1
|
Contreras-de la Rosa PA, De la Torre-Zavala S, O´Connor-Sánchez A, Prieto-Davó A, Góngora-Castillo EB. Exploring the microbial communities in coastal cenote and their hidden biotechnological potential. Microb Genom 2025; 11:001382. [PMID: 40178526 PMCID: PMC11968836 DOI: 10.1099/mgen.0.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Bacterial secondary metabolites are crucial bioactive compounds with significant therapeutic potential, playing key roles in ecological processes and the discovery of novel antimicrobial agents and natural products. Cenotes, as extreme environments, harbour untapped microbial diversity and hold an interesting potential as sources of novel secondary metabolites. While research has focused on the fauna and flora of cenotes, the study of their microbial communities and their biosynthetic capabilities remains limited. Advances in metagenomics and genome sequencing have greatly improved the capacity to explore these communities and their metabolites. In this study, we analysed the microbial diversity and biotechnological potential of micro-organisms inhabiting sediments from a coastal cenote. Metagenomic analyses revealed a rich diversity of bacterial and archaeal communities, containing several novel biosynthetic gene clusters (BGCs) linked to secondary metabolite production. Notably, polyketide synthase BGCs, including those encoding ladderanes and aryl-polyenes, were identified. Bioinformatics analyses of these pathways suggest the presence of compounds with potential industrial and pharmaceutical applications. These findings highlight the biotechnological value of cenotes as reservoirs of secondary metabolites. The study and conservation of these ecosystems are essential to facilitate the discovery of new bioactive compounds that could benefit various industries.
Collapse
Affiliation(s)
- Perla A. Contreras-de la Rosa
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Susana De la Torre-Zavala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León, 66425, San Nicolás de los Garza, Nuevo León, Mexico
| | - Aileen O´Connor-Sánchez
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo, 97205, Mérida, Yucatán, México
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química. Universidad Nacional Autónoma de México, 97356, Sisal, Yucatán, México
| | - Elsa B. Góngora-Castillo
- CONAHCYT- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43 No. 130. Col. Chuburná de Hidalgo 97205, Mérida, Yucatán, México
- CONAHCYT-Departamento de Recursos del Mar, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Km 6. Antigua carretera a Progreso. Cordemex, 97310, Mérida, Yucatán, México
| |
Collapse
|
2
|
Xingrong L, Gorish BMT, Qaria MA, Hussain A, Abdelmula WIY, Zhu D. Unlocking Ectoine's Postbiotic Therapeutic Promise: Mechanisms, Applications, and Future Directions. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10506-5. [PMID: 40072821 DOI: 10.1007/s12602-025-10506-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Ectoine, a cytoprotective compound derived from bacteria and categorized as a postbiotic, is increasingly recognized as a viable alternative to traditional therapeutic agents, frequently presenting considerable side effects. This extensive review underscores the effectiveness of ectoine as a postbiotic in managing conditions such as rhinosinusitis, atopic dermatitis, and allergic rhinitis, all while demonstrating a commendable safety profile. Its capacity to establish robust hydrogen bonds without compromising cellular integrity supports its potential application in anti-aging and cancer prevention strategies. Recent studies have clarified ectoine's function in alleviating oxidative stress caused by environmental pollutants and ultraviolet radiation, broadening its advantages for skin and ecological health. The review details ectoine's mechanisms of action, which include the protection of cellular macromolecules, modulation of inflammation, and prevention of apoptosis, while also highlighting emerging research that positions ectoine as a promising postbiotic candidate for therapeutic strategies in neurological disorders such as Alzheimer's disease, autoimmune conditions, and metabolic syndromes. Additionally, the review addresses challenges such as the low bioavailability of ectoine in eukaryotic cells, the constraints on scalability for industrial production, and the high costs associated with synthetic biology methods. Future prospects for ectoine as a postbiotic therapeutic option are also discussed, including the potential for advanced delivery systems, such as ectoine-loaded nanoparticles and hydrogels, to improve stability and bioavailability, as well as synergistic combinations with phytochemicals like resveratrol and curcumin to enhance therapeutic efficacy. Integrating artificial intelligence into ectoine research revolutionizes understanding its therapeutic properties, streamlining drug formulation and clinical applications. By synthesizing insights into ectoine's molecular mechanisms and investigating new therapeutic pathways, this review advocates for advancing ectoine as a natural postbiotic therapeutic agent, addressing contemporary health challenges while meeting the growing demand for safer alternatives.
Collapse
Affiliation(s)
- Liu Xingrong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Babbiker Mohammed Taher Gorish
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Majjid A Qaria
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Arif Hussain
- Independent Researcher, Hyderabad, Telangana, 500034, India
| | - Waha Ismail Yahia Abdelmula
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, PR China.
| |
Collapse
|
3
|
Shah I, Uddin Z, Hussain M, Khalil AAK, Amin A, Hanif F, Ali L, Amirzada MI, Shah TA, Dawoud TM, Bourhia M, Li WJ, Sajjad W. Streptomyces sp. from desert soil as a biofactory for antioxidants with radical scavenging and iron chelating potential. BMC Microbiol 2024; 24:419. [PMID: 39434054 PMCID: PMC11492556 DOI: 10.1186/s12866-024-03586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024] Open
Abstract
Iron homeostasis is vital for normal physiology, but in the majority of circumstances, like iron overload, this equilibrium is upset leading to free iron in the plasma. This condition with excess iron is known as hemochromatosis, which has been linked to many side effects, including cancer and liver cirrhosis. The current research aimed to investigate active molecules from Streptomyces sp. isolated from the extreme environment of Bahawalpur deserts. The strain was characterized using 16 S rRNA sequencing. Chemical analysis of the ethyl acetate cure extract revealed the presence of phenols, flavonoids, alkaloids, and tannins. Multiple ultraviolet (UV) active metabolites that were essential for the stated pharmacological activities were also demonstrated by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Additionally, Gas chromatography/mass spectrometry (GC-MS) analysis revealed the primary constituents of the extract to compose of phenol and ester compounds. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the extract's antioxidant capacity, and the results showed a good half-maximal inhibitory concentration (IC50) value of 0.034 µg/mL in comparison to the positive control ascorbic acid's 0.12 µg/mL. In addition, iron chelation activity of extract showed significant chelation potential at 250 and 125 µg/mL, while 62.5 µg/mL showed only mild chelation of the ferrous ion using ethylene diamine tetra acetic acid (EDTA) as a positive control. Likewise, the extract's cytotoxicity was analyzed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using varying concentrations of the extract and showed 51% cytotoxicity at 350 µg/mL and 65% inhibition of cell growth at 700 µg/mL, respectively. The bioactive compounds from Streptomyces sp. demonstrated strong antioxidant and iron chelating potentials and can prolong the cell survival in extreme environment.
Collapse
Affiliation(s)
- Imran Shah
- Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Zia Uddin
- Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Maheer Hussain
- Department of Biological Sciences, National University of Medical Sciences, Punjab, 46000, Pakistan
| | - Atif Ali Khan Khalil
- Department of Pharmacognosy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - Arshia Amin
- Department of Biosciences, Capital University of Science and Technology Islamabad, Islamabad, Pakistan
| | - Faisal Hanif
- Army Medical College, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Liaqat Ali
- Department of Biological Sciences, National University of Medical Sciences, Punjab, 46000, Pakistan
| | - Muhammad Imran Amirzada
- Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Islamabad, Pakistan
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, IbnZohr University, Laayoune, 70000, Morocco
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
- School of Life Sciences, Sun Yat-Sen University, Xingang West Road, Guangzhou, 510275, China
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Punjab, 46000, Pakistan.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
4
|
Zhang W, Liu K, Kong F, Ye T, Wang T. Multiple Functions of Compatible Solute Ectoine and Strategies for Constructing Overproducers for Biobased Production. Mol Biotechnol 2024; 66:1772-1785. [PMID: 37488320 DOI: 10.1007/s12033-023-00827-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Ectoine and its derivative 5-hydroxyectoine are compatible solutes initially found in the hyperhalophilic bacterium Ectothiorhodospira halochloris, which inhabits the desert in Egypt. The habitat of ectoine producers implies the primary function of ectoine as a cytoprotectant against harsh conditions such as high salinity, drought, and high radiation. More extensive and in-depth studies have revealed the multiple functions of ectoine in its native producer bacterial cells and other types of cells and its biomolecular components (such as proteins and DNA) as a general protective agent. Its chemical properties as a bio-based amino acid derivative make it attractive for basic scientific research and related industries, such as the food/agricultural industry, cosmetic manufacturing, biologics, and therapeutic agent preparation. This article first discusses the functions and applications of ectoine and 5-hydroxyectoine. Subsequently, more emphasis was placed on advances in bio-based ectoine and/or 5-hydroxyectoine production. Strategies for developing more robust cell factories for highly efficient ectoine and/or 5-hydroxyectoine production are further discussed. We hope this review will provide a valuable reference for studies on the bio-based production of ectoine and 5-hydroxyectoine.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Kun Liu
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Fang Kong
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Tao Ye
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China
| | - Tianwen Wang
- College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, People's Republic of China.
| |
Collapse
|
5
|
Chen J, Qiao D, Yuan T, Feng Y, Zhang P, Wang X, Zhang L. Biotechnological production of ectoine: current status and prospects. Folia Microbiol (Praha) 2024; 69:247-258. [PMID: 37962826 DOI: 10.1007/s12223-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Ectoine is an important natural secondary metabolite in halophilic microorganisms. It protects cells against environmental stressors, such as salinity, freezing, drying, and high temperatures. Ectoine is widely used in medical, cosmetic, and other industries. Due to the commercial market demand of ectoine, halophilic microorganisms are the primary method for producing ectoine, which is produced using the industrial fermentation process "bacterial milking." The method has some limitations, such as the high salt concentration fermentation, which is highly corrosive to the equipment, and this also increases the difficulty of downstream purification and causes high production costs. The ectoine synthesis gene cluster has been successfully heterologously expressed in industrial microorganisms, and the yield of ectoine was significantly increased and the cost was reduced. This review aims to summarize and update microbial production of ectoine using different microorganisms, environments, and metabolic engineering and fermentation strategies and provides important reference for the development and application of ectoine.
