1
|
Popek-Marciniec S, Styk W, Chocholska S, Szudy-Szczyrek A, Sidor K, Swiderska-Kolacz G, Hus M, Czerwik-Marcinkowska J, Zmorzynski S. Associations of ANGPT2 expression and its variants (rs1868554 and rs7825407) with multiple myeloma risk and outcome. Front Oncol 2025; 15:1468373. [PMID: 40115011 PMCID: PMC11922703 DOI: 10.3389/fonc.2025.1468373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The growth of blood vessels from the existing vasculature has a significant impact on the course of multiple myeloma (MM). The ANGPT2 (angiopoietin-2) protein is encoded by the ANGPT2 gene and plays an important role in angiogenesis. The expression of proangiogenic proteins is influenced not only by microenvironmental factors but also by genetic changes. We analyzed two variants/polymorphisms of the ANGPT2 gene, rs1868554 (T>A) and rs7825407 (G>C). Both are located in the intron sequence and can affect the final mRNA sequence by modifying splicing. Purpose Therefore, we assessed the impact of selected variants on ANGPT2 gene expression at the mRNA and protein levels. Additionally, we evaluated the associations of the analyzed genetic changes with the clinical and laboratory parameters of the disease and the response to bortezomib/thalidomide-based therapies. We hypothesize that variants and expression of the ANGPT2 gene may be associated with a greater risk of MM development and may also affect the response to treatment in MM patients. Patients and methods Genomic DNA extracted from 103 newly diagnosed MM patients and 120 healthy blood donors was used to analyze ANGPT2 variants (via automated DNA sequencing). RNA was subjected to real-time PCR to determine ANGPT2 expression at the mRNA level. The concentration of angiopoietin-2 (in MM sera) was determined by ELISA. Results The results of our study showed that individuals with the AA genotype of rs1868554 and the CC genotype of rs7825407 had a greater risk of developing MM (OR=6.12, p=0.02 and OR=6.01, p=0.02, respectively). The ANGPT2 gene variants did not affect ANGPT2 expression at the mRNA level. However, ANGPT2 expression was positively correlated with CRP (Spearman's rho 0.26, p<0.05) and negatively correlated with LDH (Spearman's rho -0.25, p<0.05) in MM patients. Conclusion Our results showed that ANGPT2 expression at the mRNA level correlates with CRP, a negative prognostic factor in MM. The ANGPT2 protein is a proangiogenic factor, and its concentration is significantly greater in MM patients than in healthy individuals, which was also confirmed in our research. Therefore, this protein with VEGF and HB-EGF, should be considered in the future as a markers of angiogenesis in MM.
Collapse
Affiliation(s)
| | - Wojciech Styk
- Academic Laboratory of Psychological Tests, Medical University, Lublin, Poland
| | - Sylwia Chocholska
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Aneta Szudy-Szczyrek
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Sidor
- Academic Laboratory of Psychological Tests, Medical University, Lublin, Poland
| | | | - Marek Hus
- Chair and Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | | | | |
Collapse
|
2
|
Arandhara A, Bhuyan P, Das BK. Exploring lung cancer microenvironment: pathways and nanoparticle-based therapies. Discov Oncol 2025; 16:159. [PMID: 39934547 DOI: 10.1007/s12672-025-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Lung cancer stands out as a significant global health burden, with staggering incidence and mortality rates primarily linked to smoking and environmental carcinogens. The tumor microenvironment (TME) emerges as a critical determinant of cancer progression and treatment outcomes, comprising a complex interplay of cells, signaling molecules, and extracellular matrix. Through a comprehensive literature review, we elucidate current research trends and therapeutic prospects, aiming to advance our understanding of TME modulation strategies and their clinical implications for lung cancer treatment. Dysregulated immune responses within the TME can facilitate tumor evasion, limiting the efficacy of immune checkpoint inhibitors (ICI). Consequently, TME modulation strategies have become potential avenues to enhance therapeutic responses. However, conventional TME-targeted therapies often face challenges. In contrast, nanoparticle (NP)-based therapies offer promising prospects for improved drug delivery and reduced toxicity, leveraging the enhanced permeability and retention (EPR) effect. Despite NP design and delivery advancements, obstacles like poor tumor cell uptake and off-target effects persist, necessitating further optimization. This review underscores the pivotal role of TME in lung cancer management, emphasizing the synergistic potential of immunotherapy and nano-therapy.
Collapse
Affiliation(s)
- Arunabh Arandhara
- Assam Pharmacy Institute, Titabar, Amgurikhat, Jorhat, Assam, 785632, India
| | - Pallabi Bhuyan
- School of Pharmacy, The Assam Kaziranga University, Koraikhowa, Jorhat, Assam, 785006, India
| | - Bhrigu Kumar Das
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Azara, Guwahati, Assam, 781017, India.
| |
Collapse
|
3
|
Gao D, Lu Y, Jiang T, Duan Q, Huang Z. To construct and validate a risk score model of angiogenesis-related genes to predict the prognosis of hepatocellular carcinoma. Sci Rep 2025; 15:4660. [PMID: 39920250 PMCID: PMC11806001 DOI: 10.1038/s41598-025-87459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/20/2025] [Indexed: 02/09/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality worldwide. Angiogenesis is essential for HCC progression and metastasis. Some angiogenesis-related genes promote this process, whereas other antiangiogenic genes inhibit HCC growth and metastasis. Therefore, finding new potential biomarkers for HCC prognosis prediction and treatment is essential. Public RNAseq and clinical data from TCGA and GEO database, download angiogenesis-related genes from the GeneCards, MSigDB database, through the single factor analysis of Cox, LASSO build risk score-Cox regression analysis model and external validation verified from the GEO. Cox regression analysis, Kaplan Meier (KM) curve, ROC curve, and decision-curve analysis will be used to evaluate and examine the risk score prediction effect of the model. GSVA analysis was used to assess the variation of gene sets between groups, and ClBERSOFT, ESTIMATE, and TIMER databases were used to analyze the immune infiltration in the single-cell level analysis of gene expression differences between cells. Finally, in the three pairs of HCC tissues and tissue adjacent to carcinoma by real-time fluorescent quantitative PCR (qRT_PCR) and western blotting (WB) to evaluate angiogenesis-related genes (ATP2A3 AEBP1 PNMA1, PLAT) expression level in HCC, and AEBP1 was knocked out in HCCLM3 cells, which is to study AEBP1 biological function in HCC. We established a prognostic risk assessment model based on 13 significant genes associated with HCC prognosis by Cox analysis and LASSO-Cox regression analysis. The median was used to divide these patients into high-risk and low-risk groups, and the prognosis of the high-risk group was worse than that of the low-risk group. Through the multivariate Cox regression analysis, it was found that the risk score was an independent predictor of overall survival (OS). The GSVA analysis suggested that the predicted high-risk population showed higher activity in the purine, pyrimidine, and riboflavin metabolic pathways. Compared with the low-risk group, the tumor microenvironment in the high-risk group showed a reduction in the number of cells promoting anti-tumor immunity and an increase in the number of cells inhibiting anti-tumor immunity, as well as a reduction in overall immune infiltration and matrix components. On the single-cell level, it was confirmed that the key genes (AEBP1, ATP2A3, PLAT, and PNMA1) expressed differently between liver cancer and adjacent tissue cell groups. Finally, qRT_PCR and WB results showed that ATP2A3, AEBP1, PNMA1, and PLAT were highly expressed in liver cancer tissue compared to adjacent tissue, and the proliferation, migration, and invasion of HCCLM3 cells were inhibited after knocking out AEBP1. We constructed novel risk score models as prognostic biomarkers for HCC, which has the potential to guide the development of more personalized treatment strategies for HCC patients. In addition, AEBP1 is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Duangui Gao
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002, China
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Yuan Lu
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002, China
- Institute of Image, Guizhou Medical University, Guiyang, China
| | - Qinghong Duan
- Institute of Image, Guizhou Medical University, Guiyang, China.
- Department of Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, No. 1 Beijing West Road, Guiyang, 550002, China.
| | - Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, No. 9 Beijing Road, Guiyang, 550002, China.
- Institute of Image, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
4
|
Zhang Y, Zhong L, Wan P, Zhao Y, Wang M, Zhang H, Liao Y, Deng Y, Liu B. NACC1 accelerates the progression of AML by regulating the ADAM9/PI3K/AKT axis. Int J Med Sci 2025; 22:630-640. [PMID: 39898241 PMCID: PMC11783076 DOI: 10.7150/ijms.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Nucleus accumbens-associated protein 1 (NACC1) regulates various types of biological processes. It is a transcription factor associated with cancer. NACC1 is overexpressed in many human malignancies and can regulate the progression, metastasis, and drug resistance of cancer cells. However, its precise role in acute myeloid leukemia (AML) remains unknown. This study aimed to unravel the basic mechanism of NACC1 in AML. Our findings demonstrated that NACC1 is immensely expressed in AML cells. Lentiviral vector-mediated knockdown of NACC1 inhibited the PI3K/AKT signaling pathway. Simultaneously, NACC1 knockdown promoted apoptosis, suppressed the proliferative capacity of AML cells, and resulted in cell cycle arrest during the G0/G1 phase. Additionally, A disintegrin and metalloproteinase 9 (ADAM9) was markedly expressed in AML cells. NACC1 regulated ADAM9 expression. ADAM9 expression was also downregulated after NACC1 knockdown. Concurrently, ADAM9 knockdown affected the activity of AML cells by decelerating the growth rate, promoting apoptosis, and blocking cell cycle progression. In addition, the AKT activator SC79 restored the inhibited cell proliferation after NACC1 knockdown and ADAM9 knockdown. In conclusion, our study suggested that the NACC1/ADAM9/PI3K/AKT axis is crucial for sustaining the survival of AML cells, indicating that NACC1 may be a viable target for treating AML.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Liang Zhong
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Peng Wan
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yi Zhao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Meng Wang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Hongyan Zhang
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Yang Liao
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Ying Deng
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Clinical Laboratory of The Affiliated Rehabilitation Hospital, Chongqing Medical University, Chongqing 400050, China
| |
Collapse
|
5
|
Pruss KM, Kao C, Byrne AE, Chen RY, Di Luccia B, Karvelyte L, Coskun R, Lemieux M, Nepal K, Webber DM, Hibberd MC, Wang Y, Rodionov DA, Osterman AL, Colonna M, Maueroder C, Ravichandran K, Barratt MJ, Ahmed T, Gordon JI. Effects of intergenerational transmission of small intestinal bacteria cultured from stunted Bangladeshi children with enteropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.01.621574. [PMID: 39554152 PMCID: PMC11566026 DOI: 10.1101/2024.11.01.621574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Environmental enteric dysfunction (EED), a small intestinal disorder found at a high prevalence in stunted children, is associated with gut mucosal barrier disruption and decreased absorptive capacity due to reduced intact small intestinal villi1-4. To test the hypothesis that intergenerational transmission of a perturbed small intestinal microbiota contributes to undernutrition by inducing EED5, we characterized two consortia of bacterial strains cultured from duodenal aspirates from stunted Bangladeshi children with EED - one of which induced local and systemic inflammation in gnotobiotic female mice. Offspring of dams that received this inflammatory consortium exhibited immunologic changes along their gut that phenocopied features of EED in children. Single nucleus plus bulk RNA-sequencing revealed alterations in inter-cellular signaling pathways related to intestinal epithelial cell renewal, barrier integrity and immune function while analyses of cerebral cortex disclosed alterations in glial- and endothelial-neuronal signaling pathways that regulate neural growth/axonal guidance, angiogenesis and inflammation. Analysis of ultrasonic vocalization calls in gnotobiotic P5-P9 pups indicated increased arousal and perturbed neurodevelopment in the offspring of dams harboring the inflammation-inducing consortium. Cohousing experiments and follow-up screening of candidate disease-promoting bacterial isolates identified a strain typically found in the oral microbiota (Campylobacter concisus) as a contributor to enteropathy. Given that fetal growth was also impaired in the dams with the consortium that induced enteropathy, this preclinical model allows the effects of the human small intestinal microbiota on both pre- and postnatal development to be ascertained, setting the stage for identification of small intestinal microbiota-targeted therapeutics for (intergenerational) undernutrition.
