1
|
Outskouni Z, Prapa S, Goutas A, Klagkou E, Vatsellas G, Kosta A, Trachana V, Papathanasiou I. Comparative analysis of transcriptomic profiles of mesenchymal stem cells at the onset of senescence and after exposure to acute exogenous oxidative stress. Biochem Biophys Res Commun 2025; 754:151506. [PMID: 39999682 DOI: 10.1016/j.bbrc.2025.151506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Cellular senescence can be triggered by a wide range of stress-inducing factors, including environmental and internal damaging events, such as oxidative stress. Moreover, stressed and senescent cells exhibit modifications in their transcriptional expression profile, but little is known regarding the common genes and pathways regulating these processes. Here, we analyzed the effects of long-term culture as well as exogenous acute oxidative stress on the transcriptional program of Wharton's jelly mesenchymal stem cells (WJ-MSCs). We demonstrate that, exposure to H2O2 compromised genomic stability and mitochondrial function in early passage WJ-MSCs, potentially initiating senescence to prevent cellular transformation. On the other hand, prolonged in vitro expansion of WJ-MSCs activated processes linked to integrins and extracellular matrix organization, possibly indicating the unfavorable consequences that senescence has on tissue integrity. Additionally, cells entering senescence and oxidative stressed young WJ-MSCs over-activated transcription factors related to permanent proliferative arrest and suppressed anti-senescence factors. Common differentially expressed genes in the late passage and H2O2-treated WJ-MSCs were implicated in DNA damage response and cell cycle arrest, which are known to trigger a senescent phenotype. Notably, the TP53INP1 gene emerged as a significantly upregulated gene in both late passage and H2O2-treated young WJ-MSCs, marking it as a potent senescence indicator. Silencing TP53INP1 mitigated the senescent phenotype, a role that appeared to be facilitated by autophagy regulation. Taken together, our results shed light on how transcriptomic changes govern MSCs' senescence program and identify key molecular drivers that could prove crucial for WJ-MSCs-based clinical applications.
Collapse
Affiliation(s)
- Zozo Outskouni
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Stavroula Prapa
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece
| | - Andreas Goutas
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece; Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Eleftheria Klagkou
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Giannis Vatsellas
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Artemis Kosta
- Microscopy Core Facility, Institut de Microbiologie de la Méditerranée (IMM), FR3479, CNRS, Aix-Marseille University, Marseille, France
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| | - Ioanna Papathanasiou
- Department of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, 41500, Greece.
| |
Collapse
|
2
|
Khaveh N, Buschow R, Metzger J. Deciphering transcriptome patterns in porcine mesenchymal stem cells promoting phenotypic maintenance and differentiation by key driver genes. Front Cell Dev Biol 2024; 12:1478757. [PMID: 39568509 PMCID: PMC11576426 DOI: 10.3389/fcell.2024.1478757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Mesenchymal stem cells (MSC) are fibroblast-like non-hematopoietic cells with self-renewal and differentiation capacity, and thereby great potential in regeneration and wound healing. MSC populations are heterogeneous not only inherently, but also among different model species. In particular, porcine MSC serve as a frequently used resource for translational research, due to pigs' distinctive closeness to human anatomy and physiology. However, information on gene expression profiles from porcine MSC and its dynamics during differentiation is sparse, especially with regard to cell surface and inner cell markers. In this study, we investigated the transcriptome of bone marrow-derived MSC and its differentiated cell types in a minipig breed for experimental research, known as Mini-LEWE, using bulk mRNA sequencing. Our data highlighted Rap1 signaling and downstream pathways PI3K-Akt and MAPK signaling as potential players for the maintenance of stemness of BM-MSC. In addition, we were able to link the process of differentiation to changes in the regulation of actin cytoskeleton. A total of 18 "BM-MSC differentiation driver markers" were identified, potentially promoting the process of differentiation into adipocytes, chondrocytes as well as osteocytes. Our results offer a new perspective on the molecular phenotype of porcine BM-MSC and the transcriptional responses in new differentiated progeny.
Collapse
Affiliation(s)
- Nadia Khaveh
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - René Buschow
- Microscopy and Cryo-Electron Microscopy Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Metzger
- Institute of Animal Genomics, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
3
|
Marassi V, La Rocca G, Placci A, Muntiu A, Vincenzoni F, Vitali A, Desiderio C, Maraldi T, Beretti F, Russo E, Miceli V, Conaldi PG, Papait A, Romele P, Cargnoni A, Silini AR, Alviano F, Parolini O, Giordani S, Zattoni A, Reschiglian P, Roda B. Native characterization and QC profiling of human amniotic mesenchymal stromal cell vesicular fractions for secretome-based therapy. Talanta 2024; 276:126216. [PMID: 38761653 DOI: 10.1016/j.talanta.2024.126216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Human amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties making them attractive candidates for regenerative applications in inflammatory diseases. Most of their beneficial properties are mediated through their secretome. The bioactive factors concurring to its therapeutic activity are still unknown. Evidence suggests synergy between the two main components of the secretome, soluble factors and vesicular fractions, pivotal in shifting inflammation and promoting self-healing. Biological variability and the absence of quality control (QC) protocols hinder secretome-based therapy translation to clinical applications. Moreover, vesicular secretome contains a multitude of particles with varying size, cargos and functions whose complexity hinders full characterization and comprehension. This study achieved a significant advancement in secretome characterization by utilizing native, FFF-based separation and characterizing extracellular vesicles derived from hAMSCs. This was accomplished by obtaining dimensionally homogeneous fractions then characterized based on their protein content, potentially enabling the identification of subpopulations with diverse functionalities. This method proved to be successful as an independent technique for secretome profiling, with the potential to contribute to the standardization of a qualitative method. Additionally, it served as a preparative separation tool, streamlining populations before ELISA and LC-MS characterization. This approach facilitated the categorization of distinctive and recurring proteins, along with the identification of clusters associated with vesicle activity and functions. However, the presence of proteins unique to each fraction obtained through the FFF separation tool presents a challenge for further analysis of the protein content within these cargoes.
Collapse
Affiliation(s)
- Valentina Marassi
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Anna Placci
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Alexandra Muntiu
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Alberto Vitali
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, 00168, Rome, Italy
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Beretti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta Specializzazione), 90127, Palermo, Italy
| | - Andrea Papait
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, 25124, Brescia, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy; Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Stefano Giordani
- Department of Chemistry G. Ciamician, University of Bologna, Italy
| | - Andrea Zattoni
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy
| | - Barbara Roda
- Department of Chemistry G. Ciamician, University of Bologna, Italy; byFlow srl, Bologna, Italy.
| |
Collapse
|
4
|
Bao H, Mao S, Hu X, Li L, Tao H, Zhou J, Xu L, Fang Y, Zhang Y, Chu L. Exosomal miR-486 derived from bone marrow mesenchymal stem cells promotes angiogenesis following cerebral ischemic injury by regulating the PTEN/Akt pathway. Sci Rep 2024; 14:18086. [PMID: 39103424 PMCID: PMC11300871 DOI: 10.1038/s41598-024-69172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024] Open
Abstract
Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) have been shown to promote angiogenesis after ischemic stroke, in which microRNAs (miRs) are believed to play an important role in exosome-mediated therapeutic effects, though the mechanism is still not clear. In this study, a series of molecular biological and cellular assays, both in vitro and in vivo, were performed to elucidate the role of exosomal miR-486 in angiogenesis following cerebral ischemic and its molecular mechanisms. Our results revealed that BMSC-Exos significantly improved neurological function and increased microvessel density in ischemic stroke rats. In vitro assays showed that BMSC-Exos promoted the proliferation, migration, and tube formation ability of oxygen-glucose deprivation/reoxygenation (OGD/R) injured rat brain microvascular endothelial cells (RBMECs). Importantly, BMSC-Exos increased the expression of miR-486 and phosphorylated protein kinase B (p-Akt) and down-regulated the protein level of phosphatase and tensin homolog (PTEN) in vivo and in vitro. Mechanistic studies demonstrated that transfection with miR-486 mimic enhanced RBMECs angiogenesis and increased p-Akt expression, while inhibited PTEN expression. On the other hand, the miR-486 inhibitor induced an opposite effect, which could be blocked by PTEN siRNA. It was thus concluded that exosomal miR-486 from BMSCs may enhance the functional recovery by promoting angiogenesis following cerebral ischemic injury, which might be related to its regulation of the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Hangyang Bao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shihui Mao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaowei Hu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lin Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hongmiao Tao
- Medical College, Jinhua Polytechnic, Jinhua, 321017, China
| | - Jie Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lanxi Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yan Fang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yani Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lisheng Chu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Phinney DG. Alexander Friedenstein, Mesenchymal Stem Cells, Shifting Paradigms and Euphemisms. Bioengineering (Basel) 2024; 11:534. [PMID: 38927770 PMCID: PMC11201071 DOI: 10.3390/bioengineering11060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Six decades ago, Friedenstein and coworkers published a series of seminal papers identifying a cell population in bone marrow with osteogenic potential, now referred to as mesenchymal stem cells (MSCs). This work was also instrumental in establishing the identity of hematopoietic stem cell and the identification of skeletal stem/progenitor cell (SSPC) populations in various skeletal compartments. In recognition of the centenary year of Friedenstein's birth, I review key aspects of his work and discuss the evolving concept of the MSC and its various euphemisms indorsed by changing paradigms in the field. I also discuss the recent emphasis on MSC stromal quality attributes and how emerging data demonstrating a mechanistic link between stromal and stem/progenitor functions bring renewed relevance to Friedenstein's contributions and much needed unity to the field.
Collapse
Affiliation(s)
- Donald G Phinney
- Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Haga CL, Booker CN, Strivelli J, Boregowda SV, Phinney DG. Comparative transcriptome analysis of bone marrow resident versus culture-expanded mouse mesenchymal stem/stromal cells. Cytotherapy 2024; 26:498-505. [PMID: 38372680 PMCID: PMC11065607 DOI: 10.1016/j.jcyt.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are defined as culture-expanded populations, and although these cells recapitulate many properties of bone marrow (BM) resident skeletal stem/progenitor cells, few studies have directly compared these populations to evaluate how culture adaptation and expansion impact critical quality attributes. METHODS We analyzed by RNA sequencing Lin-SCA1+ MSCs enriched from BM by immunodepletion (ID) and after subsequent culture expansion (Ex) and Lin-LEPR+ MSCs sorted (S) directly from BM. Pairwise comparisons were used to identify differentially expressed genes (DEGs) between populations, and gene set enrichment analysis was employed to identify biological pathways/processes unique to each population. K-means cluster analysis resolved isolation status-dependent changes in transcription in pseudotime. RESULTS Hierarchical clustering segregated populations by isolation process, and principal component analysis identified transcripts related to vasculature development, ossification and inflammatory/cytokine signaling as key drivers of population variance. Pairwise comparisons identified 3849 DEGs in ID versus S BM-MSCs mapping to Gene Ontology (GO) terms related to immune and metabolic processes and 334 DEGs in Ex versus ID BM-MSCs mapping to GO terms related to tissue development, cell growth and replication and organelle organization. K-means cluster analysis revealed significant differences in transcripts encoding stemness and differentiation markers, extracellular matrix structural constituents and remodeling enzymes and paracrine-acting factors between populations. CONCLUSIONS These comparative analyses reveal significant differences in gene expression signatures between BM resident and culture-expanded MSCs, thereby providing new insight into how culture adaptation/expansion endows the latter with unique quality attributes.
