1
|
Aleshina Y, Lukashev A. Mamastrovirus species are shaped by recombination and can be reliably distinguished in ORF1b genome region. Virus Evol 2025; 11:veaf006. [PMID: 39989717 PMCID: PMC11842974 DOI: 10.1093/ve/veaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/30/2024] [Accepted: 01/30/2025] [Indexed: 02/25/2025] Open
Abstract
Astroviruses are a diverse group of small non-enveloped positive sense single-stranded RNA viruses that infect animals and birds. More than half of all known genome sequences of mammalian astroviruses are not assigned to provisional species, and the biological mechanisms that could support segregation of astroviruses into species are not well understood. The systematic analysis of recombination in Mamastrovirus genomes available in GenBank was done to identify mechanisms providing genetic distinction between astroviruses. Recombination breakpoints were present in all Mamastrovirus genome regions, but occurred most commonly at the ORF1b/ORF2 junction. Recombination was ubiquitous within, but never between established and putative new species, and may be suggested as an additional species criterion. The current species criterion for the genus Mamastrovirus based on ORF2 amino acid sequence p-distances did not reliably distinguish several established species and was of limited use to identify distinct groups among unclassified astroviruses that were isolated recently, predominantly from cattle and pigs. A 17% nucleotide sequence distance cut-off in ORF1b fairly distinguished the established species and several groups among the unclassified viruses, providing better correspondence between phylogenetic grouping, reproductive isolation and the virus hosts. Sequence distance criteria (17% in nucleotide sequence of ORF1b and 25% in amino acid sequence of ORF2) and the recombination pattern corresponded fairly well as species criteria, but all had minor exclusions among mammalian astroviruses. A combination of these taxonomic criteria supported the established Mamastrovirus species and suggested redefining a few provisional species that were proposed earlier and introducing at least six novel species among recently submitted rat and bovine astroviruses.
Collapse
Affiliation(s)
- Yulia Aleshina
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Malaya Pirogovskaya 20/1, Moscow 119435, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow State University 1, building 73, Moscow 119234, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, Malaya Pirogovskaya 20/1, Moscow 119435, Russia
| |
Collapse
|
2
|
Stamelou E, Papageorgiou K, Papadopoulos D, Delis G, Chatzopoulos D, Athanasakopoulou Z, Moschidis E, Petridou E, Kritas SK. Towards Detecting Associations of Canine Astrovirus and Caliciviruses with Health and Living Characteristics of Dogs in Greece. Pathogens 2025; 14:92. [PMID: 39861053 PMCID: PMC11768245 DOI: 10.3390/pathogens14010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Astroviruses and caliciviruses are important causative agents of gastroenteritis in humans worldwide. They have been detected in a variety of animal species, including dogs, but their role in the induction of disease in animals remains uncertain. In a molecular study that was conducted in Greece, including healthy and gastroenteritis-affected dogs of different ages, astrovirus (AstV) and sapovirus (SaV) were detected in 15% and 26% of the examined animals, respectively. A specialized questionnaire was filled out for each of the dogs participating in the study, including information about different characteristics and risk factors that could possibly affect their health status. This information was analyzed with the use of two innovative statistical methods, i.e., a Multiple Correspondence Analysis (MCA) and the Ascending Hierarchical Classification (AHC). Based on their results, it was possible to define various groups of dogs based on their characteristics. AstV seems to occur more often in low-health-status dogs, usually mongrels, living in rural areas, showing vomit, diarrhea, and diet changes. Dogs of this group usually live with other pets in the same household and have frequent contact with stray animals. The presence of SaV does not seem to be associated with any of the examined factors.
Collapse
Affiliation(s)
- Efthymia Stamelou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (D.P.); (E.P.); (S.K.K.)
| | - Konstantinos Papageorgiou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (D.P.); (E.P.); (S.K.K.)
| | - Dimitrios Papadopoulos
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (D.P.); (E.P.); (S.K.K.)
| | - Georgios Delis
- Laboratory of Pharmacology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Zoi Athanasakopoulou
- Laboratory of Microbiology and Parasitology, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | | | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (D.P.); (E.P.); (S.K.K.)
| | - Spyridon K. Kritas
- Laboratory of Microbiology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.S.); (D.P.); (E.P.); (S.K.K.)
