1
|
Hansel-Frose AFF, Allmer J, Friedrichs M, dos Santos HG, Dallagiovanna B, Spangenberg L. Alternative polyadenylation and dynamic 3' UTR length is associated with polysome recruitment throughout the cardiomyogenic differentiation of hESCs. Front Mol Biosci 2024; 11:1336336. [PMID: 38380430 PMCID: PMC10877728 DOI: 10.3389/fmolb.2024.1336336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Alternative polyadenylation (APA) increases transcript diversity through the generation of isoforms with varying 3' untranslated region (3' UTR) lengths. As the 3' UTR harbors regulatory element target sites, such as miRNAs or RNA-binding proteins, changes in this region can impact post-transcriptional regulation and translation. Moreover, the APA landscape can change based on the cell type, cell state, or condition. Given that APA events can impact protein expression, investigating translational control is crucial for comprehending the overall cellular regulation process. Revisiting data from polysome profiling followed by RNA sequencing, we investigated the cardiomyogenic differentiation of pluripotent stem cells by identifying the transcripts that show dynamic 3' UTR lengthening or shortening, which are being actively recruited to ribosome complexes. Our findings indicate that dynamic 3' UTR lengthening is not exclusively associated with differential expression during cardiomyogenesis but rather with recruitment to polysomes. We confirm that the differentiated state of cardiomyocytes shows a preference for shorter 3' UTR in comparison to the pluripotent stage although preferences vary during the days of the differentiation process. The most distinct regulatory changes are seen in day 4 of differentiation, which is the mesoderm commitment time point of cardiomyogenesis. After identifying the miRNAs that would target specifically the alternative 3' UTR region of the isoforms, we constructed a gene regulatory network for the cardiomyogenesis process, in which genes related to the cell cycle were identified. Altogether, our work sheds light on the regulation and dynamic 3' UTR changes of polysome-recruited transcripts that take place during the cardiomyogenic differentiation of pluripotent stem cells.
Collapse
Affiliation(s)
- Aruana F. F. Hansel-Frose
- Laboratory of Basic Stem Cell Biology, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ/PR), Curitiba, Brazil
| | - Jens Allmer
- Department of Medical Informatics and Bioinformatics, University of Applied Sciences Ruhr West, Mülheim, Germany
| | - Marcel Friedrichs
- Bioinformatics and Medical Informatics Department, University of Bielefeld, Bielefeld, Germany
| | | | - Bruno Dallagiovanna
- Laboratory of Basic Stem Cell Biology, Carlos Chagas Institute, Oswaldo Cruz Foundation (FIOCRUZ/PR), Curitiba, Brazil
| | - Lucía Spangenberg
- Bioinformatics Unit, Pasteur Institute of Montevideo, Montevideo, Uruguay
- Departamento Basico de Medicina, Hospital de Clinicas, Universidad de la República (Udelar), Montevideo, Uruguay
| |
Collapse
|
2
|
Ghosh A, Som A. Network analysis of transcriptomic data uncovers molecular signatures and the interplay of mRNAs, lncRNAs, and miRNAs in human embryonic stem cells. Differentiation 2024; 135:100738. [PMID: 38008592 DOI: 10.1016/j.diff.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/28/2023]
Abstract
Growing evidence has shown that besides the protein coding genes, the non-coding elements of the genome are indispensable for maintaining the property of self-renewal in human embryonic stem cells and in cell fate determination. However, the regulatory mechanisms and the landscape of interactions between the coding and non-coding elements is poorly understood. In this work, we used weighted gene co-expression network analysis (WGCNA) on transcriptomic data retrieved from RNA-seq and small RNA-seq experiments and reconstructed the core human pluripotency network (called PluriMLMiNet) consisting of 375 mRNA, 57 lncRNA and 207 miRNAs. Furthermore, we derived networks specific to the naïve and primed states of human pluripotency (called NaiveMLMiNet and PrimedMLMiNet respectively) that revealed a set of molecular markers (RPS6KA1, ZYG11A, ZNF695, ZNF273, and NLRP2 for naive state, and RAB34, TMEM178B, PTPRZ1, USP44, KIF1A and LRRN1 for primed state) which can be used to distinguish the pluripotent state from the non-pluripotent state and also to identify the intra-pluripotency states (i.e., naïve and primed state). The lncRNA DANT1 was found to be a crucial as it formed a bridge between the naive and primed state-specific networks. Analysis of the genes neighbouring DANT1 suggested its possible role as a competing endogenous RNA (ceRNA) for the induction and maintenance of human pluripotency. This was computationally validated by predicting the missing DANT1-miRNA interactions to complete the ceRNA circuit. Here we first report that DANT1 might harbour binding sites for miRNAs hsa-miR-30c-2-3p, hsa-miR-210-3p and hsa-let-7b-5p which may influence pluripotency.
