1
|
Böckmann I, Leifheit-Nestler M, Rehberg M, Spartà G, Evers K, Schlingmann KP, Kemper MJ, Richter-Unruh A, Hiort O, Grohmann-Held K, Derichs U, Freiberg C, Weitz M, Dunstheimer D, Schmid E, John-Kroegel U, Metzing O, Heger S, Jorch N, Staude H, Patzer L, Wühl E, Zivicnjak M, Schnabel D, Haffner D. Office Blood Pressure and Obesity in Children with X-Linked Hypophosphatemia. Calcif Tissue Int 2025; 116:56. [PMID: 40152980 PMCID: PMC11953092 DOI: 10.1007/s00223-025-01363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/13/2025] [Indexed: 03/30/2025]
Abstract
X-linked hypophosphatemia (XLH) is the most common inherited form of hypophosphatemic rickets. Children with XLH have an increased risk of obesity, which may promote high blood pressure, but data on blood pressure in XLH are inconclusive. We aimed to assess blood pressure and its determinants in pediatric XLH patients. We conduct a prospective, multicenter observational study of children with XLH in Germany and Switzerland. Office blood pressure and body mass index (BMI) were annually measured in 128 pediatric XLH patients with a median follow-up of 2 years (range 1-6). Potential predictors of blood pressure were investigated by Spearman correlation. Seventeen percent of patients were treated with phosphate supplements and active vitamin D for a median of 8 years, 83% of patients received burosumab for 2.3 years with 3.1 years of prior treatment with phosphate supplements and active vitamin D. Median systolic (0.75 z-score) and diastolic (0.32 z-score) blood pressure and BMI (0.72 z-score) were increased compared to healthy children (each p < 0.01). The prevalence of obesity (9.8% vs. 3%), arterial hypertension (26.2% vs. 5%), and high-normal blood pressure (22.9% vs. 5%) was higher in the XLH cohort compared to the general pediatric population (each p < 0.001). Spearman rank correlation analysis revealed significant associations between both systolic (r = 0.24; p < 0.01) and diastolic (r = 0.20; p < 0.05) blood pressure with BMI, while the mode of treatment, i.e. burosumab versus phosphate supplements and active vitamin D, was no significant correlate. Children with XLH present with elevated office blood pressure values, associated with elevated BMI.
Collapse
Affiliation(s)
- Ineke Böckmann
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Mirko Rehberg
- Department of Pediatrics, University of Cologne, Cologne, Germany
| | - Giuseppina Spartà
- Pediatric Nephrology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Katrina Evers
- Pediatric Nephrology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Karl Peter Schlingmann
- Department of General Pediatrics, Pediatric Nephrology, University Children's Hospital, Münster, Germany
| | - Markus J Kemper
- Asklepios Children's Hospital Hamburg-Heidberg, Hamburg, Germany
| | | | - Olaf Hiort
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | | | - Ute Derichs
- University Children's Hospital, Mainz, Germany
| | - Clemens Freiberg
- Department of Pediatrics, University Medicine Göttingen, Göttingen, Germany
| | - Marcus Weitz
- Department of General Pediatrics and Hematology/Oncology, University Children's Hospital, University Hospital Tübingen, Tübingen, Germany
| | | | - Elmar Schmid
- Pediatric Practice Dres. Schmid, Bettendorf, Hammon & Zimmermann, Hirschaid, Germany
| | - Ulrike John-Kroegel
- Department of Pediatric Nephrology, University Children's Hospital, Jena, Germany
| | - Oliver Metzing
- Department of Pediatric Endocrinology, University Children's Hospital, Jena, Germany
| | - Sabine Heger
- Kinderkrankenhaus Auf Der Bult, Hannover, Germany
| | - Norbert Jorch
- University Children's Hospital, Evangelisches Klinikum Bethel, Bielefeld, Germany
| | - Hagen Staude
- University Children's Hospital Rostock, Rostock, Germany
| | - Ludwig Patzer
- St. Elisabeth and St. Barbara Children's Hospital, Halle/Saale, Germany
| | - Elke Wühl
- Division of Pediatric Nephrology, Medical Faculty Heidelberg, Center for Pediatrics and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Miroslav Zivicnjak
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Dirk Schnabel
- Center for Chronically Sick Children, Pediatric Endocrinology, University Medicine, Charité Berlin, Berlin, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver, Metabolic and Neurological Diseases, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Meng H, Liao Z, Ji Y, Wang D, Han Y, Huang C, Hu X, Chen J, Zhang H, Li Z, Wang C, Sun H, Sun J, Chen L, Yin J, Zhao J, Xu T, Liu H. FGF7 enhances the expression of ACE2 in human islet organoids aggravating SARS-CoV-2 infection. Signal Transduct Target Ther 2024; 9:104. [PMID: 38654010 PMCID: PMC11039711 DOI: 10.1038/s41392-024-01790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/25/2024] Open
Abstract
The angiotensin-converting enzyme 2 (ACE2) is a primary cell surface viral binding receptor for SARS-CoV-2, so finding new regulatory molecules to modulate ACE2 expression levels is a promising strategy against COVID-19. In the current study, we utilized islet organoids derived from human embryonic stem cells (hESCs), animal models and COVID-19 patients to discover that fibroblast growth factor 7 (FGF7) enhances ACE2 expression within the islets, facilitating SARS-CoV-2 infection and resulting in impaired insulin secretion. Using hESC-derived islet organoids, we demonstrated that FGF7 interacts with FGF receptor 2 (FGFR2) and FGFR1 to upregulate ACE2 expression predominantly in β cells. This upregulation increases both insulin secretion and susceptibility of β cells to SARS-CoV-2 infection. Inhibiting FGFR counteracts the FGF7-induced ACE2 upregulation, subsequently reducing viral infection and replication in the islets. Furthermore, retrospective clinical data revealed that diabetic patients with severe COVID-19 symptoms exhibited elevated serum FGF7 levels compared to those with mild symptoms. Finally, animal experiments indicated that SARS-CoV-2 infection increased pancreatic FGF7 levels, resulting in a reduction of insulin concentrations in situ. Taken together, our research offers a potential regulatory strategy for ACE2 by controlling FGF7, thereby protecting islets from SARS-CoV-2 infection and preventing the progression of diabetes in the context of COVID-19.
Collapse
Affiliation(s)
- Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Yanting Ji
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Han
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Chaolin Huang
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Xujuan Hu
- Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, 430023, Hubei, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hengrui Zhang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Zonghong Li
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Changliang Wang
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Hui Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaqi Sun
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Lihua Chen
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jiaxiang Yin
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China
| | - Jincun Zhao
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, 510320, Guangdong, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
3
|
Fukumoto S. Regulation of FGF23 Production in Osteocytes. Curr Osteoporos Rep 2024; 22:273-279. [PMID: 38334918 DOI: 10.1007/s11914-024-00860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW FGF23 is a bone-derived hormone working to reduce serum phosphate level. This review focuses on recent findings regarding regulatory mechanisms of FGF23 expression in osteocytes, FGF23 levels, and activities. RECENT FINDINGS Circulatory FGF23 levels reflecting FGF23 biological activities can be regulated by both FGF23 expression and posttranslational modification of FGF23 protein. O-linked glycosylation and phosphorylation of FGF23 protein as well as enzymes that can cleave FGF23 protein are involved in the posttranslational modification. However, precise mechanisms of FGF23 protein processing are not clear. Several extracellular factors have been shown to affect FGF23 levels in kidney injuries. Contribution of these factors may be different depending on the causes and stages of kidney injury. FGF23 activities are regulated by complex mechanisms involving transcriptional and posttranslational modulations. There still remain several questions regarding the regulatory mechanisms of FGF23 expression and FGF23 processing.
Collapse
Affiliation(s)
- Seiji Fukumoto
- Department of Diabetes and Endocrinology, Tamaki-Aozora Hospital, Kitakashiya 56-1, Hayabuchi, Kokufucho, Tokushima, Tokushima, 779-3125, Japan.
| |
Collapse
|
4
|
Guaricci AI, Sturdà F, Russo R, Basile P, Baggiano A, Mushtaq S, Fusini L, Fazzari F, Bertandino F, Monitillo F, Carella MC, Simonini M, Pontone G, Ciccone MM, Grandaliano G, Vezzoli G, Pesce F. Assessment and management of heart failure in patients with chronic kidney disease. Heart Fail Rev 2024; 29:379-394. [PMID: 37728751 PMCID: PMC10942934 DOI: 10.1007/s10741-023-10346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/21/2023]
Abstract
Heart failure (HF) and chronic kidney disease (CKD) are two pathological conditions with a high prevalence in the general population. When they coexist in the same patient, a strict interplay between them is observed, such that patients affected require a clinical multidisciplinary and personalized management. The diagnosis of HF and CKD relies on signs and symptoms of the patient but several additional tools, such as blood-based biomarkers and imaging techniques, are needed to clarify and discriminate the main characteristics of these diseases. Improved survival due to new recommended drugs in HF has increasingly challenged physicians to manage patients with multiple diseases, especially in case of CKD. However, the safe administration of these drugs in patients with HF and CKD is often challenging. Knowing up to which values of creatinine or renal clearance each drug can be administered is fundamental. With this review we sought to give an insight on this sizable and complex topic, in order to get clearer ideas and a more precise reference about the diagnostic assessment and therapeutic management of HF and CKD.
