1
|
Camargo LC, Burgel P, Cardador CM, Mello VC, Rodrigues de Paiva KL, Simões MM, Araújo de Castro RJ, Valente IM, Farias GR, de Castro TB, Muehlmann LA, Báo SN, Longo JPF. Control of aggressive 4T1-luc metastatic breast cancer using immunogenic cell lysates generated with methotrexate. Biomed Pharmacother 2025; 187:118079. [PMID: 40280032 DOI: 10.1016/j.biopha.2025.118079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/01/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigated a novel immunization therapy for pre-clinical aggressive metastatic breast cancer using immunogenic cell lysates derived from 4T1-luc cells treated with cisplatin and methotrexate, addressing the critical need for improved treatments given the poor prognosis associated with breast cancer metastasis and its significant mortality rate. Methotrexate, a conventional cytotoxic agent, demonstrated a previously unrecognized capacity to induce immunogenic cell lysates, presenting a potential drug repositioning opportunity. In a murine model of stage IV metastatic breast cancer, immunization with these lysates significantly reduced primary tumor growth and lung metastasis, as assessed by bioluminescence imaging. Immunization also modulated immune cell populations, reducing splenomegaly and hepatomegaly, and partially reversing the immunosuppressive phenotype associated with 4T1-luc tumor growth, as evidenced by cytokine profiling (IL-6 and IFN-γ) and flow cytometry analysis of CD4 + and CD8 + T cell subpopulations. Specifically, methotrexate-treated lysates induced a significant shift in CD4 + T cells towards an effector phenotype. These findings highlight the potential of this immunotherapy approach to improve breast cancer treatment outcomes and warrant further investigation.
Collapse
Affiliation(s)
- Luana Cristina Camargo
- Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Department of Basic Psychological Processes, Institute of Psychology, University of Brasília, Brasília, Brazil
| | - Pedro Burgel
- Institute of Biological Sciences, University of Brasília, Brasília, Brazil; Faculty of Medicine, University of Brasília, Brasília, Brazil
| | | | | | | | | | | | | | | | | | | | - Sônia Nair Báo
- Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
2
|
Basnet A, Thomas DD, Landreth KM, Damron FH, Liu TW. Immune Response to Bioluminescence Imaging Reporters in Murine Tumor Models. Mol Imaging Biol 2025:10.1007/s11307-025-02010-7. [PMID: 40234300 DOI: 10.1007/s11307-025-02010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
PURPOSE Imaging reporters have been widely employed in cancer research to monitor real-time tumor burden and metastatic spread. These tools offer a valuable approach for non-invasive imaging of tumor dynamics over time. With the established understanding that tumor immunology plays a critical role in cancer progression, it is essential to ensure that the chosen imaging reporters used to study tumor-immune interactions do not inadvertently elicit an immune response. This study aimed to investigate the immune response to bioluminescence reporters used for in vivo tracking of tumor cells in immunocompetent murine models. PROCEDURES The in vitro and in vivo growth effects of two stably expressed bioluminescence reporter genes, a red-shifted firefly luciferase and a click beetle green luciferase, were evaluated in four different cancer cell lines. Differences in parental and reporter-expressing cancer cell immune cell composition, activation, and secreted cytokine levels were evaluated using flow cytometry, cytokine arrays and ELISAs. RESULTS The data revealed no significant differences in in vitro cell proliferation between parental and reporter cancer cell lines. In vivo subcutaneous tumor growth was not observed in tumor cells stably expressing the red-shifted firefly luciferase. Cells labeled with click beetle green luciferase demonstrated no significant differences in in vivo subcutaneous tumor growth compared to parental cells. Tumor cells expressing red-shifted firefly luciferase induced an increase in activated and cytotoxic T cells compared to parental and click beetle green luciferase, suggesting enhanced immunogenicity. Furthermore, the tumor-immune composition and cytokine production were similar between parental and click beetle green luciferase-labeled tumor cells. CONCLUSIONS These findings demonstrate that the stable expression of click beetle green luciferase in cancer cells, in contrast to red-shifted firefly luciferase, has minimal immunogenicity and does not alter tumor development in immunocompetent mice. We report detailed characterization studies of bioluminescence reporter cells, providing essential considerations for their use in investigating tumor-immune interactions in syngeneic murine tumor models.
Collapse
Affiliation(s)
- Angisha Basnet
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Dylan D Thomas
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - Kaitlyn M Landreth
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - Tracy W Liu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, 26506, USA.
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
3
|
Gangadaran P, Onkar A, Rajendran RL, Goenka A, Oh JM, Khan F, Nagarajan AK, Muthu S, Krishnan A, Hong CM, Ahn BC. Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics. Biomark Res 2025; 13:20. [PMID: 39865337 PMCID: PMC11770947 DOI: 10.1186/s40364-025-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored. Enhancing our knowledge of macrophages and the dynamics of their extracellular vesicles (EVs) in cancer development can potentially improve therapeutic management. Notably, macrophages have also been harnessed to deliver drugs. Noninvasive in vivo molecular imaging of macrophages is crucial for investigating intricate cellular processes, comprehending the underlying mechanisms of diseases, tracking cells and EVs' migration, and devising macrophage-dependent drug-delivery systems in living organisms. Thus, in vivo imaging of macrophages has become an indispensable tool in biomedical research. The integration of multimodal imaging approaches and the continued development of novel contrast agents hold promise for overcoming current limitations and expanding the applications of macrophage imaging. This study comprehensively reviews several methods for labeling macrophages and various imaging modalities, assessing the merits and drawbacks of each approach. The review concludes by offering insights into the applicability of molecular imaging techniques for real time monitoring of macrophages in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - ArulJothi Kandasamy Nagarajan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College, Tamil Nadu, 639004, Karur, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Tamil Nadu, 641021, Coimbatore, India
| | - Anand Krishnan
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| |
Collapse
|
4
|
Huang H, Fang L, Wansapura J, Prior JL, Manion B, Xu B, Hongsermeier C, Gamadia N, Blasi N, Tang R, Egbulefu C, Shokeen M, Quirk JD, Achilefu S. Cancer-targeted pro-theranostic bi-metallic organo-coordination nanoparticles. Theranostics 2025; 15:1205-1220. [PMID: 39816680 PMCID: PMC11729564 DOI: 10.7150/thno.99863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/07/2024] [Indexed: 01/18/2025] Open
Abstract
Rationale: Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. Methods: In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs). Polyvalent tannic acid was used to coordinate titanium (Ti), a reactive oxygen species (ROS)-generating catalyst, gadolinium (Gd), a magnetic resonance imaging (MRI) contrast agent, and cypate, a near-infrared fluorescent dye. Results: The NPs exhibited higher magnetic field-dependent relaxivities (r 1 = 20.8 mM⁻¹s⁻¹, r 2 = 72.1 mM⁻¹s⁻¹) than Gd-DTPA (r 1 = 4.8 mM⁻¹s⁻¹, r 2 = 4.9 mM⁻¹s⁻¹) on a 3 T MRI scanner. Tannic acid coordination reduced the Ti band gap from 3.3 eV in TiO₂ NPs to 2.0 eV, tripling ROS generation under UV light exposure. In breast cancer models (4T1 and PyMT-Bo1), Cerenkov radiating radiopharmaceuticals activated Gd-Ti-FA-TA NPs in vitro and in vivo, generating cytotoxic ROS to inhibit tumor cell viability and prevent tumor progression. In vivo, the NPs selectively accumulated in 4T1 tumors and enhanced both T1 and T2 MRI contrast, highlighting a strategy to locally activate cytotoxic ROS generation with radiopharmaceuticals for cancer treatment, utilizing cross-modality PET/MRI and optical imaging for shallow and deep tissue visualization. Conclusion: The integrated nanoplatform allows direct imaging of drug delivery, providing guidance for the optimal timeline to activate therapeutic effects of pro-theranostic NPs via external triggers such as radionuclide-stimulated dynamic treatment.
Collapse
Affiliation(s)
- Hengbo Huang
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
- Departments of Biomedical Engineering, Washington University in St. Louis, MO 63110, USA
| | - Lei Fang
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
- Departments of Biomedical Engineering, Washington University in St. Louis, MO 63110, USA
| | - Janaka Wansapura
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julie L. Prior
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Brad Manion
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Baogang Xu
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Cody Hongsermeier
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nisha Gamadia
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicole Blasi
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Rui Tang
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Christopher Egbulefu
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Monica Shokeen
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
| | - James D. Quirk
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
| | - Samuel Achilefu
- Departments of Radiology, Washington University in St. Louis, MO 63110, USA
- Departments of Biomedical Engineering, Washington University in St. Louis, MO 63110, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
5
|
Engels E, Forrester H, Klein M, Bell C, Balderstone I, Brunt K, Barnes MJ, Cameron M, Crosbie JC, Middleton R, Fernandez-Palomo C, Dietler BDB, Trappetti V, Fazzari JM, Hausermann D, Anderson RL, Djonov VG, Martin OA. The Impact of Synchrotron Microbeam Radiation Therapy Combined With Broad Beam in a Preclinical Breast Cancer Model. Adv Radiat Oncol 2025; 10:101680. [PMID: 39687472 PMCID: PMC11647509 DOI: 10.1016/j.adro.2024.101680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 11/04/2024] [Indexed: 12/18/2024] Open
Abstract
Purpose Both local tumor control and distant metastasis are important indicators of the efficacy of radiation therapy treatment. Synchrotron microbeam radiation therapy (MRT), spatially fractionated radiation delivered at ultrahigh dose rates, shows remarkable normal tissue sparing with excellent local control in some models. Some MRT regimens trigger an antitumor immune response that contributes not only to the local but also to systemic treatment efficacy. Despite recent advances in the treatment of primary breast cancer, metastatic disease is still the major cause of treatment failure in the clinic. Here, in an aggressive preclinical triple-negative breast cancer model, we compared local tumor response and metastasis following different MRT treatment programs. Methods and Materials 4T1.2 mouse mammary tumors were treated with 300 Gy peak/7 Gy valley dose MRT and/or 8 Gy broad beam (BB) radiation, all delivered as daily fractionated programs (3 consecutive daily sessions of either MRT or BB or 1 MRT combined with 2 BB sessions, the first or last of the 3 fractions). The mice were euthanized on day 9 post last irradiation, when unirradiated control animals reached an ethical endpoint. Primary tumors were collected to evaluate immune cell prevalence, while lungs, spinal cords, and locoregional lymph nodes were collected to measure metastatic burden. In parallel, local tumor growth and survival were monitored. Results The combined MRT/BB treatment shifted the balance between pro- and antitumorigenic macrophages toward the accumulation of antitumorigenic macrophages in the tumor. Monitoring of the tumor volume and animal health indicated the benefit of the combined MRT/BB treatment for local control and treatment tolerance, while animal survival was only marginally longer for one combined schedule. The metastatic burden was similar for all 4 treatment schedules. Conclusions The addition of a single MRT to BB treatment improved the primary tumor response. This provides a basis for future experiments incorporating adjuvant immunotherapy or chemotherapy to improve local and systemic treatment outcomes.