Collapse
Affiliation(s)
- Arindam Ghosh
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, 211002, India; Institute of Biomedicine, University of Eastern Finland, FI-70210, Kuopio, Finland.
| | - Anup Som
- Centre of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
3
|
Machado HC, Bispo S, Dallagiovanna B. miR-6087 Might Regulate Cell Cycle–Related mRNAs During Cardiomyogenesis of hESCs. Bioinform Biol Insights 2023; 17:11779322231161918. [PMID: 37020502 PMCID: PMC10069004 DOI: 10.1177/11779322231161918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as negative regulators of gene expression at the post-transcriptional level, promoting mRNA degradation or translation repression. Despite the well-described presence of miRNAs in various human tissues, there is still a lack of information about the relationship between miRNAs and the translation regulation in human embryonic stem cells (hESCs) during cardiomyogenesis. Here, we investigate RNA-seq data from hESCs, focusing on distinct stages of cardiomyogenesis and searching for polysome-bound miRNAs that could be involved in translational regulation. We identify miR-6087 as a differentially expressed miRNA at latest steps of cardiomyocyte differentiation. We analyzed the coexpression pattern between the differentially expressed mRNAs and miR-6087, evaluating whether they are predicted targets of the miRNA. We arranged the genes into an interaction network and identified BLM, RFC4, RFC3, and CCNA2 as key genes of the network. A post hoc analysis of the key genes suggests that miR-6087 could act as a regulator of the cell cycle in hESC during cardiomyogenesis.
Collapse
Affiliation(s)
- Hellen Cristine Machado
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
| | - Saloe Bispo
- Laboratory of Molecular and Systems
Biology of Trypanosomatids, Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba,
Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
- Bruno Dallagiovanna, Laboratory of Basic
Stem-Cell Biology, Instituto Carlos Chagas – FIOCRUZ-PR, Rua Professor Algacyr
Munhoz Mader, 3775, Curitiba 81350-010, Brazil.
| |
Collapse
|
4
|
Broto M, Kaminski MM, Adrianus C, Kim N, Greensmith R, Dissanayake-Perera S, Schubert AJ, Tan X, Kim H, Dighe AS, Collins JJ, Stevens MM. Nanozyme-catalysed CRISPR assay for preamplification-free detection of non-coding RNAs. NATURE NANOTECHNOLOGY 2022; 17:1120-1126. [PMID: 35927321 PMCID: PMC7616987 DOI: 10.1038/s41565-022-01179-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
CRISPR-based diagnostics enable specific sensing of DNA and RNA biomarkers associated with human diseases. This is achieved through the binding of guide RNAs to a complementary sequence that activates Cas enzymes to cleave reporter molecules. Currently, most CRISPR-based diagnostics rely on target preamplification to reach sufficient sensitivity for clinical applications. This limits quantification capability and adds complexity to the reaction chemistry. Here we show the combination of a CRISPR-Cas-based reaction with a nanozyme-linked immunosorbent assay, which allows for the quantitative and colorimetric readout of Cas13-mediated RNA detection through catalytic metallic nanoparticles at room temperature (CrisprZyme). We demonstrate that CrisprZyme is easily adaptable to a lateral-flow-based readout and different Cas enzymes and enables the sensing of non-coding RNAs including microRNAs, long non-coding RNAs and circular RNAs. We utilize this platform to identify patients with acute myocardial infarction and to monitor cellular differentiation in vitro and in tissue biopsies from prostate cancer patients. We anticipate that CrisprZyme will serve as a universally applicable signal catalyst for CRISPR-based diagnostics, which will expand the spectrum of targets for preamplification-free, quantitative detection.