Collapse
Affiliation(s)
- Andrea Igoren Guaricci
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy.
| | - Francesca Sturdà
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Roberto Russo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124, Bari, Italy
| | - Paolo Basile
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Fulvio Bertandino
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Francesco Monitillo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Maria Cristina Carella
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Marco Simonini
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138, Milan, Italy
| | - Marco Matteo Ciccone
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70121, Bari, Italy
| | - Giuseppe Grandaliano
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giuseppe Vezzoli
- Department of Nephrology and Dialysis, Vita Salute San Raffaele University, 20132, Milan, Italy
| | - Francesco Pesce
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124, Bari, Italy
| |
Collapse
|
5
|
Dobre MA, Ahlawat S, Schelling JR. Chronic kidney disease associated cardiomyopathy: recent advances and future perspectives. Curr Opin Nephrol Hypertens 2024; 33:203-211. [PMID: 38193308 PMCID: PMC10872957 DOI: 10.1097/mnh.0000000000000952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW Cardiomyopathy in chronic kidney disease (CKD) is a complex condition with multiple triggers and poor prognosis. This review provides an overview of recent advances in CKD-associated cardiomyopathy, with a focus on pathophysiology, newly discovered biomarkers and potential therapeutic targets. RECENT FINDINGS CKD is associated with a specific pattern of myocardial hypertrophy and fibrosis, resulting in diastolic and systolic dysfunction, and often triggered by nonatherosclerotic processes. Novel biomarkers, including amino-terminal type III procollagen peptide (PIIINP), carboxy-terminal type I procollagen peptide (PICP), FGF23, marinobufagenin, and several miRNAs, show promise for early detection and risk stratification. Treatment options for CKD-associated cardiomyopathy are limited. Sodium glucose cotransporter-2 inhibitors have been shown to reduce left ventricle hypertrophy and improve ejection fraction in individuals with diabetes and mild CKD, and are currently under investigation for more advanced stages of CKD. In hemodialysis patients calcimimetic etelcalcetide resulted in a significant reduction in left ventricular mass. SUMMARY CKD-associated cardiomyopathy is a common and severe complication in CKD. The identification of novel biomarkers may lead to future therapeutic targets. Randomized clinical trials in individuals with more advanced CKD would be well posed to expand treatment options for this debilitating condition.
Collapse
Affiliation(s)
- Mirela A Dobre
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
| | - Shruti Ahlawat
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
| | - Jeffrey R Schelling
- Division of Nephrology and Hypertension, University Hospitals Cleveland Medical Center
- School of Medicine
- Department of Physiology & Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Rostamzadeh F, Moosavi-Saeed Y, Yeganeh-Hajahmadi M. Interaction of Klotho and sirtuins. Exp Gerontol 2023; 182:112306. [PMID: 37804921 DOI: 10.1016/j.exger.2023.112306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVE In this article, we review the articles that have reported the interaction between Klotho and sirtuins. RECENT FINDINGS Sirtuins are a family of histone deacetylase enzymes that are considered to be the main regulators of biological processes. This family is one of the essential factors for postponing aging and increasing the life span of organisms. Sirtuins play a role in regulating the function of various cellular processes such as cellular metabolism, oxidative stress, apoptosis, and inflammation. It has also been shown that various diseases are related to these enzymes. Klotho is an anti-aging protein that exists as a membrane protein as well as a soluble circulating form. The membrane type of this protein acts as a co-receptor of the FGF endocrine family. It has been shown that the Klotho gene is related to age-related diseases, including osteoporosis, coronary artery, brain diseases, diabetes, etc. At the same time, it is difficult to separate the actions of Klotho and endocrine FGFs. Several studies have shown that Klotho and sirtuins interact with each other at different regulatory levels. However, it is necessary to carry out more in-vivo investigations to create new windows towards the treatment or prevention of various diseases.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasamin Moosavi-Saeed
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahboobeh Yeganeh-Hajahmadi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran.
| |
Collapse
|
7
|
Benes J, Kroupova K, Kotrc M, Petrak J, Jarolim P, Novosadova V, Kautzner J, Melenovsky V. FGF-23 is a biomarker of RV dysfunction and congestion in patients with HFrEF. Sci Rep 2023; 13:16004. [PMID: 37749114 PMCID: PMC10520041 DOI: 10.1038/s41598-023-42558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
There is no biomarker reflecting right ventricular dysfunction in HFrEF patients used in clinical practice. We have aimed to look for a circulating marker of RV dysfunction employing a quantitative proteomic strategy. The Olink Proteomics Multiplex panels (Cardiovascular Disease II, III, Cardiometabolic, and Inflammation Target Panels) identified FGF-23 to be the most differentially abundant (more than 2.5-fold) in blood plasma of HF patients with severe RV dysfunction (n = 30) compared to those with preserved RV function (n = 31). A subsequent ELISA-based confirmatory analysis of circulating FGF-23 in a large cohort of patients (n = 344, 72.7% NYHA III/IV, LVEF 22.5%, 54.1% with moderate/severe RV dysfunction), followed by multivariable regression analysis, revealed that the plasma FGF-23 level was most significantly associated with RV dysfunction grade (p = 0.0004) and congestion in the systemic circulation (p = 0.03), but not with LV-ejection fraction (p = 0.69) or estimated glomerular filtration rate (eGFR, p = 0.08). FGF-23 was associated with the degree of RV dysfunction in both sub-cohorts (i.e. in patients with and without congestion, p < 0.0001). The association between FGF-23 and RV-dysfunction remained significant after the adjustment for BNP (p = 0.01). In contrast, when adjusted for BNP, FGF-23 was no longer associated with LV dysfunction (p = 0.59). The Cox proportional hazard model revealed that circulating FGF-23 was significantly associated with adverse outcomes even after adjusting for BNP, LVEF, RV dysfunction grade and eGFR. Circulating FGF-23 is thus a biomarker of right ventricular dysfunction in HFrEF patients regardless of congestion status.
Collapse
Affiliation(s)
- Jan Benes
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic.
| | - Katerina Kroupova
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Kotrc
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vendula Novosadova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Josef Kautzner
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
| | - Vojtech Melenovsky
- Department of Cardiology, Institute for Clinical and Experimental Medicine-IKEM, Videnska 1958/9, 140 21 Praha 4, Prague, Czech Republic
| |
Collapse
|
8
|
Cuspidi C, Gherbesi E, Sala C, Tadic M. Sex, gender, and subclinical hypertensiveorgan damage-heart. J Hum Hypertens 2023; 37:626-633. [PMID: 36030347 DOI: 10.1038/s41371-022-00750-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/09/2022]
Abstract
Hypertension-mediated organ damage (HMOD) at cardiac level include a variety of abnormal phenotypes of recognized adverse prognostic value. Although the risk of cardiac HMOD is related with the severity of BP elevation, the interaction of numerous non-hemodynamic factors plays a relevant role in this unfavorable dynamic process. In particular, sex-related differences in cardiovascular (CV) risk factors and HMOD have been increasingly described. The objective of the present review is to provide comprehensive, updated information on sex-related differences in cardiac HMOD, focusing on the most important manifestations of subclinical hypertensive heart disease such as left ventricular hypertrophy (LVH), LV systolic and diastolic dysfunction, left atrial and aortic dilatation. Current evidence, based on cross-sectional and longitudinal observational studies as well as real-world registries and randomized controlled trials, suggests that women are more at risk of developing (and maintaining) LVH, concentric remodeling and subclinical LV dysfunction, namely the morpho-functional features of heart failure with preserved ejection fraction. It should be pointed out, however, that further studies are needed to fill the gap in defining gender-based optimal therapeutic strategies in order to protect women's hearts.
Collapse
Affiliation(s)
- Cesare Cuspidi
- Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy.
| | - Elisa Gherbesi
- Department of Clinical Sciences and Community Health, University of Milano and Fondazione Ospedale Maggiore IRCCS Policlinico di Milano, Milano, Italy
| | - Carla Sala
- Department of Clinical Sciences and Community Health, University of Milano and Fondazione Ospedale Maggiore IRCCS Policlinico di Milano, Milano, Italy
| | - Marijana Tadic
- Department of Cardiology, University Hospital "Dr. Dragisa Misovic-Dedinje", Belgrade, Serbia
| |
Collapse
|
9
|
FGF23 in Chronic Kidney Disease: Bridging the Heart and Anemia. Cells 2023; 12:cells12040609. [PMID: 36831276 PMCID: PMC9954184 DOI: 10.3390/cells12040609] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced mainly in osteocytes. In chronic kidney disease (CKD) FGF23 levels increase due to higher production, but also as the result of impaired cleavage and reduced excretion from the body. FGF23 has a significant role in disturbed bone and mineral metabolism in CKD, which leads to a higher cardiovascular risk and mortality in these patients. Current research has emphasized the expression of FGF23 in cardiac myocytes, fibroblasts, and endothelial cells, and in addition to the effects on the kidney, its primary role is in cardiac remodeling in CKD patients. Recent discoveries found a significant link between increased FGF23 levels and anemia development in CKD. This review describes the FGF23 role in cardiac hypertrophy and anemia in the setting of CKD and discusses the best therapeutical approach for lowering FGF23 levels.