Collapse
Affiliation(s)
- Elette Engels
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, Australia
| | - Helen Forrester
- Royal Melbourne Institute of Technology (RMIT), Melbourne, Victoria, Australia
| | - Mitzi Klein
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, Australia
| | - Caroline Bell
- Olivia Newton-John Cancer Research Institute (ONJCRI), Heidelberg, Victoria, Australia
| | - Indi Balderstone
- Olivia Newton-John Cancer Research Institute (ONJCRI), Heidelberg, Victoria, Australia
| | - Kirsty Brunt
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, Australia
| | - Micah J. Barnes
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, Australia
- Physical Sciences, Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Matthew Cameron
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, Australia
| | - Jeffrey C. Crosbie
- XRV Medical Pty Ltd, Geelong North, Victoria, Australia
- Saint Luke's Radiation Oncology Network, Dublin, Ireland
| | | | | | | | | | | | - Daniel Hausermann
- Australian Synchrotron, Australian Nuclear Science and Technology Organization (ANSTO), Clayton, Victoria, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute (ONJCRI), Heidelberg, Victoria, Australia
- School of Medicine, LaTrobe University, Bundoora, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, Australia
| | | | - Olga A. Martin
- Centre of Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
- Institute of Anatomy, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Isaguliants M, Zhitkevich A, Petkov S, Gorodnicheva T, Mezale D, Fridrihsone I, Kuzmenko Y, Kostyushev D, Kostyusheva A, Gordeychuk I, Bayurova E. Enzymatic activity of HIV-1 protease defines migration of tumor cells in vitro and enhances their metastatic activity in vivo. Biochimie 2025; 228:32-43. [PMID: 39128490 DOI: 10.1016/j.biochi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Overexpression of aspartic proteases, as cathepsin D, is an independent marker of poor prognosis in breast cancer, correlated with the incidence of clinical metastasis. We aimed to find if HIV-1 aspartic protease (PR) can play a similar role. Murine adenocarcinoma 4T1luc2 cells were transduced with lentivirus encoding inactivated drug-resistant PR, generating subclones PR20.1 and PR20.2. Subclones were assessed for production of reactive oxygen species (ROS), expression of epithelial-mesenchymal transition (EMT) factors, and in vitro migratory activity in the presence or absence of antioxidant N-acetyl cysteine and protease inhibitors. Tumorigenic activity was evaluated by implanting cells into BALB/c mice and following tumor growth by calipering and bioluminescence imaging in vivo, and metastases, by organ imaging ex vivo. Both subclones expressed PR mRNA, and PR20.2, also the protein detected by Western blotting. PR did not induce production of ROS, and had no direct effect on cell migration rate, however, treatment with inhibitors of drug-resistant PR suppressed the migratory activity of both subclones. Furthermore, expression of N-cadherin and Vimentin in PR20.2 cells and their migration were enhanced by antioxidant treatment. Sensitivity of in vitro migration to protease inhibitors and to antioxidant, known to restore PR activity, related the effects to the enzymatic activity of PR. In vivo, PR20.2 cells demonstrated higher tumorigenic and metastatic activity than PR20.1 or parental cells. Thus, HIV-1 protease expressed in breast cancer cells determines their migration in vitro and metastatic activity in vivo. This effect may aggravate clinical course of cancers in people living with HIV-1.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - A Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - T Gorodnicheva
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - D Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - I Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Y Kuzmenko
- Engelhardt Institute of Molecular Biology, Academy of Sciences of the Russian Federation, 119991, Moscow, Russia.
| | - D Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - A Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - I Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - E Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| |
Collapse
|
7
|
Jensen G, Wang X, Kuempel J, Chen Z, Yu W, Palaskas N, Sobieski M, Nguyen N, Powell RT, Stephan C, Luo W, Chang J. Modeling immune checkpoint inhibitor associated myocarditis in vitro and its therapeutic implications. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 10:100122. [PMID: 39742339 PMCID: PMC11687339 DOI: 10.1016/j.jmccpl.2024.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Immune checkpoint inhibitor-associated myocarditis is the most lethal side effect of immune checkpoint blockade. Myocarditis leads to persistently increased mortality and lacks effective treatments. The development of patient-relevant disease models may enable disease prediction, increased understanding of disease pathophysiology, and the development of effective treatment strategies. Here, we report a new method to model immune checkpoint inhibitor-associated myocarditis in vitro via a co-culture of activated primary human immune cells, human induced pluripotent stem cell-derived cardiomyocytes, and FDA-approved immune checkpoint inhibitors to recapitulate myocarditis in vitro. Significant cardiomyocyte necrosis, arrhythmia development, and sarcomere destruction occur, replicating clinical findings from myocarditis. This tissue culture myocarditis phenotype may rely on an induced pluripotent stem cell-derived cardiomyocyte antigen-specific CD8+ T cell response. The administration of dexamethasone rescued cardiomyocyte viability, morphology, and electrophysiology and suppressed inflammatory cytokine production. In conclusion, we detail how this platform can effectively model and provide critical information about the morphological and electrophysiological changes induced by immune checkpoint inhibitor-associated myocarditis. We have also validated the ability of this platform to screen potential medications to treat immune checkpoint inhibitor-associated myocarditis. This work establishes a robust, scalable model for identifying new therapies and risk factors, which is valuable in delineating the nature of interactions between the immune system and the heart during myocarditis.
Collapse
Affiliation(s)
- Garrett Jensen
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Xinjie Wang
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Jacob Kuempel
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Zhishi Chen
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Wei Yu
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Nicolas Palaskas
- The MD Anderson Cancer Center Department of Cardiology, United States of America
| | - Mary Sobieski
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Nghi Nguyen
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Reid T. Powell
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Clifford Stephan
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Weijia Luo
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| | - Jiang Chang
- Texas A&M College of Medicine Institute for Biosciences and Technology, Houston, TX, United States of America
| |
Collapse
|
8
|
Kim Y, Jeon SH, Kim S, Kang MH, Han MG, Lee SY, Kim IA. In vitro-irradiated cancer vaccine enhances anti-tumor efficacy of radiotherapy and PD-L1 blockade in a syngeneic murine breast cancer model. Radiother Oncol 2024; 200:110480. [PMID: 39159681 DOI: 10.1016/j.radonc.2024.110480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND AND PURPOSE Local radiotherapy (RT) exerts immunostimulatory effects by inducing immunogenic cell death. However, it remains unknown whether in vitro-irradiated tumor cells can elicit anti-tumor responses and enhance the efficacy of local RT and immune checkpoint inhibitors when injected in vivo. METHODS AND MATERIALS We tested the "in vitro-irradiated cancer vaccine (ICV)", wherein tumor cells killed by varying doses of irradiation and their supernatants are intravenously injected. We examined the efficacy of combining local RT (24 Gy in three fractions), PD-L1 blockade, and the ICV in a murine breast cancer model. The immune cell profiles were analyzed via flow cytometry and immunohistochemistry. The cytokine levels were measured by multiplex immunoassays. RESULTS The ICV significantly increased the effector memory phenotype and interferon-γ production capacity in splenic CD8+ T cells. The in vitro-irradiated products contained immune response-related molecules. When combined with local RT and PD-L1 blockade, the ICV significantly delayed the growth of irradiated and non-irradiated tumors. The triple combination therapy increased the proportions of CD8+ T cells and effector memory CD8+ T cells while decreasing the proportion of CTLA-4+ exhausted CD8+ T cells within tumor microenvironment. Additionally, plasma level of interferon-γ and proliferation of effector T cells in the spleen and tumor-draining lymph nodes were significantly increased by the triple combination therapy. CONCLUSIONS The ICV enhanced the therapeutic efficacy of local RT and PD-L1 blockade by augmenting anti-tumor immune responses. Our findings suggest a therapeutic potential of in vitro-irradiation products of tumor cells.
Collapse
Affiliation(s)
- Yoomin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.
| | - Seung Hyuck Jeon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Seongmin Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea
| | - Mi Hyun Kang
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Min Guk Han
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Se Yup Lee
- Korea Nuclear Engineering Co., Ltd, Seoul, Republic of Korea
| | - In Ah Kim
- Department of Tumor Biology and Cancer Research Institute, Graduate School of Medicine, Seoul National University, Seoul, Republic of Korea; Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Integrated Major in Innovative Medical Science, Seoul National University, Seoul, Republic of Korea; Department of Radiation Oncology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Ramos-Gonzalez MR, Sirpu Natesh N, Rachagani S, Amos-Landgraf J, Shirwan H, Yolcu ES, Gomez-Gutierrez JG. Establishment of Translational Luciferase-Based Cancer Models to Evaluate Antitumoral Therapies. Int J Mol Sci 2024; 25:10418. [PMID: 39408747 PMCID: PMC11476533 DOI: 10.3390/ijms251910418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Luciferase (luc) bioluminescence (BL) is the most used light-emitting protein that has been engineered to be expressed in multiple cancer cell lines, allowing for the detection of tumor nodules in vivo as it can penetrate most tissues. The goal of this study was to develop an oncolytic adenovirus (OAd)-resistant human triple-negative breast cancer (TNBC) that could express luciferase. Thus, when combining an OAd with chemotherapies or targeted therapies, we would be able to monitor the ability of these compounds to enhance OAd antitumor efficacy using BL in real time. The TNBC cell line HCC1937 was stably transfected with the plasmid pGL4.50[luc2/CMV/Hygro] (HCC1937/luc2). Once established, HCC1937/luc2 was orthotopically implanted in the 4th mammary gland fat pad of NSG (non-obese diabetic severe combined immunodeficiency disease gamma) female mice. Bioluminescence imaging (BLI) revealed that the HCC1937/luc2 cell line developed orthotopic breast tumor and lung metastasis over time. However, the integration of luc plasmid modified the HCC1937 phenotype, making HCC1937/luc2 more sensitive to OAdmCherry compared to the parental cell line and blunting the interferon (IFN) antiviral response. Testing two additional luc cell lines revealed that this was not a universal response; however, proper controls would need to be evaluated, as the integration of luciferase could affect the cells' response to different treatments.
Collapse
Affiliation(s)
- Martin R. Ramos-Gonzalez
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA; (M.R.R.-G.); (N.S.N.); (S.R.); (H.S.); (E.S.Y.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
| | - Nagabhishek Sirpu Natesh
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA; (M.R.R.-G.); (N.S.N.); (S.R.); (H.S.); (E.S.Y.)
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - Satyanarayana Rachagani
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA; (M.R.R.-G.); (N.S.N.); (S.R.); (H.S.); (E.S.Y.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, MO 65211, USA
| | - James Amos-Landgraf
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Haval Shirwan
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA; (M.R.R.-G.); (N.S.N.); (S.R.); (H.S.); (E.S.Y.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Department of Pediatrics, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Esma S. Yolcu
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA; (M.R.R.-G.); (N.S.N.); (S.R.); (H.S.); (E.S.Y.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Department of Pediatrics, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Jorge G. Gomez-Gutierrez
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65211, USA; (M.R.R.-G.); (N.S.N.); (S.R.); (H.S.); (E.S.Y.)
- Ellis Fischel Cancer Center, School of Medicine, University of Missouri, Columbia, MO 65212, USA;
- Department of Pediatrics, School of Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
10
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
11
|
Radzevičiūtė-Valčiukė E, Gečaitė J, Balevičiūtė A, Szewczyk A, Želvys A, Lekešytė B, Malyško-Ptašinskė V, Mickevičiūtė E, Malakauskaitė P, Kulbacka J, Novickij V. Effects of buffer composition and plasmid toxicity on electroporation-based non-viral gene delivery in mammalian cells using bursts of nanosecond and microsecond pulses. Front Bioeng Biotechnol 2024; 12:1430637. [PMID: 39050682 PMCID: PMC11266100 DOI: 10.3389/fbioe.2024.1430637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Gene electrotransfer (GET) is non-viral gene delivery technique, also known as electroporation-mediated gene delivery or electrotransfection. GET is a method used to introduce foreign genetic material (such as DNA or RNA) into cells by applying external pulsed electric fields (PEFs) to create temporary pores in the cell membrane. This study was undertaken to examine the impact of buffer composition on the efficiency of GET in mammalian cells Also, we specifically compared the effectiveness of high-frequency nanosecond (ns) pulses with standard microsecond (µs) pulses. For the assessment of cell transfection efficiency and viability, flow cytometric analysis, luminescent assays, and measurements of metabolic activity were conducted. The efficiency of electrotransfection was evaluated using two different proteins encoding plasmids (pEGFP-N1 and Luciferase-pcDNA3). The investigation revealed that the composition of the electroporation buffer significantly influences the efficacy of GET in CHO-K1 cell line. The different susceptibility of cell lines to the electric field and the plasmid cytotoxicity were reported. It was also shown that electroporation with nanosecond duration PEF protocols ensured equivalent or even better transfection efficiency than standard µsPEF. Additionally, we successfully performed long-term transfection of the murine 4T1 cell line using high-frequency nanosecond PEFs and confirmed its' applicability in an in vivo model. The findings from the study can be applied to optimize electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė-Valčiukė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Jovita Gečaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Austėja Balevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
| | - Anna Szewczyk
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Augustinas Želvys
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Barbora Lekešytė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | | | - Eglė Mickevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Paulina Malakauskaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Julita Kulbacka
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Pharmacy, Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Vitalij Novickij
- State Research Institute Centre for Innovative Medicine, Department of Immunology and Bioelectrochemistry, Vilnius, Lithuania
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
12
|
Kim H, Jung SO, Lee S, Lee Y. Bioluminescent Systems for Theranostic Applications. Int J Mol Sci 2024; 25:7563. [PMID: 39062805 PMCID: PMC11277111 DOI: 10.3390/ijms25147563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Bioluminescence, the light produced by biochemical reactions involving luciferases in living organisms, has been extensively investigated for various applications. It has attracted particular interest as an internal light source for theranostic applications due to its safe and efficient characteristics that overcome the limited penetration of conventional external light sources. Recent advancements in protein engineering technologies and protein delivery platforms have expanded the application of bioluminescence to a wide range of theranostic areas, including bioimaging, biosensing, photodynamic therapy, and optogenetics. This comprehensive review presents the fundamental concepts of bioluminescence and explores its recent applications across diverse fields. Moreover, it discusses future research directions based on the current status of bioluminescent systems for further expansion of their potential.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.O.J.); (S.L.); (Y.L.)