Collapse
Affiliation(s)
- Christopher L Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Cori N Booker
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Jacqueline Strivelli
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Siddaraju V Boregowda
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA
| | - Donald G Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute of Biomedical Innovation and Technology, Jupiter, Florida, USA.
| |
Collapse
|
7
|
Ryu HS, Abueva C, Padalhin A, Park SY, Yoo SH, Seo HH, Chung PS, Woo SH. Oral ulcer treatment using human tonsil-derived mesenchymal stem cells encapsulated in trimethyl chitosan hydrogel: an animal model study. Stem Cell Res Ther 2024; 15:103. [PMID: 38589946 PMCID: PMC11003084 DOI: 10.1186/s13287-024-03694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Oral ulcers are a common side effect of chemotherapy and affect patients' quality of life. While stem cell transplantation is a potential treatment for oral ulcers, its efficacy is limited as the stem cells tend to remain in the affected area for a short time. This study aims to develop a treatment for oral ulcers by using trimethyl chitosan (TMC) hydrogel with human tonsil-derived stem cells (hTMSCs) to increase the therapeutic effect of stem cells and investigate their effectiveness. METHODS Animals were divided into four experimental groups: Control, TMC hydrogel, hTMSCs, and hTMSCs loaded in TMC hydrogel (Hydrogel + hTMSCs) (each n = 8). Oral ulcers were chemically induced by anesthetizing the rats followed by injection of dilute acetic acid in the right buccal mucosa. After confirming the presence of oral ulcers in the animals, a single subcutaneous injection of 100 µL of each treatment was applied to the ulcer area. Histological analyses were performed to measure inflammatory cells, oral mucosal thickness, and fibrosis levels. The expression level of inflammatory cytokines was also measured using RT-PCR to gauge therapeutic the effect. RESULTS The ulcer size was significantly reduced in the TMC hydrogel + hTMSCs group compared to the control group. The stem cells in the tissue were only observed until Day 3 in the hTMSCs treated group, while the injected stem cells in the TMC Hydrogel + hTMSCs group were still present until day 7. Cytokine analysis related to the inflammatory response in the tissue confirmed that the TMC Hydrogel + hTMSCs treated group demonstrated superior wound healing compared to other experimental groups. CONCLUSION This study has shown that the adhesion and viability of current stem cell therapies can be resolved by utilizing a hydrogel prepared with TMC and combining it with hTMSCs. The combined treatment can promote rapid healing of oral cavity wounds by enhancing anti-inflammatory effects and expediting wound healing. Therefore, hTMSC loaded in TMC hydrogel was the most effective wound-healing approach among all four treatment groups prolonging stem cell survival. However, further research is necessary to minimize the initial inflammatory response of biomaterials and assess the safety and long-term effects for potential clinical applications.
Collapse
Affiliation(s)
- Hyun Seok Ryu
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Celine Abueva
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Andrew Padalhin
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - So Young Park
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Seung Hyeon Yoo
- School of Medical Laser, Dankook University, Cheonan, Republic of Korea
| | - Hwee Hyon Seo
- School of Medical Laser, Dankook University, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea
| | - Seung Hoon Woo
- Beckman Laser Institute Korea, Dankook University College of Medicine, Cheonan, Republic of Korea.
- Medical Laser Research Center, Dankook University College of Medicine, Cheonan, Republic of Korea.
- Department of Otorhinolaryngology-Head and Neck Surgery, Dankook University College of Medicine, 201 Manghyang-ro, Dongnam-gu, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
8
|
Bai X, Chen T, Li Y, Ge X, Qiu C, Gou H, Wei S, Liu T, Yang W, Yang L, Liang Y, Jia Z, Lv L, Li T. PD-L1 expression levels in mesenchymal stromal cells predict their therapeutic values for autoimmune hepatitis. Stem Cell Res Ther 2023; 14:370. [PMID: 38111045 PMCID: PMC10729378 DOI: 10.1186/s13287-023-03594-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Autoimmune hepatitis is a chronic inflammatory hepatic disorder with no effective treatment. Mesenchymal stromal cells (MSCs) have emerged as a promising treatment owing to their unique advantages. However, their heterogeneity is hampering use in clinical applications. METHODS Wharton's jelly derived MSCs (WJ-MSCs) were isolated from 58 human donors using current good manufacturing practice conditions. Gene expression profiles of the WJ-MSCs were analyzed by transcriptome and single-cell RNA-sequencing (scRNA-seq), and subsequent functional differences were assessed. Expression levels of programmed death-ligand 1 (PD-L1) were used as an indicator to screen WJ-MSCs with varied immunomodulation activities and assessed their corresponding therapeutic effects in a mouse model of concanavalin A-induced autoimmune hepatitis. RESULTS The 58 different donor-derived WJ-MSCs were grouped into six gene expression profile clusters. The gene in different clusters displayed obvious variations in cell proliferation, differentiation bias, trophic factor secretion, and immunoregulation. Data of scRNA-seq revealed four distinct WJ-MSCs subpopulations. Notably, the different immunosuppression capacities of WJ-MSCs were positively correlated with PD-L1 expression. WJ-MSCs with high expression of PD-L1 were therapeutically superior to WJ-MSCs with low PD-L1 expression in treating autoimmune hepatitis. CONCLUSION PD-L1 expression levels of WJ-MSCs could be regarded as an indicator to choose optimal MSCs for treating autoimmune disease. These findings provided novel insights into the quality control of MSCs and will inform improvements in the therapeutic benefits of MSCs.
Collapse
Affiliation(s)
- Xilong Bai
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Tingwei Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yuqi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Xiaofan Ge
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Caie Qiu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Huili Gou
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Sili Wei
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Tingting Liu
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Wei Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Liting Yang
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China
| | - Yingmin Liang
- Department of Hematology, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Zhansheng Jia
- Department of Infection and Liver Disease, Xi'an International Medical Center Hospital, Xi'an, 710100, Shaanxi, China
| | - Liangshan Lv
- Department of Minimally Invasive Interventional Radiology, Xi'an Gaoxin Hospital, Xi'an, , 710075, Shaanxi, China
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Xi'an ChaoYue Stem Cell Co., Ltd, Xi'an, 710100, Shaanxi, China.
| |
Collapse
|
9
|
Kim Y, An SB, Lee SH, Lee JJ, Kim SB, Ahn JC, Hwang DY, Han I. Enhanced Intervertebral Disc Repair via Genetically Engineered Mesenchymal Stem Cells with Tetracycline Regulatory System. Int J Mol Sci 2023; 24:16024. [PMID: 38003216 PMCID: PMC10671788 DOI: 10.3390/ijms242216024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The therapeutic potential of Mesenchymal stem cells (MSCs) for the treatment of Intervertebral disc (IVD) degeneration can be enhanced by amplifying specific cytokines and proteins. This study aimed to investigate the therapeutic potential of tetracycline-off system-engineered tonsil-derived mesenchymal stem cells (ToMSC-Tetoff-TGFβ1-IGF1-BMP7) for treating intervertebral disc (IVD) degeneration. ToMSCs were isolated from a tonsillectomy patient and genetically modified with four distinct plasmids via CRISPR/Cas9-mediated knock-in gene editing. Transgene expression was confirmed through immunofluorescence, western blots, and an enzyme-linked immunosorbent assay for transforming growth factor beta 1 (TGFβ1) protein secretion, and the effect of MSC-TetOff-TGFβ1-IGF1-BMP7 on disc injury was assessed in a rat model. The ToMSC-Tetoff-TGFβ1-IGF1-BMP7 treatment exhibited superior therapeutic effects compared to ToMSC-TGFβ1, and ToMSC-SDF1α implantation groups, stimulating the regeneration of nucleus pulposus (NP) cells crucial for IVD. The treatment showed potential to restore the structural integrity of the extracellular matrix (ECM) by upregulating key molecules such as aggrecan and type II collagen. It also exhibited anti-inflammatory properties and reduced pain-inducing neuropeptides. ToMSC-Tetoff-TGFβ1-IGF1-BMP7 holds promise as a novel treatment for IVD degeneration. It appears to promote NP cell regeneration, restore ECM structure, suppress inflammation, and reduce pain. However, more research and clinical trials are required to confirm its therapeutic potential.
Collapse
Affiliation(s)
- Yeji Kim
- Research Competency Milestones Program of School of Medicine, CHA University School of Medicine, Seongnam-si 13496, Republic of Korea;
| | - Seong Bae An
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| | - Sang-Hyuk Lee
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
| | - Jong Joo Lee
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea;
- Department of Neurosurgery, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul 03181, Republic of Korea
| | - Sung Bum Kim
- Department of Neurosurgery, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Jae-Cheul Ahn
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea
| | - Dong-Youn Hwang
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si 13496, Republic of Korea;
- Department of Microbiology, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Inbo Han
- Department of Biomedical Science, Graduate School of CHA University, Seongnam-si 13496, Republic of Korea;
| |
Collapse
|
10
|
Choi SW, Seo S, Hong HK, Yoon SJ, Kim M, Moon S, Lee JY, Lim J, Lee JB, Woo SJ. Therapeutic Extracellular Vesicles from Tonsil-Derived Mesenchymal Stem Cells for the Treatment of Retinal Degenerative Disease. Tissue Eng Regen Med 2023; 20:951-964. [PMID: 37440108 PMCID: PMC10519919 DOI: 10.1007/s13770-023-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Retinal degenerative disease (RDD), one of the most common causes of blindness, is predominantly caused by the gradual death of retinal pigment epithelial cells (RPEs) and photoreceptors due to various causes. Cell-based therapies, such as stem cell implantation, have been developed for the treatment of RDD, but potential risks, including teratogenicity and immune reactions, have hampered their clinical application. Stem cell-derived extracellular vesicles (EVs) have recently emerged as a cell-free alternative therapeutic strategy; however, additional invasiveness and low yield of the stem cell extraction process is problematic. METHODS To overcome these limitations, we developed therapeutic EVs for the treatment of RDD which were extracted from tonsil-derived mesenchymal stem cells obtained from human tonsil tissue discarded as medical waste following tonsillectomy (T-MSC EVs). To verify the biocompatibility and cytoprotective effect of T-MSC EVs, we measured cell viability by co-culture with human RPE without or with toxic all-trans-retinal. To elucidate the cytoprotective mechanism of T-MSC EVs, we performed transcriptome sequencing using RNA extracted from RPEs. The in vivo protective effect of T-MSC EVs was evaluated using Pde6b gene knockout rats as an animal model of retinitis pigmentosa. RESULTS T-MSC EVs showed high biocompatibility and the human pigment epithelial cells were significantly protected in the presence of T-MSC EVs from the toxic effect of all-trans-retinal. In addition, T-MSC EVs showed a dose-dependent cell death-delaying effect in real-time quantification of cell death. Transcriptome sequencing analysis revealed that the efficient ability of T-MSC EVs to regulate intracellular oxidative stress may be one of the reasons explaining their excellent cytoprotective effect. Additionally, intravitreally injected T-MSC EVs had an inhibitory effect on the destruction of the outer nuclear layer in the Pde6b gene knockout rat. CONCLUSIONS Together, the results of this study indicate the preventive and therapeutic effects of T-MSC EVs during the initiation and development of retinal degeneration, which may be a beneficial alternative for the treatment of RDD.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sooin Seo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - So Jung Yoon
- Bundang CHA Biobank, CHA University College of Medicine, CHA University Bundang Medical Center, Seongnam, 13496, Korea
| | - Minah Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc, Seongnam, 13487, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| |
Collapse
|
11
|
Fang Z, Ford AJ, Hu T, Zhang N, Mantalaris A, Coskun AF. Subcellular spatially resolved gene neighborhood networks in single cells. CELL REPORTS METHODS 2023; 3:100476. [PMID: 37323566 PMCID: PMC10261906 DOI: 10.1016/j.crmeth.2023.100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 02/18/2023] [Accepted: 04/18/2023] [Indexed: 06/17/2023]
Abstract
Image-based spatial omics methods such as fluorescence in situ hybridization (FISH) generate molecular profiles of single cells at single-molecule resolution. Current spatial transcriptomics methods focus on the distribution of single genes. However, the spatial proximity of RNA transcripts can play an important role in cellular function. We demonstrate a spatially resolved gene neighborhood network (spaGNN) pipeline for the analysis of subcellular gene proximity relationships. In spaGNN, machine-learning-based clustering of subcellular spatial transcriptomics data yields subcellular density classes of multiplexed transcript features. The nearest-neighbor analysis produces heterogeneous gene proximity maps in distinct subcellular regions. We illustrate the cell-type-distinguishing capability of spaGNN using multiplexed error-robust FISH data of fibroblast and U2-OS cells and sequential FISH data of mesenchymal stem cells (MSCs), revealing tissue-source-specific MSC transcriptomics and spatial distribution characteristics. Overall, the spaGNN approach expands the spatial features that can be used for cell-type classification tasks.