Collapse
Affiliation(s)
- Jun Chen
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Engineering Research Center for Eco-Agriculture of Traditional Chinese Medicine, West Anhui University, Lu'an, 23702, China
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Ministry of Natural Resources, State Oceanic Administration & Second Institute of Oceanography, Hangzhou, 310012, China
| | - Deliang Qiao
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China
| | - Tao Yuan
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yeyuan Feng
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Pengjun Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Xuejun Wang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Li Zhang
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China.
- Anhui Province Key Laboratory for Quality Evaluationand, Improvement of Traditional Chinese Medicine, West Anhui University, Lu, 237012, China.
| |
Collapse
|
6
|
Orhan F, Demirci A, Efe D, Aydın R, Bozarı S. Usage of ectoine as a cryoprotectant for cryopreservation of lactic acid bacteria. Folia Microbiol (Praha) 2024; 69:133-144. [PMID: 37917277 DOI: 10.1007/s12223-023-01098-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Streptococcus thermophilus, the only Streptococcus species considered "Generally Recognized Safe", has been used widely in the food industry. This bacterium is one of the most valuable industrial lactic acid bacterial species. Due to the importance of this bacterium in industrial applications, it should be stored for a long time without losing its metabolic properties. The present study aimed to investigate the cryoprotectant effect of three compatible solutes (ectoine, trehalose, and sucrose) on bacterial cells stored at different temperatures (frozen at -80 °C or freeze-dried and subsequently stored at +4, -20, and -80 °C) for three months. The bacterial cells were tested for cell viability, bile salt tolerance, and lactic acid production before and after processing. The highest cell viability, bile salt tolerance, and lactic acid production were obtained with ectoine and under frozen (storage at -80 °C) conditions. In freeze-dried and subsequently stored at various temperatures, the best preservation was obtained at -80 °C, followed by -20 °C and +4 °C. Moreover, when ectoine's preservation potential was compared to other cryoprotectants, ectoine showed the highest preservation, followed by trehalose and sucrose. Although ectoine has a variety of qualities that have been proven, in the current work, we have shown for the first time that ectoine has cryoprotectant potential in yogurt starter cultures (S. thermophilus).
Collapse
Affiliation(s)
- Furkan Orhan
- Art and Science Faculty, Department of Molecular Biology and Genetics, Agri Ibrahim Cecen University, Agri, 4100, Türkiye.
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 4100, Türkiye.
| | - Abdullah Demirci
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 4100, Türkiye
| | - Derya Efe
- Department of Medicinal and Aromatic Plants, Giresun University, Giresun, Türkiye
| | - Rukiye Aydın
- Engineering Faculty, Basic Sciences Department, Samsun University, Samsun, 55420, Türkiye
| | - Sedat Bozarı
- Department of Molecular Biology and Genetics, Mus Alparslan University, Mus, 49250, Türkiye
| |
Collapse
|
7
|
Kadam P, Khisti M, Ravishankar V, Barvkar V, Dhotre D, Sharma A, Shouche Y, Zinjarde S. Recent advances in production and applications of ectoine, a compatible solute of industrial relevance. BIORESOURCE TECHNOLOGY 2024; 393:130016. [PMID: 37979886 DOI: 10.1016/j.biortech.2023.130016] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Extremophilic bacteria growing in saline ecosystems are potential producers of biotechnologically important products including compatible solutes. Ectoine/hydroxyectoine are two such solutes that protect cells and associated macromolecules from osmotic, heat, cold and UV stress without interfering with cellular functions. Since ectoine is a high value product, overviewing strategies for improving yields become relevant. Screening of natural isolates, use of inexpensive substrates and response surface methodology approaches have been used to improve bioprocess parameters. In addition, genome mining exercises can aid in identifying hitherto unreported microorganisms with a potential to produce ectoine that can be exploited in the future. Application wise, ectoine has various biotechnological (protein protectant, membrane modulator, DNA protectant, cryoprotective agent, wastewater treatment) and biomedical (dermatoprotectant and in overcoming respiratory and hypersensitivity diseases) uses. The review summarizes current updates on the potential of microorganisms in the production of this industrially relevant metabolite and its varied applications.
Collapse
Affiliation(s)
- Pratik Kadam
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India
| | - Mitesh Khisti
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India
| | - Varun Ravishankar
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India
| | - Vitthal Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune,411007, India
| | - Dhiraj Dhotre
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune,411007, India
| | - Avinash Sharma
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune,411007, India; School of Agriculture, Graphic Era Hill University, Dehradun, India
| | - Yogesh Shouche
- National Center for Microbial Resource (NCMR), National Center for Cell Science (NCCS), Pune,411007, India; SKAN Research Center, Bengaluru, India
| | - Smita Zinjarde
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune University, Pune,411007, India.
| |
Collapse
|
8
|
Li L, Li N, Wang X, Gao S, Zhang J, Zhou J, Wu Z, Zeng W. Metabolic engineering combined with enzyme engineering for overproduction of ectoine in Escherichia coli. BIORESOURCE TECHNOLOGY 2023; 390:129862. [PMID: 37839643 DOI: 10.1016/j.biortech.2023.129862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Ectoine, a natural protective agent, is naturally synthesized at low titers by some extreme environment microorganisms that are usually difficult to culture. There is a need for an efficient and eco-friendly ectoine production process. In this study, Escherichia coli BL21(DE3) with the ectABC gene cluster from Halomonas venusta achieved 1.7 g/L ectoine. After optimizing the expression plasmid, 2.1 g/L ectoine was achieved. Besides, the aspartate kinase mutant LysCT311I from Corynebacterium glutamicum and aspartate semialdehyde dehydrogenase from Halomonas elongata were overexpressed to increase precursors supply. Furthermore, the rate-limiting enzyme EctB was semirationally engineered, and the E407D mutation enhanced ectoine production by 13.8 %. To improve acetyl-CoA supply, the non-oxidative glycolysis pathway was introduced. Overall, the optimized strain ECT9-5 produced 67.1 g/L ectoine by fed-batch fermentation with a 0.3 g/g of glucose and the kinetic model resulted in a good fit.
Collapse
Affiliation(s)
- Lihong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Juan Zhang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhimeng Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Qaria MA, Xu C, Hu R, Alsubki RA, Ali MY, Sivasamy S, Attia KA, Zhu D. Ectoine Globally Hypomethylates DNA in Skin Cells and Suppresses Cancer Proliferation. Mar Drugs 2023; 21:621. [PMID: 38132942 PMCID: PMC10744768 DOI: 10.3390/md21120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the role of the well-known DNA protectant (ectoine) in skin cell DNA methylation and cancer cell proliferation, comprehensive methylome sequence analysis, 5-methyl cytosine (5mC) analysis, proliferation and tumorigenicity assays, and DNA epigenetic modifications-related gene analysis were performed. The results showed that extended ectoine treatment globally hypomethylated DNA in skin cells, especially in the CpG island (CGIs) element, and 5mC percentage was significantly reduced. Moreover, ectoine mildly inhibited skin cell proliferation and did not induce tumorigenicity in HaCaT cells injected into athymic nude mice. HaCaT cells treated with ectoine for 24 weeks modulated the mRNA expression levels of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l, Hdac1, Hdac2, Kdm3a, Mettl3, Mettl14, Snrpn, and Mest. Overall, ectoine mildly demethylates DNA in skin cells, modulates the expression of epigenetic modification-related genes, and reduces cell proliferation. This evidence suggests that ectoine is a potential anti-aging agent that prevents DNA hypermethylation and subsequently activates cancer-suppressing genes.
Collapse
Affiliation(s)
- Majjid A. Qaria
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| | - Chunyan Xu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| | - Ran Hu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| | - Roua A. Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed Yassin Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Sethupathy Sivasamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh 11451, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| |
Collapse
|
10
|
Abd Elazim NE, Awad SM, El-Naggar MS, Mohamed RH. Topical Ectoin Versus Topical Dexpanthenol for Managing Acute Radiodermatitis Associated With Breast Cancer Radiotherapy: A Randomized Double-Blind Study. Dermatitis 2023; 34:516-524. [PMID: 37792331 DOI: 10.1089/derm.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Background: Radiodermatitis is a common side effect of breast cancer radiotherapy; however, there is no current consensus regarding an effective standard therapy. Objective: To evaluate the efficacy of topical ectoin versus dexpanthenol in the management of acute radiodermatitis after breast cancer radiotherapy. Methods: Fifty patients randomly used dexpanthenol 5% cream (25 patients), or ectoin 7% cream (25 patients), applied twice daily to the irradiated area during and for 2 weeks after radiotherapy. The study was stratified by the radiotherapy schedule and was double-blind. Radiodermatitis grade, radiation-associated symptoms, and adverse events were assessed weekly during radiotherapy and 2 weeks thereafter. Skin-related quality of life (QOL) scores were measured using the Skindex-16 questionnaire. Results: Both agents were effective in preventing severe radiodermatitis (≥G3). Ectoin had a lower radiodermatitis grade level than dexpanthenol, with a significant difference at week 2 (P = 0.008). Radiation-associated pain (P = 0.003) and itching (P = 0.001) were lower with ectoin than dexpanthenol. Side effects were not significantly different between the 2 treatments (P = 0.107). Ectoin showed less QOL impairment than dexpanthenol. The radiation schedule was an independent predictor for radiodermatitis persistence. Conclusion: Ectoin showed some clinical benefit over dexpanthenol in improving radiation dermatitis and the radiation schedule is a predictor of radiodermatitis persistence.