| | | | | | | |
Collapse
|
13
|
Ferrari DP, Ramos-Gomes F, Alves F, Markus MA. KPC-luciferase-expressing cells elicit an anti-tumor immune response in a mouse model of pancreatic cancer. Sci Rep 2024; 14:13602. [PMID: 38866899 PMCID: PMC11169258 DOI: 10.1038/s41598-024-64053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Mouse models for the study of pancreatic ductal adenocarcinoma (PDAC) are well-established and representative of many key features observed in human PDAC. To monitor tumor growth, cancer cells that are implanted in mice are often transfected with reporter genes, such as firefly luciferase (Luc), enabling in vivo optical imaging over time. Since Luc can induce an immune response, we aimed to evaluate whether the expression of Luc could affect the growth of KPC tumors in mice by inducing immunogenicity. Although both cell lines, KPC and Luc transduced KPC (KPC-Luc), had the same proliferation rate, KPC-Luc tumors had significantly smaller sizes or were absent 13 days after orthotopic cell implantation, compared to KPC tumors. This coincided with the loss of bioluminescence signal over the tumor region. Immunophenotyping of blood and spleen from KPC-Luc tumor-bearing mice showed a decreased number of macrophages and CD4+ T cells, and an increased accumulation of natural killer (NK) cells in comparison to KPC tumor mice. Higher infiltration of CD8+ T cells was found in KPC-Luc tumors than in their controls. Moreover, the immune response against Luc peptide was stronger in splenocytes from mice implanted with KPC-Luc cells compared to those isolated from KPC wild-type mice, indicating increased immunogenicity elicited by the presence of Luc in the PDAC tumor cells. These results must be considered when evaluating the efficacy of anti-cancer therapies including immunotherapies in immunocompetent PDAC or other cancer mouse models that use Luc as a reporter for bioluminescence imaging.
Collapse
Affiliation(s)
- Daniele Pereira Ferrari
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Fernanda Ramos-Gomes
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
| | - Frauke Alves
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany
- Institute of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Haematology and Medical Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - M Andrea Markus
- Translational Molecular Imaging, Max-Planck-Institute for Multidisciplinary Sciences, Hermann Rein‑Straße 3, 37075, Göttingen, Germany.
| |
Collapse
|
14
|
Rodgers LT, Schulz Pauly JA, Maloney BJ, Hartz AMS, Bauer B. Optimization, Characterization, and Comparison of Two Luciferase-Expressing Mouse Glioblastoma Models. Cancers (Basel) 2024; 16:1997. [PMID: 38893116 PMCID: PMC11171217 DOI: 10.3390/cancers16111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain cancer. To model GBM in research, orthotopic brain tumor models, including syngeneic models like GL261 and genetically engineered mouse models like TRP, are used. In longitudinal studies, tumor growth and the treatment response are typically tracked with in vivo imaging, including bioluminescence imaging (BLI), which is quick, cost-effective, and easily quantifiable. However, BLI requires luciferase-tagged cells, and recent studies indicate that the luciferase gene can elicit an immune response, leading to tumor rejection and experimental variation. We sought to optimize the engraftment of two luciferase-expressing GBM models, GL261 Red-FLuc and TRP-mCherry-FLuc, showing differences in tumor take, with GL261 Red-FLuc cells requiring immunocompromised mice for 100% engraftment. Immunohistochemistry and MRI revealed distinct tumor characteristics: GL261 Red-FLuc tumors were well-demarcated with densely packed cells, high mitotic activity, and vascularization. In contrast, TRP-mCherry-FLuc tumors were large, invasive, and necrotic, with perivascular invasion. Quantifying the tumor volume using the HALO® AI analysis platform yielded results comparable to manual measurements, providing a standardized and efficient approach for the reliable, high-throughput analysis of luciferase-expressing tumors. Our study highlights the importance of considering tumor engraftment when using luciferase-expressing GBM models, providing insights for preclinical research design.
Collapse
Affiliation(s)
- Louis T. Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Julia A. Schulz Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Bryan J. Maloney
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Anika M. S. Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 PMCID: PMC11781865 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
16
|
Trotter TN, Wilson A, McBane J, Dagotto CE, Yang XY, Wei JP, Lei G, Thrash H, Snyder JC, Lyerly HK, Hartman ZC. Overcoming Xenoantigen Immunity to Enable Cellular Tracking and Gene Regulation with Immune-competent "NoGlow" Mice. CANCER RESEARCH COMMUNICATIONS 2024; 4:1050-1062. [PMID: 38592453 PMCID: PMC11003454 DOI: 10.1158/2767-9764.crc-24-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
The ability to temporally regulate gene expression and track labeled cells makes animal models powerful biomedical tools. However, sudden expression of xenobiotic genes [e.g., GFP, luciferase (Luc), or rtTA3] can trigger inadvertent immunity that suppresses foreign protein expression or results in complete rejection of transplanted cells. Germline exposure to foreign antigens somewhat addresses these challenges; however, native fluorescence and bioluminescence abrogates the utility of reporter proteins and highly spatiotemporally restricted expression can lead to suboptimal xenoantigen tolerance. To overcome these unwanted immune responses and enable reliable cell tracking/gene regulation, we developed a novel mouse model that selectively expresses antigen-intact but nonfunctional forms of GFP and Luc, as well as rtTA3, after CRE-mediated recombination. Using tissue-specific CREs, we observed model and sex-based differences in immune tolerance to the encoded xenoantigens, illustrating the obstacles of tolerizing animals to foreign genes and validating the utility of these "NoGlow" mice to dissect mechanisms of central and peripheral tolerance. Critically, tissue unrestricted NoGlow mice possess no detectable background fluorescence or luminescence and exhibit limited adaptive immunity against encoded transgenic xenoantigens after vaccination. Moreover, we demonstrate that NoGlow mice allow tracking and tetracycline-inducible gene regulation of triple-transgenic cells expressing GFP/Luc/rtTA3, in contrast to transgene-negative immune-competent mice that eliminate these cells or prohibit metastatic seeding. Notably, this model enables de novo metastasis from orthotopically implanted, triple-transgenic tumor cells, despite high xenoantigen expression. Altogether, the NoGlow model provides a critical resource for in vivo studies across disciplines, including oncology, developmental biology, infectious disease, autoimmunity, and transplantation. SIGNIFICANCE Multitolerant NoGlow mice enable tracking and gene manipulation of transplanted tumor cells without immune-mediated rejection, thus providing a platform to investigate novel mechanisms of adaptive immunity related to metastasis, immunotherapy, and tolerance.
Collapse
Affiliation(s)
| | - Andrea Wilson
- Department of Pathology, Duke University, Durham, North Carolina
| | - Jason McBane
- Department of Surgery, Duke University, Durham, North Carolina
| | | | - Xiao-Yi Yang
- Department of Surgery, Duke University, Durham, North Carolina
| | - Jun-Ping Wei
- Department of Surgery, Duke University, Durham, North Carolina
| | - Gangjun Lei
- Department of Surgery, Duke University, Durham, North Carolina
| | - Hannah Thrash
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina
| | - Joshua C. Snyder
- Department of Surgery, Duke University, Durham, North Carolina
- Department of Cell Biology, Duke University, Durham, North Carolina
| | - Herbert Kim Lyerly
- Department of Surgery, Duke University, Durham, North Carolina
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina
| | - Zachary C. Hartman
- Department of Surgery, Duke University, Durham, North Carolina
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina
| |
Collapse
|
17
|
Mishra DK, Popovski D, Morris SM, Bondoc A, Senthil Kumar S, Girard EJ, Rutka J, Fouladi M, Huang A, Olson JM, Drissi R. Preclinical pediatric brain tumor models for immunotherapy: Hurdles and a way forward. Neuro Oncol 2024; 26:226-235. [PMID: 37713135 PMCID: PMC10836771 DOI: 10.1093/neuonc/noad170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 09/16/2023] Open
Abstract
Brain tumors are the most common solid tumor in children and the leading cause of cancer-related deaths. Over the last few years, improvements have been made in the diagnosis and treatment of children with Central Nervous System tumors. Unfortunately, for many patients with high-grade tumors, the overall prognosis remains poor. Lower survival rates are partly attributed to the lack of efficacious therapies. The advent and success of immune checkpoint inhibitors (ICIs) in adults have sparked interest in investigating the utility of these therapies alone or in combination with other drug treatments in pediatric patients. However, to achieve improved clinical outcomes, the establishment and selection of relevant and robust preclinical pediatric high-grade brain tumor models is imperative. Here, we review the information that influenced our model selection as we embarked on an international collaborative study to test ICIs in combination with epigenetic modifying agents to enhance adaptive immunity to treat pediatric brain tumors. We also share challenges that we faced and potential solutions.
Collapse
Affiliation(s)
- Deepak Kumar Mishra
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dean Popovski
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shelli M Morris
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Andrew Bondoc
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - Shiva Senthil Kumar
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Emily J Girard
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - James Rutka
- Division of Neurosurgery, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maryam Fouladi
- Pediatric Neuro-Oncology Program, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Annie Huang
- Arthur and Sonia Labatt Brain Tumor Research Centre, Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Onatario, Canada
| | - James M Olson
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rachid Drissi
- Center for Childhood Cancer Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
18
|
Sechrist ZR, Lee G, Schwarz EM, Cole CL. Validation of dual energy X-ray absorptiometry for longitudinal quantification of tumor burden in a murine model of pancreatic ductal adenocarcinoma. PLoS One 2024; 19:e0292196. [PMID: 38165848 PMCID: PMC10760650 DOI: 10.1371/journal.pone.0292196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Noninvasive imaging is central to preclinical, in vivo models of pancreatic ductal adenocarcinoma (PDAC). While bioluminescent imaging (BLI) is a gold standard, its signal is dependent on the metabolic activity of tumor cells. In contrast, dual energy X-ray absorptiometry (DEXA) is a direct measure of body composition. Thus, we aimed to assess its potential for longitudinal quantification of tumor burden versus BLI. We utilized the KCKO murine model of PDAC and subjected tumor-bearing (n = 20) and non-tumor control (NTC) (n = 10) animals to weekly BLI and DEXA measurements for up to 10 weeks. While BLI detected tumors at 1-week, it failed to detect tumor growth, displayed a decreasing trend overtime (slope = -9.0x108; p = 0.0028), and terminal signal did not correlate with ex vivo tumor mass (r = 0.01853; p = 0.6286). In contrast, DEXA did not detect elevated changes in abdominal cavity lean mass until week 2 post inoculation and tumors were not visible until week 3, but successfully quantified a tumor growth trend (slope = 0.7322; p<0.0001), and strongly correlated with final tumor mass (r = 0.9351; p<0.0001). These findings support the use of BLI for initial tumor engraftment and persistence but demonstrate the superiority of DEXA for longitudinal tumor burden studies. As tumor detection by DEXA is not restricted to luciferase expressing models, future studies to assess its value in various cancer models and as an in vivo outcome measure of treatment efficacy are warranted.
Collapse
Affiliation(s)
- Zachary R. Sechrist
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Grace Lee
- Department of Biology, University of Rochester, Rochester, New York, United States of America
| | - Edward M. Schwarz
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Calvin L. Cole
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
19
|
Uršič Valentinuzzi K, Serša G, Kamenšek U. Preclinical Mouse Metastatic Model Established Through Induced Lung Metastases. Methods Mol Biol 2024; 2773:77-86. [PMID: 38236538 DOI: 10.1007/978-1-0716-3714-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metastatic disease is the major cause of cancer death, and the lung is one of the most common sites of cancer metastases. To investigate systemic antitumor effects or protective potential of local therapies, mouse models with induced metastases are indispensable in preclinical cancer research. Here, we describe the protocol for the metastatic mouse model established through induced 4T1 mammary carcinoma metastases. With minor prior optimization, it can be applied to other tumor cell lines of interest.