Collapse
Affiliation(s)
- Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam J. Ford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Shang Z, Wanyan P, Zhang B, Wang M, Wang X. A systematic review, umbrella review, and quality assessment on clinical translation of stem cell therapy for knee osteoarthritis: Are we there yet? Stem Cell Res Ther 2023; 14:91. [PMID: 37061744 PMCID: PMC10105961 DOI: 10.1186/s13287-023-03332-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND The success of stem cell therapy for knee osteoarthritis (KOA) in preclinical animal models has accelerated the pace of clinical translation. However, it remains uncertain whether the current scientific evidence supports the clinical application of stem cells in treating KOA. A comprehensive evaluation of the safety and efficacy of stem cell therapies and scientific evidence quality is necessary. METHODS Using "stem cells" and "knee osteoarthritis" as the search terms, several databases, including PubMed, Web of Science, Cochrane, Embase, and Clinicaltrials.gov, were searched on August 25, 2022, and updated on February 27, 2023. Clinical studies that reported adverse reactions (ARs) of stem cell therapy in KOA patients were included without limiting the type of studies. Quantitative systematic reviews of stem cell therapy for KOA that conducted meta-analysis were included. Two researchers conducted literature screening and data extraction independently, and the evidence quality was evaluated according to the Institute of Health Economics and AMSTAR 2 criteria. RESULTS Fifty clinical studies and 13 systematic reviews/meta-analyses (SRs/MAs) were included. Nineteen ARs were reported in 50 studies, including five knee-related ARs, seven common ARs, and seven other ARs. Some studies reported over 10% prevalence of knee pain (24.5%; 95% CI [14.7%, 35.7%]), knee effusion (12.5%; 95% CI [4.8%, 22.5%]), and knee swelling (11.9%; 95% CI [3.5%, 23.5%]). Additionally, two studies have reported cases of prostate cancer and breast tumors, respectively. However, these two studies suggest that stem cell therapy does not bring significant ARs to patients. SRs/MAs results revealed that stem cell therapy relieved pain in patients over time but did not improve knee function. However, current clinical studies have limited evidence regarding study objectives, test designs, and patient populations. Similarly, SRs/MAs have inadequate evidence regarding study design, risk of bias assessment, outcome description, comprehensive discussion, and potential conflicts of interest. CONCLUSIONS The inefficacy of stem cells, the risk of potential complications, and the limited quality of evidence from current studies precluded any recommendation for using stem cell products in patients with KOA. Clinical translation of stem cell therapies remains baseless and should be cautiously approached until more robust evidence is available. PROSPERO registration number: CRD42022355875.
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, 730000, China
- The Second Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Baolin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Mingchuan Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xin Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China.
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, 730000, Gansu Province, China.
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
13
|
Kim HY, Yoon HS, Lee Y, Kim YH, Cho KA, Woo SY, Kim HS, Ryu KH, Park JW. Matrix Metalloproteinase 1 as a Marker of Tonsil-Derived Mesenchymal Stem Cells to Assess Bone Marrow Cell Migration. Tissue Eng Regen Med 2023; 20:271-284. [PMID: 36462090 PMCID: PMC10070559 DOI: 10.1007/s13770-022-00501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND To achieve optimal bone marrow engraftment during bone marrow transplantation, migration of donor bone marrow cells (BMCs) toward the recipient's bone marrow is critical. Despite the enhanced engraftment of BMCs by co-administration of mesenchymal stem cells (MSCs), the efficiency can be variable depending on MSC donor. The purpose of this study is to examine the functional heterogeneity of tonsil-derived MSCs (TMSCs) and to identify a marker to evaluate efficacy for the enhancement of BMC migration. METHODS To examine the donor-to-donor variation of TMSCs in potentiating BMC migration, we isolated TMSCs from 25 independent donors. Transcriptome of TMSCs and proteome of conditioned medium derived from TMSC were analyzed. RESULTS Enhanced BMC migration by conditioned medium derived from TMSCs was variable depending on TMSC donor. The TMSCs derived from 25 donors showed distinct expression profiles compared with other cells, including fibroblasts, adipose-derived MSCs and bone marrow-derived MSCs. TMSCs were distributed in two categories: high- and low-efficacy groups for potentiating BMC migration. Transcriptome analysis of TMSCs and proteome profiles of conditioned medium derived from TMSCs revealed higher expression and secretion of matrix metalloproteinase (MMP) 1 in the high-efficacy group. MMP1 knockdown in TMSCs abrogated the supportive efficacy of conditioned medium derived from TMSC cultures in BMC migration. CONCLUSION These data suggest that secreted MMP1 can be used as a marker to evaluate the efficacy of TMSCs in enhancing BMC migration. Furthermore, the strategy of analyzing transcriptomes and proteomes of the MSCs may be useful to set the standard for donor variation.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Hee-Soo Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Younghay Lee
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea
| | - Han Su Kim
- Department of Otolaryngology, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07804, South Korea.
| |
Collapse
|
14
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
15
|
Ritter A, Kreis NN, Roth S, Friemel A, Safdar BK, Hoock SC, Wildner JM, Allert R, Louwen F, Solbach C, Yuan J. Cancer-educated mammary adipose tissue-derived stromal/stem cells in obesity and breast cancer: spatial regulation and function. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2023; 42:35. [PMID: 36710348 PMCID: PMC9885659 DOI: 10.1186/s13046-022-02592-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Breast adipose tissue-derived mesenchymal stromal/stem cells (bASCs) are crucial components of the tumor microenvironment. A key step initially involved in this process might be the de-differentiation of bASCs into tumor supporting phenotypes. METHODS In the present work, we isolated bASCs from adipose tissues adjacent to the tumor (aT bASCs) from lean- (ln-aT bASCs, BMI ≤ 25) and breast cancer patients with obesity (ob-aT bASCs, BMI ≥ 35), and analyzed their phenotypes with functional assays and RNA sequencing, compared to their counterparts isolated from adipose tissues distant from the tumor (dT bASCs). RESULTS We show that ln-aT bASCs are susceptible to be transformed into an inflammatory cancer-associated phenotype, whereas ob-aT bASCs are prone to be cancer-educated into a myofibroblastic phenotype. Both ln-aT- and ob-aT bASCs compromise their physiological differentiation capacity, and upregulate metastasis-promoting factors. While ln-aT bASCs stimulate proliferation, motility and chemoresistance by inducing epithelial-mesenchymal transition of low malignant breast cancer cells, ob-aT bASCs trigger more efficiently a cancer stem cell phenotype in highly malignant breast cancer cells. CONCLUSION Breast cancer-associated bASCs are able to foster malignancy of breast cancer cells by multiple mechanisms, especially, induction of epithelial-mesenchymal transition and activation of stemness-associated genes in breast cancer cells. Blocking the de-differentiation of bASCs in the tumor microenvironment could be a novel strategy to develop an effective intervention for breast cancer patients. SIGNIFICANCE This study provides mechanistic insights into how obesity affects the phenotype of bASCs in the TME. Moreover, it highlights the molecular changes inside breast cancer cells upon cell-cell interaction with cancer-educated bASCs.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Susanne Roth
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Babek Kahn Safdar
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Samira Catharina Hoock
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Julia Maria Wildner
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Roman Allert
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Christine Solbach
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
16
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
17
|
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine Activation Reveals Tissue-Imprinted Gene Profiles of Mesenchymal Stromal Cells. Front Immunol 2022; 13:917790. [PMID: 35924240 PMCID: PMC9341285 DOI: 10.3389/fimmu.2022.917790] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Development of standardized metrics to support manufacturing and regulatory approval of mesenchymal stromal cell (MSC) products is confounded by heterogeneity of MSC populations. Many reports describe fundamental differences between MSCs from various tissues and compare unstimulated and activated counterparts. However, molecular information comparing biological profiles of activated MSCs across different origins and donors is limited. To better understand common and source-specific mechanisms of action, we compared the responses of 3 donor populations each of human umbilical cord (UC) and bone marrow (BM) MSCs to TNF-α, IL-1β or IFN-γ. Transcriptome profiles were analysed by microarray and select secretome profiles were assessed by multiplex immunoassay. Unstimulated (resting) UC and BM-MSCs differentially expressed (DE) 174 genes. Signatures of TNF-α-stimulated BM and UC-MSCs included 45 and 14 new DE genes, respectively, while all but 7 of the initial 174 DE genes were expressed at comparable levels after licensing. After IL-1β activation, only 5 of the 174 DE genes remained significantly different, while 6 new DE genes were identified. IFN-γ elicited a robust transcriptome response from both cell types, yet nearly all differences (171/174) between resting populations were attenuated. Nine DE genes predominantly corresponding to immunogenic cell surface proteins emerged as a BM-MSC signature of IFN-γ activation. Changes in protein synthesis of select analytes correlated modestly with transcript levels. The dynamic responses of licensed MSCs documented herein, which attenuated heterogeneity between unstimulated populations, provide new insight into common and source-imprinted responses to cytokine activation and can inform strategic development of meaningful, standardized assays.
Collapse
Affiliation(s)
| | | | - Barry N. Ford
- Defence Research and Development Canada Suffield Research Centre, Casualty Management Section, Medicine Hat, AB, Canada
| | - Lorena R. Braid
- Aurora BioSolutions Inc., Medicine Hat, AB, Canada
- Simon Fraser University, Department of Molecular Biology and Biochemistry, Burnaby, BC, Canada
- *Correspondence: Lorena R. Braid, ;
| |
Collapse
|
18
|
Frisbie L, Buckanovich RJ, Coffman L. Carcinoma Associated Mesenchymal Stem/Stromal Cells - Architects of the Pro-tumorigenic tumor microenvironment. Stem Cells 2022; 40:705-715. [PMID: 35583414 PMCID: PMC9406606 DOI: 10.1093/stmcls/sxac036] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022]
Abstract
The interaction between tumor cells and non-malignant hosts cells within the tumor microenvironment (TME) is critical to the pathophysiology of cancer. These non-malignant host cells, consisting of a variety of stromal, immune and endothelial cells, engage in a complex bidirectional crosstalk with the malignant tumor cells. Mesenchymal stem/stromal cells (MSCs) are one of these host cells, and they play a critical role in directing the formation and function of the entire TME. These MSCs are epigenetically reprogrammed by cancer cells to assume a strongly pro-tumorigenic phenotype and are referred to as carcinoma-associated mesenchymal stem/stromal cells (CA-MSCs). Studies over the last decade demonstrate that CA-MSCs not only directly interact with cancer cells to promote tumor growth and metastasis, but also orchestrate the formation of the TME. CA-MSCs can differentiate into virtually all stromal sub-lineages present in the TME, including pro-tumorigenic cancer associated fibroblasts (CAF), myofibroblasts, and adipocytes. CA-MSCs and the CAFs they produce, secrete much of the extracellular matrix in the TME. Furthermore, CA-MSC secreted factors promote angiogenesis, and recruit immunosuppressive myeloid cells effectively driving tumor immune exclusion. Thus CA-MSCs impact nearly every aspect of the TME. Despite their influence on cancer biology, as CA-MSCs represent a heterogenous population without a single definitive marker, significant confusion remains regarding the origin and proper identification CA-MSCs. This review will focus on the impact of CA-MSCs on cancer progression and metastasis and the ongoing work on CA-MSC identification, nomenclature and mechanism of action.
Collapse
Affiliation(s)
- Len Frisbie
- Department of Integrative Systems Biology, University of Pittsburgh, Pittsburgh, PA
| | - Ronald J Buckanovich
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lan Coffman
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA.,Division of Gynecologic Oncology, Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
19
|
Später T, Assunção M, Lit KK, Gong G, Wang X, Chen YY, Rao Y, Li Y, Yiu CHK, Laschke MW, Menger MD, Wang D, Tuan RS, Khoo KH, Raghunath M, Guo J, Blocki A. Engineering microparticles based on solidified stem cell secretome with an augmented pro-angiogenic factor portfolio for therapeutic angiogenesis. Bioact Mater 2022; 17:526-541. [PMID: 35846945 PMCID: PMC9270501 DOI: 10.1016/j.bioactmat.2022.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue (re)vascularization strategies face various challenges, as therapeutic cells do not survive long enough in situ, while the administration of pro-angiogenic factors is hampered by fast clearance and insufficient ability to emulate complex spatiotemporal signaling. Here, we propose to address these limitations by engineering a functional biomaterial capable of capturing and concentrating the pro-angiogenic activities of mesenchymal stem cells (MSCs). In particular, dextran sulfate, a high molecular weight sulfated glucose polymer, supplemented to MSC cultures, interacts with MSC-derived extracellular matrix (ECM) components and facilitates their co-assembly and accumulation in the pericellular space. Upon decellularization, the resulting dextran sulfate-ECM hybrid material can be processed into MIcroparticles of SOlidified Secretome (MIPSOS). The insoluble format of MIPSOS protects protein components from degradation, while facilitating their sustained release. Proteomic analysis demonstrates that MIPSOS are highly enriched in pro-angiogenic factors, resulting in an enhanced pro-angiogenic bioactivity when compared to naïve MSC-derived ECM (cECM). Consequently, intravital microscopy of full-thickness skin wounds treated with MIPSOS demonstrates accelerated revascularization and healing, far superior to the therapeutic potential of cECM. Hence, the microparticle-based solidified stem cell secretome provides a promising platform to address major limitations of current therapeutic angiogenesis approaches. Dextran sulfate assembles with mesenchymal stem cell secretome. As a result, microparticles of solidified stem cell secretome (MIPSOS) are formed. The insoluble MIPSOS format protects proteins from premature degradation. MIPSOS are enriched in pro-angiogenic factors and exhibit gradual release kinetics. MIPSOS demonstrate superior pro-angiogenic properties and thus therapeutic potential.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Marisa Assunção
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kwok Keung Lit
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Xiaoling Wang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yi-Yun Chen
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yucong Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Shun Hing Institute of Advanced Engineering (SHIAE), Faculty of Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Him Kendrick Yiu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg, Saar, Germany
| | - Dan Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
| | - Rocky S. Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Kay-Hooi Khoo
- Academia Sinica Common Mass Spectrometry Facilities for Proteomics and Protein Modification Analysis, and Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, China
| | - Michael Raghunath
- Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Bioproducts Institute, Departments of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- Corresponding author. BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
| | - Anna Blocki
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China
- Corresponding author. School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, Hong Kong Special Administrative Region of China.