Collapse
|
10
|
Papadopoulos KI, Papadopoulou A, Aw TC. A protective erythropoietin evolutionary landscape, NLRP3 inflammasome regulation, and multisystem inflammatory syndrome in children. Hum Cell 2023; 36:26-40. [PMID: 36310304 PMCID: PMC9618415 DOI: 10.1007/s13577-022-00819-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
Abstract
The low incidence of pediatric severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection and the associated multisystem inflammatory syndrome (MIS-C) lack a unifying pathophysiological explanation, impeding effective prevention and therapy. Activation of the NACHT, LRR, and PYD domains-containing protein (NLRP) 3 inflammasome in SARS-CoV-2 with perturbed regulation in MIS-C, has been reported. We posit that, early age physiological states and genetic determinants, such as certain polymorphisms of renin-angiotensin aldosterone system (RAAS) molecules, promote a controlled RAAS hyperactive state, and form an evolutionary landscape involving an age-dependent erythropoietin (EPO) elevation, mediating ancestral innate immune defenses that, through appropriate NLRP3 regulation, mitigate tissue injury and pathogen invasion. SARS-CoV-2-induced downregulation of angiotensin-converting enzyme (ACE)2 expression in endothelial cells (EC), impairment of endothelial nitric oxide (NO) synthase (eNOS) activity and downstream NO bioavailability, may promote a hyperactive RAAS with elevated angiotensin II and aldosterone that, can trigger, and accelerate NLRP3 inflammasome activation, while EPO-eNOS/NO abrogate it. Young age and a protective EPO evolutionary landscape may successfully inhibit SARS-CoV-2 and contain NLRP3 inflammasome activation. By contrast, increasing age and falling EPO levels, in genetically susceptible children with adverse genetic variants and co-morbidities, may lead to unopposed RAAS hyperactivity, NLRP3 inflammasome dysregulation, severe endotheliitis with pyroptotic cytokine storm, and development of autoantibodies, as already described in MIS-C. Our haplotype estimates, predicted from allele frequencies in population databases, are in concordance with MIS-C incidence reports in Europeans but indicate lower risks for Asians and African Americans. Targeted Mendelian approaches dissecting the influence of relevant genetic variants are needed.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- Department of Research and Development, THAI StemLife Co., Ltd., 566/3 THAI StemLife Bldg., Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, 10310, Bangkok, Thailand.
| | - Alexandra Papadopoulou
- Occupational and Environmental Health Services, Feelgood Lund, Ideon Science Park, Scheelevägen 17, 223 63, Lund, Sweden
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, Singapore, 529889, Singapore
- Department of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
11
|
Long-Term Excessive Dietary Phosphate Intake Increases Arterial Blood Pressure, Activates the Renin-Angiotensin-Aldosterone System, and Stimulates Sympathetic Tone in Mice. Biomedicines 2022; 10:biomedicines10102510. [PMID: 36289771 PMCID: PMC9599363 DOI: 10.3390/biomedicines10102510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 11/22/2022] Open
Abstract
Increased dietary phosphate intake has been associated with severity of coronary artery disease, increased carotid intima–media thickness, left ventricular hypertrophy (LVH), and increased cardiovascular mortality and morbidity in individuals with normal renal function as well as in patients suffering from chronic kidney disease. However, the underlying mechanisms are still unclear. To further elucidate the cardiovascular sequelae of long-term elevated phosphate intake, we maintained male C57BL/6 mice on a calcium, phosphate, and lactose-enriched diet (CPD, 2% Ca, 1.25% P, 20% lactose) after weaning them for 14 months and compared them with age-matched male mice fed a normal mouse diet (ND, 1.0% Ca, 0.7% P). Notably, the CPD has a balanced calcium/phosphate ratio, allowing the effects of elevated dietary phosphate intake largely independent of changes in parathyroid hormone (PTH) to be investigated. In agreement with the rationale of this experiment, mice maintained on CPD for 14 months were characterized by unchanged serum PTH but showed elevated concentrations of circulating intact fibroblast growth factor-23 (FGF23) compared with mice on ND. Cardiovascular phenotyping did not provide evidence for LVH, as evidenced by unchanged LV chamber size, normal cardiomyocyte area, lack of fibrosis, and unchanged molecular markers of hypertrophy (Bnp) between the two groups. However, intra-arterial catheterization revealed increases in systolic pressure, mean arterial pressure, and pulse pressure in mice fed the CPD. Interestingly, chronically elevated dietary phosphate intake stimulated the renin–angiotensin–aldosterone system (RAAS) as evidenced by increased urinary aldosterone in animals fed the CPD, relative to the ND controls. Furthermore, the catecholamines epinephrine, norepinephrine, and dopamine as well as the catecholamine metabolites metanephrine. normetanephrine and methoxytyramine as measured by mass spectrometry were elevated in the urine of mice on CPD, relative to mice on the ND. These changes were partially reversed by switching 14-month-old mice on CPD back to ND for 2 weeks. In conclusion, our data suggest that excess dietary phosphate induces a rise in blood pressure independent of secondary hyperparathyroidism, and that this effect may be mediated through activation of the RAAS and stimulation of the sympathetic tone.
Collapse
|
12
|
Tan Z, Song T, Huang S, Liu M, Ma J, Zhang J, Yu P, Liu X. Relationship between serum growth differentiation factor 15, fibroblast growth factor-23 and risk of atrial fibrillation: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:899667. [PMID: 35990956 PMCID: PMC9386045 DOI: 10.3389/fcvm.2022.899667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectiveGrowth differentiation factor-15 (GDF-15) and fibroblast growth factor-23 (FGF-23) are considered predictors of the incidence of cardiovascular diseases. The present meta-analysis aimed to elucidate the associations between GDF-15 and FGF-23 in the risk of atrial fibrillation (AF).MethodsAn electronic search was conducted in the Cochrane Library, PubMed, and Embase databases from inception until February 27, 2021. The study protocol was registered in the PROSPERO database (CRD42020182226).ResultsIn total, 15 studies that enrolled 36,017 participants were included. Both serum FGF-23 and GDF-15 were elevated in patients with AF. Analysis of categorical variables showed higher serum FGF-23 levels were associated with an increased risk of AF [relative risk (RR) = 1.28, 95% confidence interval (CI): 1.05–1.56]. In contrast, this association was not found with GDF-15 (RR = 0.91, 95% CI: 0.20–4.04). In dose-response analysis, a linear positive association was noted between serum FGF-23 levels and the risk of AF (P nonlinear = 0.9507), with a RR elevation of 7% for every 20 pg/ml increase in the serum FGF-23 levels (95% CI: 1.02–1.13). No remarkable relationship was found between serum GDF-15 levels and the risk of AF, and the overall RR for the association between a 100 ng/L increment in GDF-15 levels and AF was 1.01 (95% CI: 0.998–1.02).ConclusionOur study showed a positive linear correlation between serum FGF-23 levels and the risk of AF. However, no significant association was found between GDF-15 and the risk of AF. Further studies are warranted to clarify whether serum FGF-23 levels may be considered in predicting the risk of AF.Systematic Review Registration:http:www.york.ac.uk/inst/crd, identifier CRD42020182226.
Collapse
Affiliation(s)
- Ziqi Tan
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiangang Song
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shanshan Huang
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Menglu Liu
- Department of Cardiology, Seventh People's Hospital of Zhengzhou, Henan, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Peng Yu
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Xiao Liu
| |
Collapse
|
13
|
Latic N, Zupcic A, Frauenstein D, Erben RG. Activation of RAAS Signaling Contributes to Hypertension in Aged Hyp Mice. Biomedicines 2022; 10:biomedicines10071691. [PMID: 35884995 PMCID: PMC9313116 DOI: 10.3390/biomedicines10071691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 12/12/2022] Open
Abstract
High circulating levels of fibroblast growth factor-23 (FGF23) are associated with left ventricular hypertrophy as well as increased morbidity and mortality in patients suffering from chronic kidney disease. However, the mechanisms underlying this association are controversial. Here, we aimed to further characterize the cardiovascular sequelae of long term endogenous FGF23 hypersecretion using 14-month-old male Hyp mice as a model of FGF23 excess. Hyp mice were characterized by a ~10-fold increase in circulating intact FGF23, hypophosphatemia, increased serum aldosterone, but normal kidney function, relative to wildtype (WT) controls. Cardiovascular phenotyping did not reveal any evidence of left ventricular hypertrophy or functional impairment in 14-month-old Hyp mice. Fractional shortening, ejection fraction, molecular markers of hypertrophy (Anp, Bnp), and intracardiac markers of contractility and diastolic function were all unchanged in these animals. However, intraarterial catheterization revealed an increase in systolic, diastolic, and mean arterial pressure of ~12 mm Hg in aged Hyp mice relative to WT controls. Hypertension in Hyp mice was associated with increased peripheral vascular resistance. To test the hypothesis that a stimulation of the renin–angiotensin–aldosterone system (RAAS) contributes to hypertension in aged Hyp mice, we administered the angiotensin receptor blocker losartan (30 mg/kg twice daily) or the mineralocorticoid receptor antagonist canrenone (30 mg/kg once daily) to aged Hyp and WT mice over 5 days. Both drugs had minor effects on blood pressure in WT mice, but reduced blood pressure and peripheral vascular resistance in Hyp mice, suggesting that a stimulation of the RAAS contributes to hypertension in aged Hyp mice.
Collapse
|
14
|
Ishigami J, Honda Y, Karger AB, Coresh J, Selvin E, Lutsey PL, Matsushita K. Changes in Serum Intact Fibroblast Growth Factor 23 Concentrations From Midlife to Late Life and Their Predictors in the Community: The ARIC Study. Mayo Clin Proc Innov Qual Outcomes 2022; 6:209-217. [PMID: 35517245 PMCID: PMC9062741 DOI: 10.1016/j.mayocpiqo.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective To investigate longitudinal changes in the blood concentration of fibroblast growth factor 23 (FGF23) from midlife to late life and their major predictors in the general population. Patients and Methods In 14,444 participants of the Atherosclerosis Risk in Communities Study, we analyzed the association of 31,095 measurements of serum intact FGF23 with age using data from 3 visits (visit 2 [N=13,460; mean age, 57 years]; visit 3 [N=12,323; mean age, 60 years]; and visit 5 [N=6122; mean age, 76 years]) and a linear mixed-effects model. Among 5804 participants who had FGF23 measurements at both visits 3 and 5, we explored predictors of FGF23 change from midlife to late life using linear regression models. Prespecified risk factors were estimated glomerular filtration rate, body mass index, ever smoking, ever drinker, diabetes, hypertension, history of cardiovascular disease, total cholesterol, and high-density lipoprotein cholesterol. Results Median FGF23 concentrations were 41.9 pg/mL (interquartile interval [IQI], 33.9 to 51.8 pg/mL) at visit 2, 38.3 pg/mL (IQI, 30.6 to 48.3 pg/mL) at visit 3, and 55.0 pg/mL (IQI, 44.4 to 70.3 pg/mL) at visit 5. A linear mixed-effects model showed that the association of FGF23 with age was nonlinear, with a slight decline or no change in age 45-60 years and a monotonic increase in age greater than or equal to 65 years (FGF23, +10 to 15 pg/mL per 10 years of age). In a multivariable linear regression model, significantly greater increases in FGF23 were noted, with midlife estimated glomerular filtration rate less than 60 mL/min per 1.73 m2 vs more than or equal to 60 mL/min per 1.73 m2 (ΔFGF23, +4.4 pg/mL [95% CI, 0.9 to 8.0]), diabetes vs no diabetes (ΔFGF23, +6.2 pg/mL [95% CI, 4.1 to 8.3]), and hypertension vs no hypertension (ΔFGF23, +4.1 pg/mL [95% CI, 2.7 to 5.4]). Conclusion FGF23 did not show any major changes in midlife but increased linearly in late life. Reduced kidney function, diabetes, and hypertension were robustly associated with a greater increase in FGF23. Further investigations are needed to understand the potential mechanisms linking these conditions to an increase in FGF23 concentrations.