Collapse
Affiliation(s)
- Marta Broto
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Michael M Kaminski
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christopher Adrianus
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Robert Greensmith
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Schan Dissanayake-Perera
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Alexander J Schubert
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK
| | - Anand S Dighe
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Institute for Medical Engineering and Science and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, UK.
| |
Collapse
|
5
|
Muñoz JJAM, Dariolli R, da Silva CM, Neri EA, Valadão IC, Turaça LT, Lima VM, de Carvalho MLP, Velho MR, Sobie EA, Krieger JE. Time-regulated transcripts with the potential to modulate human pluripotent stem cell-derived cardiomyocyte differentiation. Stem Cell Res Ther 2022; 13:437. [PMID: 36056380 PMCID: PMC9438174 DOI: 10.1186/s13287-022-03138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are a promising disease model, even though hiPSC-CMs cultured for extended periods display an undifferentiated transcriptional landscape. MiRNA–target gene interactions contribute to fine-tuning the genetic program governing cardiac maturation and may uncover critical pathways to be targeted. Methods We analyzed a hiPSC-CM public dataset to identify time-regulated miRNA–target gene interactions based on three logical steps of filtering. We validated this process in silico using 14 human and mouse public datasets, and further confirmed the findings by sampling seven time points over a 30-day protocol with a hiPSC-CM clone developed in our laboratory. We then added miRNA mimics from the top eight miRNAs candidates in three cell clones in two different moments of cardiac specification and maturation to assess their impact on differentiation characteristics including proliferation, sarcomere structure, contractility, and calcium handling.
Results We uncovered 324 interactions among 29 differentially expressed genes and 51 miRNAs from 20,543 transcripts through 120 days of hiPSC-CM differentiation and selected 16 genes and 25 miRNAs based on the inverse pattern of expression (Pearson R-values < − 0.5) and consistency in different datasets. We validated 16 inverse interactions among eight genes and 12 miRNAs (Person R-values < − 0.5) during hiPSC-CMs differentiation and used miRNAs mimics to verify proliferation, structural and functional features related to maturation. We also demonstrated that miR-124 affects Ca2+ handling altering features associated with hiPSC-CMs maturation.
Conclusion We uncovered time-regulated transcripts influencing pathways affecting cardiac differentiation/maturation axis and showed that the top-scoring miRNAs indeed affect primarily structural features highlighting their role in the hiPSC-CM maturation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03138-x.
Collapse
Affiliation(s)
- Juan J A M Muñoz
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Universidad Señor de Sipán, Chiclayo, Perú
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.,Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caio Mateus da Silva
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Elida A Neri
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Iuri C Valadão
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Lauro Thiago Turaça
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Vanessa M Lima
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariana Lombardi Peres de Carvalho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Mariliza R Velho
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil
| | - Eric A Sobie
- Department of Pharmacological Sciences, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM 13, Heart Institute (InCor), University of São Paulo Medical School, Avenida Dr. Eneas C. Aguiar 44, São Paulo, SP, 05403-000, Brazil.