| |
Collapse
|
20
|
Development of Surgically Transplantable Parathyroid Hormone-Releasing Microbeads. Biomedicines 2022; 10:biomedicines10020440. [PMID: 35203648 PMCID: PMC8962264 DOI: 10.3390/biomedicines10020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoparathyroidism is an endocrine disorder that occurs because of the inability to produce parathyroid hormone (PTH) effectively. Previously, we reported the efficacy of tonsil-derived mesenchymal stem cells (TMSCs) differentiated into parathyroid-like cells for the treatment of hypoparathyroidism. Here, we investigated the feasibility of three-dimensional structural microbeads fabricated with TMSCs and alginate, a natural biodegradable polymer, to treat hypoparathyroidism. Alginate microbeads were fabricated by dropping a 2% (w/v) alginate solution containing TMSCs into a 5% CaCl2 solution and then differentiated into parathyroid-like cells using activin A and sonic hedgehog for 7 days. The protein expression of PTH, a specific marker of the parathyroid gland, was significantly higher in differentiated alginate microbeads with TMSCs (Al-dT) compared with in undifferentiated alginate microbeads with TMSCs. For in vivo experiments, we created the hypoparathyroidism animal model by parathyroidectomy (PTX) and implanted alginate microbeads in the dorsal interscapular region. The PTX rats with Al-dT (PTX+Al-dT) showed the highest survival rate and weight change and a gradual increase in serum intact PTH levels. We also detected a higher expression of PTH in retrieved tissues of PTX+Al-dT using immunofluorescence analysis. This study demonstrates that alginate microbeads are potential a new tool as a surgically scalable therapy for treating hypoparathyroidism.
Collapse
|
21
|
Najar M, Melki R, Khalife F, Lagneaux L, Bouhtit F, Moussa Agha D, Fahmi H, Lewalle P, Fayyad-Kazan M, Merimi M. Therapeutic Mesenchymal Stem/Stromal Cells: Value, Challenges and Optimization. Front Cell Dev Biol 2022; 9:716853. [PMID: 35096805 PMCID: PMC8795900 DOI: 10.3389/fcell.2021.716853] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cellular therapy aims to replace damaged resident cells by restoring cellular and molecular environments suitable for tissue repair and regeneration. Among several candidates, mesenchymal stem/stromal cells (MSCs) represent a critical component of stromal niches known to be involved in tissue homeostasis. In vitro, MSCs appear as fibroblast-like plastic adherent cells regardless of the tissue source. The therapeutic value of MSCs is being explored in several conditions, including immunological, inflammatory and degenerative diseases, as well as cancer. An improved understanding of their origin and function would facilitate their clinical use. The stemness of MSCs is still debated and requires further study. Several terms have been used to designate MSCs, although consensual nomenclature has yet to be determined. The presence of distinct markers may facilitate the identification and isolation of specific subpopulations of MSCs. Regarding their therapeutic properties, the mechanisms underlying their immune and trophic effects imply the secretion of various mediators rather than direct cellular contact. These mediators can be packaged in extracellular vesicles, thus paving the way to exploit therapeutic cell-free products derived from MSCs. Of importance, the function of MSCs and their secretome are significantly sensitive to their environment. Several features, such as culture conditions, delivery method, therapeutic dose and the immunobiology of MSCs, may influence their clinical outcomes. In this review, we will summarize recent findings related to MSC properties. We will also discuss the main preclinical and clinical challenges that may influence the therapeutic value of MSCs and discuss some optimization strategies.
Collapse
Affiliation(s)
- Mehdi Najar
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Rahma Melki
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
| | - Ferial Khalife
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences I, Hadath, Lebanon
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fatima Bouhtit
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Douaa Moussa Agha
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Hadath, Lebanon
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath, Lebanon
| | - Makram Merimi
- Genetics and Immune-Cell Therapy Unit, LBBES Laboratory, Faculty of Sciences, University Mohammed Premier, Oujda, Morocco
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
22
|
Gallo A, Cuscino N, Contino F, Bulati M, Pampalone M, Amico G, Zito G, Carcione C, Centi C, Bertani A, Conaldi PG, Miceli V. Changes in the Transcriptome Profiles of Human Amnion-Derived Mesenchymal Stromal/Stem Cells Induced by Three-Dimensional Culture: A Potential Priming Strategy to Improve Their Properties. Int J Mol Sci 2022; 23:863. [PMID: 35055049 PMCID: PMC8778321 DOI: 10.3390/ijms23020863] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) are believed to function in vivo as a homeostatic tool that shows therapeutic properties for tissue repair/regeneration. Conventionally, these cells are expanded in two-dimensional (2D) cultures, and, in that case, MSCs undergo genotypic/phenotypic changes resulting in a loss of their therapeutic capabilities. Moreover, several clinical trials using MSCs have shown controversial results with moderate/insufficient therapeutic responses. Different priming methods were tested to improve MSC effects, and three-dimensional (3D) culturing techniques were also examined. MSC spheroids display increased therapeutic properties, and, in this context, it is crucial to understand molecular changes underlying spheroid generation. To address these limitations, we performed RNA-seq on human amnion-derived MSCs (hAMSCs) cultured in both 2D and 3D conditions and examined the transcriptome changes associated with hAMSC spheroid formation. We found a large number of 3D culture-sensitive genes and identified selected genes related to 3D hAMSC therapeutic effects. In particular, we observed that these genes can regulate proliferation/differentiation, as well as immunomodulatory and angiogenic processes. We validated RNA-seq results by qRT-PCR and methylome analysis and investigation of secreted factors. Overall, our results showed that hAMSC spheroid culture represents a promising approach to cell-based therapy that could significantly impact hAMSC application in the field of regenerative medicine.
Collapse
Affiliation(s)
- Alessia Gallo
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Nicola Cuscino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Flavia Contino
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Mariangela Pampalone
- Fondazione Ri.MED, 90127 Palermo, Italy; (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Fondazione Ri.MED, 90127 Palermo, Italy; (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giovanni Zito
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | | | - Claudio Centi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy;
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (A.G.); (N.C.); (F.C.); (M.B.); (G.Z.); (C.C.); (P.G.C.)
| |
Collapse
|
23
|
Feng Z, Yang Y, Liu Z, Zhao W, Huang L, Wu T, Mu Y. Integrated analysis of DNA methylome and transcriptome reveals the differences in biological characteristics of porcine mesenchymal stem cells. BMC Genom Data 2021; 22:56. [PMID: 34922435 PMCID: PMC8684131 DOI: 10.1186/s12863-021-01016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bone marrow (BM) and umbilical cord (UC) are the main sources of mesenchymal stem cells (MSCs). These two MSCs display significant differences in many biological characteristics, yet the underlying regulation mechanisms of these cells remain largely unknown. RESULTS BMMSCs and UCMSCs were isolated from inbred Wuzhishan miniature pigs and the first global DNA methylation and gene expression profiles of porcine MSCs were generated. The osteogenic and adipogenic differentiation ability of porcine BMMSCs is greater than that of UCMSCs. A total of 1979 genes were differentially expressed and 587 genes were differentially methylated at promoter regions in these cells. Integrative analysis revealed that 102 genes displayed differences in both gene expression and promoter methylation. Gene ontology enrichment analysis showed that these genes were associated with cell differentiation, migration, and immunogenicity. Remarkably, skeletal system development-related genes were significantly hypomethylated and upregulated, whereas cell cycle genes were opposite in UCMSCs, implying that these cells have higher cell proliferative activity and lower differentiation potential than BMMSCs. CONCLUSIONS Our results indicate that DNA methylation plays an important role in regulating the differences in biological characteristics of BMMSCs and UCMSCs. Results of this study provide a molecular theoretical basis for the application of porcine MSCs in human medicine.
Collapse
Affiliation(s)
- Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yalan Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zhiguo Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weimin Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianwen Wu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yulian Mu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
24
|
Lee JS, Shim DW, Kang KY, Chae DS, Lee WS. Method Categorization of Stem Cell Therapy for Degenerative Osteoarthritis of the Knee: A Review. Int J Mol Sci 2021; 22:ijms222413323. [PMID: 34948119 PMCID: PMC8704290 DOI: 10.3390/ijms222413323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023] Open
Abstract
Current clinical applications of mesenchymal stem cell therapy for osteoarthritis lack consistency because there are no established criteria for clinical processes. We aimed to systematically organize stem cell treatment methods by reviewing the literature. The treatment methods used in 27 clinical trials were examined and reviewed. The clinical processes were separated into seven categories: cell donor, cell source, cell preparation, delivery methods, lesion preparation, concomitant procedures, and evaluation. Stem cell donors were sub-classified as autologous and allogeneic, and stem cell sources included bone marrow, adipose tissue, peripheral blood, synovium, placenta, and umbilical cord. Mesenchymal stem cells can be prepared by the expansion or isolation process and attached directly to cartilage defects using matrices or injected into joints under arthroscopic observation. The lesion preparation category can be divided into three subcategories: chondroplasty, microfracture, and subchondral drilling. The concomitant procedure category describes adjuvant surgery, such as high tibial osteotomy. Classification codes were assigned for each subcategory to provide a useful and convenient method for organizing documents associated with stem cell treatment. This classification system will help researchers choose more unified treatment methods, which will facilitate the efficient comparison and verification of future clinical outcomes of stem cell therapy for osteoarthritis.
Collapse
Affiliation(s)
- Jae Sun Lee
- Stem Cell Therapy Center, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Dong Woo Shim
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Kyung-Yil Kang
- Department of Medicine, Catholic Kwandong Graduate School, Gangneung-si 25601, Korea;
| | - Dong-Sik Chae
- Department of Orthopedic Surgery, International St. Mary’s Hospital, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| | - Woo-Suk Lee
- Department of Orthopedic Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06276, Korea
- Correspondence: (D.-S.C.); (W.-S.L.); Tel.: +82-32-290-3878 (D.-S.C.); +82-2-2019-3410 (W.-S.L.); Fax: +82-32-290-3879 (D.-S.C.); +82-2-573-5393 (W.-S.L.)
| |
Collapse
|
25
|
Al-Sayegh M, Ali H, Jamal MH, ElGindi M, Chanyong T, Al-Awadi K, Abu-Farha M. Mouse Embryonic Fibroblast Adipogenic Potential: A Comprehensive Transcriptome Analysis. Adipocyte 2021; 10:1-20. [PMID: 33345692 PMCID: PMC7757854 DOI: 10.1080/21623945.2020.1859789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Our understanding of adipose tissue has progressed from an inert tissue for energy storage to be one of the largest endocrine organs regulating metabolic homoeostasis through its ability to synthesize and release various adipokines that regulate a myriad of pathways. The field of adipose tissue biology is growing due to this association with various chronic metabolic diseases. An important process in the regulation of adipose tissue biology is adipogenesis, which is the formation of new adipocytes. Investigating adipogenesis in vitro is currently a focus for identifying factors that might be utilized in clinically. A powerful tool for such work is high-throughput sequencing which can rapidly identify changes at gene expression level. Various cell models exist for studying adipogenesis and has been used in high-throughput studies, yet little is known about transcriptome profile that underlies adipogenesis in mouse embryonic fibroblasts. This study utilizes RNA-sequencing and computational analysis with DESeq2, gene ontology, protein–protein networks, and robust rank analysis to understand adipogenesis in mouse embryonic fibroblasts in-depth. Our analyses confirmed the requirement of mitotic clonal expansion prior to adipogenesis in this cell model and highlight the role of Cebpa and Cebpb in regulating adipogenesis through interactions of large numbers of genes.
