1
|
Ghosh P, Seitz O. Boronic Acid-Linked Apo-Zinc Finger Protein for Ubiquitin Delivery in Live Cells. Chembiochem 2025; 26:e202401040. [PMID: 39950407 DOI: 10.1002/cbic.202401040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Delivering cargo into live cells has extensive applications in chemistry, biology, and medicine. Cell-penetrating peptides (CPPs) provide an ideal solution for cellular delivery. Enhancing CPPs with additional functional units can improve delivery efficiency. We investigate the conjugation of boronic acid modules to enhance internalization through interactions with cell surface glycans. The aim of this study is to determine whether adding boronic acid can transform a peptide that typically lacks CPP properties into one that functions as a CPP, enabling the delivery of crucial biological cargo like ubiquitin (Ub). The zinc finger protein in its apo state was selected as a "boronate-enabled" CPP. Results indicate that skeletal point mutations and post-synthetic modifications, combined with conjugated benzoboroxole derivatives, enable the apo-ZFP the ability to transport Ub within A549 cells, confirmed through microscopy and flow cytometry. This effective internalization of cargo offers valuable insights for advancing the development of boronic acid-mediated cell-penetrating peptides.
Collapse
Affiliation(s)
- Pritam Ghosh
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Institute of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
2
|
Church TR, Margolis SS. Mechanisms of ubiquitin-independent proteasomal degradation and their roles in age-related neurodegenerative disease. Front Cell Dev Biol 2025; 12:1531797. [PMID: 39990094 PMCID: PMC11842346 DOI: 10.3389/fcell.2024.1531797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Neurodegenerative diseases are characterized by the progressive breakdown of neuronal structure and function and the pathological accumulation of misfolded protein aggregates and toxic protein oligomers. A major contributor to the deterioration of neuronal physiology is the disruption of protein catabolic pathways mediated by the proteasome, a large protease complex responsible for most cellular protein degradation. Previously, it was believed that proteolysis by the proteasome required tagging of protein targets with polyubiquitin chains, a pathway called the ubiquitin-proteasome system (UPS). Because of this, most research on proteasomal roles in neurodegeneration has historically focused on the UPS. However, additional ubiquitin-independent pathways and their importance in neurodegeneration are increasingly recognized. In this review, we discuss the range of ubiquitin-independent proteasome pathways, focusing on substrate identification and targeting, regulatory molecules and adaptors, proteasome activators and alternative caps, and diverse proteasome complexes including the 20S proteasome, the neuronal membrane proteasome, the immunoproteasome, extracellular proteasomes, and hybrid proteasomes. These pathways are further discussed in the context of aging, oxidative stress, protein aggregation, and age-associated neurodegenerative diseases, with a special focus on Alzheimer's Disease, Huntington's Disease, and Parkinson's Disease. A mechanistic understanding of ubiquitin-independent proteasome function and regulation in neurodegeneration is critical for the development of therapies to treat these devastating conditions. This review summarizes the current state of ubiquitin-independent proteasome research in neurodegeneration.
Collapse
Affiliation(s)
- Taylor R. Church
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Seth S. Margolis
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Beriashvili D, Folkers GE, Baldus M. Ubiquitin's Conformational Heterogeneity as Discerned by Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2024; 25:e202400508. [PMID: 39140844 PMCID: PMC11664922 DOI: 10.1002/cbic.202400508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Visualizing a protein's molecular motions has been a long standing topic of research in the biophysics community. Largely this has been done by exploiting nuclear magnetic resonance spectroscopy (NMR), and arguably no protein's molecular motions have been better characterized by NMR than that of ubiquitin (Ub), a 76 amino acid polypeptide essential in ubiquitination-a key regulatory system within cells. Herein, we discuss ubiquitin's conformational plasticity as visualized, at atomic resolution, by more than 35 years of NMR work. In our discussions we point out the differences between data acquired in vitro, ex vivo, as well as in vivo and stress the need to investigate Ub's conformational plasticity in more biologically representative backgrounds.