Collapse
Affiliation(s)
- Nagwa E Abd Elazim
- From the Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| | - Sara M Awad
- From the Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| | - Maha S El-Naggar
- Department of Clinical Oncology and Nuclear Medicine, Assiut University Hospital, Assiut, Egypt
| | - Rania H Mohamed
- From the Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| |
Collapse
|
11
|
Hussain A, Kumar SHK, Prathiviraj R, Kumar AA, Renjith K, Kiran GS, Selvin J. The genome of Symbiodiniaceae-associated Stutzerimonas frequens CAM01 reveals a broad spectrum of antibiotic resistance genes indicating anthropogenic drift in the Palk Bay coral reef of south-eastern India. Arch Microbiol 2023; 205:319. [PMID: 37626254 DOI: 10.1007/s00203-023-03656-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
An increase in antibiotic pollution in reef areas will lead to the emergence of antibiotic-resistant bacteria, leading to ecological disturbances in the sensitive coral holobiont. This study provides insights into the genome of antibiotics-resistant Stutzerimonas frequens CAM01, isolated from Favites-associated Symbiodiniaceae of a near-shore polluted reef of Palk Bay, India. The draft genome contains 4.67 Mbp in size with 52 contigs. Further genome analysis revealed the presence of four antibiotic-resistant genes, namely, adeF, rsmA, APH (3")-Ib, and APH (6)-Id that provide resistance by encoding resistance-nodulation-cell division (RND) antibiotic efflux pump and aminoglycoside phosphotransferase. The isolate showed resistance against 73% of the antibiotics tested, concurrent with the predicted AMR genes. Four secondary metabolites, namely Aryl polyene, NRPS-independent-siderophore, terpenes, and ectoine were detected in the isolate, which may play a role in virulence and pathogenicity adaptation in microbes. This study provides key insights into the genome of Stutzerimonas frequens CAM01 and highlights the emergence of antibiotic-resistant bacteria in coral reef ecosystems.
Collapse
Grants
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
- BT/PR40420/NDB/39/741/2020. Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Afreen Hussain
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - S Hari Krishna Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Ashish Ashwin Kumar
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - Kalyani Renjith
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India
| | - G Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, 605014, India.
| |
Collapse
|
12
|
Jesus A, Mota S, Torres A, Cruz MT, Sousa E, Almeida IF, Cidade H. Antioxidants in Sunscreens: Which and What For? Antioxidants (Basel) 2023; 12:antiox12010138. [PMID: 36670999 PMCID: PMC9854756 DOI: 10.3390/antiox12010138] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/08/2023] Open
Abstract
Ultraviolet (UV) radiation promotes the generation of reactive oxygen species (ROS) and nitrogen species (RNS), resulting in skin damage. Cosmetic industries have adopted a strategy to incorporate antioxidants in sunscreen formulations to prevent or minimize UV-induced oxidative damage, boost photoprotection effectiveness, and mitigate skin photoaging. Many antioxidants are naturally derived, mainly from terrestrial plants; however, marine organisms have been increasingly explored as a source of new potent antioxidant molecules. This work aims to characterize the frequency of the use of antioxidants in commercial sunscreens. Photoprotective formulations currently marketed in parapharmacies and pharmacies were analyzed with respect to the composition described on the label. As a result, pure compounds with antioxidant activity were found. The majority of sunscreen formulations contained antioxidants, with vitamin E and its derivatives the most frequent. A more thorough analysis of these antioxidants is also provided, unveiling the top antioxidant ingredients found in sunscreens. A critical appraisal of the scientific evidence regarding their effectiveness is also performed. In conclusion, this work provides an up-to-date overview of the use of antioxidants in commercial sunscreens for a better understanding of the advantages associated with their use in photoprotective formulations.
Collapse
Affiliation(s)
- Ana Jesus
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Sandra Mota
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Torres
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria T. Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (E.S.); (I.F.A.)
| | - Isabel F. Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (E.S.); (I.F.A.)
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR—Interdisciplinary Center of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
13
|
Ma Z, Wu C, Zhu L, Chang R, Ma W, Deng Y, Chen X. Bioactivity profiling of the extremolyte ectoine as a promising protectant and its heterologous production. 3 Biotech 2022; 12:331. [PMID: 36311375 PMCID: PMC9606177 DOI: 10.1007/s13205-022-03370-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Ectoine is a compatible solutes that is diffusely dispersed in bacteria and archaea. It plays a significant role as protectant against various external pressures, such as high temperature, high osmolarity, dryness and radiation, in cells. Ectoine can be utilized in cosmetics due to its properties of moisturizing and antiultraviolet. It can also be used in the pharmaceutical industry for treating various diseases. Therefore, strong protection of ectoine creates a high commercial value. Its current market value is approximately US$1000 kg-1. However, traditional ectoine production in high-salinity media causes high costs of equipment loss and wastewater treatment. There is a growing attention to reduce the salinity of the fermentation broth without sacrificing the production of ectoine. Thus, heterologous production of ectoine in nonhalophilic microorganisms may represent the new generation of the industrial production of ectoine. In this review, we summarized and discussed the biological activities of ectoine on cell and human health protection and its heterologous production.
Collapse
Affiliation(s)
- Zhi Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Chutian Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Linjiang Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Renjie Chang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Weilin Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yanfeng Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Xiaolong Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
14
|
Goel N, Singh R, Sood S, Khare SK. Investigation of Streptomyces sp. Strain EMB24 Secondary Metabolite Profile Has Unraveled Its Extraordinary Antibacterial Potency Against Drug-Resistant Bacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1168-1175. [PMID: 36220897 PMCID: PMC9553293 DOI: 10.1007/s10126-022-10168-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
With the overuse and misuse of antibiotics amid COVID-19 pandemic, the antimicrobial resistance, which is already a global challenge, has accelerated its pace significantly. Finding novel and potential antibiotics seems one of the probable solutions. In this work, a novel Streptomyces sp. strain EMB24 was isolated and found to be an excellent source of antimicrobials as confirmed by agar-plug assay. It showed antibacterial activity against infection-causing bacteria, namely Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. In addition, Streptomyces sp. strain EMB24 inhibited the growth methicillin-resistant Staphylococcus aureus (MRSA), tetracycline-resistant Neisseria gonorrhoeae, and ampicillin-resistant Neisseria gonorrhoeae. Furthermore, to get deep insights about the genome and biosynthetic gene clusters producing antibiotics, whole genome sequencing was done. The strain EMB24 is closely related to the Streptomyces longispororuber as revealed by phylogenetic analysis which is a potential source of antibiotics and pigments as undecylprodigiosin and metacycloprodigiosin belonging to the class prodigiosin. Naphthyridinomycin, alkylresorcinols, desferrioxamine B and E, venezuelin, aborycin, MS-271, and siamycin are potent therapeutics that shared 100% similarity with the reference strain as revealed by the online antiSMASH tool.
Collapse
Affiliation(s)
- Nikky Goel
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajendra Singh
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
15
|
Orhan F, Ceyran E. Identification of novel halophilic/halotolerant bacterial species producing compatible solutes. Int Microbiol 2022; 26:219-229. [PMID: 36342583 DOI: 10.1007/s10123-022-00289-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Ectoine and hydroxyectoine are compatible solutes with enormous potential for use in the medical and cosmetic industries. Considering the excellent osmoprotective properties of these compatible solutes, we investigate the presence of four compatible solutes (ectoine, hydroxyectoine, proline, and glutamic acid) quantitatively by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in forty-five halophilic/halotolerant bacterial isolates. We determined ectoine production by Marinibacillus sp., Nesterenkonia xinjiangensis, Halobacillus sp., Bacillus patagoniensis, Virgibacillus picturae, Halomonas neptunia, Bacillus patagoniensis, Gracilibacillus sp., Thalassobacillus devorans, Microbacterium sp., Nesterenkonia sp., and Bacillus agaradhaerens, and this production was NaCl dependent. Additionally, the production of hydroxyectoine was observed in six bacterial isolates (Nesterenkonia xinjiangensis, Halobacillus sp., Halomonas neptunia, Thalassobacillus devorans, Nesterenkonia sp., and Bacillus agaradhaerens) which was NaCl and temperature dependent. The study identified new bacterial isolates producing ectoine or hydroxyectoine. While the ectoine production in many different Bacillus members and a few Nesterenkonia have been documented before, ectoine production by Bacillus patagoniensis and Nesterenkonia xinjiangensis has not been shown so far. Further, ectoine production by a member of the genus Thalassobacillus (Thalassobacillus devorans) was demonstrated experimentally for the first time. The findings reported in the study may serve as a basis for the large-scale production of ectoine and hydroxyectoine in the future.
Collapse
Affiliation(s)
- Furkan Orhan
- Department of Molecular Biology and Genetics, Agri İbrahim Cecen University, Agri, 04200, Turkey.
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 04200, Turkey.
| | - Ertuğrul Ceyran
- Central Research and Application Laboratory, Agri Ibrahim Cecen University, Agri, 04200, Turkey
| |
Collapse
|
16
|
Hobmeier K, Oppermann M, Stasinski N, Kremling A, Pflüger-Grau K, Kunte HJ, Marin-Sanguino A. Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches. Front Microbiol 2022; 13:968983. [PMID: 36090101 PMCID: PMC9453808 DOI: 10.3389/fmicb.2022.968983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
The application of naturally-derived biomolecules in everyday products, replacing conventional synthetic manufacturing, is an ever-increasing market. An example of this is the compatible solute ectoine, which is contained in a plethora of treatment formulations for medicinal products and cosmetics. As of today, ectoine is produced in a scale of tons each year by the natural producer Halomonas elongata. In this work, we explore two complementary approaches to obtain genetically improved producer strains for ectoine production. We explore the effect of increased precursor supply (oxaloacetate) on ectoine production, as well as an implementation of increased ectoine demand through the overexpression of a transporter. Both approaches were implemented on an already genetically modified ectoine-excreting strain H. elongata KB2.13 (ΔteaABC ΔdoeA) and both led to new strains with higher ectoine excretion. The supply driven approach led to a 45% increase in ectoine titers in two different strains. This increase was attributed to the removal of phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion of 17.9% of the glucose substrate to ectoine. For the demand driven approach, we investigated the potential of the TeaBC transmembrane proteins from the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter as export channels to improve ectoine excretion. In the absence of the substrate-binding protein TeaA, an overexpression of both subunits TeaBC facilitated a three-fold increased excretion rate of ectoine. Individually, the large subunit TeaC showed an approximately five times higher extracellular ectoine concentration per dry weight compared to TeaBC shortly after its expression was induced. However, the detrimental effect on growth and ectoine titer at the end of the process hints toward a negative impact of TeaC overexpression on membrane integrity and possibly leads to cell lysis. By using either strategy, the ectoine synthesis and excretion in H. elongata could be boosted drastically. The inherent complementary nature of these approaches point at a coordinated implementation of both as a promising strategy for future projects in Metabolic Engineering. Moreover, a wide variation of intracelllular ectoine levels was observed between the strains, which points at a major disruption of mechanisms responsible for ectoine regulation in strain KB2.13.