Collapse
Affiliation(s)
- Katja Uršič Valentinuzzi
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Urška Kamenšek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
20
|
Langsten KL, Shi L, Wilson AS, Lumia S, Westwood B, Skeen AM, Xie MT, Surratt VE, Turner J, Langefeld CD, Singh R, Cook KL, Kerr BA. A Novel Metastatic Estrogen Receptor-Expressing Breast Cancer Model with Antiestrogen Responsiveness. Cancers (Basel) 2023; 15:5773. [PMID: 38136319 PMCID: PMC10742098 DOI: 10.3390/cancers15245773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Most women diagnosed with breast cancer (BC) have estrogen receptor alpha-positive (ER+) disease. The current mouse models of ER+ BC often rely on exogenous estrogen to encourage metastasis, which modifies the immune system and the function of some tissues like bone. Other studies use genetically modified or immunocompromised mouse strains, which do not accurately replicate the clinical disease. To create a model of antiestrogen responsive BC with spontaneous metastasis, we developed a mouse model of 4T1.2 triple-negative (TN) breast cancer with virally transduced ER expression that metastasizes spontaneously without exogenous estrogen stimulation and is responsive to antiestrogen drugs. Our mouse model exhibited upregulated ER-responsive genes and multi-organ metastasis without exogenous estrogen administration. Additionally, we developed a second TN BC cell line, E0771/bone, to express ER, and while it expressed ER-responsive genes, it lacked spontaneous metastasis to clinically important tissues. Following antiestrogen treatment (tamoxifen, ICI 182,780, or vehicle control), 4T1.2- and E0771/bone-derived tumor volumes and weights were significantly decreased, exemplifying antiestrogen responsivity in both cell lines. This 4T1.2 tumor model, which expresses the estrogen receptor, metastasizes spontaneously, and responds to antiestrogen treatment, will allow for further investigation into the biology and potential treatment of metastasis.
Collapse
Affiliation(s)
- Kendall L. Langsten
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - Lihong Shi
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - Adam S. Wilson
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (A.S.W.); (B.W.)
| | - Salvatore Lumia
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - Brian Westwood
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (A.S.W.); (B.W.)
| | - Alexandra M. Skeen
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - Maria T. Xie
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - Victoria E. Surratt
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - JoLyn Turner
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Katherine L. Cook
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
- Department of Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (A.S.W.); (B.W.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| | - Bethany A. Kerr
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (K.L.L.); (L.S.); (S.L.); (A.M.S.); (M.T.X.); (V.E.S.); (J.T.); (R.S.); (K.L.C.)
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157, USA
| |
Collapse
|
21
|
McDonald SJ, Bullard BM, VanderVeen BN, Cardaci TD, Chatzistamou I, Fan D, Murphy EA. Emodin reduces surgical wounding-accelerated tumor growth and metastasis via macrophage suppression in a murine triple-negative breast cancer model. Physiol Rep 2023; 11:e15813. [PMID: 37821408 PMCID: PMC10567645 DOI: 10.14814/phy2.15813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
It has been suspected that tumor resection surgery itself may accelerate breast cancer (BC) lung metastasis in some patients. Emodin, a natural anthraquinone found in the roots and rhizomes of various plants, exhibits anticancer activity. We examined the perioperative use of emodin in our established surgery wounding murine BC model. Emodin reduced primary BC tumor growth and metastasis in the lungs in both sham and surgical wounded mice, consistent with a reduction in proliferation and enhanced apoptosis (primary tumor and lungs). Further, emodin reduced systemic inflammation, most notably the number of monocytes in the peripheral blood and reduced pro-tumoral M2 macrophages in the primary tumor and the lungs. Consistently, we show that emodin reduces gene expression of select macrophage markers and associated cytokines in the primary tumor and lungs of wounded mice. Overall, we demonstrate that emodin is beneficial in mitigating surgical wounding accelerated lung metastasis in a model of triple-negative BC, which appears to be mediated, at least in part, by its actions on macrophages. These data support the development of emodin as a safe, low-cost, and effective agent to be used perioperatively to alleviate the surgery triggered inflammatory response and consequential metastasis of BC to the lungs.
Collapse
Affiliation(s)
- Sierra J. McDonald
- Department of Pathology, Microbiology & Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Brooke M. Bullard
- Department of Pathology, Microbiology & Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology & Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Thomas D. Cardaci
- Department of Pathology, Microbiology & Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
- AcePre, LLCColumbiaSouth CarolinaUSA
| | - E. Angela Murphy
- Department of Pathology, Microbiology & Immunology, School of MedicineUniversity of South CarolinaColumbiaSouth CarolinaUSA
- AcePre, LLCColumbiaSouth CarolinaUSA
| |
Collapse
|
22
|
Sechrist ZR, Lee G, Schwarz EM, Cole CL. Validation of Dual Energy X-ray Absorptiometry for longitudinal quantification of tumor burden in a murine model of pancreatic ductal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558153. [PMID: 37790492 PMCID: PMC10542135 DOI: 10.1101/2023.09.17.558153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Noninvasive imaging is central to preclinical, in vivo models of pancreatic ductal adenocarcinoma (PDAC). While bioluminescent imaging (BLI) is a gold standard, its signal is dependent on the metabolic activity of tumor cells. In contrast, dual energy X-ray absorptiometry (DEXA) is a direct measure of body composition. Thus, we aimed to assess its potential for longitudinal quantification of tumor burden versus BLI. We utilized the KCKO murine model of PDAC and subjected tumor-bearing (n = 20) and non-tumor control (NTC) (n = 10) animals to weekly BLI and DEXA measurements for up to 10 weeks. While BLI detected tumors at 1-week, it failed to detect tumor growth, displayed a decreasing trend overtime (slope = -9.0×108; p = 0.0028), and terminal signal did not correlate with ex vivo tumor mass (r = 0.01853; p = 0.6286). In contrast, DEXA did not detect elevated changes in abdominal cavity lean mass until week 2 post inoculation and tumors were not visible until week 3, but successfully quantified a tumor growth trend (slope = 0.7322; p<0.0001), and strongly correlated with final tumor mass (r = 0.9351; p<0.0001). These findings support the use of BLI for initial tumor engraftment and persistence but demonstrate the superiority of DEXA for longitudinal tumor burden studies. As tumor detection by DEXA is not restricted to luciferase expressing models, future studies to assess its value in various cancer models and as an in vivo outcome measure of treatment efficacy are warranted.
Collapse
Affiliation(s)
- Zachary R Sechrist
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States
| | - Grace Lee
- Department of Biology, University of Rochester, Rochester, New York, United States
| | - Edward M Schwarz
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States
| | - Calvin L Cole
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, United States
- Department of Surgical Oncology, University of Rochester Medical Center, Rochester, New York, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
23
|
Van Court B, Neupert B, Nguyen D, Ross R, Knitz MW, Karam SD. Measurement of mouse head and neck tumors by automated analysis of CBCT images. Sci Rep 2023; 13:12033. [PMID: 37491456 PMCID: PMC10368694 DOI: 10.1038/s41598-023-39159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
Animal experiments are often used to determine effects of drugs and other biological conditions on cancer progression, but poor accuracy and reproducibility of established tumor measurement methods make results unreliable. In orthotopic mouse models of head and neck cancer, tumor volumes approximated from caliper measurements are conventionally used to compare groups, but geometrical challenges make the procedure imprecise. To address this, we developed software to better measure these tumors by automated analysis of cone-beam computed tomography (CBCT) scans. This allows for analyses of tumor shape and growth dynamics that would otherwise be too inaccurate to provide biological insight. Monitoring tumor growth by calipers and imaging in parallel, we find that caliper measurements of small tumors are weakly correlated with actual tumor volume and highly susceptible to experimenter bias. The method presented provides a unique window to sources of error in a foundational aspect of preclinical head and neck cancer research and a valuable tool to mitigate them.
Collapse
Affiliation(s)
- Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Richard Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, USA.
| |
Collapse
|
24
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Regenold M, Wang X, Kaneko K, Bannigan P, Allen C. Harnessing immunotherapy to enhance the systemic anti-tumor effects of thermosensitive liposomes. Drug Deliv Transl Res 2023; 13:1059-1073. [PMID: 36577832 DOI: 10.1007/s13346-022-01272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 12/29/2022]
Abstract
Chemotherapy plays an important role in debulking tumors in advance of surgery and/or radiotherapy, tackling residual disease, and treating metastatic disease. In recent years many promising advanced drug delivery strategies have emerged that offer more targeted delivery approaches to chemotherapy treatment. For example, thermosensitive liposome-mediated drug delivery in combination with localized mild hyperthermia can increase local drug concentrations resulting in a reduction in systemic toxicity and an improvement in local disease control. However, the majority of solid tumor-associated deaths are due to metastatic spread. A therapeutic approach focused on a localized target area harbors the risk of overlooking and undertreating potential metastatic spread. Previous studies reported systemic, albeit limited, anti-tumor effects following treatment with thermosensitive liposomal chemotherapy and localized mild hyperthermia. This work explores the systemic treatment capabilities of a thermosensitive liposome formulation of the vinca alkaloid vinorelbine in combination with mild hyperthermia in an immunocompetent murine model of rhabdomyosarcoma. This treatment approach was found to be highly effective at heated, primary tumor sites. However, it demonstrated limited anti-tumor effects in secondary, distant tumors. As a result, the addition of immune checkpoint inhibition therapy was pursued to further enhance the systemic anti-tumor effect of this treatment approach. Once combined with immune checkpoint inhibition therapy, a significant improvement in systemic treatment capability was achieved. We believe this is one of the first studies to demonstrate that a triple combination of thermosensitive liposomes, localized mild hyperthermia, and immune checkpoint inhibition therapy can enhance the systemic treatment capabilities of thermosensitive liposomes.
Collapse
Affiliation(s)
- Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Xuehan Wang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Kan Kaneko
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Pauric Bannigan
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
26
|
Bafaloukos D, Gazouli I, Koutserimpas C, Samonis G. Evolution and Progress of mRNA Vaccines in the Treatment of Melanoma: Future Prospects. Vaccines (Basel) 2023; 11:vaccines11030636. [PMID: 36992220 DOI: 10.3390/vaccines11030636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
mRNA vaccines encoding tumor antigens may be able to sensitize the immune system of the host against cancer cells, enhancing antigen presentation and immune response. Since the breakout of the COVID19 pandemic, interest in mRNA vaccines has been accelerating, as vaccination against the virus served as a measure to limit disease spread. Given that immunotherapy has been the cornerstone of melanoma treatment over the last several decades, further innate immunity enhancement by targeted mRNA vaccines could be the next pivotal achievement in melanoma treatment. Preclinical data coming from murine cancer models have already provided evidence of mRNA vaccines’ ability to induce host immune responses against cancer. Moreover, specific immune responses have been observed in melanoma patients receiving mRNA vaccines, while the recent KEYNOTE-942 trial may establish the incorporation of the mRNA-4157/V940 vaccine into the melanoma treatment algorithm, in combination with immune checkpoint inhibition. As the existing data are further tested and reviewed, investigators are already gaining enthusiasm about this novel, promising pathway in cancer therapy.