Collapse
Affiliation(s)
- Kali M. Pruss
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Clara Kao
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Alexandra E. Byrne
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Robert Y. Chen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Blanda Di Luccia
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Laura Karvelyte
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Reyan Coskun
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Mackenzie Lemieux
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Keshav Nepal
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Daniel M. Webber
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Matthew C. Hibberd
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Yi Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Marco Colonna
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Christian Maueroder
- Inflammation Research Centre, VIB, and the Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kodi Ravichandran
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Michael J. Barratt
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Tahmeed Ahmed
- International Center for Diarrhoeal Disease Research, Bangladesh (icddr,b); Dhaka 1212, Bangladesh
| | - Jeffrey I. Gordon
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Fujita S, Plianchaisuk A, Deguchi S, Ito H, Nao N, Wang L, Nasser H, Tamura T, Kimura I, Kashima Y, Suzuki R, Suzuki S, Kida I, Tsuda M, Oda Y, Hashimoto R, Watanabe Y, Uriu K, Yamasoba D, Guo Z, Hinay AA, Kosugi Y, Chen L, Pan L, Kaku Y, Chu H, Donati F, Temmam S, Eloit M, Yamamoto Y, Nagamoto T, Asakura H, Nagashima M, Sadamasu K, Yoshimura K, Suzuki Y, Ito J, Ikeda T, Tanaka S, Matsuno K, Fukuhara T, Takayama K, Sato K. Virological characteristics of a SARS-CoV-2-related bat coronavirus, BANAL-20-236. EBioMedicine 2024; 104:105181. [PMID: 38838469 PMCID: PMC11215962 DOI: 10.1016/j.ebiom.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).
Collapse
Affiliation(s)
- Shigeru Fujita
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hayato Ito
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Naganori Nao
- One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; Division of International Research Promotion, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Hesham Nasser
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Izumi Kimura
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yukie Kashima
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Rigel Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Saori Suzuki
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Izumi Kida
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yoshitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Rina Hashimoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yukio Watanabe
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiya Uriu
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daichi Yamasoba
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Faculty of Medicine, Kobe University, Kobe, Japan
| | - Ziyi Guo
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Alfredo A Hinay
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Kosugi
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Luo Chen
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Lin Pan
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yu Kaku
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Flora Donati
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, Paris, France; Institut Pasteur, Université Paris Cité, National Reference Center for Respiratory Viruses, Paris, France
| | - Sarah Temmam
- Institut Pasteur, Université Paris Cité, Pathogen Discovery Laboratory, Paris, France; Institut Pasteur, Université Paris Cité, The WOAH(OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | - Marc Eloit
- Institut Pasteur, Université Paris Cité, Pathogen Discovery Laboratory, Paris, France; Institut Pasteur, Université Paris Cité, The WOAH(OIE) Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Paris, France
| | | | | | | | - Mami Nagashima
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | | | - Yutaka Suzuki
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Terumasa Ikeda
- Division of Molecular Virology and Genetics, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Keita Matsuno
- One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan; Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan.
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; CREST, Japan Science and Technology Agency, Saitama, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus infection, Kumamoto University, Kumamoto, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
7
|
Liu JP, Shen KY, Cheng WC, Chang WC, Hsieh CY, Lo CC, Kuo TT, Lin CC, Liu SJ, Huang WC, Sher YP. ADAM9 drives the immunosuppressive microenvironment by cholesterol biosynthesis-mediated activation of IL6-STAT3 signaling for lung tumor progression. Am J Cancer Res 2024; 14:1850-1865. [PMID: 38726266 PMCID: PMC11076253 DOI: 10.62347/lodv2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Chronic inflammation associated with lung cancers contributes to immunosuppressive tumor microenvironments, reducing CD8+ T-cell function and leading to poor patient outcomes. A disintegrin and metalloprotease domain 9 (ADAM9) promotes cancer progression. Here, we aim to elucidate the role of ADAM9 in the immunosuppressive tumor microenvironment. A bioinformatic analysis of TIMER2.0 was used to investigate the correlation of ADAM9 and to infiltrate immune cells in the human lung cancer database and mouse lung tumor samples. Flow cytometry, immunohistochemistry, and RNA sequencing (RNA-seq) were performed to investigate the ADAM9-mediated immunosuppressive microenvironment. The coculture system of lung cancer cells with immune cells, cytokine array assays, and proteomic approach was used to investigate the mechanism. By analyzing the human LUAD database and the mouse lung cancer models, we showed that ADAM9 was associated with the immunosuppressive microenvironment. Additionally, ADAM9 released IL6 protein from cancer cells to inhibit IL12p40 secretion from dendritic cells, therefore leading to dendritic cell dysfunction and further affecting T-cell functions. Proteomic analysis indicated that ADAM9 promoted cholesterol biosynthesis and increased IL6-STAT3 signaling. Mechanistically, ADAM9 reduced the protein stability of LDLR, resulting in reduced cholesterol uptake and induced cholesterol biosynthesis. Moreover, LDLR reduction enhanced IL6-STAT3 activation. We reveal that ADAM9 has a novel biological function that drives the immunosuppressive tumor microenvironment by linking lung cancer's metabolic and signaling axes. Thus, by targeting ADAM9 an innovative and promising therapeutic opportunity was indicated for regulating the immunosuppression of lung cancer.
Collapse
Affiliation(s)
- Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
| | - Kuan-Yin Shen
- School of Dentistry, Tri-Service General Hospital and National Defense Medical CenterTaipei 114, Taiwan
| | - Wei-Chung Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia SinicaTaichung 404, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Chih-Ying Hsieh
- Division of Hematology and Oncology, China Medical University HospitalTaichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
| | - Ting-Ting Kuo
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, China Medical University HospitalTaichung 404, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesMiaoli 350, Taiwan
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Graduate Institute of Cell Biology, China Medical UniversityTaichung 404, Taiwan
- The International Master’s Program of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia SinicaTaichung 404, Taiwan
- Center for Molecular Medicine, China Medical University HospitalTaichung 404, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical UniversityTaichung 404, Taiwan
- The International Master’s Program of Biomedical Sciences, China Medical UniversityTaichung 404, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
8
|
Hussain MS, Moglad E, Bansal P, Kaur H, Deorari M, Almalki WH, Kazmi I, Alzarea SI, Singh M, Kukreti N. Exploring the oncogenic and tumor-suppressive roles of Circ-ADAM9 in cancer. Pathol Res Pract 2024; 256:155257. [PMID: 38537524 DOI: 10.1016/j.prp.2024.155257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 04/14/2024]
Abstract
Circular RNAs (circRNAs) constitute a recently identified category of closed continuous loop RNA transcripts, serving as a subset of competing endogenous RNAs (ceRNAs) with the capacity to modulate genes by acting as microRNA sponges. In the context of cancer growth, numerous investigations have explored the potential functions of circRNAs, revealing their diverse functions either as oncogenes, promoting cancer progression, or as tumor suppressors, mitigating disease development. Among these, circRNA ADAM9 (Circ-ADAM9) is now recognized as an important player in a variety of mechanisms, both physiological and pathological, especially in cancer. The aberrant expression of Circ-ADAM9 has been observed across multiple human malignancies, implying a significant involvement in tumorigenesis. This comprehensive review aims to synthesize recent findings elucidating the function of Circ-ADAM9 in many malignancies. Additionally, the review explores the possibility of Circ-ADAM9 as a valuable biomarker, offering insights into its prognostic, diagnostic, and therapeutic implications. By summarizing the latest discoveries in this field, the review contributes to our understanding of the multifaceted contribution of Circ-ADAM9 in tumor biology and its potential applications in clinical settings.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Ehssan Moglad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Mahaveer Singh
- School of Pharmacy and Technology Management, SVKMs, NMIMS University, Shirpur campus, Maharastra 425405, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
9
|
Huang YK, Cheng WC, Kuo TT, Yang JC, Wu YC, Wu HH, Lo CC, Hsieh CY, Wong SC, Lu CH, Wu WL, Liu SJ, Li YC, Lin CC, Shen CN, Hung MC, Lin JT, Yeh CC, Sher YP. Inhibition of ADAM9 promotes the selective degradation of KRAS and sensitizes pancreatic cancers to chemotherapy. NATURE CANCER 2024; 5:400-419. [PMID: 38267627 DOI: 10.1038/s43018-023-00720-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2023] [Indexed: 01/26/2024]
Abstract
Kirsten rat sarcoma virus (KRAS) signaling drives pancreatic ductal adenocarcinoma (PDAC) malignancy, which is an unmet clinical need. Here, we identify a disintegrin and metalloproteinase domain (ADAM)9 as a modulator of PDAC progression via stabilization of wild-type and mutant KRAS proteins. Mechanistically, ADAM9 loss increases the interaction of KRAS with plasminogen activator inhibitor 1 (PAI-1), which functions as a selective autophagy receptor in conjunction with light chain 3 (LC3), triggering lysosomal degradation of KRAS. Suppression of ADAM9 by a small-molecule inhibitor restricts disease progression in spontaneous models, and combination with gemcitabine elicits dramatic regression of patient-derived tumors. Our findings provide a promising strategy to target the KRAS signaling cascade and demonstrate a potential modality to enhance sensitivity to chemotherapy in PDAC.