Collapse
Affiliation(s)
- David Beriashvili
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Gert E. Folkers
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| | - Marc Baldus
- NMR SpectroscopyBijvoet Center for Biomolecular ResearchUtrecht UniversityPadaulaan 83584 CHUtrechtThe Netherlands
| |
Collapse
|
4
|
Beriashvili D, Zhou J, Liu Y, Folkers GE, Baldus M. Cellular Applications of DNP Solid-State NMR - State of the Art and a Look to the Future. Chemistry 2024; 30:e202400323. [PMID: 38451060 DOI: 10.1002/chem.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Sensitivity enhanced dynamic nuclear polarization solid-state NMR is emerging as a powerful technique for probing the structural properties of conformationally homogenous and heterogenous biomolecular species irrespective of size at atomic resolution within their native environments. Herein we detail advancements that have made acquiring such data, specifically within the confines of intact bacterial and eukaryotic cell a reality and further discuss the type of structural information that can presently be garnered by the technique's exploitation. Subsequently, we discuss bottlenecks that have thus far curbed cellular DNP-ssNMR's broader adoption namely due a lack of sensitivity and spectral resolution. We also explore possible solutions ranging from utilization of new pulse sequences, design of better performing polarizing agents, and application of additional biochemical/ cell biological methodologies.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jiaxin Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics, Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padaulaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
5
|
Liu YJ, Wang JY, Zhang XL, Jiang LL, Hu HY. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS J 2024; 291:1795-1812. [PMID: 38308810 DOI: 10.1111/febs.17081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/28/2023] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Ataxin-2 (Atx2) is a polyglutamine (polyQ) protein, in which abnormal expansion of the polyQ tract can trigger protein aggregation and consequently cause spinocerebellar ataxia type 2 (SCA2), but the mechanism underlying how Atx2 aggregation leads to proteinopathy remains elusive. Here, we investigate the molecular mechanism and cellular consequences of Atx2 aggregation by molecular cell biology approaches. We have revealed that either normal or polyQ-expanded Atx2 can sequester Raptor, a component of mammalian target of rapamycin complex 1 (mTORC1), into aggregates based on their specific interaction. Further research indicates that the polyQ tract and the N-terminal region (residues 1-784) of Atx2 are responsible for the specific sequestration. Moreover, this sequestration leads to suppression of the mTORC1 activity as represented by down-regulation of phosphorylated P70S6K, which can be reversed by overexpression of Raptor. As mTORC1 is a key regulator of autophagy, Atx2 aggregation and sequestration also induces autophagy by upregulating LC3-II and reducing phosphorylated ULK1 levels. This study proposes that Atx2 sequesters Raptor into aggregates, thereby impairing cellular mTORC1 signaling and inducing autophagy, and will be beneficial for a better understanding of the pathogenesis of SCA2 and other polyQ diseases.
Collapse
Affiliation(s)
- Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Yang Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang-Le Zhang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Onkar A, Sheshadri D, Rai A, Gupta AK, Gupta N, Ganesh S. Increase in brain glycogen levels ameliorates Huntington's disease phenotype and rescues neurodegeneration in Drosophila. Dis Model Mech 2023; 16:dmm050238. [PMID: 37681238 PMCID: PMC10602008 DOI: 10.1242/dmm.050238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Under normal physiological conditions, the mammalian brain contains very little glycogen, most of which is stored in astrocytes. However, the aging brain and the subareas of the brain in patients with neurodegenerative disorders tend to accumulate glycogen, the cause and significance of which remain largely unexplored. Using cellular models, we have recently demonstrated a neuroprotective role for neuronal glycogen and glycogen synthase in the context of Huntington's disease. To gain insight into the role of brain glycogen in regulating proteotoxicity, we utilized a Drosophila model of Huntington's disease, in which glycogen synthase is either knocked down or expressed ectopically. Enhancing glycogen synthesis in the brains of flies with Huntington's disease decreased mutant Huntingtin aggregation and reduced oxidative stress by activating auto-lysosomal functions. Further, overexpression of glycogen synthase in the brain rescues photoreceptor degeneration, improves locomotor deficits and increases fitness traits in this Huntington's disease model. We, thus, provide in vivo evidence for the neuroprotective functions of glycogen synthase and glycogen in neurodegenerative conditions, and their role in the neuronal autophagy process.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Deepashree Sheshadri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
| | - Anupama Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Arjit Kant Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur 208016, India
- Centre of Excellence in Neuroscience, Neurotechnology, and Mental Health, Gangwal School of Medical Sciences and Technology, IIT, Kanpur 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
7
|
Beriashvili D, Yao R, D'Amico F, Krafčíková M, Gurinov A, Safeer A, Cai X, Mulder MPC, Liu Y, Folkers GE, Baldus M. A high-field cellular DNP-supported solid-state NMR approach to study proteins with sub-cellular specificity. Chem Sci 2023; 14:9892-9899. [PMID: 37736634 PMCID: PMC10510770 DOI: 10.1039/d3sc02117c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Studying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [13C,15N] labeled ubiquitin. We report that SNAPol-1 passively diffuses and homogenously distributes within whole cells and cell nuclei providing ubiquitin spectra of high sensitivity and remarkably improved spectral resolution. For cell nuclei, physical enrichment facilitates a further 4-fold decrease in measurement time and provides an exclusive structural view of the nuclear ubiquitin pool. Taken together, these advancements enable atomic interrogation of protein conformational plasticity at atomic resolution and with sub-cellular specificity.