Collapse
Affiliation(s)
- Junichi Ishigami
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Yasuyuki Honda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Amy B. Karger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Pamela L. Lutsey
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
15
|
Hong Y, Yang AL, Wong JKS, Masodsai K, Lee SD, Lin YY. Exercise intervention prevents early aged hypertension-caused cardiac dysfunction through inhibition of cardiac fibrosis. Aging (Albany NY) 2022; 14:4390-4401. [PMID: 35604403 PMCID: PMC9186761 DOI: 10.18632/aging.204077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 11/25/2022]
Abstract
Background: An inappropriate accumulation of fibrillar collagen is a common pathologic feature of early aged hypertensive heart disease, but little information regarding the effects of exercise training on cardiac fibrosis in hypertension is available. The purpose of this study was to evaluate the effects of exercise training on cardiac fibrotic pathways in early aged hypertensive rats. Methods: Masson’s trichrome staining and Western blotting were performed on the excised left ventricle from twenty male spontaneously hypertensive rats at age of 48 weeks, which were randomly divided into either a sedentary hypertensive group (SHR) or exercise hypertensive group (SHR-EX, running on a treadmill running occurred 5 days/week for 60 min/day, for 12 weeks), and from age-matched male Wistar–Kyoto normotensive controls (WKY). Results: Interstitial fibrosis was reduced in the SHR-Ex group when compared with the SHR group. The fibrotic-related protein levels of AT1R, FGF23, LOX-2, TGF-β, CTGF, p-Smad 2/3, MMP-2/TIMP-2, MMP-9/TIMP-1, uPA and collagen I were decreased in the SHR-EX group, when compared with the SHR group. Conclusions: Exercise training suppresses early aged hypertensive heart-induced LOX-2/TGF-β-mediated fibrotic pathways associated with decreasing AT1R and FGF23, which might provide a new therapeutic effect for exercise training to prevent adverse cardiac fibrosis and myocardial abnormalities in early aged hypertension.
Collapse
Affiliation(s)
- Yi Hong
- The First Rehabilitation Hospital of Shanghai, Shanghai, China
| | - Ai-Lun Yang
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - James K S Wong
- Department of Cardiology, Asia University Hospital, Taichung, Taiwan.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Kunanya Masodsai
- Faculty of Sports Science, Chulalongkorn University, Bangkok, Thailand
| | - Shin-Da Lee
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung, Taiwan.,Department of Physical Therapy, Asia University, Taichung, Taiwan.,School of Rehabilitation Medicine, Weifang Medical University, Shandong, China
| | - Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
16
|
Considerations for the future: current and future treatment paradigms with mineralocorticoid receptor antagonists—unmet needs and underserved patient cohorts. Kidney Int Suppl (2011) 2022; 12:69-75. [DOI: 10.1016/j.kisu.2021.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022] Open
|
17
|
Lin Y, Cui Y, Yuan Y, Gao L, Li Q, Huang X, Liu Y, Shi L. Plasma Fibroblast Growth Factor 23 as a Predictor for Fosinopril Therapeutic Efficacy in Pediatric Primary Hypertension. J Am Heart Assoc 2022; 11:e023182. [PMID: 35322670 PMCID: PMC9075434 DOI: 10.1161/jaha.121.023182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Plasma fibroblast growth factor 23 (FGF23) has been reported to be a predictive biomarker for therapeutic effectiveness of angiotensin‐converting enzyme inhibitors in heart failure. Higher plasma FGF23 levels have been shown in pediatric primary hypertension, but the predictive value of FGF23 for angiotensin‐converting enzyme inhibitors’ effectiveness in pediatric primary hypertension has not been documented. Methods and Results This is a prospective study. An exploratory study with 139 patients was first conducted to determine the cutoff value of FGF23 for the prediction of treatment responsiveness. After receiving fosinopril for 4 weeks, of all 139 patients, 91 responded, while 48 did not respond to the treatment, and the responders had a significantly higher baseline plasma FGF23 level than nonresponders (P<0.01). Multiple regression analysis revealed a significant impact of baseline plasma FGF23 levels on fosinopril responsiveness (P<0.05). The receiver operating characteristic curve analysis showed that the plasma FGF23 predicted the effectiveness of fosinopril treatment with an area under the curve of 0.784 (95% CI, 0.704–0.863) for a sensitivity and a specificity of 67.0% and 89.6%, respectively, for a cutoff value of 62.08 RU/mL. Subsequently, another group of 40 patients were recruited for validation. The blood pressure control rate in those (n=22) with baseline plasma FGF23 >62.08 RU/mL was significantly higher than that in children (n=18) with FGF23 ≤62.08 RU/mL (P<0.05). Conclusions Plasma FGF23 might be a valuable biomarker to guide fosinopril therapy for primary hypertension in children.
Collapse
Affiliation(s)
- Yao Lin
- Department of Cardiology Children's Hospital Capital Institute of Pediatrics Beijing China
| | - Yaxi Cui
- Department of Cardiology Children's Hospital Capital Institute of Pediatrics Beijing China
| | - Yue Yuan
- Department of Cardiology Beijing Children's HospitalCapital Medical UniversityNational Center for Children's Health Beijing China
| | - Lu Gao
- Department of Cardiology Beijing Children's HospitalCapital Medical UniversityNational Center for Children's Health Beijing China
| | - Qirui Li
- Department of Cardiology Beijing Children's HospitalCapital Medical UniversityNational Center for Children's Health Beijing China
| | - Xiaolan Huang
- Central Diagnostic Laboratory Children's Hospital Capital Institute of Pediatrics Beijing China
| | - Yanyan Liu
- Department of Cardiology Children's Hospital Capital Institute of Pediatrics Beijing China
| | - Lin Shi
- Department of Cardiology Children's Hospital Capital Institute of Pediatrics Beijing China
| |
Collapse
|
18
|
Papadopoulos KI, Sutheesophon W, Aw TC. The influence of renin angiotensin aldosterone system (RAAS), endothelial nitric oxide synthase (eNOS) and erythropoietin (EPO) on COVID-19 complications. Chem Biol Interact 2022; 354:109834. [PMID: 35092718 PMCID: PMC8789551 DOI: 10.1016/j.cbi.2022.109834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
Certain aspects of the renin-angiotensin-aldosterone system (RAAS) have eluded deserved attention such as the role of erythropoietin (EPO) and nitric oxide (NO) both of which appear to significantly modulate COVID-19 disease course. Furthermore, renin-angiotensin-aldosterone system (RAAS) and endothelial NO synthase (eNOS) genetic polymorphisms additionally impact on EPO and NO homeostasis and have extensive implications on pharmacological disease management.
Collapse
Affiliation(s)
- Konstantinos I Papadopoulos
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Wangthonglang, Bangkok, 10310, Thailand.
| | - Warachaya Sutheesophon
- THAI StemLife, 566/3 Soi Ramkhamhaeng 39 (Thepleela 1), Prachaouthit Rd., Wangthonglang, Wangthonglang, Bangkok, 10310, Thailand.
| | - Tar-Choon Aw
- Department of Laboratory Medicine, Changi General Hospital, 2 Simei Street 3, Singapore, 529889.
| |
Collapse
|
19
|
Okamoto K, Fujii H, Watanabe K, Goto S, Kono K, Nishi S. Changes of FGF23 and the Renin-Angiotensin-System in Male Mouse Models of Chronic Kidney Disease and Cardiac Hypertrophy. J Endocr Soc 2022; 6:bvab187. [PMID: 35047715 PMCID: PMC8758403 DOI: 10.1210/jendso/bvab187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Indexed: 11/19/2022] Open
Abstract
Serum fibroblast growth factor 23 (FGF23) levels and the renin-angiotensin-aldosterone system (RAAS) are elevated in chronic kidney disease (CKD) patients, and their association with left ventricular hypertrophy (LVH) has been reported. However, whether the FGF23 elevation is the cause or result of LVH remains unclear. At 10 weeks, male C57BL/6J mice were divided into 4 groups: sham, CKD (5/6 nephrectomy), LVH (transaortic constriction), and CKD/LVH group. At 16 weeks, the mice were euthanized, and blood and urine, cardiac expressions of FGF23 and RAAS-related factors, and cardiac histological analyses were performed. Heart weight, serum FGF23 levels, and cardiac expression of FGF23 and RAAS-related factors, except for angiotensin-converting enzyme 2, were more increased in the CKD/LVH group compared to the other groups. A significant correlation between LVH and cardiac expressions of FGF23 and RAAS-related factors was observed. Furthermore, there was a significantly close correlation of the cardiac expression of FGF23 with LVH and RAAS-related factors. The coexisting CKD and LVH increased serum and cardiac FGF23 and RAAS-related factors, and there was a significant correlation between them. A close correlation of cardiac, but not serum FGF23, with LVH and RAAS suggests that local FGF23 levels may be associated with LVH and RAAS activation.