Collapse
Affiliation(s)
- Dimitrios Bafaloukos
- First Department of Medical Oncology, "Metropolitan" Hospital, Neon Faliron, 18547 Attica, Greece
| | - Ioanna Gazouli
- First Department of Medical Oncology, "Metropolitan" Hospital, Neon Faliron, 18547 Attica, Greece
| | - Christos Koutserimpas
- Department of Orthopaedics and Traumatology, "251" Hellenic Air Force General Hospital of Athens, 11525 Athens, Greece
| | - George Samonis
- First Department of Medical Oncology, "Metropolitan" Hospital, Neon Faliron, 18547 Attica, Greece
- Department of Medicine, University of Crete, 71500 Heraklion, Greece
| |
Collapse
|
27
|
Swami S, Zhu H, Nisco A, Kimura T, Kim MJ, Nair V, Wu JY. Parathyroid hormone 1 receptor signaling mediates breast cancer metastasis to bone in mice. JCI Insight 2023; 8:157390. [PMID: 36692956 PMCID: PMC10077472 DOI: 10.1172/jci.insight.157390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Bone metastases are a common complication of breast cancer. We have demonstrated that intermittent administration of parathyroid hormone (PTH[1-34]) reduces the incidence of bone metastases in murine models of breast cancer by acting on osteoblasts to alter the bone microenvironment. Here, we examined the role of signaling mediated by PTH 1 receptor (PTH1R) in both osteoblasts and breast cancer cells in influencing bone metastases. In mice with impaired PTH1R signaling in osteoblasts, intermittent PTH did not reduce bone metastasis. Intermittent PTH also did not reduce bone metastasis when expression of PTH1R was knocked down in 4T1 murine breast cancer cells by shRNA. In 4T1 breast cancer cells, PTH decreased expression of PTH-related protein (PTHrP), implicated in the vicious cycle of bone metastases. Knockdown of PTHrP in 4T1 cells significantly reduced migration toward MC3T3-E1 osteoblasts, and migration was further inhibited by treatment with intermittent PTH. Conversely, overexpression of PTHrP in 4T1 cells increased migration toward MC3T3-E1 osteoblasts, and this was not inhibited by PTH. In conclusion, PTH1R expression is crucial in both osteoblasts and breast cancer cells for PTH to reduce bone metastases, and in breast cancer cells, this may be mediated in part by suppression of PTHrP.
Collapse
|
28
|
Bertho A, Iturri L, Brisebard E, Juchaux M, Gilbert C, Ortiz R, Sebrie C, Jourdain L, Lamirault C, Ramasamy G, Pouzoulet F, Prezado Y. Evaluation of the Role of the Immune System Response After Minibeam Radiation Therapy. Int J Radiat Oncol Biol Phys 2023; 115:426-439. [PMID: 35985455 DOI: 10.1016/j.ijrobp.2022.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Minibeam radiation therapy (MBRT) is an innovative technique that uses a spatial dose modulation. The dose distribution consists of high doses (peaks) in the path of the minibeam and low doses (valleys). The underlying biological mechanism associated with MBRT efficacy remains currently unclear and thus we investigated the potential role of the immune system after treatment with MBRT. METHODS AND MATERIALS Rats bearing an orthotopic glioblastoma cell line were treated with 1 fraction of high dose conventional radiation therapy (30 Gy) or 1 fraction of the same mean dose in MBRT. Both immunocompetent (F344) and immunodeficient (Nude) rats were analyzed in survival studies. Systemic and intratumoral immune cell population changes were studied with flow cytometry and immunohistochemistry (IHC) 2 and 7 days after the irradiation. RESULTS The absence of response of Nude rats after MBRT suggested that T cells were key in the mode of action of MBRT. An inflammatory phenotype was observed in the blood 1 week after irradiation compared with conventional irradiation. Tumor immune cell analysis by flow cytometry showed a substantial infiltration of lymphocytes, specifically of CD8 T cells and B cells in both conventional and MBRT-treated animals. IHC revealed that MBRT induced a faster recruitment of CD8 and CD4 T cells. Animals that were cured by radiation therapy did not suffer tumor growth after reimplantation of tumoral cells, proving the long-term immunity response generated after a high dose of radiation. CONCLUSIONS Our findings show that MBRT can elicit a robust antitumor immune response in glioblastoma while avoiding the high toxicity of a high dose of conventional radiation therapy.
Collapse
Affiliation(s)
- Annaig Bertho
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France.
| | - Lorea Iturri
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | | | - Marjorie Juchaux
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Cristèle Gilbert
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Ramon Ortiz
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| | - Catherine Sebrie
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurene Jourdain
- Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Charlotte Lamirault
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Gabriel Ramasamy
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France
| | - Frédéric Pouzoulet
- Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Institut Curie, PSL University, Paris, France; Inserm U1288, Laboratoire de Recherche Translationnelle en Oncologie, Institut Curie, PSL University, Université Paris-Saclay, Orsay, France
| | - Yolanda Prezado
- CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Institut Curie, Université PSL, Orsay, France; CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Université Paris-Saclay, Orsay, France
| |
Collapse
|
29
|
McDonald JA, Scott L, Van Zuylekom J, Holloway S, Blyth BJ, Sutherland KD. On Target: An Intrapulmonary Transplantation Method for Modelling Lung Tumor Development in its Native Microenvironment. Methods Mol Biol 2023; 2691:31-41. [PMID: 37355535 DOI: 10.1007/978-1-0716-3331-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
The development of in vivo lung cancer models that faithfully mimic the human disease is a crucial research tool for understanding the molecular mechanisms driving tumorigenesis. Subcutaneous transplantation assays are commonly employed, likely due to their amenability to easily monitor tumor growth and the simplistic nature of the technique to deliver tumor cells. Importantly however, subcutaneous tumors grow in a microenvironment that differs from that resident within the lung. To circumvent this limitation, here we describe the development of an intrapulmonary (iPUL) orthotopic transplantation method that enables the delivery of lung cancer cells, with precision, to the left lung lobe of recipient mice. Critically, this allows for the growth of lung cancer cells within their native microenvironment. The coupling of iPUL transplantation with position emission tomography (PET) imaging permits the serial detection of tumors in vivo and serves as a powerful tool to trace lung tumor growth and dissemination over time in mouse disease models.
Collapse
Affiliation(s)
- Jackson A McDonald
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Leanne Scott
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Jessica Van Zuylekom
- Models of Cancer Translational Research Centre, Peter MacCallum Cancer Centre, Parkville, VIC, Australia
| | - Steven Holloway
- Bioservices Department, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Benjamin J Blyth
- Models of Cancer Translational Research Centre, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Kate D Sutherland
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Swan SL, Mehta N, Ilich E, Shen SH, Wilkinson DS, Anderson AR, Segura T, Sanchez-Perez L, Sampson JH, Bellamkonda RV. IL7 and IL7 Flt3L co-expressing CAR T cells improve therapeutic efficacy in mouse EGFRvIII heterogeneous glioblastoma. Front Immunol 2023; 14:1085547. [PMID: 36817432 PMCID: PMC9936235 DOI: 10.3389/fimmu.2023.1085547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy in glioblastoma faces many challenges including insufficient CAR T cell abundance and antigen-negative tumor cells evading targeting. Unfortunately, preclinical studies evaluating CAR T cells in glioblastoma focus on tumor models that express a single antigen, use immunocompromised animals, and/or pre-treat with lymphodepleting agents. While lymphodepletion enhances CAR T cell efficacy, it diminishes the endogenous immune system that has the potential for tumor eradication. Here, we engineered CAR T cells to express IL7 and/or Flt3L in 50% EGFRvIII-positive and -negative orthotopic tumors pre-conditioned with non-lymphodepleting irradiation. IL7 and IL7 Flt3L CAR T cells increased intratumoral CAR T cell abundance seven days after treatment. IL7 co-expression with Flt3L modestly increased conventional dendritic cells as well as the CD103+XCR1+ population known to have migratory and antigen cross-presenting capabilities. Treatment with IL7 or IL7 Flt3L CAR T cells improved overall survival to 67% and 50%, respectively, compared to 9% survival with conventional or Flt3L CAR T cells. We concluded that CAR T cells modified to express IL7 enhanced CAR T cell abundance and improved overall survival in EGFRvIII heterogeneous tumors pre-conditioned with non-lymphodepleting irradiation. Potentially IL7 or IL7 Flt3L CAR T cells can provide new opportunities to combine CAR T cells with other immunotherapies for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Sheridan L Swan
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nalini Mehta
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Ekaterina Ilich
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Steven H Shen
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Daniel S Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Alexa R Anderson
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Tatiana Segura
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States.,Clinical Science Departments of Neurology and Dermatology, Duke University, Durham, NC, United States
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States.,The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, United States.,Department of Pathology, Duke University Medical Center, Durham, NC, United States.,Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - Ravi V Bellamkonda
- Department of Biology, Emory University, Atlanta, GA, United States.,Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA, United States
| |
Collapse
|
31
|
Petkov S, Kilpeläinen A, Bayurova E, Latanova A, Mezale D, Fridrihsone I, Starodubova E, Jansons J, Dudorova A, Gordeychuk I, Wahren B, Isaguliants M. HIV-1 Protease as DNA Immunogen against Drug Resistance in HIV-1 Infection: DNA Immunization with Drug Resistant HIV-1 Protease Protects Mice from Challenge with Protease-Expressing Cells. Cancers (Basel) 2022; 15:238. [PMID: 36612231 PMCID: PMC9818955 DOI: 10.3390/cancers15010238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
DNA immunization with HIV-1 protease (PR) is advanced for immunotherapy of HIV-1 infection to reduce the number of infected cells producing drug-resistant virus. A consensus PR of the HIV-1 FSU_A strain was designed, expression-optimized, inactivated (D25N), and supplemented with drug resistance (DR) mutations M46I, I54V, and V82A common for FSU_A. PR variants with D25N/M46I/I54V (PR_Ai2mut) and with D25N/M46I/I54V/V82A (PR_Ai3mut) were cloned into the DNA vaccine vector pVAX1, and PR_Ai3mut, into a lentiviral vector for the transduction of murine mammary adenocarcinoma cells expressing luciferase 4T1luc2. BALB/c mice were DNA-immunized by intradermal injections of PR_Ai, PR_Ai2mut, PR_Ai3mut, vector pVAX1, or PBS with electroporation. All PR variants induced specific CD8+ T-cell responses revealed after splenocyte stimulation with PR-derived peptides. Splenocytes of mice DNA-immunized with PR_Ai and PR_Ai2mut were not activated by peptides carrying V82A, whereas splenocytes of PR_Ai3mut-immunized mice recognized both peptides with and without V82A mutation. Mutations M46I and I54V were immunologically silent. In the challenge study, DNA immunization with PR_Ai3mut protected mice from the outgrowth of subcutaneously implanted adenocarcinoma 4T1luc2 cells expressing PR_Ai3mut; a tumor was formed only in 1/10 implantation sites and no metastases were detected. Immunizations with other PR variants were not protective; all mice formed tumors and multiple metastasis in the lungs, liver, and spleen. CD8+ cells of PR_Ai3mut DNA-immunized mice exhibited strong IFN-γ/IL-2 responses against PR peptides, while the splenocytes of mice in other groups were nonresponsive. Thus, immunization with a DNA plasmid encoding inactive HIV-1 protease with DR mutations suppressed the growth and metastatic activity of tumor cells expressing PR identical to the one encoded by the immunogen. This demonstrates the capacity of T-cell response induced by DNA immunization to recognize single DR mutations, and supports the concept of the development of immunotherapies against drug resistance in HIV-1 infection. It also suggests that HIV-1-infected patients developing drug resistance may have a reduced natural immune response against DR HIV-1 mutations causing an immune escape.
Collapse
Affiliation(s)
- Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Athina Kilpeläinen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Ekaterina Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Anastasia Latanova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dzeina Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ilse Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Elizaveta Starodubova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Juris Jansons
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Latvian Research and Study Centre, LV-1067 Riga, Latvia
| | - Alesja Dudorova
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Paul Stradins University Hospital, LV-1002 Riga, Latvia
| | - Ilya Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia
| | - Britta Wahren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
32
|
5-Azacytidine-Mediated Modulation of the Immune Microenvironment in Murine Acute Myeloid Leukemia. Cancers (Basel) 2022; 15:cancers15010118. [PMID: 36612115 PMCID: PMC9817798 DOI: 10.3390/cancers15010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer cells accumulate epigenetic modifications that allow escape from intrinsic and extrinsic surveillance mechanisms. In the case of acute myeloid leukemias (AML) and myelodysplastic syndromes, agents that disrupt chromatin structure, namely hypomethylating agents (HMAs), have shown tremendous promise as an alternate, milder treatment option for older, clinically non-fit patients. HMAs reprogram the epigenetic landscape in tumor cells through the reversal of DNA hypermethylation. Therapeutic effects resulting from these epigenetic changes are incredibly effective, sometimes resulting in complete remissions, but are frequently lost due to primary or acquired resistance. In this study, we describe syngeneic murine leukemias that are responsive to the HMA 5-azacytidine (5-Aza), as determined by augmented expression of a transduced luciferase reporter. We also found that 5-Aza treatment re-established immune-related transcript expression, suppressed leukemic burden and extended survival in leukemia-challenged mice. The effects of 5-Aza treatment were short-lived, and analysis of the immune microenvironment reveals possible mechanisms of resistance, such as simultaneous increase in immune checkpoint protein expression. This represents a model system that is highly responsive to HMAs and recapitulates major therapeutic outcomes observed in human leukemia (relapse) and may serve as a pre-clinical tool for studying acquired resistance and novel treatment combinations.