| |
Collapse
|
6
|
Louro AF, Paiva MA, Oliveira MR, Kasper KA, Alves PM, Gomes‐Alves P, Serra M. Bioactivity and miRNome Profiling of Native Extracellular Vesicles in Human Induced Pluripotent Stem Cell-Cardiomyocyte Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104296. [PMID: 35322574 PMCID: PMC9130911 DOI: 10.1002/advs.202104296] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/05/2022] [Indexed: 05/17/2023]
Abstract
Extracellular vesicles (EV) are an attractive therapy to boost cardiac regeneration. Nevertheless, identification of native EV and corresponding cell platform(s) suitable for therapeutic application, is still a challenge. Here, EV are isolated from key stages of the human induced pluripotent stem cell-cardiomyocyte (hiPSC-CM) differentiation and maturation, i.e., from hiPSC (hiPSC-EV), cardiac progenitors, immature and mature cardiomyocytes, with the aim of identifying a promising cell biofactory for EV production, and pinpoint the genetic signatures of bioactive EV. EV secreted by hiPSC and cardiac derivatives show a typical size distribution profile and the expression of specific EV markers. Bioactivity assays show increased tube formation and migration in HUVEC treated with hiPSC-EV compared to EV from committed cell populations. hiPSC-EV also significantly increase cell cycle activity of hiPSC-CM. Global miRNA expression profiles, obtained by small RNA-seq analysis, corroborate an EV-miRNA pattern indicative of stem cell to cardiomyocyte specification, confirming that hiPSC-EV are enriched in pluripotency-associated miRNA with higher in vitro pro-angiogenic and pro-proliferative properties. In particular, a stemness maintenance miRNA cluster upregulated in hiPSC-EV targets the PTEN/PI3K/AKT pathway, involved in cell proliferation and survival. Overall, the findings validate hiPSC as cell biofactories for EV production for cardiac regenerative applications.
Collapse
Affiliation(s)
- Ana F. Louro
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Marta A. Paiva
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Marta R. Oliveira
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Katharina A. Kasper
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Paula M. Alves
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Patrícia Gomes‐Alves
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Margarida Serra
- iBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- ITQB‐NOVAInstituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| |
Collapse
|
7
|
Taheri Bajgan E, Gholipour A, Faghihi M, Mowla SJ, Malakootian M. Linc-ROR has a Potential ceRNA Activity for OCT4A by Sequestering miR-335-5p in the HEK293T Cell Line. Biochem Genet 2021; 60:1007-1024. [PMID: 34669056 DOI: 10.1007/s10528-021-10140-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Linc-ROR has a regulatory role in reprogramming, and the core stem cell transcription factors, OCT4, SOX2, and NANOG, regulate its expression. MicroRNAs (miRNAs) are also a critical constituent of pivotal posttranscriptional regulatory pathways. One of such interactions is a competing endogenous RNA interaction that connects small and long non-coding RNAs with coding transcripts. Here, we aimed to investigate the existence of such associations between OCT4A, Linc-ROR, hsa-miR-335-5p, and hsa-miR-544. Bioinformatic analysis was performed to evaluate the expression status of OCT4A, Linc-ROR, miR-335, and miR-544 throughout differentiation as well as in various differentiated cells. The complete lengths of OCT4A and Linc-ROR, and OCT4A 3'-UTR were cloned in the luciferase reporter vector, and the precursors of miR-335 and miR-544 were cloned in expression vectors. Following the overexpression of miR-335 and miR-544 in the 5637 cell line, the endogenous expression of OCT4A and Linc-ROR was evaluated. Afterward, the expression vectors of miRNAs and the reporter vectors of OCT4A/Linc-ROR were co-transfected in the HEK293T cell line. Via the Dual-Luciferase assay, the effect of the overexpression of miRNAs on their two possible targets (Linc-ROR and OCT4A) was investigated. The bioinformatic analysis demonstrated a relatively similar expression pattern for OCT4A and Linc-ROR, while miR-335 showed a different expression status. Both miR-335 and miR-544 inhibited the endogenous expression of OCT4A. The Dual-Luciferase assay likewise confirmed the inhibitory effect of miR-335 and miR-544 on OCT4A expression. In contrast, the miR-335 inhibitory effect was reversed in the presence of Linc-ROR, resulting in the upregulation of OCT4A. Such evidence suggests that Linc-ROR may compete with OCT4A to interact with miR-335.
