cd, DBP, and Cd + DBP lowered serum testosterone levels in male fetuses. Cd and DBP did not alter fetal Leydig cell (FLC) number, but the combined exposure led to decreased FLC number. Cd did not affect FLC aggregation while DBP caused FLC aggregation and the combined exposure worsened FLC aggregation. Cd lowered FLC mRNA (Lhcgr, Star, Cyp11a1, and Insl3) levels and DBP lowered Lhcgr, Star, Insl3, and Nr5a1 levels. DBP up-regulated Scarb1 expression without affecting Cyp11a1 while the combined exposure antagonized DBP. These two chemicals and its combination did not affect Sertoli cell number and gene (Amh, Fshr, and Sox9) expression at current doses. In conclusion, the combined exposure of Cd and DBP exerts synergically antiandrogenic effects via targeting FLC development.
Collapse
Affiliation(s)
- Leikai Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Linchao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Lubin Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xianwu Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Zhenkun Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
41
|
Mouro VGS, de Melo FCSA, Martins ALP, de Lucca Moreira Gomes M, de Oliveira JM, de Freitas MBD, Demuner AJ, Leite JPV, da Matta SLP. Euterpe oleracea (Martius) Oil Reverses Testicular Alterations Caused after Cadmium Administration. Biol Trace Elem Res 2020; 197:555-570. [PMID: 31898307 DOI: 10.1007/s12011-019-02004-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/04/2019] [Indexed: 01/27/2023]
Abstract
Cadmium (Cd) is an environmental pollutant that induces reproductive toxicity by generating reactive oxygen species, which leads to oxidative stress. Euterpe oleracea fruits are known for being rich in oils containing triacylglycerol and phenolic compounds. They are considered as potent antioxidants to be used to counteract Cd effects within the testis. In the present study, adult males Swiss mice were treated with CdCl2 aqueous solution (4.28 mg/kg) by gavage for 7 days. The experimental groups were treated with Euterpe oleracea oil at the doses of 50, 100, and 150 mg/kg, for 42 days. The results showed that Cd intoxication led to increased tubular pathologies, such as reduction in epithelium height and area thus increasing both luminal diameter and tubule-epithelium ratio. Besides, Leydig cell's morphometry indicated reduction in nucleus and cytoplasm volumes of this cell type, which were recovered after E. oleracea oil intake. In addition, serum testosterone levels, testicular Mn and Zn concentrations, SOD and CAT activity, and germ cell viability increased after oil intake. Therefore, E. oleracea oil showed a regenerative effect in the testicular parenchyma negatively affected by Cd, mainly in the animals that received the highest oil concentration (150 mg/kg).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sérgio Luis Pinto da Matta
- Departament of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
- Departament of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
42
|
Di-n-hexyl phthalate causes Leydig cell hyperplasia in rats during puberty. Toxicol Lett 2020; 332:213-221. [PMID: 32693021 DOI: 10.1016/j.toxlet.2020.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022]
Abstract
Di-n-hexyl phthalate (DNHP) is commonly used as a plasticizer. However, whether DNHP influences Leydig cell development during puberty remains unexplored. In this study, DNHP (0, 10, 100, and 1000 mg/kg) was administered via gavage to 35-day-old male Sprague-Dawley rats for 21 days. Serum levels of testosterone, luteinizing hormone, follicle-stimulating hormone, Leydig cell number, the expression of Leydig and Sertoli cell genes and proteins were investigated. DNHP significantly increased serum testosterone levels at 10 mg/kg but lowered its level at 1000 mg/kg. DNHP significantly increased luteinizing hormone levels at 1000 mg/kg without affecting follicle-stimulating hormone levels. DNHP increased Leydig cell number at all doses but down-regulated the expression of Lhcgr, Hsd3b1, Hsd17b3, and Hsd11b1 in Leydig cell per se at 1000 mg/kg. DNHP elevated phosphorylation of ERK1/2 and GSK-3β at 10 mg/kg but decreased SIRT1 and PGC-1α levels at 1000 mg/kg. In conclusion, DNHP exposure causes Leydig cell hyperplasia possibly via stimulating phosphorylation of ERK1/2 and GSK-3β signaling pathways.