Collapse
Affiliation(s)
- Kohei Okamoto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Hideki Fujii
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Kentaro Watanabe
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shunsuke Goto
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Keiji Kono
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| | - Shinichi Nishi
- Division of Nephrology and Kidney Center, Kobe University Graduate School of Medicine, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
20
|
Freundlich M, Gamba G, Rodriguez-Iturbe B. Fibroblast growth factor 23-Klotho and hypertension: experimental and clinical mechanisms. Pediatr Nephrol 2021; 36:3007-3022. [PMID: 33230698 PMCID: PMC7682775 DOI: 10.1007/s00467-020-04843-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Hypertension (HTN) and chronic kidney disease (CKD) are increasingly recognized in pediatric patients and represent risk factors for cardiovascular morbidity and mortality later in life. In CKD, enhanced tubular sodium reabsorption is a leading cause of HTN due to augmented extracellular fluid volume expansion. The renin-angiotensin-aldosterone system (RAAS) upregulates various tubular sodium cotransporters that are also targets of the hormone fibroblast growth factor 23 (FGF23) and its co-receptor Klotho. FGF23 inhibits the activation of 1,25-dihydroxyvitamin D that is a potent suppressor of renin biosynthesis. Here we review the complex interactions and disturbances of the FGF23-Klotho axis, vitamin D, and the RAAS relevant to blood pressure regulation and discuss the therapeutic strategies aimed at mitigating their pathophysiologic contributions to HTN.
Collapse
Affiliation(s)
- Michael Freundlich
- Department of Pediatrics, Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Bernardo Rodriguez-Iturbe
- Department of Nephrology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Nephrology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
21
|
Epstein M, Freundlich M. The intersection of Mineralocorticoid Receptor (MR) activation and the FGF23 - Klotho cascade. A Duopoly that promotes renal and cardiovascular injury. Nephrol Dial Transplant 2021; 37:211-221. [PMID: 34459924 DOI: 10.1093/ndt/gfab254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
The nexus of CKD and cardiovascular disease (CVD) amplifies the morbidity and mortality of CKD, emphasizing the need for defining and establishing therapeutic initiatives to modify and abrogate the progression of CKD and concomitant CV risks. In addition to the traditional CV risk factors, disturbances of mineral metabolism are specific risk factors that contribute to the excessive CV mortality in patients with CKD. These risk factors include dysregulations of circulating factors that modulate phosphate metabolism including fibroblast growth factor 23 (FGF23) and soluble Klotho. Reduced circulating levels and suppressed renal klotho expression may be associated with adverse outcomes in CKD patients. While elevated circulating concentrations or locally produced FGF23 in the strained heart exert pro-hypertrophic mechanisms on the myocardium, Klotho attenuates tissue fibrosis, progression of CKD, cardiomyopathy, endothelial dysfunction, vascular stiffness, and vascular calcification. Mineralocorticoid receptor (MR) activation in non-classical targets, mediated by aldosterone and other ligands, amplifies CVD in CKD. In concert, we detail how the interplay of elevated FGF23, activation of the MR, and concomitant reductions of circulating Klotho in CKD, may potentiate each other's deleterious effects on kidney and the heart, thereby contributing to the initiation and progression of kidney and cardiac functional deterioration, acting through multipronged albeit complementary mechanistic pathways.
Collapse
Affiliation(s)
- Murray Epstein
- Division of Nephrology and Hypertension, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael Freundlich
- Division of Pediatric Nephrology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
22
|
Hanson K, Fisher K, Hooper N. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal 2021; 5:NS20200101. [PMID: 34194816 PMCID: PMC8204227 DOI: 10.1042/ns20200101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cognitive dysfunction is a key symptom of ageing and neurodegenerative disorders, such as Alzheimer's disease (AD). Strategies to enhance cognition would impact the quality of life for a significant proportion of the ageing population. The α-klotho protein may protect against cognitive decline through multiple mechanisms: such as promoting optimal synaptic function via activation of N-methyl-d-aspartate (NMDA) receptor signalling; stimulating the antioxidant defence system; reducing inflammation; promoting autophagy and enhancing clearance of amyloid-β. However, the molecular and cellular pathways by which α-klotho mediates these neuroprotective functions have yet to be fully elucidated. Key questions remain unanswered: which form of α-klotho (transmembrane, soluble or secreted) mediates its cognitive enhancing properties; what is the neuronal receptor for α-klotho and which signalling pathways are activated by α-klotho in the brain to enhance cognition; how does peripherally administered α-klotho mediate neuroprotection; and what is the molecular basis for the beneficial effect of the VS variant of α-klotho? In this review, we summarise the recent research on neuronal α-klotho and discuss how the neuroprotective properties of α-klotho could be exploited to tackle age- and neurodegeneration-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Kelsey Hanson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
23
|
Cantero-Navarro E, Fernández-Fernández B, Ramos AM, Rayego-Mateos S, Rodrigues-Diez RR, Sánchez-Niño MD, Sanz AB, Ruiz-Ortega M, Ortiz A. Renin-angiotensin system and inflammation update. Mol Cell Endocrinol 2021; 529:111254. [PMID: 33798633 DOI: 10.1016/j.mce.2021.111254] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Abstract
The most classical view of the renin-angiotensin system (RAS) emphasizes its role as an endocrine regulator of sodium balance and blood pressure. However, it has long become clear that the RAS has pleiotropic actions that contribute to organ damage, including modulation of inflammation. Angiotensin II (Ang II) activates angiotensin type 1 receptors (AT1R) to promote an inflammatory response and organ damage. This represents the pathophysiological basis for the successful use of RAS blockers to prevent and treat kidney and heart disease. However, other RAS components could have a built-in capacity to brake proinflammatory responses. Angiotensin type 2 receptor (AT2R) activation can oppose AT1R actions, such as vasodilatation, but its involvement in modulation of inflammation has not been conclusively proven. Angiotensin-converting enzyme 2 (ACE2) can process Ang II to generate angiotensin-(1-7) (Ang-(1-7)), that activates the Mas receptor to exert predominantly anti-inflammatory responses depending on the context. We now review recent advances in the understanding of the interaction of the RAS with inflammation. Specific topics in which novel information became available recently include intracellular angiotensin receptors; AT1R posttranslational modifications by tissue transglutaminase (TG2) and anti-AT1R autoimmunity; RAS modulation of lymphoid vessels and T lymphocyte responses, especially of Th17 and Treg responses; interactions with toll-like receptors (TLRs), programmed necrosis, and regulation of epigenetic modulators (e.g. microRNAs and bromodomain and extraterminal domain (BET) proteins). We additionally discuss an often overlooked effect of the RAS on inflammation which is the downregulation of anti-inflammatory factors such as klotho, peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), transient receptor potential ankyrin 1 (TRPA1), SNF-related serine/threonine-protein kinase (SNRK), serine/threonine-protein phosphatase 6 catalytic subunit (Ppp6C) and n-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP). Both transcription factors, such as nuclear factor κB (NF-κB), and epigenetic regulators, such as miRNAs are involved in downmodulation of anti-inflammatory responses. A detailed analysis of pathways and targets for downmodulation of anti-inflammatory responses constitutes a novel frontier in RAS research.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Adrian M Ramos
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - Raúl R Rodrigues-Diez
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain
| | - María Dolores Sánchez-Niño
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Ana B Sanz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; Red de Investigación Renal (REDINREN), Spain.
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Spain; Unidad de Diálisis. IIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain.
| |
Collapse
|
24
|
The Complexity of FGF23 Effects on Cardiomyocytes in Normal and Uremic Milieu. Cells 2021; 10:cells10051266. [PMID: 34065339 PMCID: PMC8161087 DOI: 10.3390/cells10051266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factor-23 (FGF23) appears to be one of the most promising biomarkers and predictors of cardiovascular risk in patients with heart disease and normal kidney function, but moreover in those with chronic kidney disease (CKD). This review summarizes the current knowledge of FGF23 mechanisms of action in the myocardium in the physiological and pathophysiological state of CKD, as well as its cross-talk to other important signaling pathways in cardiomyocytes. In this regard, current therapeutic possibilities and future perspectives are also discussed.