| |
Collapse
|
3
|
Wang Y, Guo X, Chang S, Zhao L, Li A, Liu X, Ma H, Li Y. Mamastrovirus spike protein: Sequence and structural characterization as a basis for understanding cross-species transmission. Int J Biol Macromol 2024; 282:137366. [PMID: 39537052 DOI: 10.1016/j.ijbiomac.2024.137366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Astroviruses (AstVs) are notable for their propensity for cross-species transmission; however, the molecular determinants underlying this phenomenon remain poorly understood. The spike protein, which is responsible for host cell entry and is a major antigenic determinant, is hypothesized to play a pivotal role. In this study, we observed high sequence variability in the spike region of AstV. Structural analyses have revealed variability, arising from diverse evolutionary relationships, among AstVs of the same host origin. AstV spike proteins can be categorized into six groups, each of which encompasses AstVs from diverse hosts that exhibit high degrees of structural similarity. These six groups correspond to branches observed in the phylogenetic tree. Notably, the spike surface-exposed loops emerged as focal hotspots for B-cell epitopes across groups, with sequence variability that may contribute to immune evasion upon host switching. Differences in the spike structures of AstVs infecting the same host raise the possibility of distinct tissue tropisms and corresponding clinical manifestations. Collectively, our findings provide insights into the roles of spike protein similarities and immune epitope diversity in driving AstV cross-species transmission. Understanding these molecular mechanisms is crucial to predicting and mitigating the emergence of novel AstV strains.
Collapse
Affiliation(s)
- Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Xu Guo
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Shengbo Chang
- Department of Industrial Engineering, Northwestern Polytechnical University, Xi'an 710071, PR China
| | - Liang Zhao
- Animal Husbandry Development Center of Lu'an, Lu'an, PR China
| | - Aolin Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Xunbi Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Hongfu Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, PR China
| | - Yongdong Li
- Municipal Key Laboratory of Virology, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, PR China.
| |
Collapse
|
4
|
Martínez-Puchol S, Tarradas-Alemany M, Mejías-Molina C, Itarte M, Rusiñol M, Baliellas J, Abasolo N, Canela N, Monastiri A, López-Roig M, Serra-Cobo J, Abril JF, Bofill-Mas S. Target enrichment metaviromics enables comprehensive surveillance of coronaviruses in environmental and animal samples. Heliyon 2024; 10:e31556. [PMID: 38845944 PMCID: PMC11153099 DOI: 10.1016/j.heliyon.2024.e31556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
The COVID-19 pandemic has underscored the importance of understanding the role of animals in the transmission of coronaviruses (CoVs) and their impact on human health. A One Health approach, integrating human, animal, and environmental health, is essential for effective CoVs control. Next-generation sequencing has played a pivotal role in identifying and monitoring the evolution of novel CoVs strains, like SARS-CoV-2. However, viral occurrence and diversity studies in environmental and animal samples are challenging because of the complexity of viral communities and low abundance of viruses in these samples. Target enrichment sequencing (TES) has emerged as a valuable tool for investigating viral families in challenging samples. This approach involves the specific capture and enrichment of viral genomes using sequence-specific probes, thereby enhancing the efficiency of detection and characterization. In this study, we aimed to develop and validate a TES panel to study CoVs in various complex environmental and animal derived samples. The results demonstrated the panel's effectiveness in capturing and sequencing a wide diversity of CoVs providing valuable insights into their abundance and host diversity in urban wastewater, farm animal corpses lixiviates and bat guano samples. In sewage samples, CoVs were detected solely when TES was employed while in guano samples, sequencing of CoVs species was achieved in 2 out of 4 samples showing an almost three-logarithmic increase in the number of reads obtained in comparison with the untargeted approach. For animal lixiviates, only the TES application enabled the acquisition of CoVs reads. The information obtained can significantly contribute to early detection, surveillance, and control measures for CoVs, including viral discovery and potential spillover events. Additionally, this sequencing panel shows potential for studying other significant viral families and monitoring viral diversity in different animal populations.