Collapse
Affiliation(s)
- Mohamed Al-Sayegh
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| | - Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Center (HSC), Kuwait University, Kuwait City, State of Kuwait
| | - Mei ElGindi
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Tina Chanyong
- New York University Abu Dhabi, Division of Biology, Abu Dhabi, United Arab Emirates
| | - Khulood Al-Awadi
- New York University Abu Dhabi, Design Studio, Abu Dhabi, United Arab Emirates
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Kuwait City, State of Kuwait
| |
Collapse
|
26
|
Park IS, Kim DK, Kim JH, Bae JS, Kim EH, Yoo SH, Chung YJ, Lyu L, Mo JH. Increased Anti-Allergic Effects of Secretome of Low-Level Light Treated Tonsil-Derived Mesenchymal Stem Cells in Allergic Rhinitis Mouse Model. Am J Rhinol Allergy 2021; 36:261-268. [PMID: 34738483 DOI: 10.1177/19458924211053762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Low-level light therapy (LLLT) is widely used for the photobiomodulation of cell behavior. Recent studies have shown that LLLT affects the proliferation and migration of various types of mesenchymal stem cells (MSCs). However, there is a lack of studies investigating the effect of LLT on enhancing the immunomodulatory properties of tonsil-derived MSCs (T-MSCs). OBJECTIVE The aim of this study was to investigate the immunomodulatory effects of conditioned media from T-MSCs (T-MSCs-CM) treated with LLLT in allergic inflammation. METHODS We isolated T-MSCs from human palatine tonsils and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM treated with LLLT was evaluated in a mouse model of allergic rhinitis (AR). We randomly divided the mice into four groups (negative control, positive control, T-MSCs-CM alone, and T-MSCs-CM treated with LLLT). To elucidate the therapeutic effect, we assessed rhinitis symptoms, serum immunoglobulin (Ig), the number of inflammatory cells, and cytokine expression. RESULTS We identified increased expression of immunomodulatory factors, such as HGF, TGF-β, and PGE, in T-MSCs-CM treated with LLLT, compared to T-MSCs-CM without LLLT. Our animal study demonstrated reduced allergic symptoms and lower expression of total IgE and OVA-specific IgE in the LLLT-treated T-MSCs-CM group compared to the AR group and T-MSCs-CM alone. Moreover, we found that T-MSCs-CM treated with LLLT showed significantly decreased infiltration of eosinophils, neutrophils, and IL-17 cells in the nasal mucosa and reduced IL-4, IL-17, and IFN-γ expression in OVA-incubated splenocytes compared to the AR group. CONCLUSIONS The present study suggests that T-MSCs-CM treated with LLLT may provide an improved therapeutic effect against nasal allergic inflammation than T-MSCs-CM alone.
Collapse
Affiliation(s)
- In-Su Park
- 34919Ajou University Medical Center, Suwon, Republic of Korea
| | - Dong-Kyu Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, 96664Hallym University College of Medicine, Chuncheon Sacred Heart Hospital, Chuncheon, Republic of Korea.,Institute of New Frontier Research, 96664Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Ji Hye Kim
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Jun-Sang Bae
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Eun Hee Kim
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Shin Hyuk Yoo
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Young-Jun Chung
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Lele Lyu
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Ji-Hun Mo
- Department of Otorhinolaryngology, 464237Dankook University College of Medicine, Cheonan, Republic of Korea.,Beckman Laser Institute Korea, 464237Dankook University College of Medicine, Cheonan, Republic of Korea
| |
Collapse
|
27
|
Choi DW, Cho KA, Kim J, Lee HJ, Kim YH, Park JW, Woo SY. Extracellular vesicles from tonsil‑derived mesenchymal stromal cells show anti‑tumor effect via miR‑199a‑3p. Int J Mol Med 2021; 48:221. [PMID: 34676871 PMCID: PMC8559701 DOI: 10.3892/ijmm.2021.5054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are mesoderm‑originated adult SCs that possess multidirectional differentiation potential. MSCs migrate to injured tissue and secrete a range of paracrine factors that induce regeneration in damaged tissue and exert immune modulation. Because tumor progression is dependent on cross‑talk between the tumor and its microenvironment, MSCs also produce extracellular vesicles (EVs) that mediate information transfer in the tumor microenvironment. However, the effect of MSC‑derived EVs on tumor development and progression is still controversial. To date, tonsil‑derived MSCs (T‑MSCs) have been shown to possess all the defined characteristics of MSCs and show distinctive features of differential potential and immune modulation. To observe the effect of soluble mediators from T‑MSCs on tumor growth, human liver cancer cell line (HepG2) cells were injected into nude mice and HepG2 cell scratch migration assay was performed using conditioned medium (CM) of T‑MSCs. T‑MSC CM inhibited tumor growth and progression and it was hypothesized that EVs from T‑MSCs could inhibit tumor progression. microRNA (miRNA or miR) sequencing using five different origins of T‑MSC‑derived EVs was performed and highly expressed miRNAs, such as miR‑199a‑3p, miR‑214‑3p, miR‑199a‑5p and miR‑199b‑5p, were selected. T‑MSCs inhibited tumor growth and HepG2 cell migration, potentially via miR‑199a‑3p targeting CD151, integrin α3 and 6 in HepG2 cells.
Collapse
Affiliation(s)
- Da-Won Choi
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Jungwoo Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - Jang-Won Park
- Department of Orthopaedic Surgery, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul 07804, Republic of Korea
| |
Collapse
|
28
|
Induction of the CD24 Surface Antigen in Primary Undifferentiated Human Adipose Progenitor Cells by the Hedgehog Signaling Pathway. Biologics 2021. [DOI: 10.3390/biologics1020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the murine model system of adipogenesis, the CD24 cell surface protein represents a valuable marker to label undifferentiated adipose progenitor cells. Indeed, when injected into the residual fat pads of lipodystrophic mice, these CD24 positive cells reconstitute a normal white adipose tissue (WAT) depot. Unluckily, similar studies in humans are rare and incomplete. This is because it is impossible to obtain large numbers of primary CD24 positive human adipose stem cells (hASCs). This study shows that primary hASCs start to express the glycosylphosphatidylinositol (GPI)-anchored CD24 protein when cultured with a chemically defined medium supplemented with molecules that activate the Hedgehog (Hh) signaling pathway. Therefore, this in vitro system may help understand the biology and role in adipogenesis of the CD24-positive hASCs. The induced cells’ phenotype was studied by flow cytometry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) techniques, and their secretion profile. The results show that CD24 positive cells are early undifferentiated progenitors expressing molecules related to the angiogenic pathway.
Collapse
|
29
|
Lee HJ, Kim YH, Choi DW, Cho KA, Park JW, Shin SJ, Jo I, Woo SY, Ryu KH. Tonsil-derived mesenchymal stem cells enhance allogeneic bone marrow engraftment via collagen IV degradation. Stem Cell Res Ther 2021; 12:329. [PMID: 34090520 PMCID: PMC8180137 DOI: 10.1186/s13287-021-02414-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Co-transplantation of bone marrow cells (BMCs) and mesenchymal stem cells (MSCs) is used as a strategy to improve the outcomes of bone marrow transplantation. Tonsil-derived MSCs (TMSCs) are a promising source of MSCs for co-transplantation. Previous studies have shown that TMSCs or conditioned media from TMSCs (TMSC-CM) enhance BMC engraftment. However, the factors in TMSCs that promote better engraftment have not yet been identified. METHODS Mice were subjected to a myeloablative regimen of busulfan and cyclophosphamide, and the mRNA expression in the bone marrow was analyzed using an extracellular matrix (ECM) and adhesion molecule-targeted polymerase chain reaction (PCR) array. Nano-liquid chromatography with tandem mass spectrometry, real-time quantitative PCR, western blots, and enzyme-linked immunosorbent assays were used to compare the expression levels of metalloproteinase 3 (MMP3) in MSCs derived from various tissues, including the tonsils, bone marrow, adipose tissue, and umbilical cord. Recipient mice were conditioned with busulfan and cyclophosphamide, and BMCs, either as a sole population or with control or MMP3-knockdown TMSCs, were co-transplanted into these mice. The effects of TMSC-expressed MMP3 were investigated. Additionally, Enzchek collagenase and Transwell migration assays were used to confirm that the collagenase activity of TMSC-expressed MMP3 enhanced BMC migration. RESULTS Mice subjected to the myeloablative regimen exhibited increased mRNA expression of collagen type IV alpha 1/2 (Col4a1 and Col4a2). Among the various extracellular matrix-modulating proteins secreted by TMSCs, MMP3 was expressed at higher levels in TMSCs than in other MSCs. Mice co-transplanted with BMCs and control TMSCs exhibited a higher survival rate, weight recovery, and bone marrow cellularity compared with mice co-transplanted with BMCs and MMP3-knockdown TMSCs. Control TMSC-CM possessed higher collagenase activity against collagen IV than MMP3-knockdown TMSC-CM. TMSC-CM also accelerated BMC migration by degrading collagen IV in vitro. CONCLUSIONS Collectively, these results indicate that TMSCs enhance BMC engraftment by the secretion of MMP3 for the modulation of the bone marrow extracellular matrix.
Collapse
Affiliation(s)
- Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Da-Won Choi
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea.,Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Inho Jo
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea.,Department of Molecular Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, Republic of Korea
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
30
|
Galipeau J, Krampera M, Leblanc K, Nolta JA, Phinney DG, Shi Y, Tarte K, Viswanathan S, Martin I. Mesenchymal stromal cell variables influencing clinical potency: the impact of viability, fitness, route of administration and host predisposition. Cytotherapy 2021; 23:368-372. [PMID: 33714704 PMCID: PMC11708105 DOI: 10.1016/j.jcyt.2020.11.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
The International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee has been an interested observer of community interests in all matters related to MSC identity, mechanism of action, potency assessment and etymology, and it has regularly contributed to this conversation through a series of MSC pre-conferences and committee publications dealing with these matters. Arising from these reflections, the authors propose that an overlooked and potentially disruptive perspective is the impact of in vivo persistence on potency that is not predicted by surrogate cellular potency assays performed in vitro and how this translates to in vivo outcomes. Systemic delivery or extravascular implantation at sites removed from the affected organ system seems to be adequate in affecting clinical outcomes in many pre-clinical murine models of acute tissue injury and inflammatory pathology, including the recent European Medicines Agency-approved use of MSCs in Crohn-related fistular disease. The authors further propose that MSC viability and metabolic fitness likely dominate as a potency quality attribute, especially in recipients poised for salutary benefits as defined by emerging predictive biomarkers of response.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Medicine, Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin, USA.
| | - Mauro Krampera
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Katarina Leblanc
- Department of Laboratory Medicine, Center for Allogeneic Stem Cell Transplantation, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jan A Nolta
- Stem Cell Program, University of California Davis, Sacramento, California, USA
| | - Donald G Phinney
- Department of Molecular Therapeutics, Scripps Research Institute, Jupiter, Florida, USA
| | - Yufang Shi
- Institute for Translational Medicine, Soochow University, Suzhou, China
| | - Karin Tarte
- Établissement Français du Sang Bretagne, Institute for Health and Medical Research, University of Rennes, Rennes, France
| | - Sowmya Viswanathan
- Department of Medicine and Institute of Biomedical Engineering, Krembil Research Institute, University Health Network, University of Toronto, Toronto, Canada
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
31
|
Kim J, Lee C, Shin Y, Wang S, Han J, Kim M, Kim JM, Shin SC, Lee BJ, Kim TJ, Jung Y. sEVs from tonsil-derived mesenchymal stromal cells alleviate activation of hepatic stellate cells and liver fibrosis through miR-486-5p. Mol Ther 2021; 29:1471-1486. [PMID: 33348053 PMCID: PMC8058446 DOI: 10.1016/j.ymthe.2020.12.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/24/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are considered as a promising therapeutic tool for liver fibrosis, a main feature of chronic liver disease. Because small extracellular vesicles (sEVs) harboring a variety of proteins and RNAs are known to have similar functions with their derived cells, MSC-derived sEVs carry out the regenerative capacities of MSCs. Human tonsil-derived MSCs (T-MSCs) are reported as a novel source of MSCs, but their effects on liver fibrosis remain unclear. In the present study, we investigated the effects of T-MSC-derived sEVs on liver fibrosis. The expression of profibrotic genes decreased in human primary hepatic stellate cells (pHSCs) co-cultured with T-MSCs. Treatment of T-MSC-sEVs inactivated human and mouse pHSCs. Administration of T-MSC-sEVs ameliorated hepatic injuries and fibrosis in chronically damaged liver induced by carbon tetrachloride (CCl4). miR-486-5p highly enriched in T-MSC-sEVs targeting the hedgehog receptor, smoothened (Smo), was upregulated, whereas Smo and Gli2, the hedgehog target gene, were downregulated in pHSCs and liver tissues treated with T-MSC-sEVs or miR-486-5p mimic, indicating that sEV-miR-486 inactivates HSCs by suppressing hedgehog signaling. Our results showed that T-MSCs attenuate HSC activation and liver fibrosis by delivering sEVs, and miR-486 in the sEVs inactivates hedgehog signaling, suggesting that T-MSCs and their sEVs are novel anti-fibrotic therapeutics for treating chronic liver disease.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Yongbo Shin
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Sihyung Wang
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Minju Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Ji Min Kim
- Pusan National University Medical Research Institute, Pusan National University School of Medicine, Pusan 49241, Republic of Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Pusan 49241, Republic of Korea
| | - Byung-Joo Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Pusan National University and Medical Research Institute, Pusan National University Hospital, Pusan 49241, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea; Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea; Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea.
| |
Collapse
|
32
|
Kim HY, Oh SY, Choi YM, Park JH, Kim HS, Jo I. Transient receptor potential vanilloid 2 mediates the inhibitory effect of far-infrared irradiation on adipogenic differentiation of tonsil-derived mesenchymal stem cells. Stem Cell Res 2021; 53:102291. [PMID: 33780730 DOI: 10.1016/j.scr.2021.102291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS Far-infrared (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs. METHODS TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, respectively. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers. RESULTS Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel. CONCLUSION Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation.