Collapse
|
33
|
Iturri L, Bertho A, Lamirault C, Juchaux M, Gilbert C, Espenon J, Sebrie C, Jourdain L, Pouzoulet F, Verrelle P, De Marzi L, Prezado Y. Proton FLASH Radiation Therapy and Immune Infiltration: Evaluation in an Orthotopic Glioma Rat Model. Int J Radiat Oncol Biol Phys 2022:S0360-3016(22)03639-2. [PMID: 36563907 DOI: 10.1016/j.ijrobp.2022.12.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE FLASH radiation therapy (FLASH-RT) is a promising radiation technique that uses ultrahigh doses of radiation to increase the therapeutic window of the treatment. FLASH-RT has been observed to provide normal tissue sparing at high dose rates and similar tumor control compared with conventional RT, yet the biological processes governing these radiobiological effects are still unknown. In this study, we sought to investigate the potential immune response generated by FLASH-RT in a high dose of proton therapy in an orthotopic glioma rat model. METHODS AND MATERIALS We cranially irradiated rats with a single high dose (25 Gy) using FLASH dose rate proton irradiation (257 ± 2 Gy/s) or conventional dose rate proton irradiation (4 ± 0.02 Gy/s). We first assessed the protective FLASH effect that resulted in our setup through behavioral studies in naïve rats. This was followed by a comprehensive analysis of immune cells in blood, healthy tissue of the brain, and tumor microenvironment by flow cytometry. RESULTS Proton FLASH-RT spared memory impairment produced by conventional high-dose proton therapy and induced a similar tumor infiltrating lymphocyte recruitment. Additionally, a general neuroinflammation that was similar in both dose rates was observed. CONCLUSIONS Overall, this study demonstrated that FLASH proton therapy offers a neuro-protective effect even at high doses while mounting an effective lymphoid immune response in the tumor.
Collapse
Affiliation(s)
- Lorea Iturri
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
| | - Annaïg Bertho
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Charlotte Lamirault
- Institut Curie, PSL University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Paris, France
| | - Marjorie Juchaux
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Cristèle Gilbert
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Julie Espenon
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| | - Catherine Sebrie
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Laurène Jourdain
- CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, BIOMAPS Université Paris-Saclay, Orsay, France
| | - Frédéric Pouzoulet
- Institut Curie, PSL University, Département de Recherche Translationnelle, CurieCoreTech-Experimental Radiotherapy (RadeXp), Paris, France
| | - Pierre Verrelle
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO (U1288), Orsay, 91898 France; Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898 France
| | - Ludovic De Marzi
- Institut Curie, Campus Universitaire, PSL Research University, University Paris Saclay, INSERM LITO (U1288), Orsay, 91898 France; Centre de Protonthérapie d'Orsay, Radiation Oncology Department, Campus Universitaire, Institut Curie, PSL Research University, Orsay, 91898 France
| | - Yolanda Prezado
- Université Paris-Saclay, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France
| |
Collapse
|
34
|
Han T, Wang Y, Xu J, Zhu N, Bai L, Liu X, Sun B, Yu C, Meng Q, Wang J, Su Q, Cai Q, Hettie KS, Zhang Y, Zhu S, Yang B. Surfactant-chaperoned donor-acceptor-donor NIR-II dye strategy efficiently circumvents intermolecular aggregation to afford enhanced bioimaging contrast. Chem Sci 2022; 13:13201-13211. [PMID: 36425495 PMCID: PMC9667954 DOI: 10.1039/d2sc05651h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Fluorescence emission in the near-infrared-II (NIR-II) optical window affords reduced autofluorescence and light scattering, enabling deep-tissue visualization for both disease detection and surgical navigation. Small-molecule NIR-II dyes are preferable for clinical bioimaging applications, as the flexibility in their molecular synthesis allows for precise control of their optical and pharmacokinetic properties. Among the various types of dye, donor-acceptor-donor-based (D-A-D) dyes demonstrate exceptional photostability, whereas the frequently used PEGylation approach does not keep their intrinsic brightness enough in water environments due to their inherent effect of self-assembly. Here, we demonstrate that the commercially-available surfactants can serve as a dispersant to prevent molecular aggregation of PEGylated D-A-D dyes. Due to the favorable energetics for co-assembly between D-A-D dyes and surfactants, the formed surfactant-chaperoned dye strategy dramatically increases dye brightness. Accordingly, this effect provides remarkably improved performance for in vivo bioimaging applications. In parallel, we also investigate the D-A-D dye uptake and signal enhancement properties in the liver of murine models and demonstrate that the lumen-lining Kupffer cells can potentially disassemble PEGylated D-A-D aggregates such that their inherent brightness is restored. This phenomenon is similar to the surfactant-chaperoned dye strategy and our investigations provide a positive addition to better use of the current NIR-II fluorophores, especially for visualizing high-brightness required events.
Collapse
Affiliation(s)
- Tianyang Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Yajun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Jiajun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Ningning Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Lang Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Xiangping Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Bin Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Chenlong Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Qinglun Meng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Qi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Qing Cai
- Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine Stanford California 94305 USA
| | - Yuewei Zhang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132022 P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, First Hospital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
35
|
DNA barcoding reveals ongoing immunoediting of clonal cancer populations during metastatic progression and immunotherapy response. Nat Commun 2022; 13:6539. [PMID: 36344500 PMCID: PMC9640547 DOI: 10.1038/s41467-022-34041-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Cancers evade the immune system through the process of cancer immunoediting. While immune checkpoint inhibitors are effective for reactivating tumour immunity in some cancer types, many other solid cancers, including breast cancer, remain largely non-responsive. Understanding how non-responsive cancers evade immunity and whether this occurs at the clonal level will improve immunotherapeutic design. Here we use DNA barcoding to track murine mammary cancer cell clones during immunoediting and determine clonal transcriptional profiles that allow immune evasion following anti-PD1 plus anti-CTLA4 immunotherapy. Clonal diversity is significantly restricted by immunotherapy treatment in both primary tumours and metastases, demonstrating selection for pre-existing breast cancer cell populations and ongoing immunoediting during metastasis and treatment. Immunotherapy resistant clones express a common gene signature associated with poor survival of basal-like breast cancer patient cohorts. At least one of these genes has an existing small molecule that can potentially be used to improve immunotherapy response.
Collapse
|
36
|
McDonald SJ, VanderVeen BN, Bullard BM, Cardaci TD, Madero SS, Chatzistamou I, Fan D, Murphy EA. Surgical wounding enhances pro-tumor macrophage responses and accelerates tumor growth and lung metastasis in a triple negative breast cancer mouse model. Physiol Rep 2022; 10:e15497. [PMID: 36325601 PMCID: PMC9630756 DOI: 10.14814/phy2.15497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/06/2022] Open
Abstract
Approximately one-third of all breast cancer mortality results from metastatic recurrence after initial success of surgery and/or therapy. Although primary tumor removal is widely accepted as beneficial, it has long been suspected that surgery itself contributes to accelerated metastatic recurrence. We investigated surgical wounding's impact on tumor progression and lung metastasis in a murine model of triple negative breast cancer (TNBC). Ten-week-old female mice were inoculated with 4 T1 cells (week 0) and were either subjected to a 2 cm long cutaneous contralateral incision (wounded) or control (non-wounded) on week 2 and monitored for 3 weeks (week 5). Mice with surgical wounding displayed significantly accelerated tumor growth observable as early as 1-week post wounding. This was confirmed by increased tumor volume and tumor weight, post-mortem. Further, surgical wounding increased metastasis to the lungs, as detected by IVIS imaging, in vivo and ex vivo (week 5). As expected then, wounded mice displayed decreased apoptosis and increased proliferation in both the primary tumor and in the lungs. Flow cytometry revealed that primary tumors from wounded mice exhibited increased tumor associated macrophages and specifically M2-like macrophages, which are important in promoting tumor development, maintenance, and metastasis. Immunofluorescence staining and gene expression data further confirms an increase in macrophages in both the primary tumor and the lungs of wounded mice. Our data suggests that surgical wounding accelerates tumor progression and lung metastasis in a mouse model of TNBC, which is likely mediated, at least in part by an increase in macrophages.
Collapse
Affiliation(s)
- Sierra J. McDonald
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- AcePre, LLCColumbiaSouth CarolinaUSA
| | - Brooke M. Bullard
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Thomas D. Cardaci
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Sarah S. Madero
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Daping Fan
- AcePre, LLCColumbiaSouth CarolinaUSA
- Department of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - E. Angela Murphy
- Department of Pathology, Microbiology & ImmunologyUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- AcePre, LLCColumbiaSouth CarolinaUSA
| |
Collapse
|
37
|
Chen M, Zhou K, Dai SY, Tadepalli S, Balakrishnan PB, Xie J, Rami FEI, Dai T, Cui L, Idoyaga J, Rao J. In vivo bioluminescence imaging of granzyme B activity in tumor response to cancer immunotherapy. Cell Chem Biol 2022; 29:1556-1567.e6. [PMID: 36103874 PMCID: PMC9588750 DOI: 10.1016/j.chembiol.2022.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022]
Abstract
Cancer immunotherapy has revolutionized the treatment of cancer, but only a small subset of patients benefits from this new treatment regime. Imaging tools are useful for early detection of tumor response to immunotherapy and probing the dynamic and complex immune system. Here, we report a bioluminescence probe (GBLI-2) for non-invasive, real-time, longitudinal imaging of granzyme B activity in tumors receiving immune checkpoint inhibitors. GBLI-2 is made of the mouse granzyme B tetrapeptide IEFD substrate conjugated to D-luciferin through a self-immolative group. GBLI-2 was evaluated for imaging the dynamics of the granzyme B activity and predicting therapeutic efficacy in a syngeneic mouse model of CT26 murine colorectal carcinoma. The GBLI-2 signal correlated with the change in the population of PD-1- and granzyme B-expressing CD8+ T cells in tumors.