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Vicerectorat de Recerca. Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Maria Tarradas-Alemany
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | | | - Nerea Abasolo
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Núria Canela
- Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Eurecat, Centre Tecnològic de Catalunya, Catalonia, Spain
| | - Abir Monastiri
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Marc López-Roig
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Jordi Serra-Cobo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Catalonia, Spain
- Institut de Recerca de la Biodiversitat (IRBiO), Universitat de Barcelona, Catalonia, Spain
| | - Josep F. Abril
- Computational Genomics Lab, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Departament de Genètica. Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut de Recerca de l’Aigua (IdRA), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Yang ZC, Wang WL, Jing ZB, Jiang YQ, Zhang HQ, Lee MY, Peng L, Wu QY. Ozone, hydrogen peroxide, and peroxymonosulfate disinfection of MS2 coliphage in water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:824-831. [PMID: 38323647 DOI: 10.1039/d3em00527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The control of viruses in water is critical to preventing the spread of infectious viral diseases. Many oxidants can inactivate viruses, and this study aims to systematically compare the disinfection effects of ozone (O3), peroxymonosulfate (PMS), and hydrogen peroxide (H2O2) on MS2 coliphage. The effects of oxidant dose and contact time on disinfection were explored, as were the disinfection effects of three oxidizing agents in secondary effluent. The 4-log inactivation of MS2 coliphage required 0.05 mM O3, 0.5 mM PMS, or 25 mM H2O2 with a contact time of 30 min. All three oxidants achieved at least 4-log disinfection within 30 min, and O3 required only 0.5 min. In secondary effluent, all three oxidants also achieved 4-log inactivation of MS2 coliphage. Excitation-emission matrix (EEM) results indicate that all three oxidants removed dissolved organic matter synchronously and O3 oxidized dissolved organic matter more thoroughly while maintaining disinfection efficacy. Considering the criteria of oxidant dose, contact time, and disinfection efficacy in secondary effluent, O3 is the best choice for MS2 coliphage disinfection among the three oxidants.
Collapse
Affiliation(s)
- Zi-Chen Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Zi-Bo Jing
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Yi-Qing Jiang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - He-Qing Zhang
- CSCEC Scimee Sci.&Tech. Co., Ltd., Beijing 100084, PR China
| | - Min-Yong Lee
- National Institute of Environment Research, Ministry of Environment, Incheon 22689, Republic of Korea
| | - Lu Peng
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
6
|
Lin X, Xu M, Zhao Y, Ji F, Liu Y, Wang S, Chen M, Zhang W, Tao Z, Xu A. Environmental Surveillance of Human Astroviruses in Jinan City of China, 2020-2021. FOOD AND ENVIRONMENTAL VIROLOGY 2024; 16:50-57. [PMID: 38212480 DOI: 10.1007/s12560-023-09576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Human astroviruses (HAstVs) are a significant etiological agent of acute gastroenteritis in children. In order to investigate the circulation of HAstVs during the COVID-19 pandemic, a 2-year environmental surveillance was conducted in Jinan between 2020 and 2021. A total of 24 sewage samples were collected and concentrated. Real-time PCR indicated a positive rate of 83.3%, 79.2% (19/24), and 62.5% for classic, MLB, and VA types of HAstV in sewage samples, respectively, with genomic copies ranging from 6.4 × 103 to 3.7 × 107, 3.2 × 104 to 2.2 × 106, and 1.2 × 104 to 1.6 × 107 l-1. Next-generation sequencing (NGS) analysis on complete ORF2 amplicons from each sewage concentrate revealed the presence of 11 HAstV types, including HAstV-1, -2, -4, -5, MLB1, and VA1 to VA6, as well as non-human animal astroviruses. The most abundant HAstV types were HAstV-1, -4, and -5, which accounted for 70.3%, 12.6%, and 9.1% of total HAstV reads, respectively. Phylogenetic analysis revealed that the sequences obtained in this study were segregated into multiple transmission lineages, yet exhibited less genetic divergence among themselves than with foreign strains. These findings provide insight into the genotype diversity and genetic characterization of HAstVs during the COVID-19 pandemic, and highlight the effectiveness of utilizing NGS approaches to investigate sewage HAstVs.