Collapse
Affiliation(s)
- Karina Hobmeier
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Martin Oppermann
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Natalie Stasinski
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Andreas Kremling
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Katharina Pflüger-Grau
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Hans Jörg Kunte
- Division Biodeterioration and Reference Organisms, Bundesanstalt für Materialforschung und-prüfung (BAM), Berlin, Germany
| | - Alberto Marin-Sanguino
- Professorship for Systems Biotechnology, Technical University of Munich, Garching, Germany
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Lleida, Spain
| |
Collapse
|
17
|
Dai T, Wang Y, Yang G. Visualization of DNA Damage and Protection by Atomic Force Microscopy in Liquid. Int J Mol Sci 2022; 23:ijms23084388. [PMID: 35457204 PMCID: PMC9025965 DOI: 10.3390/ijms23084388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
DNA damage is closely related to cancer and many aging-related diseases. Peroxynitrite is a strong oxidant, thus a typical DNA damage agent, and is a major mediator of the inflammation-associated pathogenesis. For the first time, we directly visualized the process of DNA damage by peroxynitrite and DNA protection by ectoine via atomic force microscopy in liquid. We found that the persistence length of DNA decreases significantly by adding a small amount of peroxynitrite, but the observed DNA chains are still intact. Specifically, the persistence length of linear DNA in a low concentration of peroxynitrite (0 µM to 200 µM) solution decreases from about 47 nm to 4 nm. For circular plasmid DNA, we observed the enhanced superhelices of plasmid DNA due to the chain soften. When the concentration of peroxynitrite was above 300 µM, we observed the fragments of DNA. Interestingly, we also identified single-stranded DNAs during the damage process, which is also confirmed by ultraviolet spectroscopy. However, if we added 500 mM ectoine to the high concentration PN solution, almost no DNA fragments due to double strand breaks were observed because of the protection of ectoine. This protection is consistent with the similar effect for DNA damage caused by ionizing radiation and oxygenation. We ascribe DNA protection to the preferential hydration of ectoine.
Collapse
Affiliation(s)
| | - Yanwei Wang
- Correspondence: (Y.W.); (G.Y.); Tel.: +86-577-8668-9033 (Y.W. & G.Y.); Fax: +86-577-8668-9010 (Y.W. & G.Y.)
| | - Guangcan Yang
- Correspondence: (Y.W.); (G.Y.); Tel.: +86-577-8668-9033 (Y.W. & G.Y.); Fax: +86-577-8668-9010 (Y.W. & G.Y.)
| |
Collapse
|
18
|
Zhang T, Cui T, Cao Y, Li Y, Li F, Zhu D, Xing J. Whole genome sequencing of the halophilic Halomonas qaidamensis XH36, a novel species strain with high ectoine production. Antonie Van Leeuwenhoek 2022; 115:545-559. [PMID: 35243586 DOI: 10.1007/s10482-022-01709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/18/2022] [Indexed: 10/18/2022]
Abstract
Here, we report the whole genome of a novel halophilic Halomonas species strain XH36 with high ectoine production potential. The genome was 3,818,310 bp in size with a GC content of 51.97%, and contained 3533 genes, 61 tRNAs and 18 rRNAs. The phylogenetic analysis using the 16s rRNA genes, the UBCGs and the TYGS database indicated that XH36 belongs to a novel Halomonas species, which we named as Halomonas qaidamensis. Osmoadaptation related genes including Na(+) and K(+) transport and compatible solute accumulation were both present in the XH36 genome, the latter of which mainly contained ectoine, 5-hydroxyectoine and betaine. HPLC validation studies showed that H. qaidamensis XH36 accumulated ectoine to cope with salt stress, and the content of ectoine could be as high as 315 mg/g CDW under 3 mol/l NaCl. Our results show that XH36 is a new promising industrial strain for ectoine production, and the genomic analysis will guide us to better understand its salt-induced osmoadaptation mechanisms, and provide theoretical references for future application research of ectoine.
Collapse
Affiliation(s)
- Tiantian Zhang
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Tianqi Cui
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yaning Cao
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Yongzhen Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Fenghui Li
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Derui Zhu
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China
| | - Jiangwa Xing
- Research Centre of Basic Medical Sciences, Medical College, Qinghai University, Xining, 810016, China.
| |
Collapse
|
19
|
PCR enhancers: Types, mechanisms, and applications in long-range PCR. Biochimie 2022; 197:130-143. [DOI: 10.1016/j.biochi.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 12/21/2022]
|
20
|
Kang JY, Lee B, Kim JA, Kim MS, Kim CH. Identification and characterization of an ectoine biosynthesis gene cluster from Aestuariispira ectoiniformans sp. nov., isolated from seawater. Microbiol Res 2021; 254:126898. [PMID: 34710834 DOI: 10.1016/j.micres.2021.126898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/16/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
An ectoine-producing bacterium, designated SWCN16T, was isolated from seawater and could be grown in a medium containing up to 12 % NaCl. A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain SWCN16T belonged to the genus Aestuariispira, class Alphaproteobacteria, and shared the highest 16S rRNA gene sequence similarity of 96.8% with Aestuariispira insulae CECT 8488T. The phenotypic, chemotaxonomic, and genotypic characteristics findings of this study suggested that strain SWCN16T represented a novel species of the genus Aestuariispira. We propose the name Aestuariispira ectoiniformans sp. nov. for this species. Whole-genome sequencing analysis of the isolate revealed a putative ectABC gene cluster for ectoine biosynthesis. These genes were found to be functional using ectoine synthesis testing and S16-ectBAC cells, which were pET21a-ectBAC-transformed E. coli BL21 cells. We found that S16-ectBAC synthesized about 1.67 g/L extracellular ectoine and about 0.59 g/L intracellular ectoine via bioconversion at optimum conditions.
Collapse
Affiliation(s)
- Ji Young Kang
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Binna Lee
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Jeong Ah Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Min-Soo Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| | - Chul Ho Kim
- Industrial Microbiology and Bioprocess Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, 580-185, Republic of Korea.
| |
Collapse
|
21
|
Keller F, Heuer A, Galla HJ, Smiatek J. Stabilization of DPPC lipid bilayers in the presence of co-solutes: molecular mechanisms and interaction patterns. Phys Chem Chem Phys 2021; 23:22936-22946. [PMID: 34622252 DOI: 10.1039/d1cp03052c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We study the interactions between dipalmitoylphosphatidylcholine (DPPC) lipid bilayers in the gel and the fluid phase with ectoine, amino ectoine and water molecules by means of atomistic molecular dynamics (MD) simulations and conceptual density functional theory (DFT) calculations. Our results reveal a pronounced preferential exclusion of both co-solutes from the DPPC lipid bilayer which is stronger for the fluid phase. The corresponding outcomes can be brought into relation with the Kirkwood-Buff theory of solutions in order to provide a thermodynamic rationale for the experimentally observed stabilization of the gel phase. Closely related to preferential exclusion of both co-solutes, our simulations also highlight a preferential hydration behavior as manifested by an increased number of hydrogen bonds between water and DPPC molecules. All results are rationalized by conceptual DFT calculations with regard to differences in the electronic properties between ectoine and amino ectoine.
Collapse
Affiliation(s)
- Fabian Keller
- Institute of Physical Chemistry, University of Münster, D-48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, D-48149 Münster, Germany
| | - Hans-Joachim Galla
- Institute of Biochemistry, University of Münster, D-48149 Münster, Germany
| | - Jens Smiatek
- Institute for Computational Physics, University of Stuttgart, D-70569 Stuttgart, Germany.
| |
Collapse
|
22
|
Frikha-Dammak D, Ayadi H, Hakim-Rekik I, Belbahri L, Maalej S. Genome analysis of the salt-resistant Paludifilum halophilum DSM 102817 T reveals genes involved in flux-tuning of ectoines and unexplored bioactive secondary metabolites. World J Microbiol Biotechnol 2021; 37:178. [PMID: 34549358 DOI: 10.1007/s11274-021-03147-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Paludifilum halophilum DSM 102817T is the first member of the genus Paludifilum in the Thermoactinomycetaceae family. The thermohalophilic bacterium was isolated from the solar saltern of Sfax, Tunisia and was shown to be able to produce ectoines with a relatively high-yield and to cope with salt stress conditions. In this study, the whole genome of P. halophilum was sequenced and analysed. Analysis revealed 3,789,765 base pairs with an average GC% content of 51.5%. A total of 3775 genes were predicted of which 3616 were protein-coding genes and 73 were RNA genes. The genes encoding key enzymes for ectoines (ectoine and hydroxyectoine) synthesis (ectABCD) were identified from the bacterial genome next to a gene cluster (ehuABCD) encoding a binding-protein-dependent ABC transport system responsible for ectoines mobility through the cell membrane. With the aid of KEGG analysis, we found that the central catabolic network of P. halophilum comprises the pathways of glycolysis, tricarboxylic acid cycle, and pentose phosphate. In addition, anaplerotic pathways replenishing oxaloacetate and glutamate synthesis from central metabolism needed for high ectoines biosynthetic fluxes were identified through several key enzymes. Furthermore, a total of 18 antiSMASH-predicted putative biosynthetic gene clusters for secondary metabolites with high novelty and diversity were identified in P. halophilum genome, including biosynthesis of colabomycine-A, fusaricidin-E, zwittermycin A, streptomycin, mycosubtilin and meilingmycin. Based on these data, P. halophilum emerged as a promising source for ectoines and antimicrobials with the potential to be scaled up for industrial production, which could benefit the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Donyez Frikha-Dammak
- Laboratoire de Biodiversité Marine et Environnement (LR18ES30), Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Houda Ayadi
- Laboratoire de Biodiversité Marine et Environnement (LR18ES30), Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Imen Hakim-Rekik
- Unité de Génomique Fonctionnelle et Physiologie des Plantes, Université de Sfax, Institut Supérieur de Biotechnologie de Sfax, BP 1175, 3000, Sfax, Tunisia
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 11 Rue Emile Argand, 2000, Neuchâtel, Switzerland
| | - Sami Maalej
- Laboratoire de Biodiversité Marine et Environnement (LR18ES30), Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000, Sfax, Tunisia.