Collapse
|
25
|
Boorsma EM, Ter Maaten JM, Damman K, van Veldhuisen DJ, Dickstein K, Anker SD, Filippatos G, Lang CC, Metra M, Santos K, Voors AA. Dipeptidyl peptidase 3, a marker of the antagonist pathway of the renin-angiotensin-aldosterone system in patients with heart failure. Eur J Heart Fail 2021; 23:947-953. [PMID: 33742751 PMCID: PMC8359955 DOI: 10.1002/ejhf.2158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/21/2023] Open
Abstract
Aims Recently, dipeptidyl peptidase 3 (DPP3) has been discovered as the peptidase responsible for cleavage of angiotensin (1–7) [Ang (1–7)]. Ang (1–7) is part of the angiotensin‐converting enzyme–Ang (1–7)–Mas pathway which is considered to antagonize the renin–angiotensin–aldosterone system (RAAS). Since DPP3 inhibits the counteracting pathway of the RAAS, we hypothesize that DPP3 might be deleterious in the setting of heart failure. However, no data are available on DPP3 in chronic heart failure. We therefore investigated the clinical characteristics and outcome related to elevated DPP3 concentrations in patients with worsening heart failure. Methods and results Dipeptidyl peptidase 3 was measured in 2156 serum samples of patients with worsening heart failure using luminometric immunoassay (DPP3‐LIA) by 4TEEN4 Pharmaceuticals GmbH, Hennigsdorf, Germany. Predictors of DPP3 levels were selected using multiple linear regression with stepwise backward selection. Median DPP3 concentration was 11.45 ng/mL with a range from 2.8 to 84.9 ng/mL. Patients with higher DPP3 concentrations had higher renin [78.3 (interquartile range, IQR 26.3–227.7) vs. 120.7 IU/mL (IQR 34.74–338.9), P < 0.001, for Q1–3 vs. Q4] and aldosterone [88 (IQR 44–179) vs. 116 IU/mL (IQR 46–241), P < 0.001, for Q1–3 vs. Q4] concentrations. The strongest independent predictors for higher concentration of DPP3 were log‐alanine aminotransferase, log‐total bilirubin, the absence of diabetes, higher osteopontin, fibroblast growth factor‐23 and N‐terminal pro‐B‐type natriuretic peptide concentrations (all P < 0.001). In univariable survival analysis, DPP3 was associated with mortality and the combined endpoint of death or heart failure hospitalization (P < 0.001 for both). After adjustment for confounders, this association was no longer significant. Conclusions In patients with worsening heart failure, DPP3 is a marker of more severe disease with higher RAAS activity. It may be deleterious in heart failure by counteracting the Mas receptor pathway. Procizumab, a specific antibody against DPP3, might be a potential future treatment option for patients with heart failure.
Collapse
Affiliation(s)
- Eva M Boorsma
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jozine M Ter Maaten
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kevin Damman
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Stefan D Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Heart Failure Unit, Athens University Hospital Attikon, Athens, Greece
| | - Chim C Lang
- Division of Molecular & Clinical Medicine, University of Dundee, Dundee, UK
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | | | - Adriaan A Voors
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
26
|
Hu PP, Bao JF, Li A. Roles for fibroblast growth factor-23 and α-Klotho in acute kidney injury. Metabolism 2021; 116:154435. [PMID: 33220250 DOI: 10.1016/j.metabol.2020.154435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Acute kidney injury is a global disease with high morbidity and mortality. Recent studies have revealed that the fibroblast growth factor-23-α-Klotho axis is closely related to chronic kidney disease, and has multiple biological functions beyond bone-mineral metabolism. However, although dysregulation of fibroblast growth factor-23-α-Klotho has been observed in acute kidney injury, the role of fibroblast growth factor-23-α-Klotho in the pathophysiology of acute kidney injury remains largely unknown. In this review, we describe recent findings regarding fibroblast growth factor-23-α-Klotho, which is mainly involved in inflammation, oxidative stress, and hemodynamic disorders. Further, based on these recent results, we put forth novel insights regarding the relationship between the fibroblast growth factor-23-α-Klotho axis and acute kidney injury, which may provide new therapeutic targets for treating acute kidney injury.
Collapse
Affiliation(s)
- Pan-Pan Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005 Guangzhou, China.
| |
Collapse
|
27
|
Chrysaidou K, Chainoglou A, Karava V, Dotis J, Printza N, Stabouli S. Secondary Hypertension in Children and Adolescents: Novel Insights. Curr Hypertens Rev 2020; 16:37-44. [PMID: 31038068 DOI: 10.2174/1573402115666190416152820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
Abstract
Hypertension is a significant risk factor for cardiovascular morbidity and mortality, not only in adults, but in youths also, as it is associated with long-term negative health effects. The predominant type of hypertension in children is the secondary hypertension, with the chronic kidney disease being the most common cause, however, nowadays, there is a rising incidence of primary hypertension due to the rising incidence of obesity in children. Although office blood pressure has guided patient management for many years, ambulatory blood pressure monitoring provides useful information, facilitates the diagnosis and management of hypertension in children and adolescents, by monitoring treatment and evaluation for secondary causes or specific phenotypes of hypertension. In the field of secondary hypertension, there are numerous studies, which have reported a strong association between different determinants of 24-hour blood pressure profile and the underlying cause. In addition, in children with secondary hypertension, ambulatory blood pressure monitoring parameters offer the unique advantage to identify pediatric low- and high-risk children for target organ damage. Novel insights in the pathogenesis of hypertension, including the role of perinatal factors or new cardiovascular biomarkers, such as fibroblast growth factor 23, need to be further evaluated in the near future.
Collapse
Affiliation(s)
- Katerina Chrysaidou
- 1st Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Athanasia Chainoglou
- 1st Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Vasiliki Karava
- 1st Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - John Dotis
- 1st Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Nikoleta Printza
- 1st Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Stella Stabouli
- 1st Department of Pediatrics, Aristotle University Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| |
Collapse
|
28
|
Patschan D, Patschan S, Ritter O. Chronic Metabolic Acidosis in Chronic Kidney Disease. Kidney Blood Press Res 2020; 45:812-822. [PMID: 33264780 DOI: 10.1159/000510829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Metabolic acidosis may be diagnosed as chronic (cMA) if it persists for at least 5 days, although an exact definition has not been provided by any guidelines yet. The most common cause is CKD; numerous less-known diseases can also account for cMA. SUMMARY In recent years, CKD-associated cMA has been proposed to induce several clinical complications. The aim of the article was to assess the current clinical evidence for complications and the respective management of CKD-associated cMA. In summary, cMA in CKD most likely promotes protein degradation and loss of bone mineral density. It aggravates CKD progression as indicated by experimental and (partly) clinical data. Therefore, cMA control must be recommended. Besides oral bicarbonate, dietary interventions potentially offer an alternative. Veverimer is a future option for cMA control; further systematic data are needed. CONCLUSIONS The most common cause of cMA is CKD. CKD-associated cMA most likely induces a negative protein balance; the exact role on bone metabolism remains uncertain. It presumably aggravates CKD progression. cMA control is recommendable; the serum bicarbonate target level should range around 24 mEq/L. Veverimer may be established as future option for cMA control; further systematic data are needed.
Collapse
Affiliation(s)
- Daniel Patschan
- Zentrum Innere Medizin 1, Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg (MHB), Brandenburg, Germany,
| | - Susann Patschan
- Zentrum Innere Medizin 1, Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg (MHB), Brandenburg, Germany
| | - Oliver Ritter
- Zentrum Innere Medizin 1, Kardiologie, Angiologie, Nephrologie, Klinikum Brandenburg, Medizinische Hochschule Brandenburg (MHB), Brandenburg, Germany
| |
Collapse
|
29
|
Bao JF, Hu PP, She QY, Li A. A Land of Controversy: Fibroblast Growth Factor-23 and Uremic Cardiac Hypertrophy. J Am Soc Nephrol 2020; 31:1423-1434. [PMID: 32527977 PMCID: PMC7351013 DOI: 10.1681/asn.2020010081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cardiac hypertrophy is a common feature in patients with CKD. Recent studies revealed that two phosphate regulators, fibroblast growth factor-23 and α-Klotho, are highly involved in the pathophysiologic process of CKD-induced cardiac hypertrophy. With decreasing renal function, elevated fibroblast growth factor-23 and decreased α-Klotho may contribute to cardiac hypertrophy by targeting the heart directly or by inducing systemic changes, such as vascular injury, hemodynamic disorders, and inflammation. However, several studies have demonstrated that disturbances in the fibroblast growth factor-23/α-Klotho axis do not lead to cardiac hypertrophy. In this review, we describe the cardiac effects of the fibroblast growth factor-23/α-Klotho axis and summarize recent progress in this field. In addition, we present not only the main controversies in this field but also provide possible directions to resolve these disputes.
Collapse
Affiliation(s)
- Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pan-Pan Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin-Ying She
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
30
|
Wang B, Wang H, Zhang M, Ji R, Wei J, Xin Y, Jiang X. Radiation-induced myocardial fibrosis: Mechanisms underlying its pathogenesis and therapeutic strategies. J Cell Mol Med 2020; 24:7717-7729. [PMID: 32536032 PMCID: PMC7348163 DOI: 10.1111/jcmm.15479] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/18/2020] [Accepted: 05/24/2020] [Indexed: 12/24/2022] Open
Abstract
Radiation-induced myocardial fibrosis (RIMF) is a potentially lethal clinical complication of chest radiotherapy (RT) and a final stage of radiation-induced heart disease (RIHD). RIMF is characterized by decreased ventricular elasticity and distensibility, which can result in decreased ejection fraction, heart failure and even sudden cardiac death. Together, these conditions impair the long-term health of post-RT survivors and limit the dose and intensity of RT required to effectively kill tumour cells. Although the exact mechanisms involving in RIMF are unclear, increasing evidence indicates that the occurrence of RIMF is related to various cells, regulatory molecules and cytokines. However, accurately diagnosing and identifying patients who may progress to RIMF has been challenging. Despite the urgent need for an effective treatment, there is currently no medical therapy for RIMF approved for routine clinical application. In this review, we investigated the underlying pathophysiology involved in the initiation and progression of RIMF before outlining potential preventative and therapeutic strategies to counter this toxicity.