Collapse
Affiliation(s)
- Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Ting-Ting Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Juan-Cheng Yang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Heng-Hsiung Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chia-Chien Lo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ying Hsieh
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Sze-Ching Wong
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chih-Hao Lu
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Ling Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Ching-Chan Lin
- Division of Hematology and Oncology, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jaw-Town Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Chun-Chieh Yeh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan.
- Department of Surgery, Organ Transplantation Center, China Medical University Hospital, Taichung, Taiwan.
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan.
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Gondaliya P, Driscoll J, Yan IK, Ali Sayyed A, Patel T. Therapeutic restoration of miR-126-3p as a multi-targeted strategy to modulate the liver tumor microenvironment. Hepatol Commun 2024; 8:e0373. [PMID: 38358374 PMCID: PMC10871752 DOI: 10.1097/hc9.0000000000000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/17/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Impaired natural killer (NK) cell-mediated antitumor responses contribute to the growth of liver tumors. Expression of a disintegrin and metalloprotease 9 (ADAM9) increases shedding of membrane-bound major histocompatibility complex class I chain-related protein A and results in evasion from NK cell-mediated cytolysis. ADAM9 is also involved in angiogenesis and tumor progression and is a target of miR-126-3p, a tumor suppressor that is downregulated and alters tumor cell behavior in the liver and other cancers. We evaluated the restoration of miR-126-3p and modulation of the miR-126-3p/ADAM9 axis as a therapeutic approach to simultaneously enhance NK cell-mediated cytolysis while targeting both tumor cells and their microenvironment. METHODS Precursor miRNAs were loaded into milk-derived nanovesicles to generate therapeutic vesicles (therapeutic milk-derived nanovesicles) for the restoration of functional miR-126-3p in recipient cancer cells. RESULTS Administration of therapeutic milk-derived nanovesicles increased miR-126-3p expression and reduced ADAM9 expression in target cells and was associated with an increase in membrane-bound major histocompatibility complex class I chain-related protein A. This enhanced NK cell cytolysis in adherent tumor cells and in multicellular tumor spheroids while also impairing angiogenesis and modulating macrophage chemotaxis. Moreover, IV administration of therapeutic milk-derived nanovesicles with adoptive transfer of NK cells reduced tumor burden in orthotopic hepatocellular cancer xenografts in mice. CONCLUSION A directed RNA therapeutic approach can mitigate NK cell immune evasion, reduce angiogenesis, and alter the tumor cell phenotype through the restoration of miR-126-3p in liver tumor cells. The pleiotropic effects elicited by this multi-targeted approach to modulate the local tumor microenvironment support its use for the treatment of liver cancer.
Collapse
Affiliation(s)
- Piyush Gondaliya
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Julia Driscoll
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Irene K. Yan
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Adil Ali Sayyed
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
| | - Tushar Patel
- Department of Transplantation, Mayo Clinic, Jacksonville, Florida, USA
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
11
|
Ni Z, Cong S, Li H, Liu J, Zhang Q, Wei C, Pan G, He H, Liu W, Mao A. Integration of scRNA and bulk RNA-sequence to construct the 5-gene molecular prognostic model based on the heterogeneity of thyroid carcinoma endothelial cell. Acta Biochim Biophys Sin (Shanghai) 2024; 56:255-269. [PMID: 38186223 PMCID: PMC10984871 DOI: 10.3724/abbs.2023254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/22/2023] [Indexed: 01/09/2024] Open
Abstract
Thyroid cancer (TC) is a kind of cancer with high heterogeneity, which leads to significant difference in prognosis. The prognostic molecular processes are not well understood. Cancer cells and tumor microenvironment (TME) cells jointly determine the heterogeneity. However, quite a little attention was paid to cells in the TME in the past years. In this study, we not only reveal that endothelial cells (ECs) are strongly associated with the progress of papillary thyroid cancer (PTC) using single-cell RNA-seq (scRNA-seq) data downloaded from Gene Expression Omnibus (GEO) and WGCNA, but also screen 5 crucial genes of ECs: CLDN5, ABCG2, NOTCH4, PLAT, and TMEM47. Furthermore, the 5-gene molecular prognostic model is constructed, which can predict how well a patient will do on PD-L1 blockade immunotherapy for TC and evaluate prognosis. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrates that PLAT is decreased in TC and the increase of PLAT can restrain the migratory capacity of TC cells. Meanwhile, in TC cells, PLAT suppresses VEGFa/VEGFR2-mediated human umbilical vascular endothelial cell (HUVEC) proliferation and tube formation. Totally, we construct the 5-gene molecular prognostic model from the perspective of EC and provide a new idea for immunotherapy of TC.
Collapse
Affiliation(s)
- Zhaoxian Ni
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Shan Cong
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Hongchang Li
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Jiazhe Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Qing Zhang
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Chuanchao Wei
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Gaofeng Pan
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Hui He
- Department of Head and Neck SurgeryFudan University Shanghai Cancer CenterShanghai200032China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
- Department of Laparoscopic Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116000China
| | - Weiyan Liu
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| | - Anwei Mao
- Department of General SurgeryMinhang HospitalFudan UniversityShanghai201199China
| |
Collapse
|
12
|
Melano I, Cheng WC, Kuo LL, Liu YM, Chou YC, Hung MC, Lai MMC, Sher YP, Su WC. A disintegrin and metalloproteinase domain 9 facilitates SARS-CoV-2 entry into cells with low ACE2 expression. Microbiol Spectr 2023; 11:e0385422. [PMID: 37713503 PMCID: PMC10581035 DOI: 10.1128/spectrum.03854-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/18/2023] [Indexed: 09/17/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus disease-19 (COVID-19) pandemic, utilizes angiotensin-converting enzyme 2 (ACE2) as a receptor for virus infection. However, the expression pattern of ACE2 does not coincide with the tissue tropism of SARS-CoV-2, hinting that other host proteins might be involved in facilitating SARS-CoV-2 entry. To explore potential host factors for SARS-CoV-2 entry, we performed an arrayed shRNA screen in H1650 and HEK293T cells. Here, we identified a disintegrin and a metalloproteinase domain 9 (ADAM9) protein as an important host factor for SARS-CoV-2 entry. Our data showed that silencing ADAM9 reduced virus entry, while its overexpression promoted infection. The knockdown of ADAM9 decreased the infectivity of the variants of concern tested-B.1.1.7 (alpha), B.1.617.2 (delta), and B.1.1.529 (omicron). Furthermore, mechanistic studies indicated that ADAM9 is involved in the binding and endocytosis stages of SARS-CoV-2 entry. Through immunoprecipitation experiments, we demonstrated that ADAM9 binds to the S1 subunit of the SARS-CoV-2 Spike. Additionally, ADAM9 can interact with ACE2, and co-expression of both proteins markedly enhances virus infection. Moreover, the enzymatic activity of ADAM9 facilitates virus entry. Our study reveals an insight into the mechanism of SARS-CoV-2 virus entry and elucidates the role of ADAM9 in virus infection. IMPORTANCE COVID-19, an infectious respiratory disease caused by SARS-CoV-2, has greatly impacted global public health and the economy. Extensive vaccination efforts have been launched worldwide over the last couple of years. However, several variants of concern that reduce the efficacy of vaccines have kept emerging. Thereby, further understanding of the mechanism of SARS-CoV-2 entry is indispensable, which will allow the development of an effective antiviral strategy. Here, we identify a disintegrin and metalloproteinase domain 9 (ADAM9) protein as a co-factor of ACE2 important for SARS-CoV-2 entry, even for the variants of concern, and show that ADAM9 interacts with Spike to aid virus entry. This virus-host interaction could be exploited to develop novel therapeutics against COVID-19.
Collapse
Affiliation(s)
- Ivonne Melano
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Li-Lan Kuo
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yuag-Meng Liu
- Department of Internal Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Infectious Diseases, Changhua Christian Medical Foundation, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Michael M. C. Lai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taipei, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- International Master’s Program of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Abd-Allah GM, Ismail A, El-Mahdy HA, Elsakka EG, El-Husseiny AA, Abdelmaksoud NM, Salman A, Elkhawaga SY, Doghish AS. miRNAs as potential game-changers in melanoma: A comprehensive review. Pathol Res Pract 2023; 244:154424. [PMID: 36989843 DOI: 10.1016/j.prp.2023.154424] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/28/2023]
Abstract
Melanoma is the sixth most frequent malignancy. It represents 1.7% of all cancer cases worldwide. Many risk factors are associated with melanoma including ultraviolet radiation skin phenotype, Pigmented Nevi, Pesticides, and genetic and epigenetic factors. Of the main epigenetic factors affecting melanoma are microribonucleic acids (miRNAs). They are short nucleic acid chains that have the potential to prevent the expression of a number of target genes. They could target a number of genes related to melanoma initiation, stemness, angiogenesis, apoptosis, proliferation, and potential resistance to treatment. Additionally, they can control several melanoma signaling pathways, including P53, WNT/-catenin, JAK/STAT, PI3K/AKT/mTOR axis, TGF- β, and EGFR. MiRNAs also play a role in the resistance of melanoma to essential treatment regimens. The stability and abundance of miRNAs might be important factors enhancing the use of miRNAs as markers of prognosis, diagnosis, stemness, survival, and metastasis in melanoma patients.