Collapse
Affiliation(s)
- Elham Taheri Bajgan
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Akram Gholipour
- Department of Biology, Islamic Azad University Tehran Science and Research Branch, Tehran, Iran
| | - Mohammadali Faghihi
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, 33136, USA
| | - Seyed Javad Mowla
- Molecular Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahshid Malakootian
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
9
|
Derkus B. Human cardiomyocyte-derived exosomes induce cardiac gene expressions in mesenchymal stromal cells within 3D hyaluronic acid hydrogels and in dose-dependent manner. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:2. [PMID: 33469781 PMCID: PMC7815535 DOI: 10.1007/s10856-020-06474-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
Accomplishing a reliable lineage-specific differentiation of stem cells is vital in tissue engineering applications, however, this need remained unmet. Extracellular nanovesicles (particularly exosomes) have previously been shown to have this potential owing to their rich biochemical content including proteins, nucleic acids and metabolites. In this work, the potential of human cardiomyocytes-derived exosomes to induce in vitro cardiac gene expressions in human mesenchymal stem cells (hMSCs) was evaluated. Cardiac exosomes (CExo) were integrated with hyaluronic acid (HA) hydrogel, which was functionalized with tyramine (HA-Tyr) to enable the development of 3D (three dimensional), robust and bioactive hybrid cell culture construct through oxidative coupling. In HA-Tyr/CExo 3D hybrid hydrogels, hMSCs exhibited good viability and proliferation behaviours. Real time quantitative polymerase chain reaction (RT-qPCR) results demonstrated that cells incubated within HA-Tyr/CExo expressed early cardiac progenitor cell markers (GATA4, Nkx2.5 and Tbx5), but not cTnT, which is expressed in the late stages of cardiac differentiation and development. The expressions of cardiac genes were remarkably increased with increasing CExo concentration, signifying a dose-dependent induction of hMSCs. This report, to some extent, explains the potential of tissue-specific exosomes to induce lineage-specific differentiation. However, the strategy requires further mechanistic explanations so that it can be utilized in translational medicine.
Collapse
Affiliation(s)
- Burak Derkus
- Department of Chemistry, Faculty of Science, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
10
|
Desvignes T, Loher P, Eilbeck K, Ma J, Urgese G, Fromm B, Sydes J, Aparicio-Puerta E, Barrera V, Espín R, Thibord F, Bofill-De Ros X, Londin E, Telonis AG, Ficarra E, Friedländer MR, Postlethwait JH, Rigoutsos I, Hackenberg M, Vlachos IS, Halushka MK, Pantano L. Unification of miRNA and isomiR research: the mirGFF3 format and the mirtop API. Bioinformatics 2020; 36:698-703. [PMID: 31504201 DOI: 10.1093/bioinformatics/btz675] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
MOTIVATION MicroRNAs (miRNAs) are small RNA molecules (∼22 nucleotide long) involved in post-transcriptional gene regulation. Advances in high-throughput sequencing technologies led to the discovery of isomiRs, which are miRNA sequence variants. While many miRNA-seq analysis tools exist, the diversity of output formats hinders accurate comparisons between tools and precludes data sharing and the development of common downstream analysis methods. RESULTS To overcome this situation, we present here a community-based project, miRNA Transcriptomic Open Project (miRTOP) working towards the optimization of miRNA analyses. The aim of miRTOP is to promote the development of downstream isomiR analysis tools that are compatible with existing detection and quantification tools. Based on the existing GFF3 format, we first created a new standard format, mirGFF3, for the output of miRNA/isomiR detection and quantification results from small RNA-seq data. Additionally, we developed a command line Python tool, mirtop, to create and manage the mirGFF3 format. Currently, mirtop can convert into mirGFF3 the outputs of commonly used pipelines, such as seqbuster, isomiR-SEA, sRNAbench, Prost! as well as BAM files. Some tools have also incorporated the mirGFF3 format directly into their code, such as, miRge2.0, IsoMIRmap and OptimiR. Its open architecture enables any tool or pipeline to output or convert results into mirGFF3. Collectively, this isomiR categorization system, along with the accompanying mirGFF3 and mirtop API, provide a comprehensive solution for the standardization of miRNA and isomiR annotation, enabling data sharing, reporting, comparative analyses and benchmarking, while promoting the development of common miRNA methods focusing on downstream steps of miRNA detection, annotation and quantification. AVAILABILITY AND IMPLEMENTATION https://github.com/miRTop/mirGFF3/ and https://github.com/miRTop/mirtop. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Phillipe Loher