Collapse
Affiliation(s)
- David Beriashvili
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Ru Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Francesca D'Amico
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Michaela Krafčíková
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Andrei Gurinov
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Adil Safeer
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Xinyi Cai
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC) Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University Tianjin 300070 P. R. China
| | - Gert E Folkers
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8 3584 CH Utrecht The Netherlands
| |
Collapse
|
8
|
Sap KA, Geijtenbeek KW, Schipper-Krom S, Guler AT, Reits EA. Ubiquitin-modifying enzymes in Huntington's disease. Front Mol Biosci 2023; 10:1107323. [PMID: 36926679 PMCID: PMC10013475 DOI: 10.3389/fmolb.2023.1107323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the N-terminus of the HTT gene. The CAG repeat expansion translates into a polyglutamine expansion in the mutant HTT (mHTT) protein, resulting in intracellular aggregation and neurotoxicity. Lowering the mHTT protein by reducing synthesis or improving degradation would delay or prevent the onset of HD, and the ubiquitin-proteasome system (UPS) could be an important pathway to clear the mHTT proteins prior to aggregation. The UPS is not impaired in HD, and proteasomes can degrade mHTT entirely when HTT is targeted for degradation. However, the mHTT protein is differently ubiquitinated when compared to wild-type HTT (wtHTT), suggesting that the polyQ expansion affects interaction with (de) ubiquitinating enzymes and subsequent targeting for degradation. The soluble mHTT protein is associated with several ubiquitin-modifying enzymes, and various ubiquitin-modifying enzymes have been identified that are linked to Huntington's disease, either by improving mHTT turnover or affecting overall homeostasis. Here we describe their potential mechanism of action toward improved mHTT targeting towards the proteostasis machinery.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne W Geijtenbeek
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Sabine Schipper-Krom
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Arzu Tugce Guler
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Hu HY, Liu YJ. Sequestration of cellular native factors by biomolecular assemblies: Physiological or pathological? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119360. [PMID: 36087810 DOI: 10.1016/j.bbamcr.2022.119360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
In addition to native-state structures, biomolecules often form condensed supramolecular assemblies or cellular membraneless organelles that are critical for cell life. These biomolecular assemblies, generally including liquid-like droplets (condensates) and amyloid-like aggregates, can sequester or recruit their interacting partners, so as to either modulate various cellular behaviors or even cause disorders. This review article summarizes recent advances in the sequestration of native factors by biomolecular assemblies and discusses their potential consequences on cellular function, homeostasis, and disease pathology.
Collapse
Affiliation(s)
- Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China.
| | - Ya-Jun Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
10
|
Abstract
![]()
There is a continuous demand to improve our
understanding of fundamental
processes that underlie human health and disease. Therefore, novel
strategies that can assist in these efforts are required. For example,
molecular biology and genetic approaches have revolutionized our understanding
of protein-mediated processes by facilitating their direct visualization
and analyses in living cells. Despite these developments, genetic
manipulation has limitations in controlling events that occur after
translation such as posttranslational modifications (PTMs), which
are imperative regulatory elements. As a result, developing new methods
to study PTMs in live cells is a major bottleneck in deciphering their
exact roles in the myriad cellular processes. Synthetic and
semisynthetic proteins are prepared by combining
solid phase peptide synthesis (SPPS) and chemoselective ligation approaches
with synthetic or recombinant peptides. Employing protein synthesis
allows chemists to incorporate natural and unnatural modifications
with virtually unlimited number of functional groups into the protein’s
sequence, such as PTMs and their mimics. In addition, synthetic proteins
can include additional elements such as fluorescent tags, reactive
groups, caged units, and enrichment handles. Therefore, harnessing
the power of chemical protein synthesis offers great opportunities
to study fundamental biological processes. Unfortunately, the
low cell permeability of proteins limits their
applications mainly to in vitro settings, excluding
live cell studies. As a result, chemical biologists have been attempting
to overcome these limitations by developing protein delivery methods
that would enable the study of custom-made proteins in a biological
context. Success with these strategies should enable accurate determination
of protein localization, degradation, folding, interactions, and involvement
in the assembly of membrane-less organelles formed by liquid–liquid
phase separation inside cells. Importantly, protein delivery approaches
are complementary to genetic manipulations, and combining these approaches
should pave the way to new discoveries. In this Account, we
describe recent developments in protein delivery
methods, with emphasis on those most compatible with synthetic proteins.