Collapse
|
14
|
Xu X, Wang Y, Chen Z, Zhu Y, Wang J, Guo J. Unfavorable immunotherapy plus tyrosine kinase inhibition outcome of metastatic renal cell carcinoma after radical nephrectomy with increased ADAM9 expression. Immunogenetics 2023; 75:133-143. [PMID: 36515717 DOI: 10.1007/s00251-022-01292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Immunotherapy plus tyrosine kinase inhibitor (IO-TKI) has become the standard first-line therapy for advanced renal cell carcinoma (RCC). However, the modest response rate of IO-TKI therapy and the absence of biomarkers limited the selection of treatment strategies for RCC patients. There were three cohorts enrolled: two from our facility (ZS-MRCC and ZS-HRRCC) and one from a clinical study (JAVELIN-101). By RNA sequencing, the expression of ADAM9 in each sample was measured. By flow cytometry and immunohistochemistry, immune infiltration and T cell function were examined. Primary outcomes were established as treatment response and progression-free survival (PFS). Patients with low-ADAM9 expression had a higher objective response rate (56.5% vs 13.6%, P = 0.01) and longer PFS in both cohorts. In the ZS-HRRCC cohort, the expression of ADAM9 was associated with increased tumor-infiltrating T cells, which was proved by immunohistochemistry (P < 0.05) and flow cytometry (Spearman's ρ = 0.42, P < 0.001). In the high-ADAM9 group, CD8+ and CD4+ T cells revealed an exhausted phenotype with decreased GZMB (Spearman's ρ = - 0.31, P = 0.05, and Spearman's ρ = - 0.49, P < 0.001, respectively), and fewer Macrophages were identified. A predictive RFscore was further constructed by random forest approach, involving ADAM9 and immunologic genes. Only in the subgroup with the lower RFscore did IO-TKI outperform TKI monotherapy. High-ADAM9 expression was associated with immunosuppression and IO-TKI resistance. Expression of ADAM9 was also associated with the exhaustion and dysfunction of T cells. ADAM9-based RFscore has the potential to be used as a biomarker to distinguish the optimal patient treatment methods between IO-TKI and TKI monotherapy.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhaoyi Chen
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
15
|
He J, Jiang M, Liu J, Zhu R, Lv W, Lian R, Yang Y, Wang R. Homeobox D9 drives the malignant phenotypes and enhances the Programmed death ligand-1 expression in non-small cell lung cancer cells via binding to Angiopoietin-2 promoter. World J Surg Oncol 2023; 21:93. [PMID: 36907878 PMCID: PMC10009994 DOI: 10.1186/s12957-023-02969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Homeobox D9 (HOXD9), a member of the HOX family of transcription factors, plays a driver role in development of multiple cancers. Angiopoietin-2 (ANGPT2) is reportedly to facilitate angiogenesis, growth and metastasis in various cancers, including lung cancer. In addition, blocking ANGPT2 can effectively improve cancer immunotherapy via downregulation of Programmed death ligand-1 (PD-L1). The purpose of this study was to elucidate the role of HOXD9 in NSCLC and whether ANGPT2 is required for HOXD9-mediated malignant behaviors of NSCLC cells. By performing a series of in vitro functional experiments, we found that knockdown of HOXD9 induced proliferative inhibition, cell cycle G1 arrest, apoptosis, migratory suppression and invasive repression of NSCLC cells. Reduced PD-L1 expression in NSCLC cells was observed after HOXD9 silencing. Besides, HOXD9 deletion decreased the expression of ANGPT2 in NSCLC cells. In line with this, HOXD9 overexpression led to opposite alteration in NSCLC cells. Mechanistically, ANGPT2 was transcriptionally activated by HOXD9. Forced expression of ANGPT2 significantly regulated HOXD9-mediated malignant phenotypes, and enhanced PD-L1 expression of NSCLC cells. Our results expressing HOXD9 may function as an oncogene in NSCLC via trans-activation of ANGPT2.
Collapse
Affiliation(s)
- Jiabei He
- The Fourth Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Mengjia Jiang
- The Fourth Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Jing Liu
- The Fourth Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China
| | - Ruiping Zhu
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Weipeng Lv
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Ruiqing Lian
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Yang Yang
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Ruoyu Wang
- The Fourth Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 6 Jiefang Street, Zhongshan District, Dalian, 116001, Liaoning, China.
| |
Collapse
|
16
|
Goel K, Egersdorf N, Gill A, Cao D, Collum SD, Jyothula SS, Huang HJ, Sauler M, Lee PJ, Majka S, Karmouty-Quintana H, Petrache I. Characterization of pulmonary vascular remodeling and MicroRNA-126-targets in COPD-pulmonary hypertension. Respir Res 2022; 23:349. [PMID: 36522710 PMCID: PMC9756782 DOI: 10.1186/s12931-022-02267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Despite causing increased morbidity and mortality, pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) patients (COPD-PH) lacks treatment, due to incomplete understanding of its pathogenesis. Hypertrophy of pulmonary arterial walls and pruning of the microvasculature with loss of capillary beds are known features of pulmonary vascular remodeling in COPD. The remodeling features of pulmonary medium- and smaller vessels in COPD-PH lungs are less well described and may be linked to maladaptation of endothelial cells to chronic cigarette smoking (CS). MicroRNA-126 (miR126), a master regulator of endothelial cell fate, has divergent functions that are vessel-size specific, supporting the survival of large vessel endothelial cells and inhibiting the proliferation of microvascular endothelial cells. Since CS decreases miR126 in microvascular lung endothelial cells, we set out to characterize the remodeling by pulmonary vascular size in COPD-PH and its relationship with miR126 in COPD and COPD-PH lungs. METHODS Deidentified lung tissue was obtained from individuals with COPD with and without PH and from non-diseased non-smokers and smokers. Pulmonary artery remodeling was assessed by ⍺-smooth muscle actin (SMA) abundance via immunohistochemistry and analyzed by pulmonary artery size. miR126 and miR126-target abundance were quantified by qPCR. The expression levels of ceramide, ADAM9, and endothelial cell marker CD31 were assessed by immunofluorescence. RESULTS Pulmonary arteries from COPD and COPD-PH lungs had significantly increased SMA abundance compared to non-COPD lungs, especially in small pulmonary arteries and the lung microvasculature. This was accompanied by significantly fewer endothelial cell markers and increased pro-apoptotic ceramide abundance. miR126 expression was significantly decreased in lungs of COPD individuals. Of the targets tested (SPRED1, VEGF, LAT1, ADAM9), lung miR126 most significantly inversely correlated with ADAM9 expression. Compared to controls, ADAM9 was significantly increased in COPD and COPD-PH lungs, predominantly in small pulmonary arteries and lung microvasculature. CONCLUSION Both COPD and COPD-PH lungs exhibited significant remodeling of the pulmonary vascular bed of small and microvascular size, suggesting these changes may occur before or independent of the clinical development of PH. Decreased miR126 expression with reciprocal increase in ADAM9 may regulate endothelial cell survival and vascular remodeling in small pulmonary arteries and lung microvasculature in COPD and COPD-PH.
Collapse
Affiliation(s)
- Khushboo Goel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, USA
| | - Nicholas Egersdorf
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
| | - Amar Gill
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
- Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Fort Lauderdale, USA
| | - Danting Cao
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
| | - Scott D Collum
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center Houston, Houston, USA
| | - Soma S Jyothula
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, USA
| | - Howard J Huang
- Division of Pulmonary Critical Care, Transplant Pulmonology, Houston Methodist Hospital, Houston, USA
| | - Maor Sauler
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Yale School of Medicine , New Haven, USA
| | - Patty J Lee
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine, Durham, USA
| | - Susan Majka
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, USA
| | - Harry Karmouty-Quintana
- Divisions of Critical Care, Pulmonary and Sleep Medicine, Department of Internal Medicine, and Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Irina Petrache
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, USA.
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, USA.
| |
Collapse
|
17
|
Liu N, Liu M, Fu S, Wang J, Tang H, Isah AD, Chen D, Wang X. Ang2-Targeted Combination Therapy for Cancer Treatment. Front Immunol 2022; 13:949553. [PMID: 35874764 PMCID: PMC9305611 DOI: 10.3389/fimmu.2022.949553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
Angiopoietin-2 (Ang2), a member of the angiopoietin family, is widely involved in the process of vascular physiology, bone physiology, adipose tissue physiology and the occurrence and development of inflammation, cardiac hypertrophy, rheumatoid, tumor and other diseases under pathological conditions. Proliferation and metastasis of cancer largely depend on angiogenesis. Therefore, anti-angiogenesis has become the target of tumor therapy. Due to the Ang2 plays a key role in promoting angiogenesis and stability in vascular physiology, the imbalance of its expression is an important condition for the occurrence and development of cancer. It has been proved that blocking Ang2 can inhibit the growth, invasion and metastasis of cancer cells. In recent years, research has been constantly supplemented. We focus on the mechanisms that regulate the expression of Ang2 mRNA and protein levels in different cancers, contributing to a better understanding of how Ang2 exerts different effects in different cancers and stages, as well as facilitating more specific targeting of relevant molecules in cancer therapy. At the same time, the importance of Ang2 in cancer growth, metastasis, prognosis and combination therapy is pointed out. And finally, we will discuss the current investigations and future challenges of combining Ang2 inhibition with chemotherapy, immunotherapy, and radiotherapy to increase its efficacy in cancer patients. This review provides a theoretical reference for the development of new targets and effective combination therapy strategies for cancer treatment in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Deyu Chen
- *Correspondence: Xu wang, ; Deyu Chen,
| | - Xu Wang
- *Correspondence: Xu wang, ; Deyu Chen,
| |
Collapse
|
18
|
Pan J, Huang Z, Zhang Y, Xu Y. ADAM12 as a Clinical Prognostic Indicator Associated with Tumor Immune Infiltration in Lung Adenocarcinoma. DNA Cell Biol 2022; 41:410-423. [PMID: 35377217 DOI: 10.1089/dna.2021.0764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Twenty-two functional α-disintegrin and metalloproteinases (ADAMs) have been identified in humans, 12 of which have proteolytic activity. The role of ADAMs in cancer has attracted increasing attention. However, the expression and significance of ADAMs in lung adenocarcinoma (LUAD) remain unclear. Most recently, we investigated the transcriptional data of ADAMs and related overall survival in patients with LUAD based on several databases, including TCGA, cBioPortal, Kaplan-Meier Plotter, LinkedOmics, KEGG, TIMER, and TISIDB. Knockdown of ADAM12 was performed in vitro to verify its biological function. According to our findings, 10 ADAMs exhibited significant differential expression in LUAD compared with cancer-adjacent normal tissues. ADAM12 expression was significantly higher in LUAD tissues than in paracancerous tissues, and lower ADAM12 expression was associated with better survival. Genetic alterations of ADAM12 mainly included missense mutations, amplifications, and deep deletions. ADAM12 and positively correlated genes were mainly enriched in protein digestion and absorption, extracellular matrix-receptor interaction, and adhesion plaques. ADAM12 had a moderate correlation with immune cell markers EBIP1, CCNB1, EXO1, KNTC1, PRC1, and FAM198B. Prognostic model was established based on ADAM12 and immune-related genes. In vitro experiments revealed that knocking down ADAM12 inhibited cell proliferation, migration, and invasion. ADAM12 potentially plays an important role in the occurrence of LUAD and may be utilized as an immunotherapy target and a valuable prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Junfan Pan
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China.,Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhidong Huang
- Quanzhou First Hospital of Fujian Medical University, Quanzhou, China
| | - Yuan Zhang
- The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yiquan Xu
- Department of Thoracic Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
19
|
Lee H, Jeong SH, Lee H, Kim C, Nam YJ, Kang JY, Song MO, Choi JY, Kim J, Park EK, Baek YW, Lee JH. Analysis of lung cancer-related genetic changes in long-term and low-dose polyhexamethylene guanidine phosphate (PHMG-p) treated human pulmonary alveolar epithelial cells. BMC Pharmacol Toxicol 2022; 23:19. [PMID: 35354498 PMCID: PMC8969249 DOI: 10.1186/s40360-022-00559-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung injury elicited by respiratory exposure to humidifier disinfectants (HDs) is known as HD-associated lung injury (HDLI). Current elucidation of the molecular mechanisms related to HDLI is mostly restricted to fibrotic and inflammatory lung diseases. In our previous report, we found that lung tumors were caused by intratracheal instillation of polyhexamethylene guanidine phosphate (PHMG-p) in a rat model. However, the lung cancer-related genetic changes concomitant with the development of these lung tumors have not yet been fully defined. We aimed to discover the effect of long-term exposure of PHMG-p on normal human lung alveolar cells. METHODS We investigated whether PHMG-p could increase distorted homeostasis of oncogenes and tumor-suppressor genes, with long-term and low-dose treatment, in human pulmonary alveolar epithelial cells (HPAEpiCs). Total RNA sequencing was performed with cells continuously treated with PHMG-p and harvested after 35 days. RESULTS After PHMG-p treatment, genes with transcriptional expression changes of more than 2.0-fold or less than 0.5-fold were identified. Within 10 days of exposure, 2 protein-coding and 5 non-coding genes were selected, whereas in the group treated for 27-35 days, 24 protein-coding and 5 non-coding genes were identified. Furthermore, in the long-term treatment group, 11 of the 15 upregulated genes and 9 of the 14 downregulated genes were reported as oncogenes and tumor suppressor genes in lung cancer, respectively. We also found that 10 genes of the selected 24 protein-coding genes were clinically significant in lung adenocarcinoma patients. CONCLUSIONS Our findings demonstrate that long-term exposure of human pulmonary normal alveolar cells to low-dose PHMG-p caused genetic changes, mainly in lung cancer-associated genes, in a time-dependent manner.