Collapse
Affiliation(s)
- Xiaojuan Lin
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Mingyi Xu
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, 250062, China
| | - Yun Zhao
- School of Public Health, Shandong University Cheeloo College of Medicine, Jinan, China
| | - Feng Ji
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Yao Liu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Suting Wang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Meng Chen
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Wenqiang Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Zexin Tao
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| | - Aiqiang Xu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, China.
| |
Collapse
|
7
|
Wu Q, Kinoti WM, Habili N, Tyerman SD, Rinaldo A, Constable FE. Genetic Diversity of Grapevine Virus A in Three Australian Vineyards Using Amplicon High Throughput Sequencing (Amplicon-HTS). Viruses 2023; 16:42. [PMID: 38257742 PMCID: PMC10819895 DOI: 10.3390/v16010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Shiraz disease (SD) is one of the most destructive viral diseases of grapevines in Australia and is known to cause significant economic loss to local growers. Grapevine virus A (GVA) was reported to be the key pathogen associated with this disease. This study aimed to better understand the diversity of GVA variants both within and between individual SD and grapevine leafroll disease (LRD) affected grapevines located at vineyards in South Australia. Amplicon high throughput sequencing (Amplicon-HTS) combined with median-joining networks (MJNs) was used to analyze the variability in specific gene regions of GVA variants. Several GVAII variant groups contain samples from both vineyards studied, suggesting that these GVAII variants were from a common origin. Variant groups analyzed by MJNs using the overall data set denote that there may be a possible relationship between variant groups of GVA and the geographical location of the grapevines.
Collapse
Affiliation(s)
- Qi Wu
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Wycliff M. Kinoti
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Nuredin Habili
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Precinct, PMB 1, Glen Osmond, SA 5064, Australia (S.D.T.)
| | - Amy Rinaldo
- Australian Wine Research Institute, Wine Innovation Central Building, Hartley Grove crn Paratoo Road, Urrbrae, SA 5064, Australia
| | - Fiona E. Constable
- Agriculture Victoria Research, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
8
|
Viviana B, Matias S, Daiana M, Rodney C, Matias V. Molecular Characterization of Gastroenteric Viruses in Wastewater from Cities in Uruguay. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:318-330. [PMID: 37872461 DOI: 10.1007/s12560-023-09567-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Group A Rotavirus, Human Astrovirus, and Norovirus (RVA, HAstV, and NoV) are recognized as the major causative agents of acute gastroenteritis in children and adults worldwide. The aim of this study was to determine the prevalence and molecular epidemiology of RVA, HAstV, and NoV in wastewater from three cities in Uruguay. Thirty-six samples from Bella Unión, Salto, and Fray Bentos cities were analyzed using quantitative and qualitative PCR. RVA was the most frequently detected virus (50%), followed by HAstV (39%), NoV GII (36%), and NoV GI (25%). RVA strains were characterized as P[8] and G3 based on the VP4 and VP7 genes, respectively. Among NoV-positive samples, genotypes GI.2, GI.3, GI.5, GI.6, GI.7, GII.2, GII.6, and GII.4 were detected, and only one HAstV genotype (MLB1) was found. Our wastewater-based epidemiological approach provides a snapshot of the overall genetic diversity of these viruses in three cities of the Uruguay River basin during 2017-2018. These findings reinforce the importance of this environmental surveillance tool for monitoring epidemiological trends of enteric viruses circulating in the population, which can be used to guide public health intervention.
Collapse
Affiliation(s)
- Bortagaray Viviana
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Salvo Matias
- Department of Water, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Mir Daiana
- Genomic and Bioinformatic Unit, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Colina Rodney
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay
| | - Victoria Matias
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Sede Salto, Universidad de la República, Salto, Uruguay.