We highlight experimental approaches and conceptual adaptations required
to design and study synthetic proteins in live cells, with or without
genetic manipulation. In addition, we highlight the strength and weakness
of these approaches for both the delivery and the subsequent studies.
We also describe our endeavors to deliver synthetic proteins to cells
via cell penetrating peptides (CPPs) and multiplexed bead loading
(MBL), as showcases of the applications of these methods to shed light
on biological processes. Lastly, we contemplate other future applications
of synthetic proteins to answer questions that are currently unapproachable.
Collapse
Affiliation(s)
- Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Pradeep Sadhu
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200008, Israel
| |
Collapse
|
11
|
Mann G, Sadhu P, Brik A. Multiplexed Delivery of Synthetic (Un)Conjugatable Ubiquitin and SUMO2 Enables Simultaneous Monitoring of Their Localization and Function in Live Cells. Chembiochem 2022; 23:e202200122. [PMID: 35235714 PMCID: PMC9401080 DOI: 10.1002/cbic.202200122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Ubiquitin (Ub) and its related small Ub like modifier (SUMO) are among the most influential protein post-translational modifications in eukaryotes. Unfortunately, visualizing these modifications in live cells is a challenging task. Chemical protein synthesis offers great opportunities in studying and further understanding Ub and SUMO biology. Nevertheless, the low cell permeability of proteins limits these studies mainly for in vitro applications. Here, we introduce a multiplexed protein cell delivery approach, termed MBL (multiplexed bead loading), for simultaneous loading of up to four differentially labeled proteins with organic fluorophores. We applied MBL to visualize ubiquitination and SUMOylation events in live and untransfected cells without fluorescent protein tags or perturbation to their endogenous levels. Our study reveals unprecedented involvements of Ub and SUMO2 in lysosomes depending on conjugation states. We envision that this approach will improve our understanding of dynamic cellular processes such as formation and disassembly of membraneless organelles.
Collapse
Affiliation(s)
- Guy Mann
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Pradeep Sadhu
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
12
|
Nuclear and cytoplasmic huntingtin inclusions exhibit distinct biochemical composition, interactome and ultrastructural properties. Nat Commun 2021; 12:6579. [PMID: 34772920 PMCID: PMC8589980 DOI: 10.1038/s41467-021-26684-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Despite the strong evidence linking the aggregation of the Huntingtin protein (Htt) to the pathogenesis of Huntington's disease (HD), the mechanisms underlying Htt aggregation and neurodegeneration remain poorly understood. Herein, we investigated the ultrastructural properties and protein composition of Htt cytoplasmic and nuclear inclusions in mammalian cells and primary neurons overexpressing mutant exon1 of the Htt protein. Our findings provide unique insight into the ultrastructural properties of cytoplasmic and nuclear Htt inclusions and their mechanisms of formation. We show that Htt inclusion formation and maturation are complex processes that, although initially driven by polyQ-dependent Htt aggregation, also involve the polyQ and PRD domain-dependent sequestration of lipids and cytoplasmic and cytoskeletal proteins related to HD dysregulated pathways; the recruitment and accumulation of remodeled or dysfunctional membranous organelles, and the impairment of the protein quality control and degradation machinery. We also show that nuclear and cytoplasmic Htt inclusions exhibit distinct biochemical compositions and ultrastructural properties, suggesting different mechanisms of aggregation and toxicity.
Collapse
|
13
|
N-alpha-acetylation of Huntingtin protein increases its propensity to aggregate. J Biol Chem 2021; 297:101363. [PMID: 34732320 PMCID: PMC8640455 DOI: 10.1016/j.jbc.2021.101363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by a poly-CAG expansion in the first exon of the HTT gene, resulting in an extended poly-glutamine tract in the N-terminal domain of the Huntingtin (Htt) protein product. Proteolytic fragments of the poly-glutamine–containing N-terminal domain form intranuclear aggregates that are correlated with HD. Post-translational modification of Htt has been shown to alter its function and aggregation properties. However, the effect of N-terminal Htt acetylation has not yet been considered. Here, we developed a bacterial system to produce unmodified or N-terminally acetylated and aggregation-inducible Htt protein. We used this system together with biochemical, biophysical, and imaging studies to confirm that the Htt N-terminus is an in vitro substrate for the NatA N-terminal acetyltransferase and show that N-terminal acetylation promotes aggregation. These studies represent the first link between N-terminal acetylation and the promotion of a neurodegenerative disease and implicates NatA-mediated Htt acetylation as a new potential therapeutic target in HD.