Collapse
Affiliation(s)
- Ha Yeong Kim
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Young Min Choi
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Jung-Hyun Park
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul 07804, Republic of Korea.
| |
Collapse
|
33
|
Sun C, Zhang K, Yue J, Meng S, Zhang X. Deconstructing transcriptional variations and their effects on immunomodulatory function among human mesenchymal stromal cells. Stem Cell Res Ther 2021; 12:53. [PMID: 33422149 PMCID: PMC7796611 DOI: 10.1186/s13287-020-02121-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stromal cell (MSC)-based therapies are being actively investigated in various inflammatory disorders. However, functional variability among MSCs cultured in vitro will lead to distinct therapeutic efficacies. Until now, the mechanisms behind immunomodulatory functional variability in MSCs are still unclear. Methods We systemically investigated transcriptomic variations among MSC samples derived from multiple tissues to reveal their effects on immunomodulatory functions of MSCs. We then analyzed transcriptomic changes of MSCs licensed with INFγ to identify potential molecular mechanisms that result in distinct MSC samples with different immunomodulatory potency. Results MSCs were clustered into distinct groups showing different functional enrichment according to transcriptomic patterns. Differential expression analysis indicated that different groups of MSCs deploy common regulation networks in response to inflammatory stimulation, while expression variation of genes in the networks could lead to different immunosuppressive capability. These different responsive genes also showed high expression variability among unlicensed MSC samples. Finally, a gene panel was derived from these different responsive genes and was able to regroup unlicensed MSCs with different immunosuppressive potencies. Conclusion This study revealed genes with expression variation that contribute to immunomodulatory functional variability of MSCs and provided us a strategy to identify candidate markers for functional variability assessment of MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02121-8.
Collapse
Affiliation(s)
- Changbin Sun
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kehua Zhang
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Jianhui Yue
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.,Section of Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Shufang Meng
- Cell Collection and Research Center, National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Xi Zhang
- BGI-Shenzhen, Jinsha Road, Dapeng New District, Shenzhen, 518083, China. .,China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| |
Collapse
|
34
|
Abreu de Melo MI, da Silva Cunha P, Coutinho de Miranda M, Faraco CCF, Barbosa JL, da Fonseca Ferreira A, Kunrath Lima M, Faria JAQA, Rodrigues MÂ, de Goes AM, Gomes DA. Human adipose-derived stromal/stem cells are distinct from dermal fibroblasts as evaluated by biological characterization and RNA sequencing. Cell Biochem Funct 2021; 39:442-454. [PMID: 33389760 DOI: 10.1002/cbf.3610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
Human adipose-derived stromal/stem cells (ASC) have immunomodulatory properties and the potential to differentiate into several cell lines, important for application in regenerative medicine. However, the contamination with dermal fibroblasts (FIB) can impair the beneficial effects of ASC in cell therapy. It is then essential to develop new strategies that contribute to the distinction between these two cell types. In this study, we performed functional assays, high-throughput RNA sequencing (RNA-Seq) and quantitative PCR (qPCR) to find new markers that can distinguish ASC and FIB. We showed that ASC have adipogenic and osteogenic differentiation capacity and alkaline phosphatase activity, not observed in FIB. Gene expression variation analysis identified more than 2000 differentially expressed genes (DEG) between these two cell types. We validated 16 genes present in the list of DEG, including the alkaline phosphatase gene (ALPL). In conclusion, we showed that ASC and FIB have distinct biological properties as demonstrated by alkaline phosphatase activity and differentiation capacity, besides having different gene expression profiles. SIGNIFICANCE OF THE STUDY: Although many differences between stromal stem cells derived from human adipose tissue (ASC) and human dermal fibroblasts (FIB) are described, it is still difficult to find specific markers to differentiate them. This problem can interfere with the therapeutic use of ASC. This work aimed to find new markers to differentiate these two cell populations. Our findings suggest that these cells can be distinguished by biological and molecular characteristics, such as adipogenic and osteogenic differentiation, alkaline phosphatase activity and differential gene expression profiles. The DEG were related to the regulation of the cell cycle, development process, structural organization of the cell and synthesis of the extracellular matrix. This study helps to find new cellular markers to distinguish the two populations and to better understand the properties of these cells, which can improve cell therapy.
Collapse
Affiliation(s)
- Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pricila da Silva Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joana Lobato Barbosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marianna Kunrath Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Michele Ângela Rodrigues
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
35
|
Kim T, Lim S, Yun S, Jeong S, Park T, Choi J. Design Strategy of Quantum Dot Thin-Film Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002460. [PMID: 33079485 DOI: 10.1002/smll.202002460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Quantum dots (QDs) are emerging photovoltaic materials that display exclusive characteristics that can be adjusted through modification of their size and surface chemistry. However, designing a QD-based optoelectronic device requires specialized approaches compared with designing conventional bulk-based solar cells. In this paper, design considerations for QD thin-film solar cells are introduced from two different viewpoints: optics and electrics. The confined energy level of QDs contributes to the adjustment of their band alignment, enabling their absorption characteristics to be adapted to a specific device purpose. However, the materials selected for this energy adjustment can increase the light loss induced by interface reflection. Thus, management of the light path is important for optical QD solar cell design, whereas surface modification is a crucial issue for the electrical design of QD solar cells. QD thin-film solar cell architectures are fabricated as a heterojunction today, and ligand exchange provides suitable doping states and enhanced carrier transfer for the junction. Lastly, the stability issues and methods on QD thin-film solar cells are surveyed. Through these strategies, a QD solar cell study can provide valuable insights for future-oriented solar cell technology.
Collapse
Affiliation(s)
- Taewan Kim
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seyeong Lim
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sunhee Yun
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sohee Jeong
- Department of Energy Science and Center for Artificial Atoms, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taiho Park
- Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jongmin Choi
- Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
| |
Collapse
|
36
|
Hoang VT, Trinh QM, Phuong DTM, Bui HTH, Hang LM, Ngan NTH, Anh NTT, Nhi PY, Nhung TTH, Lien HT, Nguyen TD, Thanh LN, Hoang DM. Standardized xeno- and serum-free culture platform enables large-scale expansion of high-quality mesenchymal stem/stromal cells from perinatal and adult tissue sources. Cytotherapy 2020; 23:88-99. [PMID: 33097415 DOI: 10.1016/j.jcyt.2020.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are of interest for the treatment of graft-versus-host disease, autoimmune diseases, osteoarthritis and neurological and cardiovascular diseases. Increasing numbers of clinical trials emphasize the need for standardized manufacturing of these cells. However, many challenges related to diverse isolation and expansion protocols and differences in cell tissue sources exist. As a result, the cell products used in numerous trials vary greatly in characteristics and potency. METHODS The authors have established a standardized culture platform using xeno- and serum-free commercial media for expansion of MSCs derived from umbilical cord (UC), bone marrow and adipose-derived (AD) and examined their functional characteristics. RESULTS MSCs from the tested sources stably expanded in vitro and retained their biomarker expression and normal karyotype at early and later passages and after cryopreservation. MSCs were capable of colony formation and successfully differentiated into osteogenic, adipogenic and chondrogenic lineages. Pilot expansion of UC-MSCs and AD-MSCs to clinical scale revealed that the cells met the required quality standard for therapeutic applications. CONCLUSIONS The authors' data suggest that xeno- and serum-free culture conditions are suitable for large-scale expansion and enable comparative study of MSCs of different origins. This is of importance for therapeutic purposes, especially because of the numerous variations in pre-clinical and clinical protocols for MSC-based products.
Collapse
Affiliation(s)
- Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam.
| | - Quynh-Mai Trinh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Dam Thi Minh Phuong
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Hue Thi Hong Bui
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Le Minh Hang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Nguyen Thi Hong Ngan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Nguyen Thi Tuyet Anh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Phung Yen Nhi
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trinh Thi Hong Nhung
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Ha Thi Lien
- College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Tu Dac Nguyen
- College of Health Science, VinUniversity, Hanoi, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam; Vinmec HiTech Center, Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
37
|
Luo L, Zhou Y, Zhang C, Huang J, Du J, Liao J, Bergholt NL, Bünger C, Xu F, Lin L, Tong G, Zhou G, Luo Y. Feeder-free generation and transcriptome characterization of functional mesenchymal stromal cells from human pluripotent stem cells. Stem Cell Res 2020; 48:101990. [PMID: 32950887 DOI: 10.1016/j.scr.2020.101990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/23/2020] [Accepted: 09/05/2020] [Indexed: 01/18/2023] Open
Abstract
Induced mesenchymal stromal cells (iMSCs) derived from human pluripotent stem cells (PSCs) are attractive cells for regenerative medicine. However, the transcriptome of iMSCs and signature genes that can distinguish MSCs from fibroblasts and other cell types are rarely explored. In this study, we reported an optimized feeder-free method for the generation of iMSCs from human pluripotent stem cells. These iMSCs display a typical MSC morphology, express classic MSC markers (CD29, CD44, CD73, CD90, CD105, CD166), are negative for lymphocyte markers (CD11b, CD14, CD31, CD34, CD45, HLA-DR), and are potent for osteogenic and chondrogenic differentiation. Using genome-wide transcriptome profiling, we created an easily accessible transcriptome reference for the process of differentiating PSCs into iMSCs. The iMSC transcriptome reference revealed clear patterns in the silencing of pluripotency genes, activation of lineage commitment genes, and activation of mesenchymal genes during iMSC generation. All previously known positive and negative markers for MSCs were confirmed by our iMSC transcriptomic reference, and most importantly, gene classification and time course analysis identified 52 genes including FN1, TGFB1, TAGLN and SERPINE1, which showed significantly higher expression in MSCs (over 3 folds) than fibroblasts and other cell types. Taken together, these results provide a useful method and important resources for developing and understanding iMSCs in regenerative medicine.
Collapse
Affiliation(s)
- Lidan Luo
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518033, China; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Yan Zhou
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; Lungene Technologies Co., Ltd, Shenzhen, China.
| | - Chenxi Zhang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China.
| | - Jinrong Huang
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China; Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark.
| | - Jie Du
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; Lungene Technologies Co., Ltd, Shenzhen, China.
| | - Jinqi Liao
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China; Lungene Technologies Co., Ltd, Shenzhen, China.
| | | | - Cody Bünger
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Fengping Xu
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China.
| | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Guangdong Tong
- Department of Liver Disease, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen 518033, China.
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, China.