| |
Collapse
|
9
|
Ali H, Lulla A, Nicholson AS, Hankinson J, Wignall-Fleming EB, O’Connor RL, Vu DL, Graham SC, Deane JE, Guix S, Lulla V. Attenuation hotspots in neurotropic human astroviruses. PLoS Biol 2023; 21:e3001815. [PMID: 37459343 PMCID: PMC10374088 DOI: 10.1371/journal.pbio.3001815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/27/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023] Open
Abstract
During the last decade, the detection of neurotropic astroviruses has increased dramatically. The MLB genogroup of astroviruses represents a genetically distinct group of zoonotic astroviruses associated with gastroenteritis and severe neurological complications in young children, the immunocompromised, and the elderly. Using different virus evolution approaches, we identified dispensable regions in the 3' end of the capsid-coding region responsible for attenuation of MLB astroviruses in susceptible cell lines. To create recombinant viruses with identified deletions, MLB reverse genetics (RG) and replicon systems were developed. Recombinant truncated MLB viruses resulted in imbalanced RNA synthesis and strong attenuation in iPSC-derived neuronal cultures confirming the location of neurotropism determinants. This approach can be used for the development of vaccine candidates using attenuated astroviruses that infect humans, livestock animals, and poultry.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Alex S. Nicholson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Jacqueline Hankinson
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | | | - Rhian L. O’Connor
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Diem-Lan Vu
- Enteric Virus Group, Department of Genetics, Microbiology and Statistics, Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Stephen C. Graham
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| | - Janet E. Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Susana Guix
- Enteric Virus Group, Department of Genetics, Microbiology and Statistics, Research Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, Barcelona, Spain
| | - Valeria Lulla
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
10
|
Schaeffer J, Desdouits M, Besnard A, Le Guyader FS. Looking into sewage: how far can metagenomics help to detect human enteric viruses? Front Microbiol 2023; 14:1161674. [PMID: 37180249 PMCID: PMC10166864 DOI: 10.3389/fmicb.2023.1161674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
The impact of human sewage on environmental and food contamination constitutes an important safety issue. Indeed, human sewage reflects the microbiome of the local population, and a variety of human viruses can be detected in wastewater samples. Being able to describe the diversity of viruses present in sewage will provide information on the health of the surrounding population health and will help to prevent further transmission. Metagenomic developments, allowing the description of all the different genomes present in a sample, are very promising tools for virome analysis. However, looking for human enteric viruses with short RNA genomes which are present at low concentrations is challenging. In this study we demonstrate the benefits of performing technical replicates to improve viral identification by increasing contig length, and the set-up of quality criteria to increase confidence in results. Our approach was able to effectively identify some virus sequences and successfully describe the viral diversity. The method yielded full genomes either for norovirus, enterovirus and rotavirus, even if, for these segmented genomes, combining genes remain a difficult issue. Developing reliable viromic methods is important as wastewater sample analysis provides an important tool to prevent further virus transmission by raising alerts in case of viral outbreaks or emergence.
Collapse
Affiliation(s)
| | | | | | - Françoise S. Le Guyader
- Ifremer, Laboratoire de Microbiologie, U. Microbiologie Aliment Santé et Environnement, Nantes, France
| |
Collapse
|
11
|
Alegbeleye O, Sant'Ana AS. Microbiological quality of irrigation water for cultivation of fruits and vegetables: An overview of available guidelines, water testing strategies and some factors that influence compliance. ENVIRONMENTAL RESEARCH 2023; 220:114771. [PMID: 36586712 DOI: 10.1016/j.envres.2022.114771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Contaminated irrigation water is among many potential vehicles of human pathogens to food plants, constituting significant public health risks especially for the fresh produce category. This review discusses some available guidelines or regulations for microbiological safety of irrigation water, and provides a summary of some common methods used for characterizing microbial contamination. The goal of such exploration is to understand some of the considerations that influence formulation of water testing guidelines, describe priority microbial parameters particularly with respect to food safety risks, and attempt to determine what methods are most suitable for their screening. Furthermore, the review discusses factors that influence the potential for microbiologically polluted irrigation water to pose substantial risks of pathogenic contamination to produce items. Some of these factors include type of water source exploited, irrigation methods, other agro ecosystem features/practices, as well as pathogen traits such as die-off rates. Additionally, the review examines factors such as food safety knowledge, other farmer attitudes or inclinations, level of social exposure and financial circumstances that influence adherence to water testing guidelines and other safe water application practices. A thorough understanding of relevant risk metrics for the application and management of irrigation water is necessary for the development of water testing criteria. To determine sampling and analytical approach for water testing, factors such as agricultural practices (which differ among farms and regionally), as well as environmental factors that modulate how water quality may affect the microbiological safety of produce should be considered. Research and technological advancements that can improve testing approach and the determination of target levels for hazard characterization or description for the many different pollution contexts as well as farmer adherence to testing requirements, are desirable.