| |
Collapse
|
23
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
24
|
Argandoña M, Piubeli F, Reina‐Bueno M, Nieto JJ, Vargas C. New insights into hydroxyectoine synthesis and its transcriptional regulation in the broad-salt growing halophilic bacterium Chromohalobacter salexigens. Microb Biotechnol 2021; 14:1472-1493. [PMID: 33955667 PMCID: PMC8313267 DOI: 10.1111/1751-7915.13799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 11/28/2022] Open
Abstract
Elucidating the mechanisms controlling the synthesis of hydroxyectoine is important to design novel genetic engineering strategies for optimizing the production of this biotechnologically relevant compatible solute. The genome of the halophilic bacterium Chromohalobacter salexigens carries two ectoine hydroxylase genes, namely ectD and ectE, whose encoded proteins share the characteristic consensus motif of ectoine hydroxylases but showed only a 51.9% identity between them. In this work, we have shown that ectE encodes a secondary functional ectoine hydroxylase and that the hydroxyectoine synthesis mediated by this enzyme contributes to C.␣salexigens thermoprotection. The evolutionary pattern of EctD and EctE and related proteins suggests that they may have arisen from duplication of an ancestral gene preceding the directional divergence that gave origin to the orders Oceanospirillales and Alteromonadales. Osmoregulated expression of ectD at exponential phase, as well as the thermoregulated expression of ectD at the stationary phase, seemed to be dependent on the general stress factor RpoS. In contrast, expression of ectE was always RpoS-dependent regardless of the growth phase and osmotic or heat stress conditions tested. The data presented here suggest that the AraC-GlxA-like EctZ transcriptional regulator, whose encoding gene lies upstream of ectD, plays a dual function under exponential growth as both a transcriptional activator of osmoregulated ectD expression and a repressor of ectE transcription, privileging the synthesis of the main ectoine hydroxylase EctD. Inactivation of ectZ resulted in a higher amount of the total ectoines pool at the expenses of a higher accumulation of ectoine, with maintenance of the hydroxyectoine levels. In addition to the transcriptional control, our results suggest a strong post-transcriptional regulation of hydroxyectoine synthesis. Data on the accumulation of ectoine and hydroxyectoine in rpoS and ectZ strains pave the way for using these genetic backgrounds for metabolic engineering for hydroxyectoine production.
Collapse
Affiliation(s)
- Montserrat Argandoña
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Francine Piubeli
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Mercedes Reina‐Bueno
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Joaquín J. Nieto
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| | - Carmen Vargas
- Department of Microbiology and ParasitologyFaculty of PharmacyUniversity of SevillaC/ Profesor García González, 2Sevilla41012Spain
| |
Collapse
|
25
|
Rasteniene A, Gruskiene R, Sereikaite J. Interaction of ectoine and hydroxyectoine with protein: fluorescence study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01527-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Bethlehem L, van Echten-Deckert G. Ectoines as novel anti-inflammatory and tissue protective lead compounds with special focus on inflammatory bowel disease and lung inflammation. Pharmacol Res 2020; 164:105389. [PMID: 33352226 DOI: 10.1016/j.phrs.2020.105389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 01/06/2023]
Abstract
The compatible solute ectoine is one of the most abundant and powerful cytoprotectant in the microbial world. Due to its unique ability to stabilize biological membranes and macromolecules it has been successfully commercialized as ingredient of various over-the-counter drugs, achieving primarily epithelial protection. While trying to elucidate the mechanism of its cell protective properties in in-vitro studies, a significant anti-inflammatory effect was documented for the small molecule. The tissue protective potential of ectoine considerably improved organ quality during preservation. In addition, ectoine and derivatives have been demonstrated to significantly decrease inflammatory cytokine production, thereby alleviating the inflammatory response following organ transplantation, and launching new therapeutic options for pathologies such as Inflammatory Bowel Disease (IBD) and Chronic Obstructive Pulmonary Disease (COPD). In this review, we aim to summarize the knowledge of this fairly nascent field of the anti-inflammatory potential of diverse ectoines. We also point out that this promising field faces challenges in its biochemical and molecular substantiations, including defining the molecular mechanisms of the observed effects and their regulation. However, based on their potent cytoprotective, anti-inflammatory, and non-toxic properties we believe that ectoines represent promising candidates for risk free interventions in inflammatory pathologies with steeply increasing demands for new therapeutics.
Collapse
Affiliation(s)
- Lukas Bethlehem
- Institute for Microbiology & Biotechnology, University Bonn, Germany.
| | | |
Collapse
|
27
|
Guesmi S, Pujic P, Nouioui I, Dubost A, Najjari A, Ghedira K, Igual JM, Miotello G, Cherif A, Armengaud J, Klenk HP, Normand P, Sghaier H. Ionizing-radiation-resistant Kocuria rhizophila PT10 isolated from the Tunisian Sahara xerophyte Panicum turgidum: Polyphasic characterization and proteogenomic arsenal. Genomics 2020; 113:317-330. [PMID: 33279651 DOI: 10.1016/j.ygeno.2020.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/17/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.
Collapse
Affiliation(s)
- Sihem Guesmi
- National Agronomy Institute of Tunisia, 43, Avenue Charles Nicolle, 1082 Tunis, Mahrajène, Tunisia; Laboratory ″Energy and Matter for Development of Nuclear Sciences″ (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020, Tunisia.
| | - Petar Pujic
- Université de Lyon, Université Lyon 1, Lyon, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France
| | - Imen Nouioui
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK; Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Afef Najjari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Microorganismes et Biomolécules Actives, 2092 Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis 1002, Tunisia
| | - José M Igual
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - Guylaine Miotello
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200 Bagnols-sur-Cèze, France
| | - Hans-Peter Klenk
- School of Natural and Environmental Sciences, Newcastle University, Ridley Building 2, Newcastle upon Tyne NE1 7RU, UK
| | | | - Haïtham Sghaier
- Laboratory ″Energy and Matter for Development of Nuclear Sciences″ (LR16CNSTN02), National Center for Nuclear Sciences and Technology, Sidi Thabet Technopark, 2020, Tunisia; Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
28
|
Ayadi H, Frikha-Dammak D, Fakhfakh J, Chamkha M, Hassairi I, Allouche N, Sayadi S, Maalej S. The saltern-derived Paludifilum halophilum DSM 102817 T is a new high-yield ectoines producer in minimal medium and under salt stress conditions. 3 Biotech 2020; 10:533. [PMID: 33214980 DOI: 10.1007/s13205-020-02512-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
In the present study, the growth conditions and accumulation of ectoines (ectoine and hydroxyectoine) by Paludifilum halophilum DSM 102817T under salt stress conditions have been investigated. The productivity assay of this strain for ectoines revealed that the highest cellular content was reached in the minimal glucose sea water medium (SW-15) within 15% salinity. The addition of 0.1% (w/v) aspartic acid to the medium allowed an average of four times higher biomass production, and a dry mycelial biomass of 1.76 g L-1 was obtained after 6 days of growth in shake flasks at 40 °C and 200 rpm. Among the inorganic cations supplemented to the glucose SW-15 medium, the addition of 1 mM Fe2+ yielded the highest amount of mycelial biomass (3.45 g L-1) and total ectoines content (119 mg g-1), resulting in about 410 mg L-1 of products at the end of exponential growth phase. After 1 h of incubation in an osmotic downshock solution containing 2% NaCl, 70% of this content was released by the mycelium, and recovering cells maintained a high survival, with a maximal growth rate (µ max) of about 93% of the control population exposed to 15% NaCl. During growth at optimal salinity and temperature (15% NaCl and 40 °C), P. halophilum developed a compact and circular pellets that were easy to separate by simple decantation from both fermentation media and after hypoosmotic shock. Overall, the ectoines excreting P. halophilum could be a promising resource for ectoines production in a commercially valuable culture medium and at a large-scale fermentation process.
Collapse
Affiliation(s)
- Houda Ayadi
- Laboratoire de Biodiversité Marine et Environment (LR18ES/30), Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Donyez Frikha-Dammak
- Laboratoire de Biodiversité Marine et Environment (LR18ES/30), Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Jawhar Fakhfakh
- Laboratore de Chimie Organique (LR17ES/08), Unité des Substances Naturelles, Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratore des Bioprocédés Environnementaux, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Ilem Hassairi
- Unité de Valorisation des résultats de la Recherche, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | - Noureddine Allouche
- Laboratore de Chimie Organique (LR17ES/08), Unité des Substances Naturelles, Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Sami Sayadi
- Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar
| | - Sami Maalej
- Laboratoire de Biodiversité Marine et Environment (LR18ES/30), Université de Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
29
|
Becker J, Wittmann C. Microbial production of extremolytes — high-value active ingredients for nutrition, health care, and well-being. Curr Opin Biotechnol 2020; 65:118-128. [DOI: 10.1016/j.copbio.2020.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 01/09/2023]
|
30
|
Solomun T, Hahn MB, Smiatek J. Raman Spectroscopic Signature of Ectoine Conformations in Bulk Solution and Crystalline State. Chemphyschem 2020; 21:1945-1950. [PMID: 32628316 PMCID: PMC7540454 DOI: 10.1002/cphc.202000457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/06/2020] [Indexed: 01/29/2023]
Abstract
Recent crystallographic results revealed conformational changes of zwitterionic ectoine upon hydration. By means of confocal Raman spectroscopy and density functional theory calculations, we present a detailed study of this transformation process as part of a Fermi resonance analysis. The corresponding findings highlight that all resonant couplings are lifted upon exposure to water vapor as a consequence of molecular binding processes. The importance of the involved molecular groups for water binding and conformational changes upon hydration is discussed. Our approach further shows that the underlying rapid process can be reversed by carbon dioxide saturated atmospheres. For the first time, we also confirm that the conformational state of ectoine in aqueous bulk solution coincides with crystalline ectoine in its dihydrate state, thereby highlighting the important role of a few bound water molecules.