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Karen Eilbeck
- University of Utah, Biomedical Informatics, Salt Lake City, UT 84108, USA
| | - Jeffery Ma
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Gianvito Urgese
- Department of Control and Computer Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 114 18, Sweden
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ernesto Aparicio-Puerta
- Computational Epigenomics Laboratory, Genetics Department and Biotechnology Institute and Biosanitary Institute, University of Granada, Granada 18002, Spain
| | - Victor Barrera
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Roderic Espín
- Universitat Oberta de Catalunya, Barcelona 08018, Spain
| | - Florian Thibord
- Sorbonne Université, Pierre Louis Doctoral School of Public Health, Paris 75006, France.,Institut National pour la Santé et la Recherche Médicale (INSERM) Unité Mixte de Recherche en Santé (UMR_S), University of Bordeaux, Bordeaux 33076, France
| | - Xavier Bofill-De Ros
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Eric Londin
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Aristeidis G Telonis
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Elisa Ficarra
- Department of Control and Computer Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 114 18, Sweden
| | | | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Michael Hackenberg
- Computational Epigenomics Laboratory, Genetics Department and Biotechnology Institute and Biosanitary Institute, University of Granada, Granada 18002, Spain
| | - Ioannis S Vlachos
- Non-coding Research Lab, Department of Pathology, Cancer Research Institute, Harvard Medical School Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lorena Pantano
- Bioinformatics Core, The Picower Institute for Learning and Memory, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Rahmani A, Naderi M, Barati G, Arefian E, Jedari B, Nadri S. The potency of hsa-miR-9-1 overexpression in photoreceptor differentiation of conjunctiva mesenchymal stem cells on a 3D nanofibrous scaffold. Biochem Biophys Res Commun 2020; 529:526-532. [PMID: 32736669 DOI: 10.1016/j.bbrc.2020.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/31/2022]
Abstract
MiRNAs are small non-coding RNAs that are ordinarily involved in modulating mRNAs and stem cell differentiation. 3D nanofibrous scaffolds have an important role in the differentiation of stem cells due to their similarity to the extracellular matrix (ECM). In the present study, we tried to introduce a new approach to guiding the differentiation of conjunctiva mesenchymal stem cells (CJMSCs) into photoreceptor-like cells by hsa-miR-9-1 delivery on both 2D and 3D substrates. First, the CJMSCs were transduced by a lentiviral vector carrying miR-9 (pCDH + hsa-miR-9-1) and then cell transduction efficacy verified by using fluorescent microscopy, flow cytometry, and qPCR analyses. Silk Fibroin-poly-L-lactic acid (SF-PLLA) scaffold was fabricated by the electrospinning technique while the scaffold characteristics including morphology, chemical properties, and biocompatibility were evaluated by SEM, FTIR, and MTT assays, respectively. Then, the miR-9-CJMSCs were seeded on both TCPS and the scaffold; photoreceptor gene and protein expressions were evaluated by RT-qPCR and immunostaining after 14 and 21 days of transduction. More than 80% of CJMSCs were transduced and miR-9 expression was significantly higher in miR-9-CJMSCs compared with empty vector (EV)-CJMSCs. SEM and FTIR confirmed the fabrication of the SF/PLLA hybrid structure. RT-qPCR and immunostaining analyses showed that the specific photoreceptor genes and proteins were expressed in miR-9 transduced CJMSCs. Mir-9 induced CJMSCs into photoreceptor-like cells in a time-dependent manneron on both TCPS and nanofibrous scaffold.We have proved that hsa-miR-9-1 has the potency to guide the photoreceptor differentiation of mesenchymal stem cells and promote retinal regeneration.