Collapse
Affiliation(s)
- Oluwadara Alegbeleye
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
12
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
13
|
Lanrewaju AA, Enitan-Folami AM, Sabiu S, Edokpayi JN, Swalaha FM. Global public health implications of human exposure to viral contaminated water. Front Microbiol 2022; 13:981896. [PMID: 36110296 PMCID: PMC9468673 DOI: 10.3389/fmicb.2022.981896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 01/08/2023] Open
Abstract
Enteric viruses are common waterborne pathogens found in environmental water bodies contaminated with either raw or partially treated sewage discharge. Examples of these viruses include adenovirus, rotavirus, noroviruses, and other caliciviruses and enteroviruses like coxsackievirus and polioviruses. They have been linked with gastroenteritis, while some enteric viruses have also been implicated in more severe infections such as encephalitis, meningitis, hepatitis (hepatitis A and E viruses), cancer (polyomavirus), and myocarditis (enteroviruses). Therefore, this review presents information on the occurrence of enteric viruses of public health importance, diseases associated with human exposure to enteric viruses, assessment of their presence in contaminated water, and their removal in water and wastewater sources. In order to prevent illnesses associated with human exposure to viral contaminated water, we suggest the regular viral monitoring of treated wastewater before discharging it into the environment. Furthermore, we highlight the need for more research to focus on the development of more holistic disinfection methods that will inactivate waterborne viruses in municipal wastewater discharges, as this is highly needed to curtail the public health effects of human exposure to contaminated water. Moreover, such a method must be devoid of disinfection by-products that have mutagenic and carcinogenic potential.
Collapse
Affiliation(s)
| | | | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, Engineering and Agriculture, University of Venda, Thohoyandou, South Africa
| | - Feroz Mahomed Swalaha
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, South Africa
| |
Collapse
|
14
|
Zhu Q, Li B, Sun D. Bovine Astrovirus—A Comprehensive Review. Viruses 2022; 14:v14061217. [PMID: 35746688 PMCID: PMC9228355 DOI: 10.3390/v14061217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022] Open
Abstract
Bovine astrovirus (BoAstV) is a small non-enveloped virus with a single-stranded positive-sense RNA. In 1978, BoAstV was first found in calf diarrhea fecal samples in the United Kingdom and since then it has been reported in many other countries. It has wide tissue tropism and can infect multiple organs, including the intestine, nerves and respiratory tract. Since BoAstV is prevalent in healthy as well as clinically infected bovines, and is mostly associated with co-infection with other viruses, the pathogenic nature of BoAstV is still unclear. At present, there are no stable passage cell lines available for the study of BoAstV and animal model experiments have not been described. In addition, it has been reported that BoAstV may have the possibility of cross-species transmission. This review summarizes the current state of knowledge about BoAstV, including the epidemiology, evolution analysis, detection methods, pathogenesis and potential cross species transmission, to provide reference for further research of BoAstV.
Collapse
Affiliation(s)
- Qinghe Zhu
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences Nanjing 210014, China
- Correspondence: (B.L.); (D.S.); Tel.: +86-04596819121 (D.S.)
| | - Dongbo Sun
- Heilongjiang Provincial Key Laboratory of the Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
- Correspondence: (B.L.); (D.S.); Tel.: +86-04596819121 (D.S.)
| |
Collapse
|
15
|
Wei H, Khamrin P, Kumthip K, Yodmeeklin A, Maneekarn N. Emergence of Multiple Novel Inter-Genotype Recombinant Strains of Human Astroviruses Detected in Pediatric Patients With Acute Gastroenteritis in Thailand. Front Microbiol 2021; 12:789636. [PMID: 34966371 PMCID: PMC8710764 DOI: 10.3389/fmicb.2021.789636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: Human astrovirus (HAstV) is recognized as an important cause of acute gastroenteritis in children. Recombination between different genotypes of HAstV can contribute to diversity and evolution of the virus. This study aimed to investigate the emergence of HAstV recombinant strains in pediatric patients hospitalized with acute gastroenteritis in Chiang Mai, Thailand, spanning 2011–2020. Methods: A total of 92 archival HAstV strains collected from pediatric patients with acute gastroenteritis during 2011–2020 were further characterized to identify the recombinant strains. The ORF1b and ORF2 junction region of each strain was amplified and sequenced. The obtained sequences were analyzed in comparison with the reference sequences retrieved from GenBank database. Their genotypes were assigned using MEGA X software based on the partial ORF1b (RdRp) and ORF2 (capsid) regions, and the recombination breakpoints of recombinant strains were determined by SimPlot and RDP4 analyses. Results: Five inter-genotype recombinant strains with three recombination patterns of ORF1b/ORF2 of classic HAstV, HAstV8/HAstV1, HAstV8/HAstV3, and HAstV3/HAstV2, were detected. The recombination breakpoints of all strains were located at the 3′-end region of ORF1b close to the ORF1b/ORF2 junction. Conclusion: Several novel inter-genotype recombinant strains of classic HAstV genotypes were detected in pediatric patients with acute gastroenteritis in Chiang Mai, Thailand, during the period of 10 years from 2011 to 2020.