Collapse
Affiliation(s)
- Tihomir Solomun
- Bundesanstalt für Materialforschung und -prüfung (BAM)12205BerlinGermany
| | - Marc Benjamin Hahn
- Bundesanstalt für Materialforschung und -prüfung (BAM)12205BerlinGermany
- Freie Universität BerlinInstitut für Experimentalphysik14195BerlinGermany
| | - Jens Smiatek
- Institut für ComputerphysikUniversität Stuttgart70569StuttgartGermany
| |
Collapse
|
31
|
Nayak PK, Goode M, Chang DP, Rajagopal K. Ectoine and Hydroxyectoine Stabilize Antibodies in Spray-Dried Formulations at Elevated Temperature and during a Freeze/Thaw Process. Mol Pharm 2020; 17:3291-3297. [PMID: 32672979 DOI: 10.1021/acs.molpharmaceut.0c00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Maintenance of protein stability during manufacture, storage, and delivery is necessary for the successful development of a drug product. Herein, the utility of two compatible solutes-ectoine and hydroxyectoine-in stabilizing a model protein labeled Fab2 has been investigated. Specifically, the performance of ectoine and hydroxyectoine in stabilizing Fab2 in a spray-dried formulation at elevated temperature and after multiple freeze/thaw cycles has been compared with the performance of a formulation containing trehalose and a formulation containing no excipient as controls. In the solid state at 90 and 37 °C and in freeze concentrate systems, ectoine and hydroxyectoine suppress protein aggregation. Like trehalose, hydroxyectoine also limits N-terminal pyroglutamate formation in Fab2 in the solid state. The extent of protein stabilization is dependent on the excipient concentration in the formulation, but at a 1:1 excipient to protein mass ratio, hydroxyectoine is better than trehalose in stabilizing Fab2. The results presented here suggest that ectoine and hydroxyectoine are effective excipients for stabilizing therapeutic antibodies.
Collapse
Affiliation(s)
- Purnendu K Nayak
- Eurofins Lancaster Laboratories, Lancaster, Pennsylvania 17605, United States
| | - Meghan Goode
- Drug Delivery Department, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Debby P Chang
- Drug Delivery Department, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Karthikan Rajagopal
- Drug Delivery Department, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
32
|
Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine. Nat Commun 2020; 11:3313. [PMID: 32620759 PMCID: PMC7334215 DOI: 10.1038/s41467-020-17223-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 11/21/2022] Open
Abstract
Ectoine, a compatible solute synthesized by many halophiles for hypersalinity resistance, has been successfully produced by metabolically engineered Halomonas bluephagenesis, which is a bioplastic poly(3-hydroxybutyrate) producer allowing open unsterile and continuous conditions. Here we report a de novo synthesis pathway for ectoine constructed into the chromosome of H. bluephagenesis utilizing two inducible systems, which serve to fine-tune the transcription levels of three clusters related to ectoine synthesis, including ectABC, lysC and asd based on a GFP-mediated transcriptional tuning approach. Combined with bypasses deletion, the resulting recombinant H. bluephagenesis TD-ADEL-58 is able to produce 28 g L−1 ectoine during a 28 h fed-batch growth process. Co-production of ectoine and PHB is achieved to 8 g L−1 ectoine and 32 g L−1 dry cell mass containing 75% PHB after a 44 h growth. H. bluephagenesis demonstrates to be a suitable co-production chassis for polyhydroxyalkanoates and non-polymer chemicals such as ectoine. Halomonas bluephagenesis is a halophilic platform bacterium for next generation industrial biotechnology. Here, the authors employ a stimulus response-based flux-tuning method for coproduction of bioplastic PHB and ectoine under open unsterile and continuous growth conditions.
Collapse
|
33
|
Contribution of mechanosensitive channels to osmoadaptation and ectoine excretion in Halomonas elongata. Extremophiles 2020; 24:421-432. [PMID: 32266565 PMCID: PMC7174268 DOI: 10.1007/s00792-020-01168-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 12/05/2022]
Abstract
For osmoadaptation the halophilic bacterium Halomonas elongata synthesizes as its main compatible solute the aspartate derivative ectoine. H. elongata does not rely entirely on synthesis but can accumulate ectoine by uptake from the surrounding environment with the help of the osmoregulated transporter TeaABC. Disruption of the TeaABC-mediated ectoine uptake creates a strain that is constantly losing ectoine to the medium. However, the efflux mechanism of ectoine in H. elongata is not yet understood. H. elongata possesses four genes encoding mechanosensitive channels all of which belong to the small conductance type (MscS). Analysis by qRT-PCR revealed a reduction in transcription of the mscS genes with increasing salinity. The response of H. elongata to hypo- and hyperosmotic shock never resulted in up-regulation but rather in down-regulation of mscS transcription. Deletion of all four mscS genes created a mutant that was unable to cope with hypoosmotic shock. However, the knockout mutant grew significantly faster than the wildtype at high salinity of 2 M NaCl, and most importantly, still exported 80% of the ectoine compared to the wildtype. We thus conclude that a yet unknown system, which is independent of mechanosensitive channels, is the major export route for ectoine in H. elongata.
Collapse
|
34
|
Villa A, Sonis ST. An update on pharmacotherapies in active development for the management of cancer regimen-associated oral mucositis. Expert Opin Pharmacother 2020; 21:541-548. [DOI: 10.1080/14656566.2020.1718652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Alessandro Villa
- Divisions of Oral Medicine and Dentistry, Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oral Medicine, Infection and Immunity. Harvard School of Dental Medicine, Boston, MA, USA
- Primary Endpoint Solutions, Watertown, MA, USA
| | - Stephen T. Sonis
- Divisions of Oral Medicine and Dentistry, Brigham and Women’s Hospital and the Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Oral Medicine, Infection and Immunity. Harvard School of Dental Medicine, Boston, MA, USA
- Primary Endpoint Solutions, Watertown, MA, USA
| |
Collapse
|
35
|
Richter AA, Kobus S, Czech L, Hoeppner A, Zarzycki J, Erb TJ, Lauterbach L, Dickschat JS, Bremer E, Smits SHJ. The architecture of the diaminobutyrate acetyltransferase active site provides mechanistic insight into the biosynthesis of the chemical chaperone ectoine. J Biol Chem 2020; 295:2822-2838. [PMID: 31969391 DOI: 10.1074/jbc.ra119.011277] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/19/2020] [Indexed: 12/17/2022] Open
Abstract
Ectoine is a solute compatible with the physiologies of both prokaryotic and eukaryotic cells and is widely synthesized by bacteria as an osmotic stress protectant. Because it preserves functional attributes of proteins and macromolecular complexes, it is considered a chemical chaperone and has found numerous practical applications. However, the mechanism of its biosynthesis is incompletely understood. The second step in ectoine biosynthesis is catalyzed by l-2,4-diaminobutyrate acetyltransferase (EctA; EC 2.3.1.178), which transfers the acetyl group from acetyl-CoA to EctB-formed l-2,4-diaminobutyrate (DAB), yielding N-γ-acetyl-l-2,4-diaminobutyrate (N-γ-ADABA), the substrate of ectoine synthase (EctC). Here, we report the biochemical and structural characterization of the EctA enzyme from the thermotolerant bacterium Paenibacillus lautus (Pl). We found that (Pl)EctA forms a homodimer whose enzyme activity is highly regiospecific by producing N-γ-ADABA but not the ectoine catabolic intermediate N-α-acetyl-l-2,4-diaminobutyric acid. High-resolution crystal structures of (Pl)EctA (at 1.2-2.2 Å resolution) (i) for its apo-form, (ii) in complex with CoA, (iii) in complex with DAB, (iv) in complex with both CoA and DAB, and (v) in the presence of the product N-γ-ADABA were obtained. To pinpoint residues involved in DAB binding, we probed the structure-function relationship of (Pl)EctA by site-directed mutagenesis. Phylogenomics shows that EctA-type proteins from both Bacteria and Archaea are evolutionarily highly conserved, including catalytically important residues. Collectively, our biochemical and structural findings yielded detailed insights into the catalytic core of the EctA enzyme that laid the foundation for unraveling its reaction mechanism.
Collapse
Affiliation(s)
- Alexandra A Richter
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany; SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Stefanie Kobus
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Laura Czech
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany; SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Jan Zarzycki
- Department of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Tobias J Erb
- SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany; Department of Biochemistry and Synthetic Metabolism, Max-Planck-Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Lukas Lauterbach
- Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-University Bonn, D-53121 Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, Friedrich-Wilhelms-University Bonn, D-53121 Bonn, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology, Philipps-University Marburg, D-35043 Marburg, Germany; SYNMIKRO Research Center, Philipps-University Marburg, D-35043 Marburg, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany; Institute of Biochemistry, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
36
|
Hützler WM, Mossou E, Vollrath R, Kohagen M, El Ghrissi I, Grininger M, Zaccai G, Smiatek J, Oesterhelt D. Complex transitions between dihydrate and anhydrate forms of ectoine – unexpected behavior of a highly hygroscopic compatible solute in the solid state. CrystEngComm 2020. [DOI: 10.1039/c9ce01599j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallizing the compatible solute ectoine from water yields a metastable dihydrate that readily degrades to a highly hygroscopic anhydrate at ambient conditions; this strange behavior is examined and a rationale is presented.