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qingdao, BGI-Shenzhen, Shenzhen 518083, China; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
38
|
Cruz-Barrera M, Flórez-Zapata N, Lemus-Diaz N, Medina C, Galindo CC, González-Acero LX, Correa L, Camacho B, Gruber J, Salguero G. Integrated Analysis of Transcriptome and Secretome From Umbilical Cord Mesenchymal Stromal Cells Reveal New Mechanisms for the Modulation of Inflammation and Immune Activation. Front Immunol 2020; 11:575488. [PMID: 33117373 PMCID: PMC7561386 DOI: 10.3389/fimmu.2020.575488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have been used in over 800 clinical trials with encouraging results in the field of transplant medicine and chronic inflammatory diseases. Today, Umbilical Cord (UC)-derived MSC are the second leading source used for clinical purposes, mainly due to its easy access and superior immune modulatory effects. Although the underlying molecular mechanisms of immune suppressive activities have not been fully understood, research over the last decade strongly suggests that MSC-mediated benefits are closely related to activation of secretome networks. Nevertheless, recent findings also point to cytokine-independent mechanisms as key players of MSC-mediated immune modulation. Here, we set up a robust in vitro immune assay using phytohemagglutinin- or anti-CD3/CD28-treated human peripheral blood mononuclear cells in cell-to-cell interaction or in cell-contact independent format with UC-MSC and conducted integrated transcriptome and secretome analyses to dissect molecular pathways driving UC-MSC-mediated immune modulation. Under inflammatory stimuli, multiparametric analyses of the secretome led us to identify cytokine/chemokine expression patterns associated with the induction of MSC-reprogrammed macrophages and T cell subsets ultimately leading to immune suppression. UC-MSC transcriptome analysis under inflammatory challenge allowed the identification of 47 differentially expressed genes, including chemokines, anti- and pro-inflammatory cytokines and adhesion molecules found also in UC-MSC-immunosupressive secretomes, including the novel candidate soluble IL-2R. This study enabled us to track functionally activated UC-MSC during immune suppression and opened an opportunity to explore new pathways involved in immunity control by UC-MSC. We propose that identified immunomodulatory molecules and pathways could potentially be translated into clinical settings in order to improve UC-MSC-therapy quality and efficacy.
Collapse
Affiliation(s)
- Mónica Cruz-Barrera
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Nathalia Flórez-Zapata
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia.,Universidad EIA, Envigado, Colombia
| | - Nicolás Lemus-Diaz
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Carlos Medina
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Cristian-Camilo Galindo
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Lorena-Xiomara González-Acero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Luz Correa
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Bernardo Camacho
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| | - Jens Gruber
- Junior Research Group Medical RNA Biology, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud - IDCBIS, Bogotá, Colombia
| |
Collapse
|
39
|
Choi DH, Oh SY, Choi JK, Lee KE, Lee JY, Park YJ, Jo I, Park YS. A transcriptomic analysis of serial-cultured, tonsil-derived mesenchymal stem cells reveals decreased integrin α3 protein as a potential biomarker of senescent cells. Stem Cell Res Ther 2020; 11:359. [PMID: 32807231 PMCID: PMC7430027 DOI: 10.1186/s13287-020-01860-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have been widely used for stem cell therapy, and serial passage of stem cells is often required to obtain sufficient cell numbers for practical applications in regenerative medicine. A long-term serial cell expansion can potentially induce replicative senescence, which leads to a progressive decline in stem cell function and stemness, losing multipotent characteristics. To improve the therapeutic efficiency of stem cell therapy, it would be important to identify specific biomarkers for senescent cells. METHODS Tonsil-derived mesenchymal stem cells (TMSCs) with 20-25 passages were designated as culture-aged TMSCs, and their mesodermal differentiation potentials as well as markers of senescence and stemness were compared with the control TMSCs passaged up to 8 times at the most (designated as young). A whole-genome analysis was used to identify novel regulatory factors that distinguish between the culture-aged and control TMSCs. The identified markers of replicative senescence were validated using Western blot analyses. RESULTS The culture-aged TMSCs showed longer doubling time compared to control TMSCs and had higher expression of senescence-associated (SA)-β-gal staining but lower expression of the stemness protein markers, including Nanog, Oct4, and Sox2 with decreased adipogenic, osteogenic, and chondrogenic differentiation potentials. Microarray analyses identified a total of 18,614 differentially expressed genes between the culture-aged and control TMSCs. The differentially expressed genes were classified into the Gene Ontology categories of cellular component (CC), functional component (FC), and biological process (BP) using KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis. This analysis revealed that those genes associated with CC and BP showed the most significant difference between the culture-aged and control TMSCs. The genes related to extracellular matrix-receptor interactions were also shown to be significantly different (p < 0.001). We also found that culture-aged TMSCs had decreased expressions of integrin α3 (ITGA3) and phosphorylated AKT protein (p-AKT-Ser473) compared to the control TMSCs. CONCLUSIONS Our data suggest that activation of ECM-receptor signaling, specifically involved with integrin family-mediated activation of the intracellular cell survival-signaling molecule AKT, can regulate stem cell senescence in TMSCs. Among these identified factors, ITGA3 was found to be a representative biomarker of the senescent TMSCs. Exclusion of the TMSCs with the senescent TMSC markers in this study could potentially increase the therapeutic efficacy of TMSCs in clinical applications.
Collapse
Affiliation(s)
- Da Hyeon Choi
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Se-Young Oh
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Ju Kwang Choi
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyeong Eun Lee
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ju Yeon Lee
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yoon Jeong Park
- Central Research Institute, Nano Intelligent Biomedical Engineering Corporation (NIBEC), School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Dental Regenerative Bioengineering and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, Republic of Korea
| | - Inho Jo
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
- Ewha Tonsil-derived Mesenchymal Stem Cells Research Center (ETSRC), College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Yoon Shin Park
- Department of Microbiology, School of Biological Sciences, College of Natural Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
40
|
Comparison of skeletal and soft tissue pericytes identifies CXCR4 + bone forming mural cells in human tissues. Bone Res 2020; 8:22. [PMID: 32509378 PMCID: PMC7244476 DOI: 10.1038/s41413-020-0097-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022] Open
Abstract
Human osteogenic progenitors are not precisely defined, being primarily studied as heterogeneous multipotent cell populations and termed mesenchymal stem cells (MSCs). Notably, select human pericytes can develop into bone-forming osteoblasts. Here, we sought to define the differentiation potential of CD146+ human pericytes from skeletal and soft tissue sources, with the underlying goal of defining cell surface markers that typify an osteoblastogenic pericyte. CD146+CD31-CD45- pericytes were derived by fluorescence-activated cell sorting from human periosteum, adipose, or dermal tissue. Periosteal CD146+CD31-CD45- cells retained canonical features of pericytes/MSC. Periosteal pericytes demonstrated a striking tendency to undergo osteoblastogenesis in vitro and skeletogenesis in vivo, while soft tissue pericytes did not readily. Transcriptome analysis revealed higher CXCR4 signaling among periosteal pericytes in comparison to their soft tissue counterparts, and CXCR4 chemical inhibition abrogated ectopic ossification by periosteal pericytes. Conversely, enrichment of CXCR4+ pericytes or stromal cells identified an osteoblastic/non-adipocytic precursor cell. In sum, human skeletal and soft tissue pericytes differ in their basal abilities to form bone. Diversity exists in soft tissue pericytes, however, and CXCR4+ pericytes represent an osteoblastogenic, non-adipocytic cell precursor. Indeed, enrichment for CXCR4-expressing stromal cells is a potential new tactic for skeletal tissue engineering.
Collapse
|
41
|
Single-Cell RNA Sequencing of Hematopoietic Stem and Progenitor Cells Treated with Gemcitabine and Carboplatin. Genes (Basel) 2020; 11:genes11050549. [PMID: 32422951 PMCID: PMC7288450 DOI: 10.3390/genes11050549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Treatments that include gemcitabine and carboplatin induce dose-limiting myelosuppression. The understanding of how human bone marrow is affected on a transcriptional level leading to the development of myelosuppression is required for the implementation of personalized treatments in the future. In this study, we treated human hematopoietic stem and progenitor cells (HSPCs) harvested from a patient with chronic myelogenous leukemia (CML) with gemcitabine/carboplatin. Thereafter, scRNA-seq was performed to distinguish transcriptional effects induced by gemcitabine/carboplatin. Gene expression was calculated and evaluated among cells within and between samples compared to untreated cells. Cell cycle analysis showed that the treatments effectively decrease cell proliferation, indicated by the proportion of cells in the G2M-phase dropping from 35% in untreated cells to 14.3% in treated cells. Clustering and t-SNE showed that cells within samples and between treated and untreated samples were affected differently. Enrichment analysis of differentially expressed genes showed that the treatments influence KEGG pathways and Gene Ontologies related to myeloid cell proliferation/differentiation, immune response, cancer, and the cell cycle. The present study shows the feasibility of using scRNA-seq and chemotherapy-treated HSPCs to find genes, pathways, and biological processes affected among and between treated and untreated cells. This indicates the possible gains of using single-cell toxicity studies for personalized medicine.
Collapse
|
42
|
The Supernatant of Tonsil-Derived Mesenchymal Stem Cell Has Antiallergic Effects in Allergic Rhinitis Mouse Model. Mediators Inflamm 2020; 2020:6982438. [PMID: 32322164 PMCID: PMC7166282 DOI: 10.1155/2020/6982438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Methods We isolated T-MSCs from human palatine tonsil and evaluated the ingredients of T-MSCs-CM. The effect of T-MSCs-CM was evaluated in the AR mouse model that was randomly divided into five groups (negative control, positive control, and T-MSCs-CM treated (0.1 mg, 1 mg, and 10 mg)). To investigate the therapeutic effect, we analyzed rhinitis symptoms, serum immunoglobulin (Ig), inflammatory cells, and cytokine expression. We also assessed T cell receptor signal, including MAP kinase (ERK/JNK), p65, and NFAT1. Results We identified the increment of TGF-β1, PGE2, and HGF in the T-MSCs-CM. In an animal study, the T-MSCs-CM-treated group showed significantly reduced allergic symptoms and infiltration of eosinophils and neutrophils in the nasal mucosa, whereas there was no significant difference in total IgE and the OVA-specific IgE level. Additionally, we found that the 10 mg T-MSCs-CM-treated group showed a significantly decreased IL-4 mRNA expression, compared to the (+) Con group. In the analysis of T cell receptor signal, the phosphorylation of MAP kinases, translocation of p65, and activation of NFAT1 were inhibited after T-MSCs-CM. Conclusions Our findings suggest that T-MSCs-CM showed a partial immunomodulatory effect on the AR mouse model by the inhibition of T cell activation via MAP kinase, p65, and NFAT1.
Collapse
|
43
|
Han X, Yang B, Zou F, Sun J. Clinical therapeutic efficacy of mesenchymal stem cells derived from adipose or bone marrow for knee osteoarthritis: a meta-analysis of randomized controlled trials. J Comp Eff Res 2020; 9:361-374. [PMID: 32141308 DOI: 10.2217/cer-2019-0187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: This meta-analysis, only including randomized controlled trials (RCTs), was conducted to assess separately and compare the therapeutic efficacy of adipose-derived mesenchymal stem cells (ADMSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) for knee osteoarthritis (OA) at the same follow-up time. Methods: Potential relevant researches were identified from PubMed, Web of Science, Embase, Cochrane Library and clinicaltrials.gov. The data, from clinical trials concentrating on knee OA treated with ADMSCs or BMSCs, were extracted and pooled for meta-analysis to compare the clinical outcomes of patients with knee OA in visual analog scale (VAS), Western Ontario McMaster Universities Osteoarthritis Index (WOMAC), Lysholm knee scale (Lysholm) and Tegner activity scale (Tegner). Results: Nine randomized controlled trials including a total of 377 patients met the inclusion criteria. This meta-analysis obtained the following results. First, the improvement of VAS scores was statistically significant after BMSCs treatment at 6-, 12- and 24-month follow-up compared with control groups (p < 0.01). In contrast, the improvement of WOMAC scores was of no statistical significance, but showed a positive trend with the prolongation of the follow-up time (6 months: mean difference [MD] = 6.51; 95% CI: -2.38 to 15.40; p = 0.15; 12 months: MD = -6.81; 95% CI: -13.94 to 0.33; p = 0.06). Lysholm scores presented a similar pattern (12 months: MD = 1.93; 95% CI: -11.52 to 15.38; p = 0.78; 24 months: MD = 8.94; 95% CI: 1.45 to 16.43; p = 0.02). Second, VAS and WOMAC scores of patients after ADMSCs treatment were significantly improved at any follow-up time (p ≤ 0.05). The improvement of Lysholm scores was of no statistical significance compared with control groups, although treatment outcome at 12-month follow-up was better than that at 24-month follow-up, which was debatable because only data of one clinical trial were pooled in the analysis (12 months: MD = 7.50; 95% CI: -1.94 to 16.94; p = 0.12; 24 months: MD = 5.10; 95% CI: -3.02 to 13.22; p = 0.22). Finally, by comparing the statistical results of VAS and WOMAC scores, it could be concluded that the therapeutic effect of ADMSCs on knee OA was more effective than that of BMSCs. Conclusion: This meta-analysis showed that regeneration with BMSCs or ADMSCs had a great application potential in the treatment of patients with knee OA, and ADMSCs tended to be superior to BMSCs according to the limited clinical evidences available.