Collapse
Affiliation(s)
- Hong Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Sang Hoon Jeong
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Cherry Kim
- Department of Radiology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Yoon Jeong Nam
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Ja Young Kang
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Myeong Ok Song
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jin Young Choi
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea
| | - Eun-Kee Park
- Department of Medical Humanities and Social Medicine, College of Medicine, Kosin University, Busan, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Department, Humidifier Disinfectant Health Center, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Ansan Hospital, Korea University College of Medicine, Ansan-si, Gyeonggi, Republic of Korea.
| |
Collapse
|
20
|
Lin YS, Kuo TT, Lo CC, Cheng WC, Chang WC, Tseng GC, Bai ST, Huang YK, Hsieh CY, Hsu HS, Jiang YF, Lin CY, Lai LC, Li XG, Sher YP. ADAM9 functions as a transcriptional regulator to drive angiogenesis in esophageal squamous cell carcinoma. Int J Biol Sci 2021; 17:3898-3910. [PMID: 34671207 PMCID: PMC8495400 DOI: 10.7150/ijbs.65488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022] Open
Abstract
Hypoxia and angiogenesis play key roles in the pathogenesis of esophageal squamous cell carcinoma (ESCC), but regulators linking these two pathways to drive tumor progression remain elusive. Here we provide evidence of ADAM9's novel function in ESCC progression. Increasing expression of ADAM9 was correlated with poor clinical outcomes in ESCC patients. Suppression of ADAM9 function diminished ESCC cell migration and in vivo metastasis in ESCC xenograft mouse models. Using cellular fractionation and imaging, we found a fraction of ADAM9 was present in the nucleus and was uniquely associated with gene loci known to be linked to the angiogenesis pathway demonstrated by genome-wide ChIP-seq. Mechanistically, nuclear ADAM9, triggered by hypoxia-induced translocation, functions as a transcriptional repressor by binding to promoters of genes involved in the negative regulation of angiogenesis, and thereby promotes tumor angiogenesis in plasminogen/plasmin pathway. Moreover, ADAM9 suppresses plasminogen activator inhibitor-1 gene transcription by interacting with its transcription factors at the promoter. Our findings uncover a novel regulatory mechanism of ADAM9 as a transcriptional regulator in angiogenesis and highlight ADAM9 as a promising therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Guan-Chin Tseng
- Department of Anatomic Pathology, Nantou Hospital of the Ministry of Health and Welfare, Nantou 540, Taiwan
| | - Shih-Ting Bai
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chih-Ying Hsieh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Institute of Emergency and Care Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Chen-Yuan Lin
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
21
|
Tumor Nonimmune-Microenvironment-Related Gene Expression Signature Predicts Brain Metastasis in Lung Adenocarcinoma Patients after Surgery: A Machine Learning Approach Using Gene Expression Profiling. Cancers (Basel) 2021; 13:cancers13174468. [PMID: 34503278 PMCID: PMC8430997 DOI: 10.3390/cancers13174468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary It is important to be able to predict brain metastasis in lung adenocarcinoma patients; however, research in this area is still lacking. Much of the previous work on tumor microenvironments in lung adenocarcinoma with brain metastasis concerns the tumor immune microenvironment. The importance of the tumor nonimmune microenvironment (extracellular matrix (ECM), epithelial–mesenchymal transition (EMT) feature, and angiogenesis) has been overlooked with regard to brain metastasis. We evaluated tumor nonimmune-microenvironment-related gene expression signatures that could predict brain metastasis after the surgical resection of lung adenocarcinoma using a machine learning approach. We identified a tumor nonimmune-microenvironment-related 17-gene expression signature, and this signature showed high brain metastasis predictive power in four machine learning classifiers. The immunohistochemical expression of the top three genes of the 17-gene expression signature yielded similar results to NanoString tests. Our tumor nonimmune-microenvironment-related gene expression signatures are important biological markers that can predict brain metastasis and provide patient-specific treatment options. Abstract Using a machine learning approach with a gene expression profile, we discovered a tumor nonimmune-microenvironment-related gene expression signature, including extracellular matrix (ECM) remodeling, epithelial–mesenchymal transition (EMT), and angiogenesis, that could predict brain metastasis (BM) after the surgical resection of 64 lung adenocarcinomas (LUAD). Gene expression profiling identified a tumor nonimmune-microenvironment-related 17-gene expression signature that significantly correlated with BM. Of the 17 genes, 11 were ECM-remodeling-related genes. The 17-gene expression signature showed high BM predictive power in four machine learning classifiers (areas under the receiver operating characteristic curve = 0.845 for naïve Bayes, 0.849 for support vector machine, 0.858 for random forest, and 0.839 for neural network). Subgroup analysis revealed that the BM predictive power of the 17-gene signature was higher in the early-stage LUAD than in the late-stage LUAD. Pathway enrichment analysis showed that the upregulated differentially expressed genes were mainly enriched in the ECM–receptor interaction pathway. The immunohistochemical expression of the top three genes of the 17-gene expression signature yielded similar results to NanoString tests. The tumor nonimmune-microenvironment-related gene expression signatures found in this study are important biological markers that can predict BM and provide patient-specific treatment options.
Collapse
|
22
|
Rojo Arias JE, Jászai J. Gene expression profile of the murine ischemic retina and its response to Aflibercept (VEGF-Trap). Sci Rep 2021; 11:15313. [PMID: 34321516 PMCID: PMC8319207 DOI: 10.1038/s41598-021-94500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.
Collapse
Affiliation(s)
- Jesús Eduardo Rojo Arias
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany ,grid.5335.00000000121885934Present Address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - József Jászai
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
23
|
Giridharan N, Glitza Oliva IC, O'Brien BJ, Parker Kerrigan BC, Heimberger AB, Ferguson SD. Targeting the Tumor Microenvironment in Brain Metastasis. Neurosurg Clin N Am 2021; 31:641-649. [PMID: 32921358 DOI: 10.1016/j.nec.2020.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dynamic interplay between cancer cells and the surrounding microenvironment is a feature of the metastatic process. Successful metastatic brain colonization requires complex mechanisms that ultimately allow tumor cells to adapt to the unique microenvironment of the central nervous system, evade immune destruction, survive, and grow. Accumulating evidence suggests that components of the brain tumor microenvironment (TME) play a vital role in the metastatic cascade. In this review, the authors summarize the contribution of the TME to the development and progression of brain metastasis. They also highlight opportunities for TME-directed targeted therapy.
Collapse
Affiliation(s)
- Nisha Giridharan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 430, Houston, TX 77030, USA
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 431, Houston, TX 77030-4009, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA.
| |
Collapse
|
24
|
microRNA-1298 inhibits the malignant behaviors of breast cancer cells via targeting ADAM9. Biosci Rep 2021; 40:226894. [PMID: 33146718 PMCID: PMC7729294 DOI: 10.1042/bsr20201215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) regulate the progression of human malignancy by targeting oncogenes or tumor suppressors, which are 12 promising targets for cancer treatment. Increasing evidence has suggested the aberrant expression and tumor-suppressive function of miR-1298 in cancers, however, the regulatory mechanism of miR-1298 in breast cancer (BC) remains unclear. Here, our findings showed that miR-1298 was down-regulated in BC tissues and cell lines. Lower level of miR-1298 was significantly correlated with the advanced progression of BC patients. Experimental study showed that overexpression of miR-1298 inhibited the proliferation, induced apoptosis and cell cycle arrest in BC cells. The in vivo xenograft mice model showed that highly expressed miR-1298 significantly reduced the tumor growth and metastasis. Further mechanism analysis revealed that miR-1298 bound the 3′-untranslated region (UTR) of a disintegrin and metalloproteinase 9 domain (ADAM9) and suppressed the expression of ADAM9 in BC cells. ADAM9 was overexpressed in BC tissues and inversely correlated with miR-1298. Down-regulation of ADAM9 induced apoptosis and cell cycle arrest of BC cells. Moreover, ectopic expression of ADAM9 by transiently transfecting with vector encoding the full coding sequence of ADAM9 attenuated the inhibitory effects of miR-1298 on the proliferation and cell cycle progression of BC cells. Collectively, our results illustrated that miR-1298 played a suppressive role in regulating the phenotype of BC cells through directly repressing ADAM9, suggesting the potential application of miR-1298 in the therapy of BC.