Collapse
Affiliation(s)
- Wilhelm Maximilian Hützler
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Goethe-University Frankfurt
- 60438 Frankfurt am Main
- Germany
| | | | - Ronnald Vollrath
- Department of Membrane Biochemistry
- Max-Planck-Institute of Biochemistry
- 82152 Martinsried
- Germany
| | - Miriam Kohagen
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | | | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology
- Buchmann Institute for Molecular Life Sciences
- Goethe-University Frankfurt
- 60438 Frankfurt am Main
- Germany
| | - Giuseppe Zaccai
- Institute Laue-Langevin
- 38042 Grenoble Cedex 9
- France
- Univ. Grenoble Alpes
- CNRS
| | - Jens Smiatek
- Institute for Computational Physics
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Dieter Oesterhelt
- Department of Membrane Biochemistry
- Max-Planck-Institute of Biochemistry
- 82152 Martinsried
- Germany
| |
Collapse
|
37
|
Richter AA, Mais CN, Czech L, Geyer K, Hoeppner A, Smits SHJ, Erb TJ, Bange G, Bremer E. Biosynthesis of the Stress-Protectant and Chemical Chaperon Ectoine: Biochemistry of the Transaminase EctB. Front Microbiol 2019; 10:2811. [PMID: 31921013 PMCID: PMC6915088 DOI: 10.3389/fmicb.2019.02811] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria frequently adapt to high osmolarity surroundings through the accumulation of compatible solutes. Ectoine is a prominent member of these types of stress protectants and is produced via an evolutionarily conserved biosynthetic pathway beginning with the L-2,4-diaminobutyrate (DAB) transaminase (TA) EctB. Here, we studied EctB from the thermo-tolerant Gram-positive bacterium Paenibacillus lautus (Pl) and show that this tetrameric enzyme is highly tolerant to salt, pH, and temperature. During ectoine biosynthesis, EctB converts L-glutamate and L-aspartate-beta-semialdehyde into 2-oxoglutarate and DAB, but it also catalyzes the reverse reaction. Our analysis unravels that EctB enzymes are mechanistically identical to the PLP-dependent gamma-aminobutyrate TAs (GABA-TAs) and only differ with respect to substrate binding. Inspection of the genomic context of the ectB gene in P. lautus identifies an unusual arrangement of juxtapositioned genes for ectoine biosynthesis and import via an Ehu-type binding-protein-dependent ABC transporter. This operon-like structure suggests the operation of a highly coordinated system for ectoine synthesis and import to maintain physiologically adequate cellular ectoine pools under osmotic stress conditions in a resource-efficient manner. Taken together, our study provides an in-depth mechanistic and physiological description of EctB, the first enzyme of the ectoine biosynthetic pathway.
Collapse
Affiliation(s)
- Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Christopher-Nils Mais
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| | - Kyra Geyer
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Astrid Hoeppner
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tobias J Erb
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany.,Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Marburg, Germany.,SYNMIKRO Research Center, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
38
|
Brands S, Schein P, Castro-Ochoa KF, Galinski EA. Hydroxyl radical scavenging of the compatible solute ectoine generates two N-acetimides. Arch Biochem Biophys 2019; 674:108097. [DOI: 10.1016/j.abb.2019.108097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 11/16/2022]
|
39
|
Chen WC, Yuan FW, Wang LF, Chien CC, Wei YH. Ectoine production with indigenous Marinococcus sp. MAR2 isolated from the marine environment. Prep Biochem Biotechnol 2019; 50:74-81. [PMID: 31517565 DOI: 10.1080/10826068.2019.1663534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ectoine has fostered the development of products for skin care and cosmetics. In this study, we employed the marine bacterial strain Marinococcus sp. MAR2 to increase ectoine production by optimizing medium constituents using Response Surface Methodology (RSM) and a fed-batch strategy. The results from the steepest ascent and central composite design indicated that 54 g/L of yeast extract, 14.0 g/L of ammonium acetate, 74.4 g/L of sodium glutamate, and 6.2 g/L of sodium citrate constituted the optimal medium with maximum ectoine production (3.5 g/L). In addition, we performed fed-batch culture in the bioreactor, combining pH and dissolved oxygen to produce ectoine by Marinococcus sp. MAR2. The ectoine production, content, and productivity of 5.6 g/L, 10%, and 3.9 g/L/day were further reached by a fed-batch culture. Thus, the ectoine production by Marinococcus sp. MAR2 using RSM and fed-batch strategy shows its potential for industrial production.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| | - Fang-Wei Yuan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| | - Li-Fen Wang
- Department of Applied Chemistry and Materials Science, Fooyin University, Kaohsiung, Taiwan (R.O.C.)
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| | - Yu-Hong Wei
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan, Taiwan (R.O.C.)
| |
Collapse
|
40
|
|
41
|
Rieckmann T, Gatzemeier F, Christiansen S, Rothkamm K, Münscher A. The inflammation-reducing compatible solute ectoine does not impair the cytotoxic effect of ionizing radiation on head and neck cancer cells. Sci Rep 2019; 9:6594. [PMID: 31036876 PMCID: PMC6488604 DOI: 10.1038/s41598-019-43040-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/10/2019] [Indexed: 02/01/2023] Open
Abstract
Ectoine is a natural protectant expressed by halophile bacteria to resist challenges of their natural environments, such as drought, heat or high salt concentrations. As a compatible solute, ectoine does not interfere with the cell's metabolism even at high molar concentrations. External application of ectoine results in surface hydration and membrane stabilization. It can reduce inflammation processes and was recently tested in a pilot study for the prevention and treatment of chemotherapy-induced oral mucositis. Oral mucositis is especially frequent and severe in patients with head and neck squamous cell carcinoma (HNSCC), who receive radiotherapy or chemoradiation. It is extremely painful, can limit nutritional intake and may necessitate treatment interruptions, which can critically compromise outcome. As it was recently reported that in vitro ectoine has the ability to protect DNA against ionizing irradiation, it was the aim of this study to test whether ectoine may protect HNSCC cells from radiotherapy. Using HNSCC cell lines and primary human fibroblasts, we can show that in living cells ectoine does not impair DNA damage induction and cytotoxicity through ionizing radiation. We therefore conclude that testing the ectopic application of ectoine for its ability to alleviate early radiotherapy/chemoradiation-induced side effects is safe and feasible.
Collapse
Affiliation(s)
- Thorsten Rieckmann
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | - Fruzsina Gatzemeier
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Sabrina Christiansen
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology & Experimental Radiation Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Adrian Münscher
- Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
42
|
Identification and characterization of ectoine-producing bacteria isolated from Can Gio mangrove soil in Vietnam. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01474-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Addor FAS. Topical effects of SCA ® ( Cryptomphalus aspersa secretion) associated with regenerative and antioxidant ingredients on aged skin: evaluation by confocal and clinical microscopy. Clin Cosmet Investig Dermatol 2019; 12:133-140. [PMID: 30858719 PMCID: PMC6386352 DOI: 10.2147/ccid.s191153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purpose This was an open-label, single-center clinical study to evaluate a topical association of SCA® (Cryptomphalus aspersa secretion) with regenerative and antioxidant ingredients, according to the type and area of the face, on the improvement of signs of skin aging. Patients and methods One hundred and twenty female participants aged between 40 and 65 years, with facial aging complaints (presence of static, dynamics wrinkles, loss of elasticity, and skin firmness) were randomized into two groups according to the type of skin: normal–oily and normal–dry, and 40 participants were randomized for evaluation of the periocular area (with the presence of wrinkles, expression lines, and dark circles) with both types of skin. The groups received serum for normal–oily skin, a cream for normal–dry skin, and a cream for periocular and eyelid skin (eye area). All the participants were evaluated by a dermatologist and submitted to hydration evaluation by corneometry, elasticity and firmness measures complementarily, and images were collected in confocal reflectance microscopy. Results Topical skin treatment with the association of SCA with antioxidant ingredients (green coffee oil, olive oil, ectoine, hyaluronic acid, and peptides) was able to promote significant clinical and subjective improvement of all signs of skin aging. This improvement was presented at the epidermal level, with improved hydration levels measured by corneometry and epidermal thickness, and at the dermal level, with improvement of the firmness and elasticity parameters, measured by cutometry, from 45 days of use. Conclusion All the evaluated topical formulations seemed to be an effective alternative for the progressive treatment of signs of skin aging, since they demonstrate a real improvement of dermal–epidermal structure and function with high safety margin for long-term use.