Collapse
|
43
|
Li X, Li L, Chen X, Li X, Wang Y, Zhu Q, Gao-Smith F, Ge RS. Triphenyltin chloride reduces the development of rat adrenal cortex during puberty. Food Chem Toxicol 2020; 143:111479. [PMID: 32504733 DOI: 10.1016/j.fct.2020.111479] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022]
Abstract
Triphenyltin has been classified as an endocrine disruptor. However, whether triphenyltin interferes with the adrenal glands during puberty remains unknown. Here, we reported the effects of triphenyltin on the adrenal glands in rats. Male Sprague Dawley rats (age of 35 days) were orally administered with 0, 0.5, 1, or 2 mg/kg/day triphenyltin for 18 days. Triphenyltin significantly lowered corticosterone levels at 1 and 2 mg/kg and adrenocorticotropic hormone at 2 mg/kg. The RNA-Seq analysis detected multiple differentially expressed genes. Four down-regulated genes were transcription factor genes (Nr4a1, Nr4a2, Nr4a3, and Ppard), which might be associated with the suppression of the adrenal cortex function. RNA-seq and qPCR showed that triphenyltin dose-dependently down-regulated the expression of the genes for cholesterol transport and biosynthesis, including Scarb1, Ldlr, Hmgcs1, Hmgcr, and Hsd17b7. Further Western blotting revealed that it lowered NR4A1, PPRAD, LDLR, and HMGCS1 protein levels. We treated H295R adrenal cells with 1-100 nM triphenyltin for 72 h. Triphenyltin induced significant higher ROS production at 100 nM and did not induce apoptosis at 10 and 100 nM. In conclusion, triphenyltin inhibits production of corticosterone via blocking the expression of cholesterol uptake transporters and cholesterol biosynthesis.
Collapse
Affiliation(s)
- Xingwang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Linchao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China
| | - Xiuxiu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Fang Gao-Smith
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, People's Republic of China.
| |
Collapse
|
44
|
Zhu Q, Li X, Ge RS. Toxicological Effects of Cadmium on Mammalian Testis. Front Genet 2020; 11:527. [PMID: 32528534 PMCID: PMC7265816 DOI: 10.3389/fgene.2020.00527] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cadmium is a heavy metal, and people are exposed to it through contaminated foods and smoking. In humans and other mammals, cadmium causes damage to male testis. In this review, we summarize the effects of cadmium on the development and function of the testis. Cadmium causes severe structural damage to the seminiferous tubules, Sertoli cells, and blood-testis barrier, thus leading to the loss of sperm. Cadmium hinders Leydig cell development, inhibits Leydig cell function, and induces Leydig cell tumors. Cadmium also disrupts the vascular system of the testis. Cadmium is a reactive oxygen species inducer and possibly induces DNA damage, thus epigenetically regulating somatic cell and germ cell function, leading to male subfertility/infertility.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Xia Y, Yang X, Lu J, Xie Q, Ye A, Sun W. The endoplasmic reticulum stress and related signal pathway mediated the glyphosate-induced testosterone synthesis inhibition in TM3 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113949. [PMID: 31968290 DOI: 10.1016/j.envpol.2020.113949] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Glyphosate is the most widely used herbicide in the world. In recent years, many studies have demonstrated that exposure to glyphosate-based herbicides (GHBs) was related to the decrease of serum testosterone and the decline in semen quality. However, the molecular mechanism of glyphosate-induced testosterone synthesis disorders is still unclear. In the present study, the effects of glyphosate on testosterone secretion and the role of endoplasmic reticulum (ER) stress in the process were investigated in TM3 cells. The effects of glyphosate at different concentrations on the viability of TM3 cells were detected by CCK8 method. The effect of glyphosate exposure on testosterone secretion was determined by enzyme-linked immunosorbent assay (ELISA). The expression levels of testosterone synthases and ER stress-related proteins were detected by Western blot and Immunofluorescence stain. Results showed that exposure to glyphosate at concentrations below 200 mg/L had no effect on cell viability, while the glyphosate above 0.5 mg/L could inhibit the testosterone secretion in TM3 cells. Treatment TM3 cells with glyphosate at 5 mg/L not only reduced the protein levels of testosterone synthase StAR and CYP17A1, inhibited testosterone secretion, but also increased the protein level of ER stress molecule Bip and promoted the phosphorylation of PERK and eIF2α. Pretreatment cells with PBA, an inhibitor of ER stress, alleviated glyphosate-induced increase in Bip, p-PERK and p-eIF2α protein levels, meanwhile rescuing glyphosate-induced testosterone synthesis disorders. When pretreatment with GSK2606414, a PERK inhibitor, the glyphosate-induced phosphorylation of PERK and eIF2α was blocked, and the glyphosate-inhibited testosterone synthesis and secretion was also restored. Overall, our findings suggest that glyphosate can interfere with the expression of StAR and CYP17A1 and inhibit testosterone synthesis and secretion via ER stress-mediated the activation of PERK/eIF2α signaling pathway in Leydig cells.