Collapse
|
25
|
Zheng Y, Hu J, Li Y, Hao R, Qi Y. Clinicopathological and prognostic significance of circRNAs in lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25415. [PMID: 33832139 PMCID: PMC8036086 DOI: 10.1097/md.0000000000025415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) regulate multiple pathways during lung cancer pathogenesis. Apart from functional significance, many circRNAs have been shown to be associated with clinicopathological characteristics and predict lung cancer prognosis. Our aim is to summarize the expanding knowledge of clinical roles of circRNAs in lung cancer. METHODS A thorough search of literature was conducted to identify articles about the correlation between circRNA expression and its prognostic and clinicopathological values. Biological mechanisms were summarized. RESULTS This study included 35 original articles and 32 circRNAs with prognostic roles for lung cancer. Increased expression of 25 circRNAs and decreased expression of 7 circRNAs predicted poor prognosis. For non-small cell lung cancer, changes of circRNAs were correlated with tumor size, lymph node metastasis, distant metastasis, tumor node metastasis (TNM) stage, and differentiation, indicating the major function of circRNAs is to promote lung cancer invasion and migration. Particularly, meta-analysis of ciRS-7, hsa_circ_0020123, hsa_circ_0067934 showed increase of the 3 circRNAs was associated with positive lymph node metastasis. Increase of ciRS-7 and hsa_circ_0067934 was also related with advanced TNM stage. The biological effects depend on the general function of circRNA as microRNA sponge. CONCLUSIONS CircRNAs have the potential to function as prognostic markers and are associated with lung cancer progression and metastasis.
Collapse
Affiliation(s)
- Yuxuan Zheng
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, Jilin, China
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY
- Morning Star Academic Cooperation, Shanghai
| | - Jie Hu
- Department of Science and Technology, Hebei Medical University
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Provincial Chest Hospital
| | - Ran Hao
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei
- Morning Star Academic Cooperation, Shanghai
| | - Yixin Qi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
26
|
Zheng S, Zhang Z, Ding N, Sun J, Lin Y, Chen J, Zhong J, Shao L, Lin Z, Xue M. Identification of the angiogenesis related genes for predicting prognosis of patients with gastric cancer. BMC Gastroenterol 2021; 21:146. [PMID: 33794777 PMCID: PMC8017607 DOI: 10.1186/s12876-021-01734-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Angiogenesis is a key factor in promoting tumor growth, invasion and metastasis. In this study we aimed to investigate the prognostic value of angiogenesis-related genes (ARGs) in gastric cancer (GC). METHODS mRNA sequencing data with clinical information of GC were downloaded from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. The differentially expressed ARGs between normal and tumor tissues were analyzed by limma package, and then prognosis‑associated genes were screened using Cox regression analysis. Nine angiogenesis genes were identified as crucially related to the overall survival (OS) of patients through least absolute shrinkage and selection operator (LASSO) regression. The prognostic model and corresponding nomograms were establish based on 9 ARGs and verified in in both TCGA and GEO GC cohorts respectively. RESULTS Eighty-five differentially expressed ARGs and their enriched pathways were confirmed. Significant enrichment analysis revealed that ARGs-related signaling pathway genes were highly related to tumor angiogenesis development. Kaplan-Meier analysis revealed that patients in the high-risk group had worse OS rates compared with the low-risk group in training cohort and validation cohort. In addition, RS had a good prognostic effect on GC patients with different clinical features, especially those with advanced GC. Besides, the calibration curves verified fine concordance between the nomogram prediction model and actual observation. CONCLUSIONS We developed a nine gene signature related to the angiogenesis that can predict overall survival for GC. It's assumed to be a valuable prognosis model with high efficiency, providing new perspectives in targeted therapy.
Collapse
Affiliation(s)
- Sheng Zheng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Zizhen Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ning Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jiawei Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yifeng Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jingyu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Jing Zhong
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Zhenghua Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Meng Xue
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China. .,Institute of Gastroenterology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
27
|
Cheng WC, Chang CY, Lo CC, Hsieh CY, Kuo TT, Tseng GC, Wong SC, Chiang SF, Huang KCY, Lai LC, Lu TP, Chao KC, Sher YP. Identification of theranostic factors for patients developing metastasis after surgery for early-stage lung adenocarcinoma. Am J Cancer Res 2021; 11:3661-3675. [PMID: 33664854 PMCID: PMC7914355 DOI: 10.7150/thno.53176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Lung adenocarcinoma (LUAD) is an aggressive disease with high propensity of metastasis. Among patients with early-stage disease, more than 30% of them may relapse or develop metastasis. There is an unmet medical need to stratify patients with early-stage LUAD according to their risk of relapse/metastasis to guide preventive or therapeutic approaches. In this study, we identified 4 genes that can serve both therapeutic and diagnostic (theranostic) purposes. Methods: Three independent datasets (GEO, TCGA, and KMPlotter) were used to evaluate gene expression profile of patients with LUAD by unbiased screening approach. Upon significant genes uncovered, functional enrichment analysis was carried out. The predictive power of their expression on patient prognosis were evaluated. Once confirmed their theranostic roles by integrated bioinformatics, we further conducted in vitro and in vivo validation. Results: We found that four genes (ADAM9, MTHFD2, RRM2, and SLC2A1) were associated with poor patient outcomes with an increased hazard ratio in LUAD. Knockdown of them, both separately and simultaneously, suppressed lung cancer cell proliferation and migration ability in vitro and prolonged survival time in metastatic tumor mouse models. Moreover, these four biomarkers were found to be overexpressed in tumor tissues from LUAD patients, and the total immunohistochemical staining scores correlated with poor prognosis. Conclusions: These results suggest that these four identified genes could be theranostic biomarkers for stratifying high-risk patients who develop relapse/metastasis in early-stage LUAD. Developing therapeutic approaches for the four biomarkers may benefit early-stage LUAD patients after surgery.
Collapse
|
28
|
Chou CW, Huang YK, Kuo TT, Liu JP, Sher YP. An Overview of ADAM9: Structure, Activation, and Regulation in Human Diseases. Int J Mol Sci 2020; 21:ijms21207790. [PMID: 33096780 PMCID: PMC7590139 DOI: 10.3390/ijms21207790] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
ADAM9 (A disintegrin and a metalloprotease 9) is a membrane-anchored protein that participates in a variety of physiological functions, primarily through the disintegrin domain for adhesion and the metalloprotease domain for ectodomain shedding of a wide variety of cell surface proteins. ADAM9 influences the developmental process, inflammation, and degenerative diseases. Recently, increasing evidence has shown that ADAM9 plays an important role in tumor biology. Overexpression of ADAM9 has been found in several cancer types and is correlated with tumor aggressiveness and poor prognosis. In addition, through either proteolytic or non-proteolytic pathways, ADAM9 promotes tumor progression, therapeutic resistance, and metastasis of cancers. Therefore, comprehensively understanding the mechanism of ADAM9 is crucial for the development of therapeutic anti-cancer strategies. In this review, we summarize the current understanding of ADAM9 in biological function, pathophysiological diseases, and various cancers. Recent advances in therapeutic strategies using ADAM9-related pathways are presented as well.
Collapse
Affiliation(s)
- Cheng-Wei Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Department of Medicine, Division of Hematology/Medical Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
| | - Jing-Pei Liu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan; (C.-W.C.); (Y.-K.H.); (J.-P.L.)
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
29
|
Zhang G, Hu Y, Yuan W, Qiu H, Yu H, Du J. miR-519d-3p Overexpression Inhibits P38 and PI3K/AKT Pathway via Targeting VEGFA to Attenuate the Malignant Biological Behavior of Non-Small Cell Lung Cancer. Onco Targets Ther 2020; 13:10257-10266. [PMID: 33116606 PMCID: PMC7568445 DOI: 10.2147/ott.s252795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is a heterogeneous tumor that accounts for approximately 85% of all lung cancer cases worldwide. microRNAs (miRNAs) are believed to play an important role in regulating a variety of biological processes, including immunity and cancer. We investigated the effect of miR-519d-3p on the mitigation of NSCLC in vitro and in vivo. Methods RT-PCR or immunohistochemical assays were used to assess the expression of miR-519d-3p. Colony formation, flow cytometry, and transwell assay were respectively used to detect proliferation, apoptosis, and invasion of A549 and NCI-H661 cell lines. Luciferase reporter assay was used to verify targeting the relationship between mir-519d-3p and VEGFA. Western blot was used to examine the expression of Ki67, caspase-3, E-cadherin, N-cadherin, VEGF, P38, and PI3K/AKT. Animal models were established by BABL/c mice to research the effect of mir-519d-3p overexpression in vivo. Results In vitro, miR-519d-3p overexpression inhibited A549 and NCI-H661 cells proliferation, invasion, and also promoted apoptosis. In addition, miR-519d-3p overexpression downregulated VEGFA expression and decreased the P38 and PI3K/AKT phosphorylation level. In vivo, miR-519d-3p overexpression significantly restrained tumor volume (2087±265 mm3 vs 599±135 mm3, *P< 0.05) and tumor weight (0.45±0.08 g vs 0.13±0.06 g, *P<0.05) compared with the control group. Overexpression of miR-519d-3p downregulated levels of Ki67 and N-cadherin significantly. Conclusion The data indicated that miR-519d-3p could be a novel therapy or adjuvant against NSCLC.