Collapse
Affiliation(s)
- Ali Rahmani
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Naderi
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Barati
- Department of Medical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Iran
| | - Behrouz Jedari
- Department of Medical Biotechnology, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
12
|
La Greca A, Scarafía MA, Hernández Cañás MC, Pérez N, Castañeda S, Colli C, Möbbs AM, Santín Velazque NL, Neiman G, Garate X, Aban C, Waisman A, Moro LN, Sevlever G, Luzzani C, Miriuka SG. PIWI-interacting RNAs are differentially expressed during cardiac differentiation of human pluripotent stem cells. PLoS One 2020; 15:e0232715. [PMID: 32369512 PMCID: PMC7199965 DOI: 10.1371/journal.pone.0232715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/20/2020] [Indexed: 11/18/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are a class of non-coding RNAs initially thought to be restricted exclusively to germline cells. In recent years, accumulating evidence has demonstrated that piRNAs are actually expressed in pluripotent, neural, cardiac and even cancer cells. However, controversy remains around the existence and function of somatic piRNAs. Using small RNA-seq samples from H9 pluripotent cells differentiated to mesoderm progenitors and cardiomyocytes we identified the expression of 447 piRNA transcripts, of which 241 were detected in pluripotency, 218 in mesoderm and 171 in cardiac cells. The majority of them originated from the sense strand of protein coding and lncRNAs genes in all stages of differentiation, though no evidences of amplification loop (ping-pong) were found. Genes hosting piRNA transcripts in cardiac samples were related to critical biological processes in the heart, like contraction and cardiac muscle development. Our results indicate that these piRNAs might have a role in fine-tuning the expression of genes involved in differentiation of pluripotent cells to cardiomyocytes.
Collapse
Affiliation(s)
| | | | | | - Nelba Pérez
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | - Ximena Garate
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | - Cyntia Aban
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | - Ariel Waisman
- LIAN, Fleni Institute-CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
13
|
Robert AW, Pereira IT, Dallagiovanna B, Stimamiglio MA. Secretome Analysis Performed During in vitro Cardiac Differentiation: Discovering the Cardiac Microenvironment. Front Cell Dev Biol 2020; 8:49. [PMID: 32117977 PMCID: PMC7025591 DOI: 10.3389/fcell.2020.00049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cells are an important tool for the study of developmental processes, such as cardiomyogenic differentiation. Despite the advances made in this field, the molecular and cellular signals involved in the commitment of embryonic stem cells to the cardiac phenotype are still under investigation. Therefore, this study focuses on identifying the extracellular signals involved in in vitro cardiac differentiation of human embryonic stem cells. Using a three-dimensional cardiomyogenic differentiation protocol, the conditioned medium and the extracellular matrix (ECM) of embryoid body cultures were collected and characterized at four specific time points. Mass spectrometry (MS) and antibody array analysis of the secretome identified a number of secreted proteins related to signaling pathways, such as Wnt and TGFβ, as well as many ECM proteins. When comparing the proteins identified at selected time points, our data pointed out protein interactions and biological process related to cardiac differentiation. Interestingly, the great changes in secretome profile occurred during the cardiac progenitor specification. The secretome results were also compared with our previous RNAseq data, indicating that the secreted proteins undergo some level of gene regulation. During cardiac commitment it was observed an increase in complexity of the ECM, and some proteins as IGFBP7, FN1, HSPG2, as well as other members of the basal lamina could be highlighted. Thus, these findings contribute valuable information about essential microenvironmental signals working on cardiomyogenic differentiation that may be used in future strategies for cardiac differentiation, cardiomyocyte maturation, and in advances for future acellular therapies.