Collapse
|
14
|
Dyakin VV, Wisniewski TM, Lajtha A. Racemization in Post-Translational Modifications Relevance to Protein Aging, Aggregation and Neurodegeneration: Tip of the Iceberg. Symmetry (Basel) 2021; 13:455. [PMID: 34350031 PMCID: PMC8330555 DOI: 10.3390/sym13030455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Homochirality of DNA and prevalent chirality of free and protein-bound amino acids in a living organism represents the challenge for modern biochemistry and neuroscience. The idea of an association between age-related disease, neurodegeneration, and racemization originated from the studies of fossils and cataract disease. Under the pressure of new results, this concept has a broader significance linking protein folding, aggregation, and disfunction to an organism's cognitive and behavioral functions. The integrity of cognitive function is provided by a delicate balance between the evolutionarily imposed molecular homo-chirality and the epigenetic/developmental impact of spontaneous and enzymatic racemization. The chirality of amino acids is the crucial player in the modulation the structure and function of proteins, lipids, and DNA. The collapse of homochirality by racemization is the result of the conformational phase transition. The racemization of protein-bound amino acids (spontaneous and enzymatic) occurs through thermal activation over the energy barrier or by the tunnel transfer effect under the energy barrier. The phase transition is achieved through the intermediate state, where the chirality of alpha carbon vanished. From a thermodynamic consideration, the system in the homo-chiral (single enantiomeric) state is characterized by a decreased level of entropy. The oscillating protein chirality is suggesting its distinct significance in the neurotransmission and flow of perceptual information, adaptive associative learning, and cognitive laterality. The common pathological hallmarks of neurodegenerative disorders include protein misfolding, aging, and the deposition of protease-resistant protein aggregates. Each of the landmarks is influenced by racemization. The brain region, cell type, and age-dependent racemization critically influence the functions of many intracellular, membrane-bound, and extracellular proteins including amyloid precursor protein (APP), TAU, PrP, Huntingtin, α-synuclein, myelin basic protein (MBP), and collagen. The amyloid cascade hypothesis in Alzheimer's disease (AD) coexists with the failure of amyloid beta (Aβ) targeting drug therapy. According to our view, racemization should be considered as a critical factor of protein conformation with the potential for inducing order, disorder, misfolding, aggregation, toxicity, and malfunctions.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| | - Thomas M. Wisniewski
- Departments of Neurology, Pathology and Psychiatry, Center for Cognitive Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Abel Lajtha
- Center for Neurochemistry, The Nathan S. Kline Institute for Psychiatric Research (NKI), Orangeburg, NY 10962, USA
| |
Collapse
|
15
|
Konstantoulea K, Louros N, Rousseau F, Schymkowitz J. Heterotypic interactions in amyloid function and disease. FEBS J 2021; 289:2025-2046. [PMID: 33460517 DOI: 10.1111/febs.15719] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Amyloid aggregation results from the self-assembly of identical aggregation-prone sequences into cross-beta-sheet structures. The process is best known for its association with a wide range of human pathologies but also as a functional mechanism in all kingdoms of life. Less well elucidated is the role of heterotypic interactions between amyloids and other proteins and macromolecules and how this contributes to disease. We here review current data with a focus on neurodegenerative amyloid-associated diseases. Evidence indicates that heterotypic interactions occur in a wide range of amyloid processes and that these interactions modify fundamental aspects of amyloid aggregation including seeding, aggregation rates and toxicity. More work is required to understand the mechanistic origin of these interactions, but current understanding suggests that both supersaturation and sequence-specific binding can contribute to heterotypic amyloid interactions. Further unravelling these mechanisms may help to answer outstanding questions in the field including the selective vulnerability of cells types and tissues and the stereotypical spreading patterns of amyloids in disease.
Collapse
Affiliation(s)
- Katerina Konstantoulea
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nikolaos Louros
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.,Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Kumar MJV, Shah D, Giridharan M, Yadav N, Manjithaya R, Clement JP. Spatiotemporal analysis of soluble aggregates and autophagy markers in the R6/2 mouse model. Sci Rep 2021; 11:96. [PMID: 33420088 PMCID: PMC7794371 DOI: 10.1038/s41598-020-78850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.
Collapse
Affiliation(s)
- M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Niraj Yadav
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
17
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
18
|
Cho J, Park J, Kim EE, Song EJ. Assay Systems for Profiling Deubiquitinating Activity. Int J Mol Sci 2020; 21:E5638. [PMID: 32781716 PMCID: PMC7460613 DOI: 10.3390/ijms21165638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023] Open
Abstract
Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein-protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.
Collapse
Affiliation(s)
- Jinhong Cho
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (E.E.K.)
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul 02792, Korea;
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (J.C.); (E.E.K.)