Collapse
Affiliation(s)
- Xinxin Han
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bo Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fagui Zou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
44
|
Kim K, Gil M, Dayem AA, Choi S, Kang GH, Yang GM, Cho S, Jeong Y, Kim SJ, Seok J, Kwak HJ, Kumar Saha S, Kim A, Cho SG. Improved Isolation and Culture of Urine-Derived Stem Cells (USCs) and Enhanced Production of Immune Cells from the USC-Derived Induced Pluripotent Stem Cells. J Clin Med 2020; 9:E827. [PMID: 32197458 PMCID: PMC7141314 DOI: 10.3390/jcm9030827] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The availability of autologous adult stem cells is one of the essential prerequisites for human stem cell therapy. Urine-derived stem cells (USCs) are considered as desirable cell sources for cell therapy because donor-specific USCs are easily and non-invasively obtained from urine. Efficient isolation, expansion, and differentiation methods of USCs are necessary to increase their availability. Here, we developed a method for efficient isolation and expansion of USCs using Matrigel, and the rho-associated protein kinase (ROCK) inhibitor, Y-27632. The prepared USCs showed significantly enhanced migration, colony forming capacity, and differentiation into osteogenic or chondrogenic lineage. The USCs were successfully reprogramed into induced pluripotent stem cells (USC-iPSCs) and further differentiated into kidney organoid and hematopoietic progenitor cells (HPCs). Using flavonoid molecules, the isolation efficiency of USCs and the production of HPCs from the USC-iPSCs was increased. Taken together, we present an improved isolation method of USCs utilizing Matrigel, a ROCK inhibitor and flavonoids, and enhanced differentiation of USC-iPSC to HPC by flavonoids. These novel findings could significantly enhance the use of USCs and USC-iPSCs for stem cell research and further application in regenerative stem cell-based therapies.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sungha Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Yeojin Jeong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Se Jong Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Jaekwon Seok
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Hee Jeong Kwak
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| |
Collapse
|
45
|
Kim YH, Cho KA, Lee HJ, Park M, Shin SJ, Park JW, Woo SY, Ryu KH. Conditioned Medium from Human Tonsil-Derived Mesenchymal Stem Cells Enhances Bone Marrow Engraftment via Endothelial Cell Restoration by Pleiotrophin. Cells 2020; 9:cells9010221. [PMID: 31952360 PMCID: PMC7017309 DOI: 10.3390/cells9010221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cotransplantation of mesenchymal stem cells (MSCs) with hematopoietic stem cells (HSCs) has been widely reported to promote HSC engraftment and enhance marrow stromal regeneration. The present study aimed to define whether MSC conditioned medium could recapitulate the effects of MSC cotransplantation. Mouse bone marrow (BM) was partially ablated by the administration of a busulfan and cyclophosphamide (Bu–Cy)-conditioning regimen in BALB/c recipient mice. BM cells (BMCs) isolated from C57BL/6 mice were transplanted via tail vein with or without tonsil-derived MSC conditioned medium (T-MSC CM). Histological analysis of femurs showed increased BM cellularity when T-MSC CM or recombinant human pleiotrophin (rhPTN), a cytokine readily secreted from T-MSCs with a function in hematopoiesis, was injected with BMCs. Microstructural impairment in mesenteric and BM arteriole endothelial cells (ECs) were observed after treatment with Bu–Cy-conditioning regimen; however, T-MSC CM or rhPTN treatment restored the defects. These effects by T-MSC CM were disrupted in the presence of an anti-PTN antibody, indicating that PTN is a key mediator of EC restoration and enhanced BM engraftment. In conclusion, T-MSC CM administration enhances BM engraftment, in part by restoring vasculature via PTN production. These findings highlight the potential therapeutic relevance of T-MSC CM for increasing HSC transplantation efficacy.
Collapse
Affiliation(s)
- Yu-Hee Kim
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Kyung-Ah Cho
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Hyun-Ji Lee
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Minhwa Park
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Sang-Jin Shin
- Department of Orthopaedic Surgery, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea;
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea;
| | - So-Youn Woo
- Department of Microbiology, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea; (Y.-H.K.); (K.-A.C.); (H.-J.L.); (M.P.); (S.-Y.W.)
| | - Kyung-Ha Ryu
- Department of Pediatrics, College of Medicine, Ewha Womans University, Gangseo-Gu, Seoul 07804, Korea
- Correspondence: ; Tel.: +82-2-6986-1666; Fax: +82-2-6986-7000
| |
Collapse
|
46
|
Ni H, Zhao Y, Ji Y, Shen J, Xiang M, Xie Y. Adipose-derived stem cells contribute to cardiovascular remodeling. Aging (Albany NY) 2019; 11:11756-11769. [PMID: 31800397 PMCID: PMC6932876 DOI: 10.18632/aging.102491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/17/2019] [Indexed: 02/06/2023]
Abstract
Obesity is an independent risk factor for cardiovascular disease. Adipose tissue was initially thought to be involved in metabolism through paracrine. Recent researches discovered mesenchymal stem cells inside adipose tissue which could differentiate into vascular lineages in vitro and in vivo, participating vascular remodeling. However, there were few researches focusing on distinct characteristics and functions of adipose-derived stem cells (ADSCs) from different regions. This is the first comprehensive review demonstrating the variances of ADSCs from the perspective of their origins.
Collapse
Affiliation(s)
- Hui Ni
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiming Zhao
- Department of Endocrinology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongli Ji
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
47
|
Rockel JS, Rabani R, Viswanathan S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Semin Cell Dev Biol 2019; 101:87-103. [PMID: 31757583 DOI: 10.1016/j.semcdb.2019.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Most chronic diseases involving inflammation have a fibrotic component that involves remodeling and excess accumulation of extracellular matrix components. Left unchecked, fibrosis leads to organ failure and death. Mesenchymal stromal cells (MSCs) are emerging as a potent cell-based therapy for a wide spectrum of fibrotic conditions due to their immunomodulatory, anti-inflammatory and anti-fibrotic properties. This review provides an overview of known mechanisms by which MSCs mediate their anti-fibrotic actions and in relation to animal models of pulmonary, liver, renal and cardiac fibrosis. Recent MSC clinical trials results in liver, lung, skin, kidney and hearts are discussed and next steps for future MSC-based therapies including pre-activated or genetically-modified cells, or extracellular vesicles are also considered.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Razieh Rabani
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
48
|
Identification of WNT16 as a Predictable Biomarker for Accelerated Osteogenic Differentiation of Tonsil-Derived Mesenchymal Stem Cells In Vitro. Stem Cells Int 2019; 2019:8503148. [PMID: 31582989 PMCID: PMC6754949 DOI: 10.1155/2019/8503148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/30/2019] [Accepted: 08/17/2019] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stem cells (MSCs) for treating bone-related diseases shows promising outcomes in preclinical studies. However, cells that are isolated and defined as MSCs comprise a heterogeneous population of progenitors. This heterogeneity can produce variations in the performance of MSCs, especially in applications that require differentiation potential in vivo, such as the treatment of osteoporosis. Here, we aimed to identify genetic markers in tonsil-derived MSCs (T-MSCs) that can predict osteogenic potential. Using a single-cell cloning method, we isolated and established several lines of nondifferentiating (ND) or osteoblast-prone (OP) clones. Next, we performed transcriptome sequencing of three ND and three OP clones that maintained the characteristics of MSCs and determined the top six genes that were upregulated in OP clones. Upregulation of WNT16 and DCLK1 expression was confirmed by real-time quantitative PCR, but only WNT16 expression was correlated with the osteogenic differentiation of T-MSCs from 10 different donors. Collectively, our findings suggest that WNT16 is a putative genetic marker that predicts the osteogenic potential of T-MSCs. Thus, examination of WNT16 expression as a selection criterion prior to the clinical application of MSCs may enhance the therapeutic efficacy of stem cell therapy for bone-related complications, including osteoporosis.
Collapse
|
49
|
Ménard C, Dulong J, Roulois D, Hébraud B, Verdière L, Pangault C, Sibut V, Bezier I, Bescher N, Monvoisin C, Gadelorge M, Bertheuil N, Flécher E, Casteilla L, Collas P, Sensebé L, Bourin P, Espagnolle N, Tarte K. Integrated transcriptomic, phenotypic, and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells 2019; 38:146-159. [PMID: 31502731 DOI: 10.1002/stem.3077] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
Abstract
Clinical-grade mesenchymal stromal cells (MSCs) can be expanded from bone marrow and adipose tissue to treat inflammatory diseases and degenerative disorders. However, the influence of their tissue of origin on their functional properties, including their immunosuppressive activity, remains unsolved. In this study, we produced paired bone marrow-derived mesenchymal stromal cell (BM-MSC) and adipose-derived stromal cell (ASC) batches from 14 healthy donors. We then compared them using transcriptomic, phenotypic, and functional analyses and validated our results on purified native MSCs to infer which differences were really endowed by tissue of origin. Cultured MSCs segregated together owing to their tissue of origin based on their gene expression profile analyzed using differential expression and weighted gene coexpression network analysis. This translated into distinct immune-related gene signatures, phenotypes, and functional cell interactions. Importantly, sorted native BM-MSCs and ASCs essentially displayed the same distinctive patterns than their in vitro-expanded counterparts. As a whole, ASCs exhibited an immune profile consistent with a stronger inhibition of immune response and a lower immunogenicity, supporting the use of adipose tissue as a valuable source for clinical applications.
Collapse
Affiliation(s)
- Cédric Ménard
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Joëlle Dulong
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - David Roulois
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Benjamin Hébraud
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Léa Verdière
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Céline Pangault
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,Pôle Biologie, CHU Rennes, Rennes, France
| | - Vonick Sibut
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Isabelle Bezier
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Nadège Bescher
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| | - Céline Monvoisin
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France
| | - Mélanie Gadelorge
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Nicolas Bertheuil
- SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France.,Department of Plastic Surgery, CHU Rennes, Rennes, France
| | - Erwan Flécher
- Department of Thoracic and Cardiac Surgery, CHU Rennes, Rennes, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Philippe Collas
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Luc Sensebé
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | | | - Nicolas Espagnolle
- STROMALab, Etablissement Français du Sang-Occitanie (EFS), Inserm 1031, University of Toulouse, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, Toulouse, France
| | - Karin Tarte
- UMR 1236, University of Rennes, INSERM, Etablissement Français du Sang Bretagne, Rennes, France.,SITI Laboratory, Etablissement Français du Sang Bretagne, CHU Rennes, Rennes, France
| |
Collapse
|
50
|
Xu J, Wang Y, Hsu CY, Gao Y, Meyers CA, Chang L, Zhang L, Broderick K, Ding C, Peault B, Witwer K, James AW. Human perivascular stem cell-derived extracellular vesicles mediate bone repair. eLife 2019; 8:e48191. [PMID: 31482845 PMCID: PMC6764819 DOI: 10.7554/elife.48191] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022] Open
Abstract
The vascular wall is a source of progenitor cells that are able to induce skeletal repair, primarily by paracrine mechanisms. Here, the paracrine role of extracellular vesicles (EVs) in bone healing was investigated. First, purified human perivascular stem cells (PSCs) were observed to induce mitogenic, pro-migratory, and pro-osteogenic effects on osteoprogenitor cells while in non-contact co-culture via elaboration of EVs. PSC-derived EVs shared mitogenic, pro-migratory, and pro-osteogenic properties of their parent cell. PSC-EV effects were dependent on surface-associated tetraspanins, as demonstrated by EV trypsinization, or neutralizing antibodies for CD9 or CD81. Moreover, shRNA knockdown in recipient cells demonstrated requirement for the CD9/CD81 binding partners IGSF8 and PTGFRN for EV bioactivity. Finally, PSC-EVs stimulated bone repair, and did so via stimulation of skeletal cell proliferation, migration, and osteodifferentiation. In sum, PSC-EVs mediate the same tissue repair effects of perivascular stem cells, and represent an 'off-the-shelf' alternative for bone tissue regeneration.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yiyun Wang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Ching-Yun Hsu
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Yongxing Gao
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | | | - Leslie Chang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
| | - Leititia Zhang
- Department of PathologyJohns Hopkins UniversityBaltimoreUnited States
- Department of Oral and Maxillofacial Surgery, School of StomatologyChina Medical UniversityShenyangChina
| | | | - Catherine Ding
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
| | - Bruno Peault
- Department of Orthopaedic Surgery, Orthopaedic Hospital Research CenterUCLA, Orthopaedic HospitalLos AngelesUnited States
- Centre For Cardiovascular ScienceUniversity of EdinburghEdinburghUnited Kingdom
- MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUnited Kingdom
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins UniversityBaltimoreUnited States
- Department of NeurologyJohns Hopkins UniversityBaltimoreUnited States
| | | |
Collapse
|