Collapse
Affiliation(s)
- Anny Waloski Robert
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Isabela Tiemy Pereira
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| | - Marco Augusto Stimamiglio
- Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas - Fiocruz-Paraná, Curitiba, Brazil
| |
Collapse
|
14
|
Neiman G, Scarafía MA, La Greca A, Santín Velazque NL, Garate X, Waisman A, Möbbs AM, Kasai-Brunswick TH, Mesquita F, Martire-Greco D, Moro LN, Luzzani C, Bastos Carvalho A, Sevlever GE, Campos de Carvalho A, Guberman AS, Miriuka SG. Integrin alpha-5 subunit is critical for the early stages of human pluripotent stem cell cardiac differentiation. Sci Rep 2019; 9:18077. [PMID: 31792288 PMCID: PMC6889169 DOI: 10.1038/s41598-019-54352-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
The stem cell niche has a strong influence in the differentiation potential of human pluripotent stem cells with integrins playing a major role in communicating cells with the extracellular environment. However, it is not well understood how interactions between integrins and the extracellular matrix are involved in cardiac stem cell differentiation. To evaluate this, we performed a profile of integrins expression in two stages of cardiac differentiation: mesodermal progenitors and cardiomyocytes. We found an active regulation of the expression of different integrins during cardiac differentiation. In particular, integrin α5 subunit showed an increased expression in mesodermal progenitors, and a significant downregulation in cardiomyocytes. To analyze the effect of α5 subunit, we modified its expression by using a CRISPRi technique. After its downregulation, a significant impairment in the process of epithelial-to-mesenchymal transition was seen. Early mesoderm development was significantly affected due to a downregulation of key genes such as T Brachyury and TBX6. Furthermore, we observed that repression of integrin α5 during early stages led to a reduction in cardiomyocyte differentiation and impaired contractility. In summary, our results showed the link between changes in cell identity with the regulation of integrin α5 expression through the alteration of early stages of mesoderm commitment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tais Hanae Kasai-Brunswick
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernanda Mesquita
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Antonio Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alejandra S Guberman
- Laboratorio de Regulación Génica en Células Madre, Departamento de Química Biológica y Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Santiago G Miriuka
- LIAN-CONICET, FLENI, Buenos Aires, Argentina.
- Consejo Nacional sobre Investgaciones Científicas y Técnias (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Barreto S, Hamel L, Schiatti T, Yang Y, George V. Cardiac Progenitor Cells from Stem Cells: Learning from Genetics and Biomaterials. Cells 2019; 8:E1536. [PMID: 31795206 PMCID: PMC6952950 DOI: 10.3390/cells8121536] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes owing to the latter's inability to recapitulate mature features of a native myocardium, limiting their translational applications. The iPSCs and direct reprogramming of somatic cells have been attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency, numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac microenvironment have shown promise to influence CPC regenerative functions, while being capable of integrating with host tissue. This review highlights recent developments and limitations in the generation and use of CPCs from stem cells, and the trends that influence the direction of research to promote better application of CPCs.
Collapse
Affiliation(s)
- Sara Barreto
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | | | - Teresa Schiatti
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Ying Yang
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| | - Vinoj George
- Guy Hilton Research Centre, School of Pharmacy & Bioengineering, Keele University, Staffordshire ST4 7QB, UK; (S.B.); (T.S.); (Y.Y.)
| |
Collapse
|
16
|
Fang X, Miao S, Yu Y, Ding F, Han X, Wu H, Zhao ZA, Wang Y, Hu S, Lei W. MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway. J Mol Cell Cardiol 2019; 134:1-12. [DOI: 10.1016/j.yjmcc.2019.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 01/08/2023]
|