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
19
|
Kumar D, Ambasta RK, Kumar P. Ubiquitin biology in neurodegenerative disorders: From impairment to therapeutic strategies. Ageing Res Rev 2020; 61:101078. [PMID: 32407951 DOI: 10.1016/j.arr.2020.101078] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
The abnormal accumulation of neurotoxic proteins is the typical hallmark of various age-related neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis and Multiple sclerosis. The anomalous proteins, such as Aβ, Tau in Alzheimer's disease and α-synuclein in Parkinson's disease, perturb the neuronal physiology and cellular homeostasis in the brain thereby affecting the millions of human lives across the globe. Here, ubiquitin proteasome system (UPS) plays a decisive role in clearing the toxic metabolites in cells, where any aberrancy is widely reported to exaggerate the neurodegenerative pathologies. In spite of well-advancement in the ubiquitination research, their molecular markers and mechanisms for target-specific protein ubiquitination and clearance remained elusive. Therefore, this review substantiates the role of UPS in the brain signaling and neuronal physiology with their mechanistic role in the NDD's specific pathogenic protein clearance. Moreover, current and future promising therapies are discussed to target UPS-mediated neurodegeneration for better public health.
Collapse
|
20
|
Boatz JC, Piretra T, Lasorsa A, Matlahov I, Conway JF, van der Wel PCA. Protofilament Structure and Supramolecular Polymorphism of Aggregated Mutant Huntingtin Exon 1. J Mol Biol 2020; 432:4722-4744. [PMID: 32598938 DOI: 10.1016/j.jmb.2020.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by expansion of the polyglutamine domain in the first exon of huntingtin (HttEx1). The extent of expansion correlates with disease progression and formation of amyloid-like protein deposits within the brain. The latter display polymorphism at the microscopic level, both in cerebral tissue and in vitro. Such polymorphism can dramatically influence cytotoxicity, leading to much interest in the conditions and mechanisms that dictate the formation of polymorphs. We examine conditions that govern HttEx1 polymorphism in vitro, including concentration and the role of the non-polyglutamine flanking domains. Using electron microscopy, we observe polymorphs that differ in width and tendency for higher-order bundling. Strikingly, aggregation yields different polymorphs at low and high concentrations. Narrow filaments dominate at low concentrations that may be more relevant in vivo. We dissect the role of N- and C-terminal flanking domains using protein with the former (httNT or N17) largely removed. The truncated protein is generated by trypsin cleavage of soluble HttEx1 fusion protein, which we analyze in some detail. Dye binding and solid-state NMR studies reveal changes in fibril surface characteristics and flanking domain mobility. Higher-order interactions appear facilitated by the C-terminal tail, while the polyglutamine forms an amyloid core resembling those of other polyglutamine deposits. Fibril-surface-mediated branching, previously attributed to secondary nucleation, is reduced in absence of httNT. A new model for the architecture of the HttEx1 filaments is presented and discussed in context of the assembly mechanism and biological activity.
Collapse
Affiliation(s)
- Jennifer C Boatz
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Talia Piretra
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Alessia Lasorsa
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - Irina Matlahov
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| | - James F Conway
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA.
| | - Patrick C A van der Wel
- Department of Structural Biology, School of Medicine, University of Pittsburgh, 3501 5th Ave, Biomedical Science Tower 3, Pittsburgh, PA 15213, USA; Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, the Netherlands.
| |
Collapse
|
21
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
22
|
Sap KA, Reits EA. Strategies to Investigate Ubiquitination in Huntington's Disease. Front Chem 2020; 8:485. [PMID: 32596207 PMCID: PMC7300180 DOI: 10.3389/fchem.2020.00485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/11/2020] [Indexed: 01/15/2023] Open
Abstract
Many neurodegenerative disorders including Huntington's Disease are hallmarked by intracellular protein aggregates that are decorated by ubiquitin and different ubiquitin ligases and deubiquitinating enzymes. The protein aggregates observed in Huntington's Disease are caused by a polyglutamine expansion in the N-terminus of the huntingtin protein (Htt). Improving the degradation of mutant Htt via the Ubiquitin Proteasome System prior to aggregation would be a therapeutic strategy to delay or prevent the onset of Huntington's Disease for which there is currently no cure. Here we examine the current approaches used to study the ubiquitination of both soluble Htt as well as insolubilized Htt present in aggregates, and we describe what is known about involved (de)ubiquitinating enzymes. Furthermore, we discuss novel methodologies to study the dynamics of Htt ubiquitination in living cells using fluorescent ubiquitin probes, to identify and quantify Htt ubiquitination by mass spectrometry-based approaches, and various approaches to identify involved ubiquitinating enzymes.