Collapse
Affiliation(s)
- Guangzhao Zhang
- Department of Minimally Invasive Surgery, Henan Chest Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Yanlei Hu
- Department of Cardiovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan 451464, People's Republic of China
| | - Wuying Yuan
- Department of Minimally Invasive Surgery, Henan Chest Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Hongli Qiu
- Department of Minimally Invasive Surgery, Henan Chest Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Haifeng Yu
- Department of Minimally Invasive Surgery, Henan Chest Hospital, Zhengzhou, Henan 450003, People's Republic of China
| | - Jiahui Du
- Department of Minimally Invasive Surgery, Henan Chest Hospital, Zhengzhou, Henan 450003, People's Republic of China
| |
Collapse
|
30
|
Zhang Q, Wang J, Liu M, Zhu Q, Li Q, Xie C, Han C, Wang Y, Gao M, Liu J. Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:13502-13517. [PMID: 32644941 PMCID: PMC7377834 DOI: 10.18632/aging.103454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
In this study, we constructed a new survival model using mRNA expression-based stemness index (mRNAsi) for prognostic prediction in hepatocellular carcinoma (HCC). Weighted correlation network analysis (WGCNA) of HCC transcriptome data (374 HCC and 50 normal liver tissue samples) from the TCGA database revealed 7498 differentially expressed genes (DEGs) that clustered into seven gene modules. LASSO regression analysis of the top two gene modules identified ANGPT2, EMCN, GLDN, USHBP1 and ZNF532 as the top five mRNAsi-related genes. We constructed our survival model with these five genes and tested its performance using 243 HCC and 202 normal liver samples from the ICGC database. Kaplan-Meier survival curve and receive operating characteristic curve analyses showed that the survival model accurately predicted the prognosis and survival of high- and low-risk HCC patients with high sensitivity and specificity. The expression of these five genes was significantly higher in the HCC tissues from the TCGA, ICGC, and GEO datasets (GSE25097 and GSE14520) than in normal liver tissues. These findings demonstrate that a new survival model derived from five strongly correlating mRNAsi-related genes provides highly accurate prognoses for HCC patients.
Collapse
Affiliation(s)
- Qiujing Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jia Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.,Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo 255000, Shandong, China
| | - Menghan Liu
- Basic Medicine College, Shandong First Medical University, Taian 271016, Shandong, China
| | - Qingqing Zhu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qiang Li
- Department of Oncology, Mengyin County Hospital, Linyi 276299, Shandong, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Congcong Han
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yali Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Min Gao
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
31
|
Yin G, Tian P, BuHe A, Yan W, Li T, Sun Z. LncRNA LINC00689 Promotes the Progression of Gastric Cancer Through Upregulation of ADAM9 by Sponging miR-526b-3p. Cancer Manag Res 2020; 12:4227-4239. [PMID: 32581594 PMCID: PMC7280092 DOI: 10.2147/cmar.s231042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction Increasing studies have demonstrated that noncoding RNAs, including miRNAs and lncRNAs, have vital roles in mediating cancer progression. However, the expression features and biological functions of LINC00689 in gastric cancer (GC) remain largely unknown. This study was designed to investigate the functions of LINC00689, miR-526b-3p and ADAM9 as well as their interactions in GC. Methods Real time PCR(RT-PCR) was used to detect the expression of LINC0068, miR-526b-3p and ADAM9 in both GC tissues or cell lines. Gain- and loss- of functions of assays were conducted to verify the role of LINC0068, miR-526b-3p and ADAM9 in GC development. Cell proliferation were determined by CCK8 assay and transwell assay and scratch wound-healing assay were used to test cell invasion and migration. Further, the relationships between LINC00689 and miR-526b-3p, miR-526b-3p and ADAM9 were predicted by bioinformatics analysis and then proved by Luciferase reporter assay and RNA Immunoprecipitation(RIP) assay. Results We found that LINC00689 was upregulated in GC tissues and positively correlated with advanced tumor stage and tumor size, while miR-526b-3p was downregulated. Furthermore, gain- and loss-of-function experiments revealed that LINC00689 promoted the proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of GC cells, while miR-526b-3p had the opposite effects. The underlying mechanisms indicated that LINC00689 functioned as a competing endogenous RNA (ceRNA) by sponging miR-526b-3p in GC cells. Further investigations confirmed that ADAM9 was a direct target of miR-526b-3p and positively modulated the progression of GC. Conclusion Our study suggests that LINC00689 functions as a novel oncogenic lncRNA in the development of GC by promoting ADAM9 expression through suppression of miR-526b-3p.
Collapse
Affiliation(s)
- Gang Yin
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - PeiRong Tian
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Amin BuHe
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - Wei Yan
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - TianXiong Li
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| | - ZhiPeng Sun
- Oncology Surgery Department, Beijing Shijitan Hospital, Capital Medical University (Peking University Ninth School of Clinical Medicine), Beijing 100038, People's Republic of China
| |
Collapse
|
32
|
Pan YB, Wang S, Yang B, Jiang Z, Lenahan C, Wang J, Zhang J, Shao A. Transcriptome analyses reveal molecular mechanisms underlying phenotypic differences among transcriptional subtypes of glioblastoma. J Cell Mol Med 2020; 24:3901-3916. [PMID: 32091665 PMCID: PMC7171397 DOI: 10.1111/jcmm.14976] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Using molecular signatures, previous studies have defined glioblastoma (GBM) subtypes with different phenotypes, such as the proneural (PN), neural (NL), mesenchymal (MES) and classical (CL) subtypes. However, the gene programmes underlying the phenotypes of these subtypes were less known. We applied weighted gene co-expression network analysis to establish gene modules corresponding to various subtypes. RNA-seq and immunohistochemical data were used to validate the expression of identified genes. We identified seven molecular subtype-specific modules and several candidate signature genes for different subtypes. Next, we revealed, for the first time, that radioresistant/chemoresistant gene signatures exist only in the PN subtype, as described by Verhaak et al, but do not exist in the PN subtype described by Phillips et al PN subtype. Moreover, we revealed that the tumour cells in the MES subtype GBMs are under ER stress and that angiogenesis and the immune inflammatory response are both significantly elevated in this subtype. The molecular basis of these biological processes was also uncovered. Genes associated with alternative RNA splicing are up-regulated in the CL subtype GBMs, and genes pertaining to energy synthesis are elevated in the NL subtype GBMs. In addition, we identified several survival-associated genes that positively correlated with glioma grades. The identified intrinsic characteristics of different GBM subtypes can offer a potential clue to the pathogenesis and possible therapeutic targets for various subtypes.
Collapse
Affiliation(s)
- Yuan-Bo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siqi Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China.,Department of Nuclear Medicine, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
| | - Biao Yang
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhenqi Jiang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA.,Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Hao Z, Guo D. EGFR mutation: novel prognostic factor associated with immune infiltration in lower-grade glioma; an exploratory study. BMC Cancer 2019; 19:1184. [PMID: 31801484 PMCID: PMC6894128 DOI: 10.1186/s12885-019-6384-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Glioma is one of the most common type of primary central nervous system tumors. EGFR mutation, a common alteration occurs in various tumors, is not brought to the forefront in understanding and treating glioma at present. METHODS In the present study, we demonstrated an immune infiltration related pattern of EGFR mutation in lower-grade glioma. In silico analyses were performed to investigate EGFR mutation and its biological effects and clinical values. GO and GSEA process were used as enrichment analysis. Infiltration levels of specific types of immune cells were estimated at TIMER database. Clinical data of patients were obtained from TCGA and were employed for survival analyses. RESULTS Here we revealed that EGFR mutation leads to an up-regulation of immune response related pathways and dismal prognosis in lower-grade glioma. Infiltration of CD4+ T cells, neutrophils, macrophages, and dendritic cells were significantly increased in EGFR-mutant cases. Infiltration of specific types of immune cells were correlated with shorter survival time. PD-L1 was elevated in EGFR-mutant cases and correlated with infiltration level of CD4+ T cells, neutrophils and dendritic cells. CONCLUSION EGFR mutation indicates increasing infiltration of specific types of immune cells and poor prognosis in lower-grade glioma. Alteration of immune microenvironment since the EGFR mutation might influence the survival of glioma. We also provided a novel evidence and indicator of PD-1 inhibitor application in glioma.
Collapse
Affiliation(s)
- Zhaonian Hao
- Department of Neurosurgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dongsheng Guo
- Department of Neurosurgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
34
|
Fecci PE, Champion CD, Hoj J, McKernan CM, Goodwin CR, Kirkpatrick JP, Anders CK, Pendergast AM, Sampson JH. The Evolving Modern Management of Brain Metastasis. Clin Cancer Res 2019; 25:6570-6580. [PMID: 31213459 PMCID: PMC8258430 DOI: 10.1158/1078-0432.ccr-18-1624] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/23/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022]
Abstract
The incidence of brain metastases is increasing as cancer therapies improve and patients live longer, providing new challenges to the multidisciplinary teams that care for these patients. Brain metastatic cancer cells possess unique characteristics that allow them to penetrate the blood-brain barrier, colonize the brain parenchyma, and persist in the intracranial environment. In addition, brain metastases subvert the innate and adaptive immune system, permitting evasion of the antitumor immune response. Better understanding of the above mechanisms will allow for development and delivery of more effective therapies for brain metastases. In this review, we outline the molecular mechanisms underlying development, survival, and immunosuppression of brain metastases. We also discuss current and emerging treatment strategies, including surgery, radiation, disease-specific and mutation-targeted systemic therapy, and immunotherapy.
Collapse
Affiliation(s)
- Peter E Fecci
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| | - Cosette D Champion
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| | - Jacob Hoj
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Courtney M McKernan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - C Rory Goodwin
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Carey K Anders
- Duke Cancer Institute, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Ann Marie Pendergast
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.
- Duke Center for Brain and Spinal Metastases, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
35
|
Identification of prognostic biomarkers for malignant melanoma using microarray datasets. Oncol Lett 2019; 18:5243-5254. [PMID: 31620197 PMCID: PMC6788168 DOI: 10.3892/ol.2019.10914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is one of the most common types of cancer worldwide. Efforts have been made to elucidate the pathology of malignant melanoma. However, its molecular mechanisms remain unclear. Therefore, the microarray datasets GSE3189, GSE4570 and GSE4587 from the Gene Expression Omnibus database were used for the elucidation of candidate genes involved in the initiation and progression of melanoma. Assessment of the microarray datasets led to the identification of differentially expressed genes (DEGs), which were subsequently used for function enrichment analysis. These data were utilized in the construction of the protein-protein interaction network and module analysis was conducted using STRING and Cytoscape software. The results of these analyses led to the identification of a total of 182 DEGs, including 52 downregulated and 130 upregulated genes. The functions and pathways found to be enriched in the DEGs were GTPase activity, transcription from RNA polymerase II promoter, apoptotic processes, cell adhesion, membrane related pathways, calcium signaling cascade and the PI3K-Akt signaling pathway. The identified genes were demonstrated to belong to a set of 10 hub genes biologically involved in proliferation, apoptosis, cytokinesis, adhesion and migration. Survival analysis and Oncomine database analysis revealed that the calmodulin gene family, BAX and VEGFA genes, may be associated with the initiation, invasion or recurrence of melanoma. In conclusion, the DEGs and hub genes identified in the present study may be used to understand the molecular pathways involved in the initiation and progression of malignant melanoma. Furthermore, the present study may aid in the identification of possible targets for the diagnosis and treatment of melanoma.