Collapse
Affiliation(s)
- Min Chen
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaixiang Zhou
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheng-Yao Dai
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Preethi Bala Balakrishnan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinghang Xie
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fadi E I Rami
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tingting Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Liyang Cui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jianghong Rao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
38
|
Arellano DL, Juárez P, Verdugo‐Meza A, Almeida‐Luna PS, Corral‐Avila JA, Drescher F, Olvera F, Jiménez S, Elzey BD, Guise TA, Fournier PG. Bone Microenvironment-Suppressed T Cells Increase Osteoclast Formation and Osteolytic Bone Metastases in Mice. J Bone Miner Res 2022; 37:1446-1463. [PMID: 35635377 PMCID: PMC9543062 DOI: 10.1002/jbmr.4615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 12/05/2022]
Abstract
Immunotherapies use components of the immune system, such as T cells, to fight cancer cells, and are changing cancer treatment, causing durable responses in some patients. Bone metastases are a debilitating complication in advanced breast and prostate cancer patients. Approved treatments fail to cure bone metastases or increase patient survival and it remains unclear whether immunotherapy could benefit patients. The bone microenvironment combines various immunosuppressive factors, and combined with T cell products could increase bone resorption fueling the vicious cycle of bone metastases. Using syngeneic mouse models, our study revealed that bone metastases from 4T1 breast cancer contain tumor-infiltrating lymphocyte (TILs) and their development is increased in normal mice compared to immunodeficient and T-cell depleted mice. This effect seemed caused by the TILs specifically in bone, because T-cell depletion increased 4T1 orthotopic tumors and did not affect bone metastases from RM-1 prostate cancer cells, which lack TILs. T cells increased osteoclast formation ex vivo and in vivo contributing to bone metastasis vicious cycle. This pro-osteoclastic effect is specific to unactivated T cells, because activated T cells, secreting interferon γ (IFNγ) and interleukin 4 (IL-4), actually suppressed osteoclastogenesis, which could benefit patients. However, non-activated T cells from bone metastases could not be activated in ex vivo cultures. 4T1 bone metastases were associated with an increase of functional polymorphonuclear and monocytic myeloid-derived suppressor cells (MDSCs), potent T-cell suppressors. Although effective in other models, sildenafil and zoledronic acid did not affect MDSCs in bone metastases. Seeking other therapeutic targets, we found that monocytic MDSCs are more potent suppressors than polymorphonuclear MDSCs, expressing programmed cell death receptor-1 ligand (PD-L1)+ in bone, which could trigger T-cell suppression because 70% express its receptor, programmed cell death receptor-1 (PD-1). Collectively, our findings identified a new mechanism by which suppressed T cells increase osteoclastogenesis and bone metastases. Our results also provide a rationale for using immunotherapy because T-cell activation would increase their anti-cancer and their anti-osteoclastic properties. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Danna L. Arellano
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Patricia Juárez
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Department of MedicineIndiana University School of MedicineIndianapolisIN
| | - Andrea Verdugo‐Meza
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Paloma S. Almeida‐Luna
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Juan A. Corral‐Avila
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Florian Drescher
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Posgrado en Ciencias de la VidaCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)EnsenadaMexico
| | - Felipe Olvera
- Departamento de Biología Molecular y BioprocesosInstituto de Biotecnología Universidad Nacional Autónoma de MéxicoCuernavacaMexico
| | - Samanta Jiménez
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
| | - Bennett D. Elzey
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteINUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteINUSA
| | - Theresa A. Guise
- Department of MedicineIndiana University School of MedicineIndianapolisIN
- Endocrine Neoplasia and Hormone DisordersThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
- Cancer Prevention and Research Institute of TexasAustinTXUSA
| | - Pierrick G.J. Fournier
- Biomedical Innovation DepartmentCentro de Investigación Científica y de Educación Superior de Ensenada (CICESE)Ensenada
- Department of MedicineIndiana University School of MedicineIndianapolisIN
| |
Collapse
|
39
|
Howard M, Erickson J, Cuba Z, Kim S, Zhou W, Gade P, Carter R, Mitchell K, Branscome H, Siddhi D, Alanazi F, Kim Y, Araujo RP, Haymond A, Luchini A, Kashanchi F, Liotta LA. A secretory form of Parkin-independent mitophagy contributes to the repertoire of extracellular vesicles released into the tumour interstitial fluid in vivo. J Extracell Vesicles 2022; 11:e12244. [PMID: 35879267 PMCID: PMC9314315 DOI: 10.1002/jev2.12244] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/29/2022] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
We characterized the in vivo interstitial fluid (IF) content of extracellular vesicles (EVs) using the GFP-4T1 syngeneic murine cancer model to study EVs in-transit to the draining lymph node. GFP labelling confirmed the IF EV tumour cell origin. Molecular analysis revealed an abundance of IF EV-associated proteins specifically involved in mitophagy and secretory autophagy. A set of proteins required for sequential steps of fission-induced mitophagy preferentially populated the CD81+/PD-L1+ IF EVs; PINK1, TOM20, and ARIH1 E3 ubiquitin ligase (required for Parkin-independent mitophagy), DRP1 and FIS1 (mitochondrial peripheral fission), VDAC-1 (ubiquitination state triggers mitophagy away from apoptosis), VPS35, SEC22b, and Rab33b (vacuolar sorting). Comparing in vivo IF EVs to in vitro EVs revealed 40% concordance, with an elevation of mitophagy proteins in the CD81+ EVs for both murine and human cell lines subjected to metabolic stress. The export of cellular mitochondria proteins to CD81+ EVs was confirmed by density gradient isolation from the bulk EV isolate followed by anti-CD81 immunoprecipitation, molecular sieve chromatography, and MitoTracker export into CD81+ EVs. We propose the 4T1 in vivo model as a versatile tool to functionally characterize IF EVs. IF EV export of fission mitophagy proteins has broad implications for mitochondrial function and cellular immunology.
Collapse
Affiliation(s)
- Marissa Howard
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - James Erickson
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Zachary Cuba
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Shawn Kim
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Purva Gade
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Rachel Carter
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Kelsey Mitchell
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Heather Branscome
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Daivik Siddhi
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Fatimah Alanazi
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Yuriy Kim
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Robyn P. Araujo
- School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
| | - Amanda Haymond
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| | - Fatah Kashanchi
- Laboratory of Molecular VirologySchool of Systems BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular MedicineGeorge Mason UniversityManassasVirginiaUSA
| |
Collapse
|
40
|
Vlasova KY, Ostroverkhov P, Vedenyapina D, Yakimova T, Trusova A, Lomakina GY, Vodopyanov SS, Grin M, Klyachko N, Chekhonin V, Abakumov M. Liposomal Form of 2,4-Dinitrophenol Lipophilic Derivatives as a Promising Therapeutic Agent for ATP Synthesis Inhibition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2162. [PMID: 35808003 PMCID: PMC9268429 DOI: 10.3390/nano12132162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 12/10/2022]
Abstract
Mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) is a promising antidiabetic and antiobesity agent. Its clinical use is limited by a narrow dynamic range and accumulation in non-target sensitive organs, which results in whole-body toxicity. A liposomal formulation could enable the mentioned drawbacks to be overcome and simplify the liver-targeted delivery and sustained release of 2,4-DNP. We synthesized 2,4-DNP esters with carboxylic acids of various lipophilic degrees using carboxylic acid chloride and then loaded them into liposomes. We demonstrated the effective increase in the entrapment of 2,4-DNP into liposomes when esters were used. Here, we examined the dependence of the sustained release of 2,4-DNP from liposomes on the lipid composition and LogPoct of the ester. We posit that the optimal chain length of the ester should be close to the palmitic acid and the lipid membrane should be composed of phospholipids with a certain phase transition point depending on the desired release rate. The increased effect of the ATP synthesis inhibition of the liposomal forms of caproic and palmitic acid esters compared to free molecules in liver hepatocytes was demonstrated. The liposomes' stability could well be responsible for this result. This work demonstrates promising possibilities for the liver-targeted delivery of the 2,4-DNP esters with carboxylic acids loaded into liposomes for ATP synthesis inhibition.
Collapse
Affiliation(s)
- Kseniya Yu. Vlasova
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (K.Y.V.); (V.C.)
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Y.L.); (N.K.)
| | - Petr Ostroverkhov
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, Lomonosov Institute of Fine Chemical Technologies MIREA-Russian Technological University (RTU MIREA), 119571 Moscow, Russia; (P.O.); (D.V.); (M.G.)
| | - Daria Vedenyapina
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, Lomonosov Institute of Fine Chemical Technologies MIREA-Russian Technological University (RTU MIREA), 119571 Moscow, Russia; (P.O.); (D.V.); (M.G.)
| | - Tamara Yakimova
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.Y.); (A.T.)
| | - Alla Trusova
- Faculty of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.Y.); (A.T.)
| | | | - Stepan Sergeevich Vodopyanov
- College of New Materials and Nanotechnologies, National University of Science and Technology (MISIS), 119049 Moscow, Russia;
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medical and Organic Chemistry, Lomonosov Institute of Fine Chemical Technologies MIREA-Russian Technological University (RTU MIREA), 119571 Moscow, Russia; (P.O.); (D.V.); (M.G.)
| | - Natalia Klyachko
- School of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (G.Y.L.); (N.K.)
| | - Vladimir Chekhonin
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (K.Y.V.); (V.C.)
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia
| | - Maxim Abakumov
- Department of Medical Nanobiotechnology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (K.Y.V.); (V.C.)
- College of New Materials and Nanotechnologies, National University of Science and Technology (MISIS), 119049 Moscow, Russia;
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia
| |
Collapse
|
41
|
Burkel BM, Inman DR, Virumbrales-Muñoz M, Hoffmann EJ, Ponik SM. A Label-Free Segmentation Approach for Intravital Imaging of Mammary Tumor Microenvironment. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/63413. [PMID: 35695521 PMCID: PMC9327791 DOI: 10.3791/63413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability to visualize complex and dynamic physiological interactions between numerous cell types and the extracellular matrix (ECM) within a live tumor microenvironment is an important step toward understanding mechanisms that regulate tumor progression. While this can be accomplished through current intravital imaging techniques, it remains challenging due to the heterogeneous nature of tissues and the need for spatial context within the experimental observation. To this end, we have developed an intravital imaging workflow that pairs collagen second harmonic generation imaging, endogenous fluorescence from the metabolic co-factor NAD(P)H, and fluorescence lifetime imaging microscopy (FLIM) as a means to non-invasively compartmentalize the tumor microenvironment into basic domains of the tumor nest, the surrounding stroma or ECM, and the vasculature. This non-invasive protocol details the step-by-step process ranging from the acquisition of time-lapse images of mammary tumor models to post-processing analysis and image segmentation. The primary advantage of this workflow is that it exploits metabolic signatures to contextualize the dynamically changing live tumor microenvironment without the use of exogenous fluorescent labels, making it advantageous for human patient-derived xenograft (PDX) models and future clinical use where extrinsic fluorophores are not readily applicable.
Collapse
Affiliation(s)
- Brian M. Burkel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - David R. Inman
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - María Virumbrales-Muñoz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison,Department of Pathology, University of Wisconsin-Madison
| | - Erica J. Hoffmann
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison,Carbone Cancer Center, University of Wisconsin-Madison
| |
Collapse
|
42
|
Dudal S, Bissantz C, Caruso A, David-Pierson P, Driessen W, Koller E, Krippendorff BF, Lechmann M, Olivares-Morales A, Paehler A, Rynn C, Türck D, Van De Vyver A, Wang K, Winther L. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discov Today 2022; 27:1604-1621. [PMID: 35304340 DOI: 10.1016/j.drudis.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing the disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy of a drug, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Here, we review selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods could help overcome these limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ken Wang
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
43
|
Mann JFS, McKay PF, Klein K, Pankrac J, Tregoning JS, Shattock RJ. Blocking T-cell egress with FTY720 extends DNA vaccine expression but reduces immunogenicity. Immunology 2022; 165:301-311. [PMID: 34775601 PMCID: PMC9426614 DOI: 10.1111/imm.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022] Open
Abstract
Optimal immunogenicity from nucleic acid vaccines requires a balance of antigen expression that effectively engages the host immune system without generating a cellular response that rapidly destroys cells producing the antigen and thereby limiting vaccine antigen expression. We investigated the role of the cellular response on the expression and antigenicity of DNA vaccines using a plasmid DNA construct expressing luciferase. Repeated intramuscular administration led to diminished luciferase expression, suggesting a role for immune-mediated clearance of expression. To investigate the role of cell trafficking, we used the sphingosine 1-phosphate receptor (S1PR) modulator, FTY720 (Fingolimod), which traps lymphocytes within the lymphoid tissues. When lymphocyte trafficking was blocked with FTY720, DNA transgene expression was maintained at a constant level for a significantly extended time period. Both continuous and staggered administration of FTY720 prolonged transgene expression. However, blocking lymphocyte egress during primary transgene administration did not result in an increase of transgene expression during secondary administration. Interestingly, there was a disconnect between transgene expression and immunogenicity, as increasing expression by this approach did not enhance the overall immune response. Furthermore, when FTY720 was administered alongside a DNA vaccine expressing the HIV gp140 envelope antigen, there was a significant reduction in both antigen-specific antibody and T-cell responses. This indicates that the developing antigen-specific cellular response clears DNA vaccine expression but requires access to the site of expression in order to develop an effective immune response.