Collapse
|
44
|
Chen B, Wang Y, Yang G. The promotion and suppression of DNA charge neutralization by the cosolute ectoine. RSC Adv 2019; 9:41050-41057. [PMID: 35540047 PMCID: PMC9076405 DOI: 10.1039/c9ra09355a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/27/2019] [Indexed: 12/28/2022] Open
Abstract
Ectoine, a cosolute and osmolyte, is used by extremophilic microorganisms to maintain an osmotic equilibrium of cells with their surrounding medium under conditions of extreme salinity or thermal and pressure stresses. It is also considered a protectant of biomolecules such as protein and DNA in cells. In the present study, we investigate its influence on DNA charge neutralization and compaction through dynamic light scattering (DLS), atomic force microscopy (AFM) and single molecular magnetic tweezers (MT). We found that ectoine can promote DNA charge neutralization induced by multivalent cations at mild cosolute concentration in solution. When the concentration of ectoine is high enough, however, a mixed effect of promotion and suppression can be found under the same ionic conditions. In this case, the electrophoretic mobility (EM) of DNA is promoted in the region of low cation concentration, while suppressed in the region of high counterionic concentration. The charge neutralization of DNA by ectoine is also related to DNA compaction. The promotion and suppression of DNA compaction by ectoine was observed by AFM imaging. The condensed structure of DNA becomes more compact and then loose once more with the increasing concentration of ectoine. Meanwhile, the condensing forces of DNA measured by magnetic tweezers shows the same trend as does the DNA EM. We explained the experimental findings through the combined effect of two intrinsic features of ectoine, preferential exclusion and enhancement of the dielectric constant of the medium. Ectoine can promote DNA charge neutralization at mild cosolute concentration in solution. When the concentration of ectoine is high enough, however, a mixing effect of promotion and suppression can be found in the same ionic condition.![]()
Collapse
Affiliation(s)
- Benteng Chen
- Department of Physics
- Wenzhou University
- Wenzhou
- China
| | - Yanwei Wang
- Department of Physics
- Wenzhou University
- Wenzhou
- China
| | | |
Collapse
|
45
|
Affiliation(s)
- Xu Zhang
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
| | - Yina Lin
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
| | - Guo-Qiang Chen
- MOE Lab of Bioinformatics; School of Life Sciences; Tsinghua University; Beijing 100084 China
- Center for Synthetic and Systems Biology; Tsinghua University; Beijing 100084 China
- Tsinghua-Peking Center for Life Sciences; Tsinghua University; Beijing 100084 China
| |
Collapse
|
46
|
Dao VA, Bilstein A, Overhagen S, Géczi L, Baráth Z, Mösges R. Effectiveness, Tolerability, and Safety of Ectoine-Containing Mouthwash Versus Those of a Calcium Phosphate Mouthwash for the Treatment of Chemotherapy-Induced Oral Mucositis: A Prospective, Active-Controlled, Non-interventional Study. Oncol Ther 2018; 6:59-72. [PMID: 32700140 PMCID: PMC7360009 DOI: 10.1007/s40487-018-0060-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 11/25/2022] Open
Abstract
Introduction Oral mucositis is a frequent complication of cancer chemotherapy and radiotherapy. Ectoine is a natural extremolyte that can stabilize biological membranes and counteract inflammatory reactions. This study investigated ectoine-containing mouthwash for the prophylaxis and the treatment of oral mucositis. Its effectiveness, tolerability, and safety were compared to those of the local standard-of-care calcium phosphate mouthwash. Methods This prospective, active-controlled, observational study was conducted in two study centers in Hungary from January 2016 to October 2017. Sixty patients undergoing chemotherapy were to be recruited and allocated to one of three treatment arms: prophylactic treatment with ectoine (20 patients), active treatment with ectoine (20 patients), or calcium phosphate (20 patients). The study lasted 21 days, comprising four visits on day 0, day 7, day 14, and day 21. Results In all, 45 patients were included in the study (prophylactic ectoine, 10 patients; active ectoine, 20 patients; calcium phosphate, 15 patients). In the prophylactic ectoine group, few mucositis symptoms of mild or moderate severity occurred throughout the study. In the active ectoine and the calcium phosphate groups, symptoms of mild and moderate severity at inclusion were reduced significantly after 14 days of treatment and were mostly resolved at the end of the study. The difference between the active ectoine and the calcium phosphate groups was not significant. According to patients’ assessments, ectoine mouthwash was more effective and tolerable than calcium phosphate mouthwash. Conclusions Ectoine mouthwash is safe, well tolerated, and effective for the active treatment of oral mucositis following chemotherapy. Its effectiveness is comparable to that of calcium phosphate. Patients prefer ectoine mouthwash to calcium phosphate mouthwash. Trial Registration Number NCT02816515. Funding Bitop AG (Dortmund, Germany). Plain Language Summary Plain language summary available for this article. Electronic supplementary material The online version of this article (10.1007/s40487-018-0060-z) contains supplementary material, which is available to authorized users. Oral mucositis is the inflammation of the mucosa of the oral cavity. It is a frequent complication of cancer chemotherapy and radiotherapy. Approximately 20–40% of patients undergoing chemotherapy suffer from oral mucositis. It is very painful, impairs eating, drinking, and quality of life. One of the most effective yet simple measures to prevent and treat oral mucositis is oral care with mouthwash. Ectoine is a natural substance that was discovered in halophilic (salt-loving) bacteria. Ectoine can protect these bacteria against dehydration because it can attract water molecules and strengthen biological membranes. Ectoine is used to treat many diseases caused by allergens, UV light, air pollution, heat, and dryness. Ectoine (Ectoin®) mouthwash is produced by bitop AG (Dortmund, Germany) to treat dry mouth and other symptoms of inflamed oral mucosa. This study investigated ectoine mouthwash for the treatment of oral mucositis following chemotherapy. It was compared to the local standard-of-care calcium phosphate mouthwash. One group of patients was treated with ectoine mouthwash and the other with calcium phosphate mouthwash. After 14 days, mucositis symptoms were substantially reduced in both groups. After 21 days, all patients were almost cured of oral mucositis. Additionally, after the treatment, patients rated how effective and tolerable the treatment was. Here, more patients treated with ectoine rated their treatment as effective and tolerable than those treated with calcium phosphate. This study shows that ectoine mouthwash is tolerable and effective for the treatment of mucositis. Patients preferred ectoine mouthwash to calcium phosphate mouthwash.
Collapse
Affiliation(s)
- Van Anh Dao
- CRI - Clinical Research International Ltd., Genter Str. 7, 50672, Cologne, Germany
| | | | | | - Lajos Géczi
- Department of Oncological Internal Medicine and Clinical Pharmacology "C", National Institute of Oncology Hungary, Budapest, 1026, Hungary
| | - Zoltán Baráth
- National Korányi Institute of TB and Pulmonology, Budapest, 1121, Hungary
| | - Ralph Mösges
- CRI - Clinical Research International Ltd., Genter Str. 7, 50672, Cologne, Germany
- Faculty of Medicine, Institute of Medical Statistics and Computational Biology, University of Cologne, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
47
|
Czech L, Hermann L, Stöveken N, Richter AA, Höppner A, Smits SHJ, Heider J, Bremer E. Role of the Extremolytes Ectoine and Hydroxyectoine as Stress Protectants and Nutrients: Genetics, Phylogenomics, Biochemistry, and Structural Analysis. Genes (Basel) 2018; 9:genes9040177. [PMID: 29565833 PMCID: PMC5924519 DOI: 10.3390/genes9040177] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 01/26/2023] Open
Abstract
Fluctuations in environmental osmolarity are ubiquitous stress factors in many natural habitats of microorganisms, as they inevitably trigger osmotically instigated fluxes of water across the semi-permeable cytoplasmic membrane. Under hyperosmotic conditions, many microorganisms fend off the detrimental effects of water efflux and the ensuing dehydration of the cytoplasm and drop in turgor through the accumulation of a restricted class of organic osmolytes, the compatible solutes. Ectoine and its derivative 5-hydroxyectoine are prominent members of these compounds and are synthesized widely by members of the Bacteria and a few Archaea and Eukarya in response to high salinity/osmolarity and/or growth temperature extremes. Ectoines have excellent function-preserving properties, attributes that have led to their description as chemical chaperones and fostered the development of an industrial-scale biotechnological production process for their exploitation in biotechnology, skin care, and medicine. We review, here, the current knowledge on the biochemistry of the ectoine/hydroxyectoine biosynthetic enzymes and the available crystal structures of some of them, explore the genetics of the underlying biosynthetic genes and their transcriptional regulation, and present an extensive phylogenomic analysis of the ectoine/hydroxyectoine biosynthetic genes. In addition, we address the biochemistry, phylogenomics, and genetic regulation for the alternative use of ectoines as nutrients.
Collapse
Affiliation(s)
- Laura Czech
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Lucas Hermann
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Nadine Stöveken
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Alexandra A Richter
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitäts Str. 1, D-40225 Düsseldorf, Germany.
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps-University Marburg, Karl-von-Frisch Str. 8, D-35043 Marburg, Germany.
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Hans-Meerwein Str. 6, D-35043 Marburg, Germany.
| |
Collapse
|
48
|
Oprzeska-Zingrebe EA, Meyer S, Roloff A, Kunte HJ, Smiatek J. Influence of compatible solute ectoine on distinct DNA structures: thermodynamic insights into molecular binding mechanisms and destabilization effects. Phys Chem Chem Phys 2018; 20:25861-25874. [DOI: 10.1039/c8cp03543a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We study ectoine-induced destabilization effects on DNA hairpins by a combination of atomistic molecular dynamics simulations, experiments, and theoretical approaches.
Collapse
Affiliation(s)
| | - Susann Meyer
- Federal Institute for Materials Research and Testing (BAM)
- D-12205 Berlin
- Germany
- Institute of Biochemistry and Biology
- University of Potsdam
| | - Alexander Roloff
- Federal Institute for Materials Research and Testing (BAM)
- D-12489 Berlin
- Germany
| | - Hans-Jörg Kunte
- Federal Institute for Materials Research and Testing (BAM)
- D-12205 Berlin
- Germany
| | - Jens Smiatek
- Institute for Computational Physics
- University of Stuttgart
- D-70569 Stuttgart
- Germany
- Helmholtz Institute Münster: Ionics in Energy Storage (HI MS IEK-12)
| |
Collapse
|
49
|
Sahle CJ, Schroer MA, Jeffries CM, Niskanen J. Hydration in aqueous solutions of ectoine and hydroxyectoine. Phys Chem Chem Phys 2018; 20:27917-27923. [DOI: 10.1039/c8cp05308a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We explore the influence of the two osmolytes ectoine and hydroxyectoine on the structure of pure water and aqueous NaCl solutions using non-resonant X-ray Raman scattering spectroscopy at the oxygen K-edge.
Collapse
Affiliation(s)
- Christoph J. Sahle
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs
- 38000 Grenoble
- France
| | - Martin A. Schroer
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- 22607 Hamburg
- Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory (EMBL)
- Hamburg Outstation c/o DESY
- 22607 Hamburg
- Germany
| | - Johannes Niskanen
- University of Turku
- Department of Physics and Astronomy
- FI-20014 Turun yliopisto
- Finland
| |
Collapse
|