Collapse
Affiliation(s)
- Yongpeng Xia
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Xiaobo Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300041, PR China
| | - Jingchun Lu
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Qixin Xie
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China
| | - Anfang Ye
- Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, PR China.
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China; Institute of Environmental Medicine, Zhejiang University School of Medicine, No. 866 Yuhangtang Road, Hangzhou, 310058, PR China; Department of Occupational Disease of the First Affiliated Hospital, Zhejiang University School of Medicine, No. 79 Qingchun Road, Hangzhou, 310003, PR China.
| |
Collapse
|
46
|
Ren X, Wang S, Zhang C, Hu X, Zhou L, Li Y, Xu L. Selenium ameliorates cadmium-induced mouse leydig TM3 cell apoptosis via inhibiting the ROS/JNK /c-jun signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110266. [PMID: 32058163 DOI: 10.1016/j.ecoenv.2020.110266] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 05/11/2023]
Abstract
Despite the well-known acknowledgement of both the toxicity of cadmium (Cd) and the ameliorative effect of selenium (Se), the mechanism of the protective effect of selenium on cadmium-induced Mouse Leydig (TM3) cell apoptosis remains unknown. In this study, we hypothesized that the reactive oxygen species (ROS)-mediated c-jun N-terminal kinase (JNK) signaling pathway is involved in anti-apoptosis of selenium against cadmium in TM3 cells. We found that exposure to cadmium caused evident cytotoxicity, in which cell viability was inhibited, followed by inducement of apoptosis. Moreover, the level of ROS generation was elevated, leading to the phosphorylation of JNK. In addition, following cadmium exposure, the nuclear transcription factor c-jun was significantly activated, which led to increased expression of downstream gene c-jun, resulting in downstream activation of the apoptosis-related protein Caspase3 and upregulation of Cleaved-PARP, as well as inhibition of the anti-apoptosis protein Bcl-2. However, pretreatment with selenium remarkably suppressed cadmium-induced TM3 cell apoptosis. Furthermore, the level of ROS declined, and the JNK signaling pathway was blocked. Following this, the gene expression of c-jun decreased while Bcl-2 increased, which was consistent with the effects on proteins, that Caspase3 activity and Cleaved-PARP were inhibited while Bcl-2 level was restored. In order to explain the relationship between molecules of the signaling pathway, N-acetyl-L-cysteine (NAC), the ROS inhibitor, and JNK1/2 siRNA were administered, which further indicated the mediatory role of the ROS/JNK/c-jun signaling pathway in regulating anti-apoptosis of selenium against cadmium-induced TM3 cell apoptosis.
Collapse
Affiliation(s)
- Xiangmei Ren
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China.
| | - Susu Wang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Chaoqin Zhang
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Xindi Hu
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Li Zhou
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Yuanhong Li
- Department of Nutrition, School of Public Health, Xuzhou Medical University, China
| | - Lichun Xu
- Department of Hygiene, School of Public Health, Xuzhou Medical University, China
| |
Collapse
|
47
|
Wu K, Li Y, Liu J, Mo J, Li X, Ge RS. Long-term triphenyltin exposure disrupts adrenal function in adult male rats. CHEMOSPHERE 2020; 243:125149. [PMID: 31765896 DOI: 10.1016/j.chemosphere.2019.125149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/30/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Triphenyltin is an organotin, which is widely used as a fungicide in agriculture. Here, we reported the effects of triphenyltin on adrenal function in adult male rats. Adult male Sprague Dawley rats were daily gavaged with triphenyltin (0, 0.5, 1, and 2 mg/kg body weight) from postnatal day 56-86. Triphenyltin significantly decreased serum corticosterone levels at 1 and 2 mg/kg without affecting serum levels of aldosterone and adrenocorticotropic hormone. Triphenyltin increased thickness of zona glomerulosa without affecting that of zona fasciculata. Triphenyltin did not affect cell number in zona fasciculata and zona glomerulosa. Triphenyltin down-regulated the expression of Scarb1, Star, Cyp11a1, Hsd3b1, Cyp21, Cyp11b1, and Hsd11b1 at 1 and/or 2 mg/kg while it up-regulated the expression of At1, Nr4a2, and Hsd11b2 at 2 mg/kg. Triphenyltin activated the phosphorylation of AMPKα while suppressed the phosphorylation of AKT1 and SIRT1/PGC-1α in rat adrenals in vivo and H295R cells in vitro. In vitro, triphenyltin also induced ROS production in H295R cells at 100 nM, a concentration at which no apoptosis was induced. In conclusion, triphenyltin disrupts glucocorticoid synthesis in rat adrenal cortex via several mechanisms: 1) lowering AKT1 phosphorylation and SIRT1/PGC-1α levels; 2) activating AMPKα; and 3) possibly inducing ROS production.