Collapse
Affiliation(s)
- Bin Wang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| | - Huanhuan Wang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| | - Mengmeng Zhang
- Phase I Clinical Research CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Rui Ji
- Department of BiologyValencia CollegeOrlandoFLUSA
| | - Jinlong Wei
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Xin
- Key Laboratory of PathobiologyMinistry of EducationJilin UniversityChangchunChina
| | - Xin Jiang
- Department of Radiation OncologyThe First Hospital of Jilin UniversityChangchunChina
- Jilin Provincial Key Laboratory of Radiation Oncology & TherapyThe First Hospital of Jilin UniversityChangchunChina
- NHC Key Laboratory of RadiobiologySchool of Public HealthJilin UniversityChangchunChina
| |
Collapse
|
31
|
Abstract
Purpose of review Chronic kidney disease (CKD) is a condition associated with bone disease and fibroblast growth factor 23 (FGF23) excess that contributes to cardiovascular mortality. Dentin matrix protein 1 (DMP1) is an established regulator of bone mineralization and FGF23 production in osteocytes. To date, DMP1 function has mainly been studied in the context of hereditary hypophosphatemic rickets diseases. This review describes the role of DMP1 as a potential strong candidate to prevent bone disorders, FGF23 elevation and associated cardiac outcomes in CKD. Recent findings Patients and mice with CKD show impaired osteocyte maturation and impaired regulation of DMP1 and FGF23 in bone. New data suggest that impaired DMP1 production contributes to CKD-associated bone and mineral metabolism disorders and we show that DMP1 repletion improves osteocyte alterations, bone mineralization and partially prevents FGF23 elevation. As a result, mice with CKD show attenuated left ventricular hypertrophy and improved survival. Summary There is an urgent need for new therapeutic strategies to improve bone quality and to lower FGF23 levels in CKD. By preventing osteocyte apoptosis and inhibiting Fgf23 transcription, DMP1 supplementation may represent an ideal approach to improve CKD-associated bone and cardiac outcomes.
Collapse
|
32
|
Han X, Cai C, Xiao Z, Quarles LD. FGF23 induced left ventricular hypertrophy mediated by FGFR4 signaling in the myocardium is attenuated by soluble Klotho in mice. J Mol Cell Cardiol 2020; 138:66-74. [PMID: 31758962 PMCID: PMC7195870 DOI: 10.1016/j.yjmcc.2019.11.149] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
There is controversy regarding whether excess FGF23 causes left ventricular hypertrophy (LVH) directly through activation of fibroblast growth factor receptor 4 (FGFR4) in cardiomyocytes or indirectly through reductions in soluble Klotho (sK). We investigated the respective roles of myocardial FGFR4 and sKL in mediating FGF23-induced LVH using mouse genetic and pharmacological approaches. To investigate a direct role of myocardial FGFR4 in mediating the cardiotoxic effects of excess circulating FGF23, we administered rFGF23 to mice with cardiac-specific loss of FGFR4 (FGFR4 heart-cKO). We tested a model of sKL deficiency, hypertension and LVH created by the conditional deletion of FGFR1 in the renal distal tubule (FGFR1DT cKO mice). The cardioprotective effects of sKL in both mouse models was assessed by the systemic administration of recombinant sKL. We confirmed that FGF23 treatment activates PLCγ in the heart and induces LVH in the absence of membrane α-Klotho. Conditional deletion of FGFR4 in the myocardium prevented rFGF23-induced LVH in mice, establishing direct cardiotoxicity of FGF23 through activation of FGFR4. Recombinant sKL administration prevented LVH, but not HTN, in FGFR1DT cKO mice, consistent with direct cardioprotective effects. Co-administration of recombinant sKL with FGF23 in culture inhibited rFGF23-induced p-PLCγ signaling. Thus, FGF23 ability to include LVH represents a balance between FGF23 direct cardiac activation of FGFR4 and the modulating effects of circulating sKL to alter FGF23-dependent myocardial signaling pathways.
Collapse
Affiliation(s)
- Xiaobin Han
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America
| | - Chun Cai
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America
| | - Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States of America.
| |
Collapse
|
33
|
Xiao Z, King G, Mancarella S, Munkhsaikhan U, Cao L, Cai C, Quarles LD. FGF23 expression is stimulated in transgenic α-Klotho longevity mouse model. JCI Insight 2019; 4:132820. [PMID: 31801907 PMCID: PMC6962016 DOI: 10.1172/jci.insight.132820] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Observations in transgenic α-Klotho (Kl) mice (KlTg) defined the antiaging role of soluble Klotho (sKL130). A genetic translocation that elevates sKL levels in humans is paradoxically associated with increased circulating fibroblast growth factor 23 (FGF23) levels and the potential of both membrane KL (mKL135) and sKL130 to act as coreceptors for FGF23 activation of fibroblast growth factor receptors (FGFRs). Neither FGF23 expression nor the contributions of FGF23, mKL135, and sKL130 codependent and independent functions have been investigated in KlTg mice. In the current study, we examined the effects of Kl overexpression on FGF23 levels and functions in KlTg mice. We found that mKL135 but not sKL130 stimulated FGF23 expression in osteoblasts, leading to elevated Fgf23 bone expression and circulating levels in KlTg mice. Elevated FGF23 suppressed 1,25(OH)2D and parathyroid hormone levels but did not cause hypophosphatemic rickets in KlTg mice. KlTg mice developed low aldosterone-associated hypertension but not left ventricular hypertrophy. Mechanistically, we found that mKL135 and sKL130 are essential cofactors for FGF23-mediated ERK activation but that they inhibited FGF23 stimulation of PLC-γ and PI3K/AKT signaling. Thus, increased longevity in KlTg mice occurs in the presence of excess FGF23 that interacts with mKL and sKL to bias FGFR pathways.
Collapse
Affiliation(s)
- Zhousheng Xiao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Gwendalyn King
- Department of Biology, Creighton University, Omaha, Nebraska, USA
| | | | - Undral Munkhsaikhan
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Li Cao
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Chun Cai
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Leigh Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Smith ER, Holt SG, Hewitson TD. αKlotho-FGF23 interactions and their role in kidney disease: a molecular insight. Cell Mol Life Sci 2019; 76:4705-4724. [PMID: 31350618 PMCID: PMC11105488 DOI: 10.1007/s00018-019-03241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022]
Abstract
Following the serendipitous discovery of the ageing suppressor, αKlotho (αKl), several decades ago, a growing body of evidence has defined a pivotal role for its various forms in multiple aspects of vertebrate physiology and pathology. The transmembrane form of αKl serves as a co-receptor for the osteocyte-derived mineral regulator, fibroblast growth factor (FGF)23, principally in the renal tubules. However, compelling data also suggest that circulating soluble forms of αKl, derived from the same source, may have independent homeostatic functions either as a hormone, glycan-cleaving enzyme or lectin. Chronic kidney disease (CKD) is of particular interest as disruption of the FGF23-αKl axis is an early and common feature of disease manifesting in markedly deficient αKl expression, but FGF23 excess. Here we critically discuss recent findings in αKl biology that conflict with the view that soluble αKl has substantive functions independent of FGF23 signalling. Although the issue of whether soluble αKl can act without FGF23 has yet to be resolved, we explore the potential significance of these contrary findings in the context of CKD and highlight how this endocrine pathway represents a promising target for novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia.
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia.
| | - Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| | - Tim D Hewitson
- Department of Nephrology, The Royal Melbourne Hospital, Melbourne, Australia
- Department of Medicine, University of Melbourne, Grattan Street, Parkville, VIC, 3050, Australia
| |
Collapse
|
35
|
FGF23-Mediated Activation of Local RAAS Promotes Cardiac Hypertrophy and Fibrosis. Int J Mol Sci 2019; 20:ijms20184634. [PMID: 31540546 PMCID: PMC6770314 DOI: 10.3390/ijms20184634] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are prone to developing cardiac hypertrophy and fibrosis, which is associated with increased fibroblast growth factor 23 (FGF23) serum levels. Elevated circulating FGF23 was shown to induce left ventricular hypertrophy (LVH) via the calcineurin/NFAT pathway and contributed to cardiac fibrosis by stimulation of profibrotic factors. We hypothesized that FGF23 may also stimulate the local renin–angiotensin–aldosterone system (RAAS) in the heart, thereby further promoting the progression of FGF23-mediated cardiac pathologies. We evaluated LVH and fibrosis in association with cardiac FGF23 and activation of RAAS in heart tissue of 5/6 nephrectomized (5/6Nx) rats compared to sham-operated animals followed by in vitro studies with isolated neonatal rat ventricular myocytes and fibroblast (NRVM, NRCF), respectively. Uremic rats showed enhanced cardiomyocyte size and cardiac fibrosis compared with sham. The cardiac expression of Fgf23 and RAAS genes were increased in 5/6Nx rats and correlated with the degree of cardiac fibrosis. In NRVM and NRCF, FGF23 stimulated the expression of RAAS genes and induced Ngal indicating mineralocorticoid receptor activation. The FGF23-mediated hypertrophic growth of NRVM and induction of NFAT target genes were attenuated by cyclosporine A, losartan and spironolactone. In NRCF, FGF23 induced Tgfb and Ctgf, which were suppressed by losartan and spironolactone, only. Our data suggest that FGF23-mediated activation of local RAAS in the heart promotes cardiac hypertrophy and fibrosis.
Collapse
|
36
|
Ding J, Tang Q, Luo B, Zhang L, Lin L, Han L, Hao M, Li M, Yu L, Li M. Klotho inhibits angiotensin II-induced cardiac hypertrophy, fibrosis, and dysfunction in mice through suppression of transforming growth factor-β1 signaling pathway. Eur J Pharmacol 2019; 859:172549. [PMID: 31325434 DOI: 10.1016/j.ejphar.2019.172549] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
Recent studies have revealed critical roles of transforming growth factor-β1 (TGF-β1) and microRNA-132 (miR-132), a downstream mediator of TGF-β1, in the pathogenesis of cardiac remodeling. In this study, we tested whether the antiaging protein klotho modifies angiotensin II (Ang II)-induced cardiac remodeling through regulating TGF-β1-miR-132 axis. We found that both klotho and the TGF-β1 inhibitor LY364947 significantly inhibited cardiac hypertrophy, fibrosis, and dysfunction in Ang II-infused mice, as evidenced by the ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL), cardiomyocyte cross-sectional area, fibrotic area, and expression of prohypertrophic genes (ANP, β-MHC) and fibrotic marker genes (α-SMA, collagen I), echocardiographic parameters. Meanwhile, klotho also significantly inhibited Ang II-induced protein expression of TGF-β1 and phosphorylated Smad2/3 in the heart tissues and cultured cardiomyocytes and cardiac fibroblasts. In vitro experiments demonstrated that Ang II-induced cardiomyocyte hypertrophy and proliferation and activation of cardiac fibroblasts were markedly inhibited by klotho, LY364947 or the miR-132 inhibitor anti-miR-132. Both klotho and the TGF-β1 inhibitor LY364947 downregulated the miR-132 expression. Additionally, klotho decreased Ang II-induced protein expressions of cardiac fibroblast growth factor (FGF)23 in vivo and in vitro. The decreased protein levels of klotho in serum and renal tissues of Ang II-infused mice were elevated by klotho. Klotho downregulated the protein levels of TGF-β1 in renal tissues of Ang II-infused mice. In conclusion, our results suggest that klotho prevents Ang II-induced cardiac remodeling and dysfunction through modifying the TGF-β1-miR-132 axis, providing an experimental basis for clinical treatment on cardiac remodeling.