Collapse
|
36
|
Abstract
EMCV is an animal pathogen that causes acute viral infections, usually myocarditis or encephalitis. It is thought to circulate mainly among rodents, from which it is occasionally transmitted to other animal species, including humans. EMCV causes fatal outbreaks of myocarditis and encephalitis in pig farms and zoos, making it an important veterinary pathogen. Although EMCV has been widely used as a model to study mechanisms of viral disease in mice, little is known about its entry mechanism. Here, we employ a haploid genetic screen for EMCV host factors and identify an essential role for ADAM9 in EMCV entry. Encephalomyocarditis virus (EMCV) is an animal pathogen and an important model organism, whose receptor requirements are poorly understood. Here, we employed a genome-wide haploid genetic screen to identify novel EMCV host factors. In addition to the previously described picornavirus receptors sialic acid and glycosaminoglycans, this screen unveiled important new host factors for EMCV. These factors include components of the fibroblast growth factor (FGF) signaling pathway, such as the potential receptors FGFR1 and ADAM9, a cell-surface metalloproteinase. By employing various knockout cells, we confirmed the importance of the identified host factors for EMCV infection. The largest reduction in infection efficiency was observed in cells lacking ADAM9. Pharmacological inhibition of the metalloproteinase activity of ADAM9 did not affect virus infection. Moreover, reconstitution of inactive ADAM9 in knockout cells restored susceptibility to EMCV, pointing to a proteinase-independent role of ADAM9 in mediating EMCV infection. Using neutralization assays with ADAM9-specific antiserum and soluble receptor proteins, we provided evidence for a role of ADAM9 in EMCV entry. Finally, binding assays showed that ADAM9 facilitates attachment of EMCV to the cell surface. Together, our findings reveal a role for ADAM9 as a novel receptor or cofactor for EMCV.
Collapse
|
37
|
A Disintegrin and Metalloproteinase 9 Domain (ADAM9) Is a Major Susceptibility Factor in the Early Stages of Encephalomyocarditis Virus Infection. mBio 2019; 10:mBio.02734-18. [PMID: 30723129 PMCID: PMC6428755 DOI: 10.1128/mbio.02734-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Encephalomyocarditis virus (EMCV) is a picornavirus that produces lytic infections in murine and human cells. Employing a genome-wide CRISPR-Cas9 knockout screen to find host factors required for EMCV infection, we identified a role for ADAM9 in EMCV infection. CRISPR-mediated deletion of ADAM9 in multiple human cell lines rendered the cells highly resistant to EMCV infection and cell death. Primary fibroblasts from ADAM9 KO mice were also strongly resistant to EMCV infection and cell death. In contrast, ADAM9 KO and WT cells were equally susceptible to infection with other viruses, including the picornavirus Coxsackie virus B. ADAM9 KO cells failed to produce viral progeny when incubated with EMCV. However, bypassing EMCV entry into cells through delivery of viral RNA directly to the cytosol yielded infectious EMCV virions from ADAM9 KO cells, suggesting that ADAM9 is not required for EMCV replication post-entry. These findings establish that ADAM9 is required for the early stage of EMCV infection, likely for virus entry or viral genome delivery to the cytosol.IMPORTANCE Viral myocarditis is a leading cause of death in the United States, contributing to numerous unexplained deaths in people ≤35 years old. Enteroviruses contribute to many cases of human myocarditis. Encephalomyocarditis virus (EMCV) infection causes viral myocarditis in rodent models, but its receptor requirements have not been fully identified. CRISPR-Cas9 screens can identify host dependency factors essential for EMCV infection and enhance our understanding of key events that follow viral infection, potentially leading to new strategies for preventing viral myocarditis. Using a CRISPR-Cas9 screen, we identified a disintegrin and metalloproteinase 9 domain (ADAM9) as a major factor required for the early stages of EMCV infection in both human and murine infection.
Collapse
|
38
|
Oria VO, Lopatta P, Schmitz T, Preca BT, Nyström A, Conrad C, Bartsch JW, Kulemann B, Hoeppner J, Maurer J, Bronsert P, Schilling O. ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol Oncol 2019; 13:456-479. [PMID: 30556643 PMCID: PMC6360373 DOI: 10.1002/1878-0261.12426] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/17/2022] Open
Abstract
A disintegrin and a metalloprotease (ADAM)‐9 is a metzincin cell‐surface protease with strongly elevated expression in solid tumors, including pancreatic ductal adenocarcinoma (PDAC). In this study, we performed immunohistochemistry (IHC) of a tissue microarray (TMA) to examine the expression of ADAM9 in a cohort of >100 clinically annotated PDAC cases. We report that ADAM9 is prominently expressed by PDAC tumor cells, and increased ADAM9 expression levels correlate with poor tumor grading (P = 0.027) and the presence of vasculature invasion (P = 0.017). We employed gene expression silencing to generate a loss‐of‐function system for ADAM9 in two established PDAC cell lines. In vitro analysis showed that loss of ADAM9 does not impede cellular proliferation and invasiveness in basement membrane. However, ADAM9 plays a crucial role in mediating cell migration and adhesion to extracellular matrix substrates such as fibronectin, tenascin, and vitronectin. This effect appears to depend on its catalytic activity. In addition, ADAM9 facilitates anchorage‐independent growth. In AsPC1 cells, but not in MiaPaCa‐2 cells, we noted a pronounced yet heterogeneous impact of ADAM9 on the abundance of various integrins, a process that we characterized as post‐translational regulation. Sprout formation of human umbilical vein endothelial cells (HUVECs) is promoted by ADAM9, as examined by transfer of cancer cell conditioned medium; this finding further supports a pro‐angiogenic role of ADAM9 expressed by PDAC cancer cells. Immunoblotting analysis of cancer cell conditioned medium highlighted that ADAM9 regulates the levels of angiogenic factors, including shed heparin‐binding EGF‐like growth factor (HB‐EGF). Finally, we carried out orthotopic seeding of either wild‐type AsPC‐1 cells or AsPC‐1 cells with silenced ADAM9 expression into murine pancreas. In this in vivo setting, ADAM9 was also found to foster angiogenesis without an impact on tumor cell proliferation. In summary, our results characterize ADAM9 as an important regulator in PDAC tumor biology with a strong pro‐angiogenic impact.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | - Tatjana Schmitz
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Germany
| | | | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, Germany
| | - Catharina Conrad
- Department of Neurosurgery, Philipps University Marburg, Germany.,Department of Anesthesiology, Intensive Care, and Pain Medicine, University of Münster, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Germany
| | - Birte Kulemann
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany
| | - Jens Hoeppner
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Germany.,Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Jochen Maurer
- Department of Gynecology, University Clinic RWTH, Aachen, Germany
| | - Peter Bronsert
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Tumorbank Comprehensive Cancer Center Freiburg, Medical Center - University of Freiburg, Germany
| | - Oliver Schilling
- Faculty of Medicine, University of Freiburg, Germany.,Institute of Surgical Pathology, Medical Center - University of Freiburg, Germany.,German Cancer Consortium (DKTK) and Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Biological Signaling Studies BIOSS, University of Freiburg, Germany
| |
Collapse
|
39
|
华 欣, 朱 晓. [Research Advances of Ang-2 in Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 21:868-874. [PMID: 30454550 PMCID: PMC6247002 DOI: 10.3779/j.issn.1009-3419.2018.11.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/26/2022]
Abstract
Non-small cell lung cancer (NSCLC) is one of the malignant tumors with highest mortality in the world, it is still a difficult problem in clinical field. Its occurrence and development are closely associated with tumor angiogenesis. Angiopoietin-2 (Ang-2) is an important angiogenesis factor that has involved in many researches and it has been confirmed that the expression of Ang-2 is significantly up-regulated in tissues and blood of NSCLC. Meanwhile, Ang-2 is related to malignant biological behavior of cancer cells, making it a potential biological marker for the diagnosis and prognosis of NSCLC. At present, researches on Ang-2 how to promote the progression of NSCLC around the world are focused on Ang-2 regulating the proliferation, invasion, and metastasis of NSCLC. This paper summarized and estimated the studies and literature reports of regulatory mechanisms of Ang-2 in NSCLC, hopefully it could help looking for targeted drug treatment of Ang-2 in the future.
.
Collapse
Affiliation(s)
- 欣 华
- 210000 南京,东南大学医学院Medical College of Southeast University, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| | - 晓莉 朱
- 210000 南京,东南大学附属中大医院呼吸科Department of Respiration, Affiliated Zhongda Hospital of Southeast University, Nanjing 210000, China
| |
Collapse
|
40
|
Oria VO, Lopatta P, Schilling O. The pleiotropic roles of ADAM9 in the biology of solid tumors. Cell Mol Life Sci 2018; 75:2291-2301. [PMID: 29550974 PMCID: PMC11105608 DOI: 10.1007/s00018-018-2796-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/16/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
A disintegrin and a metalloprotease (ADAM) 9 is a metzincin cell-surface protease involved in several biological processes such as myogenesis, fertilization, cell migration, inflammatory response, proliferation, and cell-cell interactions. ADAM9 has been found over-expressed in several solid tumors entities such as glioma, melanoma, prostate cancer, pancreatic ductal adenocarcinoma, gastric, breast, lung, and liver cancers. Immunohistochemical analyses highlight ADAM9 expression by actual cancer cells and associate its abundant presence with clinicopathological features such as shortened overall survival, poor tumor grade, de-differentiation, therapy resistance, and metastasis formation. In each of these tumors, ADAM9 may contribute to tumor biology via proteolytic or non-proteolytic mechanisms. For example, in liver cancer, ADAM9 has been found to shed MHC class I polypeptide-related sequence A, contributing towards the evasion of tumor immunity. ADAM9 may also contribute to tumor biology in non-proteolytic ways probably through interaction with different integrins. For example, in melanoma, the interaction between ADAM9 and β1 integrins facilitates tumor stroma cross talks, which then promotes invasion and metastasis via the activation of MMP1 and MMP2. In breast cancer, the interaction between β1 integrins on endothelial cells and ADAM9 on tumor cells facilitate tumor cell extravasation and invasion to distant sites. This review summarizes the present knowledge on ADAM9 in solid cancers, and the different mechanisms which it employ to drive tumor progression.
Collapse
Affiliation(s)
- Victor O Oria
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Paul Lopatta
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|