Collapse
Affiliation(s)
- Keyang Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianpeng Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiaying Mo
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
48
|
Dong Y, Wang Y, Zhu Q, Li X, Huang T, Li H, Zhao J, Ge RS. Dimethoate blocks pubertal differentiation of Leydig cells in rats. CHEMOSPHERE 2020; 241:125036. [PMID: 31606569 DOI: 10.1016/j.chemosphere.2019.125036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Dimethoate is an organophosphate pesticide. It is widely used in agriculture. However, whether it blocks pubertal development of Leydig cells remains unknown. In the current study, we exposed male Sprague Dawley rats with 7.5 and 15 mg kg-1 dimethoate from postnatal day 35-56. We also exposed Leydig cells isolated from 35-day-old rats for 3 h. Dimethoate reduced serum testosterone levels at 7.5 and 15 mg kg-1 but increased serum luteinizing hormone and follicle stimulating hormone levels at 15 mg kg-1. Dimethoate did not influence Leydig cell number but reduced Leydig cell size and down-regulated Star, Cyp11a1, and Hsd3b1 in Leydig cells as well as their protein expression. Dimethoate inhibited basal androgen output in a dose-dependent manner with the inhibition starting at 0.05 μM. It significantly inhibited luteinizing hormone and 8Br-cAMP stimulated androgen outputs at 50 μM. It significantly inhibited 22R-hydroxycholesterol and progesterone-mediated androgen outputs at 50 μM. Further study demonstrated that dimethoate also down-regulated the expression of Star, Cyp11a1, and Hsd3b1 at 5 or 50 μM in vitro. Dimethoate did not directly inhibit rat testicular steroidogenic enzyme activities at 50 μM. In conclusion, dimethoate targets Star, Cyp11a1, and Hsd3b1 transcription, thus blocking Leydig cell differentiation during puberty.
Collapse
Affiliation(s)
- Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Yiyan Wang
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Qiqi Zhu
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Xiaoheng Li
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Tongliang Huang
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Huitao Li
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Junzhao Zhao
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.
| | - Ren-Shan Ge
- Center of Reproductive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.
| |
Collapse
|
49
|
Mouro VGS, Siman VA, da Silva J, Dias FCR, Damasceno EM, Cupertino MDC, de Melo FCSA, da Matta SLP. Cadmium-Induced Testicular Toxicity in Mice: Subacute and Subchronic Route-Dependent Effects. Biol Trace Elem Res 2020; 193:466-482. [PMID: 31030385 DOI: 10.1007/s12011-019-01731-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 10/26/2022]
Abstract
This study aimed to compare Cd exposure by intraperitoneal (i.p.) and oral routes, evaluating the testicular subacute and subchronic effects. Adult male mice were separated into three groups subdivided according to the experimental period (7 and 42 days after Cd exposure: subacute and subchronic effects, respectively): one group received water and two groups received CdCl2 (1.2 mg/kg i.p. and 24 mg/kg oral). The testicular concentration of essential minerals and Cd, activity of antioxidant enzymes and markers of oxidative stress, histology, and testicular histomorphometry were evaluated. The subacute effect of oral Cd showed reduced Fe concentration, while Ca and Cu increased in this route. The subchronic effect promoted decreasing in Mg in i.p. and oral routes, whereas Zn decreased only in the oral, and the Fe concentration did not change. SOD activity decreased in the oral subacute evaluation and in both pathways, i.p. and oral routes, in the subchronic evaluation, while GST activity increased, and MDA concentration decreased. Labeling of apoptotic cells was increased in the subacute and subchronic evaluation. Seminiferous epithelium degeneration, death of germ cells, and Leydig cell damages occurred in i.p. and oral routes. However, these damages were more intense in the oral route, mainly evaluating the subchronic effects. The results confirm that the severity of Cd-induced testicular injury depends on the pathway, as well as the duration of exposure.
Collapse
Affiliation(s)
| | - Verônica Andrade Siman
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Janaína da Silva
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - Sérgio Luis Pinto da Matta
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
50
|
Benzyl butyl phthalate non-linearly affects rat Leydig cell development during puberty. Toxicol Lett 2019; 314:53-62. [DOI: 10.1016/j.toxlet.2019.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 11/17/2022]
|