Collapse
Affiliation(s)
- Karen A Sap
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| | - Eric A Reits
- Department of Medical Biology, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
23
|
Yang F, Diao X, Wang F, Wang Q, Sun J, Zhou Y, Xie J. Identification of Key Regulatory Genes and Pathways in Prefrontal Cortex of Alzheimer's Disease. Interdiscip Sci 2020; 12:90-98. [PMID: 32006383 DOI: 10.1007/s12539-019-00353-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder partly induced by dysregulation of different brain regions. Prefrontal cortex (PFC) dysregulation has been reported to associate with mental symptoms such as delusion, apathy, and depression in AD patients. However, the internal mechanisms have not yet been well-understood. This study aims to identify the potential therapeutic target genes and related pathways in PFC of AD. First, differential expression analyses were performed on transcriptome microarray of PFC between AD specimens and non-AD controls. Second, protein-protein interaction networks were constructed based on the identified differentially expressed genes to explore candidate therapeutic target genes. Finally, these candidate genes were validated through biological experiments. The enrichment analyses showed that the differentially expressed genes were significantly enriched in protein functions and pathways related to AD. Furthermore, the top ten hub genes in the protein-protein interaction network (ELAVL1, CUL3, MAPK6, FBXW11, YWHAE, YWHAZ, GRB2, CLTC, YWHAQ, and PDHA1) were proved to be directly or indirectly related to AD. Besides, six genes (PDHA1, CLTC, YWHAE, MAPK6, YWHAZ, and GRB2) of which were validated to significantly altered in AD mice by biological experiments. Importantly, the most significantly changed gene, PDHA1, was proposed for the first time that may be serve as a target gene in AD treatment. In summary, several genes and pathways that play critical roles in PFC of AD patients have been uncovered, which will provide novel insights on molecular targets for treatment and diagnostic biomarkers of AD.
Collapse
Affiliation(s)
- Fuzhang Yang
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Xin Diao
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Fushuai Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Quanwei Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiamin Sun
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Yan Zhou
- Laboratory on Naturopathy, College of Physical Education, Shanghai University, Shanghai, China
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China.
| |
Collapse
|
24
|
Akhter Y, Nabi J, Hamid H, Tabassum N, Pottoo FH, Sharma A. Protein Quality Control in Neurodegeneration and Neuroprotection. QUALITY CONTROL OF CELLULAR PROTEIN IN NEURODEGENERATIVE DISORDERS 2020. [DOI: 10.4018/978-1-7998-1317-0.ch001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteostasis is essential for regulating the integrity of the proteome. Disruption of proteostasis under some rigorous conditions leads to the aggregation and accumulation of misfolded toxic proteins, which plays a central role in the pathogenesis of protein conformational disorders. The protein quality control (PQC) system serves as a multi-level security system to shield cells from abnormal proteins. The intrinsic PQC systems maintaining proteostasis include the ubiquitin-proteasome system (UPS), chaperon-mediated autophagy (CMA), and autophagy-lysosome pathway (ALP) that serve to target misfolded proteins for unfolding, refolding, or degradation. Alterations of PQC systems in neurons have been implicated in the pathogenesis of various neurodegenerative disorders. This chapter provides an overview of PQC pathways to set a framework for discussion of the role of PQC in neurodegenerative disorders. Additionally, various pharmacological approaches targeting PQC are summarized.
Collapse
Affiliation(s)
- Yasmeena Akhter
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Jahangir Nabi
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Hinna Hamid
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences (Pharmacology Division), Faculty of Applied Sciences and Technology, University of Kashmir, Srinagar, India
| | - Faheem Hyder Pottoo
- Department of Pharmaology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Saudi Arabia
| | - Aashish Sharma
- Centre for Research in Medical Devices (CURAM), National University of Ireland, Ireland & School of Medical and Allied Sciences, GD Goenka University, Gurgaon, India
| |
Collapse
|
25
|
Chaudhuri P, Prajapati KP, Anand BG, Dubey K, Kar K. Amyloid cross-seeding raises new dimensions to understanding of amyloidogenesis mechanism. Ageing Res Rev 2019; 56:100937. [PMID: 31430565 DOI: 10.1016/j.arr.2019.100937] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
Hallmarks of most of the amyloid pathologies are surprisingly found to be heterocomponent entities such as inclusions and plaques which contain diverse essential proteins and metabolites. Experimental studies have already revealed the occurrence of coaggregation and cross-seeding during amyloid formation of several proteins and peptides, yielding multicomponent assemblies of amyloid nature. Further, research reports on the co-occurrence of more than one type of amyloid-linked pathologies in the same individual suggest the possible cross-talk among the disease related amyloidogenic protein species during their amyloid growth. In this review paper, we have tried to gain more insight into the process of coaggregation and cross-seeding during amyloid aggregation of proteins, particularly focusing on their relevance to the pathogenesis of the protein misfolding diseases. Revelation of amyloid cross-seeding and coaggregation seems to open new dimensions in our mechanistic understanding of amyloidogenesis and such knowledge may possibly inspire better designing of anti-amyloid therapeutics.