Collapse
Affiliation(s)
- Jamie F. S. Mann
- Department of Infectious DiseasesImperial College LondonSt Mary’s CampusLondonUK
- Bristol Veterinary SchoolUniversity of BristolBristolUK
| | - Paul F. McKay
- Department of Infectious DiseasesImperial College LondonSt Mary’s CampusLondonUK
| | - Katja Klein
- Department of Infectious DiseasesImperial College LondonSt Mary’s CampusLondonUK
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Joshua Pankrac
- Department of Microbiology and ImmunologyUniversity of Western OntarioLondonOntarioCanada
| | - John S. Tregoning
- Department of Infectious DiseasesImperial College LondonSt Mary’s CampusLondonUK
| | - Robin J. Shattock
- Department of Infectious DiseasesImperial College LondonSt Mary’s CampusLondonUK
| |
Collapse
|
44
|
Galldiks N, Angenstein F, Werner JM, Bauer EK, Gutsche R, Fink GR, Langen KJ, Lohmann P. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathol 2022; 32:e13015. [PMID: 35213083 PMCID: PMC8877736 DOI: 10.1111/bpa.13015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
Anatomical cross‐sectional imaging methods such as contrast‐enhanced MRI and CT are the standard for the delineation, treatment planning, and follow‐up of patients with meningioma. Besides, advanced neuroimaging is increasingly used to non‐invasively provide detailed insights into the molecular and metabolic features of meningiomas. These techniques are usually based on MRI, e.g., perfusion‐weighted imaging, diffusion‐weighted imaging, MR spectroscopy, and positron emission tomography. Furthermore, artificial intelligence methods such as radiomics offer the potential to extract quantitative imaging features from routinely acquired anatomical MRI and CT scans and advanced imaging techniques. This allows the linking of imaging phenotypes to meningioma characteristics, e.g., the molecular‐genetic profile. Here, we review several diagnostic applications and future directions of these advanced neuroimaging techniques, including radiomics in preclinical models and patients with meningioma.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany
| | - Frank Angenstein
- Functional Neuroimaging Group, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany.,Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robin Gutsche
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Center for Integrated Oncology (CIO), Universities of Aachen, Cologne, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Juelich, Germany.,Department of Stereotaxy and Functional Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
TAMpepK Suppresses Metastasis through the Elimination of M2-Like Tumor-Associated Macrophages in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23042157. [PMID: 35216272 PMCID: PMC8874760 DOI: 10.3390/ijms23042157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for approximately 10–15% of all breast cancer cases and is characterized by high invasiveness, high metastatic potential, relapse proneness, and poor prognosis. M2-like tumor-associated macrophages (TAMs) contribute to tumorigenesis and are promising targets for inhibiting breast cancer metastasis. Therefore, we investigated whether melittin-conjugated pro-apoptotic peptide (TAMpepK) exerts therapeutic effects on breast cancer metastasis by targeting M2-like TAMs. TAMpepK is composed of M2-like TAM binding peptide (TAMpep) and pro-apoptotic peptide d(KLAKLAK)2 (dKLA). A metastatic mouse model was constructed by injecting 4T1-luc2 cells either orthotopically or via tail vein injection, and tumor burden was quantified using a bioluminescence in vivo imaging system. We found that TAMpepK suppressed lung and lymph node metastases of breast cancer by eliminating M2-like TAMs without affecting the viability of M1-like macrophages and resident macrophages in the orthotopic model. Furthermore, TAMpepK reduced pulmonary seeding and the colonization of tumor cells in the tail vein injection model. The number of CD8+ T cells in contact with TAMs was significantly decreased in tumor nodules treated with TAMpepK, resulting in the functional activation of cytotoxic CD8+ T cells. Taken together, our findings suggest that TAMpepK could be a novel therapeutic agent for the inhibition of breast cancer metastasis by targeting M2-like TAMs.
Collapse
|
46
|
Li L, Chandra V, McAllister F, Zhang Y. Mouse Models to Study Secondary Cancer Prevention. Methods Mol Biol 2022; 2435:215-223. [PMID: 34993950 PMCID: PMC10947581 DOI: 10.1007/978-1-0716-2014-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Secondary prevention is a set of procedures involved in discovering early recurrence, local or systemic metastasis before the clinical signs or symptoms. We describe a mouse model with orthotopic pancreatic tumor implantation followed by distal pancreatectomy. The bioluminescence imaging and MRI could be used for screening the resected primary tumor recurrence and secondary cancer development. Different types of surgical procedures, chemotherapy, or immunotherapy can be engaged in reducing the metastasis potential of primary cancers. This model has been proved to be safe and easy to establish, which can mimic the clinical scenario and expand perspectives for studying the effects of tumor resection and adjuvant or neoadjuvant therapy on secondary cancer prevention.
Collapse
Affiliation(s)
- Le Li
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vidhi Chandra
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Zhang
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
47
|
Kyjacova L, Saup R, Rothley M, Schmaus A, Wagner T, Boßerhoff A, Garvalov BK, Thiele W, Sleeman JP. Quantitative Detection of Disseminated Melanoma Cells by Trp-1 Transcript Analysis Reveals Stochastic Distribution of Pulmonary Metastases. J Clin Med 2021; 10:jcm10225459. [PMID: 34830742 PMCID: PMC8618565 DOI: 10.3390/jcm10225459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
A better understanding of the process of melanoma metastasis is required to underpin the development of novel therapies that will improve patient outcomes. The use of appropriate animal models is indispensable for investigating the mechanisms of melanoma metastasis. However, reliable and practicable quantification of metastases in experimental mice remains a challenge, particularly if the metastatic burden is low. Here, we describe a qRT-PCR-based protocol that employs the melanocytic marker Trp-1 for the sensitive quantification of melanoma metastases in the murine lung. Using this protocol, we were able to detect the presence of as few as 100 disseminated melanoma cells in lung tissue. This allowed us to quantify metastatic burden in a spontaneous syngeneic B16-F10 metastasis model, even in the absence of visible metastases, as well as in the autochthonous Tg(Grm1)/Cyld−/− melanoma model. Importantly, we also observed an uneven distribution of disseminated melanoma cells amongst the five lobes of the murine lung, which varied considerably from animal to animal. Together, our findings demonstrate that the qRT-PCR-based detection of Trp-1 allows the quantification of low pulmonary metastatic burden in both transplantable and autochthonous murine melanoma models, and show that the analysis of lung metastasis in such models needs to take into account the stochastic distribution of metastatic lesions amongst the lung lobes.
Collapse
Affiliation(s)
- Lenka Kyjacova
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Rafael Saup
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Melanie Rothley
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Anja Schmaus
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Tabea Wagner
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Anja Boßerhoff
- Institute of Biochemistry, Faculty of Medicine, Friedrich-Alexander University Erlangen-Nürnberg (FAU), D-91054 Erlangen, Germany;
| | - Boyan K. Garvalov
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
| | - Jonathan P. Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany; (L.K.); (R.S.); (M.R.); (A.S.); (T.W.); (B.K.G.); (W.T.)
- Institute for Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT)-Campus North, D-76344 Karlsruhe, Germany
- Correspondence: ; Tel.: +49-621-383-71595
| |
Collapse
|
48
|
Qadir AS, Guégan JP, Ginestier C, Chaibi A, Bessede A, Charafe-Jauffret E, Macario M, Lavoué V, Rouge TDLM, Law C, Vilker J, Wang H, Stroup E, Schipma MJ, Bridgeman B, Murmann AE, Ji Z, Legembre P, Peter ME. CD95/Fas protects triple negative breast cancer from anti-tumor activity of NK cells. iScience 2021; 24:103348. [PMID: 34816102 PMCID: PMC8593563 DOI: 10.1016/j.isci.2021.103348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 11/04/2022] Open
Abstract
The apoptosis inducing receptor CD95/Fas has multiple tumorigenic activities. In different genetically engineered mouse models tumor-expressed CD95 was shown to be critical for cell growth. Using a combination of immune-deficient and immune-competent mouse models, we now establish that loss of CD95 in metastatic triple negative breast cancer (TNBC) cells prevents tumor growth by modulating the immune landscape. CD95-deficient, but not wild-type, tumors barely grow in an immune-competent environment and show an increase in immune infiltrates into the tumor. This growth reduction is caused by infiltrating NK cells and does not involve T cells or macrophages. In contrast, in immune compromised mice CD95 k.o. cells are not growth inhibited, but they fail to form metastases. In summary, we demonstrate that in addition to its tumor and metastasis promoting activities, CD95 expression by tumor cells can exert immune suppressive activities on NK cells, providing a new target for immune therapy.
Collapse
Affiliation(s)
- Abdul S. Qadir
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Christophe Ginestier
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univ, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Marseille, France
| | - Assia Chaibi
- Explicyte, Cours de l’Argonne, 33000 Bordeaux, France
| | - Alban Bessede
- Explicyte, Cours de l’Argonne, 33000 Bordeaux, France
| | - Emmanuelle Charafe-Jauffret
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univ, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Marseille, France
| | - Manon Macario
- CRCM, Inserm, CNRS, Institut Paoli-Calmettes, Aix-Marseille Univ, Epithelial Stem Cells and Cancer Lab, Equipe labellisée LIGUE contre le cancer, Marseille, France
| | - Vincent Lavoué
- Department of Gynecology, University Hospital of Rennes, Rennes, France
| | | | - Calvin Law
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jacob Vilker
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hongbin Wang
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Emily Stroup
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Bryan Bridgeman
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrea E. Murmann
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zhe Ji
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | | | - Marcus E. Peter
- Division Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
49
|
Crystallization of the Multi-Receptor Tyrosine Kinase Inhibitor Sorafenib for Controlled Long-Term Drug Delivery Following a Single Injection. Cell Mol Bioeng 2021; 14:471-486. [PMID: 34777605 DOI: 10.1007/s12195-021-00708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction A major challenge in cancer medicine is the safe and effective delivery of drugs to the right tissue at the right time. Despite being designed for greater target specificity, many drugs still result in side effects and lack of safety in patients following global dissemination. Therefore, to develop new, more effective formulations capable of improving specificity and reducing off-target effects, here we describe formulation of drug crystals, from even a very hydrophobic and otherwise difficult to solubilize small molecule chemical compound, capable of providing constant drug release for weeks following a single injection. Methods We chose to utilize the multi-tyrosine kinase inhibitor and multi-modal (anti-angiogenic and tumor cell cytotoxic) agent sorafenib, to combat aberrant angiogenesis and tumor growth which contribute to metastasis, ultimately responsible for poor patient outcomes. We tuned crystal size (surface area:volume ratios), imaged by SEM, to display controllability of drug delivery kinetics in in vitro drug release assays. Results Single and powder crystal X-ray diffraction (XRD) established that all crystals were the same polymorph and drug form. When utilized against an orthotopic triple negative breast cancer (TNBC) mouse model (4T1 in syngeneic BALB/c mice), we established anti-tumor activity from a single local, subcutaneous injection of crystalline sorafenib. Conclusion From our findings, we support that engineering crystalline drug delivery systems has implications in the treatment of cancer or other diseases where high enough constitutive drug levels are needed to maintain target saturation and inhibition while also preventing emergence of drug resistance, which is a consequence often seen with suboptimal dosing. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00708-6.
Collapse
|
50
|
Routholla G, Pulya S, Patel T, Adhikari N, Abdul Amin S, Paul M, Bhagavatula S, Biswas S, Jha T, Ghosh B. Design, synthesis and binding mode of interaction of novel small molecule o-hydroxy benzamides as HDAC3-selective inhibitors with promising antitumor effects in 4T1-Luc breast cancer xenograft model. Bioorg Chem 2021; 117:105446. [PMID: 34717237 DOI: 10.1016/j.bioorg.2021.105446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/18/2021] [Indexed: 01/24/2023]
Abstract
Histone deacetylase 3 (HDAC3) is one of the most promising targets to develop anticancer therapeutics. In continuation of our quest for selective HDAC3 inhibitors, a series of small molecules having o-hydroxy benzamide as the novel zinc binding group (ZBG) has been introduced for the first time that can be able to produce good HDAC3-selectivity over other HDACs. The most promising HDAC3 inhibitors, 11a and 12b, displayed promising in vitro anticancer activities with less toxicity to normal kidney cells. These compounds significantly upregulate histone acetylation and induce apoptosis with a G2/M phase arrest in B16F10 cells. Compound 11a exhibited potent antitumor efficacy in 4T1-Luc breast cancer xenograft mouse model in female Balb/c mice. It also showed significant tumor growth suppression with no general toxicity and extended survival rates post-tumor resection. It significantly induced higher ROS generation, leading to apoptosis. No considerable toxicity was noticed in major organs isolated from the compound 11a-treated mice. Compound 11a also induced the upregulation of acH3K9, acH4K12, caspase-3 and caspase-7 as analyzed by immunoblotting with treated tumor tissue. Overall, HDAC3 selective inhibitor 11a might be a potential lead for the clinical translation as an emerging drug candidate.
Collapse
Affiliation(s)
- Ganesh Routholla
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Sravani Pulya
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Patel
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Srividya Bhagavatula
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, P. O. Box 17020, Jadavpur University, Kolkata 700032, West Bengal, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Shamirpet, Hyderabad 500078, India.
| |
Collapse
|