Collapse
Affiliation(s)
- Jieqiong Ding
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Qiong Tang
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Binhua Luo
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Lijun Zhang
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Li Lin
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Lu Han
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Miaomiao Hao
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Mingyue Li
- School of Pharmacy, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Liangzhu Yu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, PR China.
| | - Mincai Li
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China; Hubei Key Laboratory of Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 437100, PR China.
| |
Collapse
|
37
|
Fibroblast growth factor 23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens 2019; 28:16-25. [PMID: 30451736 DOI: 10.1097/mnh.0000000000000467] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The current review examines what is known about the FGF-23/α-Klotho co-dependent and independent pathophysiological effects, and whether FGF-23 and/or α-Klotho are potential therapeutic targets. RECENT FINDINGS FGF-23 is a hormone derived mainly from bone, and α-Klotho is a transmembrane protein. Together they form a trimeric signaling complex with FGFRs in target tissues to mediate the physiological functions of FGF-23. Local and systemic factors control FGF-23 release from osteoblast/osteocytes in bone, and circulating FGF-23 activates FGFR/α-Klotho complexes in kidney proximal and distal renal tubules to regulate renal phosphate excretion, 1,25 (OH)2D metabolism, sodium and calcium reabsorption, and ACE2 and α-Klotho expression. The resulting bone-renal-cardiac-immune networks provide a new understanding of bone and mineral homeostasis, as well as identify other biological effects FGF-23. Direct FGF-23 activation of FGFRs in the absence of α-Klotho is proposed to mediate cardiotoxic and adverse innate immune effects of excess FGF-23, particularly in chronic kidney disease, but this FGF-23, α-Klotho-independent signaling is controversial. In addition, circulating soluble Klotho (sKl) released from the distal tubule by ectodomain shedding is proposed to have beneficial health effects independent of FGF-23. SUMMARY Separation of FGF-23 and α-Klotho independent functions has been difficult in mammalian systems and understanding FGF-23/α-Klotho co-dependent and independent effects are incomplete. Antagonism of FGF-23 is important in treatment of hypophosphatemic disorders caused by excess FGF-23, but its role in chronic kidney disease is uncertain. Administration of recombinant sKl is an unproven therapeutic strategy that theoretically could improve the healt span and lifespan of patients with α-Klotho deficiency.
Collapse
|
38
|
Freundlich M, Cuervo C, Abitbol CL. Fibroblast growth factor 23 and tubular sodium handling in young patients with incipient chronic kidney disease. Clin Kidney J 2019; 13:389-396. [PMID: 32699619 PMCID: PMC7367134 DOI: 10.1093/ckj/sfz081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
AbstractBackgroundExperimental studies have shown fibroblast growth factor 23 (FGF23)-mediated upregulation of the distal tubule sodium/chloride (Na+Cl−) co-transporter leading to increased Na reabsorption, volume expansion and hypertension. However, data on the associations of FGF23 with renal Na regulation and blood pressure (BP) are lacking in young CKD patients.MethodsFGF23 and other determinants of mineral metabolism, plasma renin activity (PRA), fractional excretion of Na (FENa) and BP, were analyzed at a single center in 60 patients aged 5–22 years with CKD Stages 1 (n = 33) and Stages 2–3 (n = 27) defined by cystatin C- and creatinine-based estimating equations (estimated glomerular filtration rate, eGFR). Associations between FGF23 and renal Na handling were explored by regression analysis.ResultsMedian FGF23 levels were higher in CKD Stages 2–3 versus CKD 1 (119 versus 79 RU/mL; P < 0.05), with hyperparathyroidism [parathyroid hormone (PTH) >69 pg/mL] in only few subjects with CKD Stages 2–3. Median FENa was comparable in both subgroups, but with proportionally more values above the reference mean (0.55%) in CKD Stages 2–3 and 3-fold higher (1.6%) in CKD Stage 3. PRA was higher in CKD Stages 2–3 (P < 0.05). Meanwhile in CKD Stage 1, FGF23 did not associate with FENa, and in CKD Stages 2–3 FGF23 associated positively with FENa (r = 0.4; P < 0.05) and PTH (r = 0.45; P < 0.05), and FENa associated with FE of phosphate (r = 0.6; P < 0.005). Neither FGF23 nor FENa was associated with systolic or diastolic BP in either subgroup. The negative association of eGFR by cystatin with FENa remained the strongest predictor of FENa by multivariable linear regression in CKD Stages 2–3.ConclusionsThe elevated FGF23, FENa and PRA and the positive association of FGF23 with FENa do not suggest FGF23-mediated increased tubular Na reabsorption and volume expansion as causing hypertension in young patients with incipient CKD.
Collapse
Affiliation(s)
- Michael Freundlich
- Division of Pediatric Nephrology, Jackson Memorial-Holtz Children’s Hospital, University of Miami, Miami, FL, USA
| | - Carlos Cuervo
- Division of Pediatric Nephrology, Jackson Memorial-Holtz Children’s Hospital, University of Miami, Miami, FL, USA
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Jackson Memorial-Holtz Children’s Hospital, University of Miami, Miami, FL, USA
| |
Collapse
|
39
|
Silva AP, Mendes F, Carias E, Gonçalves RB, Fragoso A, Dias C, Tavares N, Café HM, Santos N, Rato F, Leão Neves P, Almeida E. Plasmatic Klotho and FGF23 Levels as Biomarkers of CKD-Associated Cardiac Disease in Type 2 Diabetic Patients. Int J Mol Sci 2019; 20:E1536. [PMID: 30934737 PMCID: PMC6480092 DOI: 10.3390/ijms20071536] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Research over the past decade has focused on the role of Klotho as a cardio protective agent that prevents the effects of aging on the heart and reduces the burden of cardiovascular disease CVD. The role of the interaction between fibroblast growth factor 23-(FGF-23)/Klotho in Klotho-mediated actions is still under debate. The main objective was to ascertain the potential use of plasmatic Klotho and FGF23 as markers for CKD-associated cardiac disease and mortality. METHODS This was a prospective analysis conducted in an outpatient diabetic nephropathy clinic, enrolling 107 diabetic patients with stage 2⁻3 CKD. Patients were divided into three groups according to their left ventricular mass index and relative wall thickness. RESULTS Multinomial regression analysis demonstrated that low Klotho and higher FGF-23 levels were linked to a greater risk of concentric hypertrophy. In the generalized linear model (GLM), Klotho, FGF-23 and cardiac geometry groups were statistically significant as independent variables of cardiovascular hospitalization (p = 0.007). According to the Cox regression model, fatal cardiovascular events were associated with the following cardiac geometric classifications; eccentric hypertrophy (p = 0.050); concentric hypertrophy (p = 0.041), and serum phosphate ≥ 3.6 mg/dL (p = 0.025), FGF-23 ≥ 168 (p = 0.0149), α-klotho < 313 (p = 0.044). CONCLUSIONS In our population, Klotho and FGF23 are associated with cardiovascular risk in the early stages of CKD.
Collapse
Affiliation(s)
- Ana Paula Silva
- Nephrology Department, Centro Hospitalar Universitário do Algarve, 800-836 Faro, Portugal.
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Filipa Mendes
- Nephrology Department, Centro Hospitalar Universitário do Algarve, 800-836 Faro, Portugal.
| | - Eduarda Carias
- Nephrology Department, Centro Hospitalar Universitário do Algarve, 800-836 Faro, Portugal.
| | - Rui Baptista Gonçalves
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - André Fragoso
- Nephrology Department, Centro Hospitalar Universitário do Algarve, 800-836 Faro, Portugal.
| | - Carolina Dias
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Nelson Tavares
- Cardiology Department, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal.
| | - Hugo Mendonça Café
- Cardiology Department, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal.
| | - Nélio Santos
- Clinic Pathology Department, Centro Hospitalar Universitário do Algarve, 8000-836, Faro, Portugal.
| | - Fátima Rato
- Clinic Pathology Department, Centro Hospitalar Universitário do Algarve, 8000-836, Faro, Portugal.
| | - Pedro Leão Neves
- Nephrology Department, Centro Hospitalar Universitário do Algarve, 800-836 Faro, Portugal.
- Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Edgar Almeida
- Faculdadade de Medicina da Universidade de Lisboa, 1600-190 Lisboa, Portugal.
| |
Collapse
|
40
|
Han X, Quarles LD. Letter to the Editor: "Increased Circulating FGF23 Does Not Lead to Cardiac Hypertrophy in the Male Hyp Mouse Model of XLH". Endocrinology 2018; 159:3655-3656. [PMID: 30247553 PMCID: PMC6195674 DOI: 10.1210/en.2018-00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaobin Han
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - L Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
- Correspondence: L. Darryl Quarles, MD, Division of Nephrology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163. E-mail: .
| |
Collapse
|