Collapse
|
26
|
Mann G, Satish G, Meledin R, Vamisetti GB, Brik A. Palladium-Mediated Cleavage of Proteins with Thiazolidine-Modified Backbone in Live Cells. Angew Chem Int Ed Engl 2019; 58:13540-13549. [PMID: 31402546 DOI: 10.1002/anie.201906545] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/07/2019] [Indexed: 12/20/2022]
Abstract
Chemical protein synthesis and biorthogonal modification chemistries allow production of unique proteins for a range of biological studies. Bond-forming reactions for site-selective protein labeling are commonly used in these endeavors. Selective bond-cleavage reactions, however, are much less explored and still pose a great challenge. In addition, most of studies with modified proteins prepared by either total synthesis or semisynthesis have been applied mainly for in vitro experiments with very limited extension to live cells. Reported here is an approach for studying uniquely modified proteins containing a traceless cell delivery unit and palladium-based cleavable element for chemical activation, and monitoring the effect of these proteins in live cells. This approach is demonstrated for the synthesis of a caged ubiquitin-aldehyde, which was decaged for the inhibition of deubiquitinases in live cells.
Collapse
Affiliation(s)
- Guy Mann
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Gandhesiri Satish
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Roman Meledin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ganga B Vamisetti
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
27
|
Mann G, Satish G, Meledin R, Vamisetti GB, Brik A. Palladium‐Mediated Cleavage of Proteins with Thiazolidine‐Modified Backbone in Live Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906545] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guy Mann
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Gandhesiri Satish
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Roman Meledin
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ganga B. Vamisetti
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| |
Collapse
|
28
|
The Biosynthesis, Signaling, and Neurological Functions of Bile Acids. Biomolecules 2019; 9:biom9060232. [PMID: 31208099 PMCID: PMC6628048 DOI: 10.3390/biom9060232] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Bile acids (BA) are amphipathic steroid acids synthesized from cholesterol in the liver. They act as detergents to expedite the digestion and absorption of dietary lipids and lipophilic vitamins. BA are also considered to be signaling molecules, being ligands of nuclear and cell-surface receptors, including farnesoid X receptor and Takeda G-protein receptor 5. Moreover, BA also activate ion channels, including the bile acid-sensitive ion channel and epithelial Na+ channel. BA regulate glucose and lipid metabolism by activating these receptors in peripheral tissues, such as the liver and brown and white adipose tissue. Recently, 20 different BA have been identified in the central nervous system. Furthermore, BA affect the function of neurotransmitter receptors, such as the muscarinic acetylcholine receptor and γ-aminobutyric acid receptor. BA are also known to be protective against neurodegeneration. Here, we review recent findings regarding the biosynthesis, signaling, and neurological functions of BA.
Collapse
|
29
|
van Wijk SJ, Fulda S, Dikic I, Heilemann M. Visualizing ubiquitination in mammalian cells. EMBO Rep 2019; 20:embr.201846520. [PMID: 30665942 DOI: 10.15252/embr.201846520] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022] Open
Abstract
Covalent modification of proteins with ubiquitin is essential for the majority of biological processes in mammalian cells. Numerous proteins are conjugated with single or multiple ubiquitin molecules or chains in a dynamic fashion, often determining protein half-lives, localization or function. Experimental approaches to study ubiquitination have been dominated by genetic and biochemical analysis of enzyme structure-function relationships, reaction mechanisms and physiological relevance. Here, we provide an overview of recent developments in microscopy-based imaging of ubiquitination, available reagents and technologies. We discuss the progress in direct and indirect imaging of differentially linked ubiquitin chains in fixed and living cells using confocal fluorescence microscopy and super-resolution microscopy, illustrated by the role of ubiquitin in antibacterial autophagy and pro-inflammatory signalling. Finally, we speculate on future developments and forecast a transition from qualitative to quantitative super-resolution approaches to understand fundamental aspects of ubiquitination and the formation and distribution of functional E3 ligase protein complexes in their native environment.
Collapse
Affiliation(s)
- Sjoerd Jl van Wijk
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Paediatrics, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital Frankfurt, Frankfurt am Main, Germany.,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, Frankfurt am Main, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|