Collapse
Affiliation(s)
- Hongyu Wei
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Pathogenic Biology and Immunology, Youjiang Medical University for Nationalities, Baise, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Arpaporn Yodmeeklin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Emerging and Re-emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Zhang W, Wang W, Liu X, Chen Y, Ouyang K, Wei Z, Liu H, Huang W. Identification of novel B-cell epitopes on the capsid protein of type 1 porcine astrovirus, using monoclonal antibodies. Int J Biol Macromol 2021; 189:939-947. [PMID: 34464644 DOI: 10.1016/j.ijbiomac.2021.08.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Porcine astrovirus (PAstV) is prevalent in pigs worldwide and could cause clinical symptoms such as diarrhea and encephalitis. The capsid protein (Cap) of PAstV plays a determinant role for virus immunological characteristics. In this study, the major antigenic regions of PAstV1 Cap were expressed through prokaryotic expression systems and immunized to BALB/c mice. Finally, two anti-Cap monoclonal antibodies (named mAb F4-4 and D3F10) were screened by indirect immune-fluorescence assay (IFA). A series of truncated GST-fused or artificially synthesized peptides were used to detect their reactivity with the mAbs and PAstV positive serum. Two novel B cell epitopes (120-GNNTFG-125, 485-RISDPTWFSA-494) were identified by using these two mAbs. Moreover, sequence alignment result showed that epitope 120-GNNTFG-125 was highly conserved in type 1 PAstV capsid protein. Cross-reactivity analysis further confirmed the genotype-specificity of mAb F4-4. The results of this study demonstrated to be the first description of monoclonal antibody preparation and B-cell epitope mapping on PAstV capsid protein, which may provide new information on the biological significance of PAstV capsid protein and lay a foundation for the development of PAstV immunological tests and genotype diagnostic methods.
Collapse
Affiliation(s)
- Wenchao Zhang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Weiyi Wang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Xin Liu
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Ying Chen
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Kang Ouyang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China
| | - Huan Liu
- Department of Scientific Research, The First Affiliated Hospital of Guangxi University of Chinese Medicine, No. 89-9 Dongge Road, Nanning 530024, China.
| | - Weijian Huang
- College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning 530005, China.
| |
Collapse
|
17
|
Zhu J, Qi M, Jiang C, Peng Y, Peng Q, Chen Y, Hu C, Chen J, Chen X, Chen H, Guo A. Prevalence of bovine astroviruses and their genotypes in sampled Chinese calves with and without diarrhoea. J Gen Virol 2021; 102. [PMID: 34424158 PMCID: PMC8513638 DOI: 10.1099/jgv.0.001640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bovine astrovirus (BoAstV) belongs to genus Mamastravirus (MAstV). It can be detected in the faeces of both diarrhoeal and healthy calves. However, its prevalence, genetic diversity, and association with cattle diarrhoea are poorly understood. In this study, faecal samples of 87 diarrhoeal and 77 asymptomatic calves from 20 farms in 12 provinces were collected, and BoAstV was detected with reverse transcription-polymerase chain reaction (RT-PCR). The overall prevalence rate of this virus in diarrhoeal and asymptomatic calves was 55.17 % (95 % CI: 44.13, 65.85 %) and 36.36 % (95 % CI: 25.70, 48.12 %), respectively, indicating a correlation between BoAstV infection and calf diarrhoea (OR=2.15, P=0.024). BoAstV existed mainly in the form of co-infection (85.53 %) with one to five of nine viruses, and there was a strong positive correlation between BoAstV co-infection and calf diarrhoea (OR=2.83, P=0.004). Binary logistic regression analysis confirmed this correlation between BoAstV co-infection and calf diarrhoea (OR=2.41, P=0.038). The co-infection of BoAstV and bovine rotavirus (BRV) with or without other viruses accounted for 70.77 % of all the co-infection cases. The diarrhoea risk for the calves co-infected with BoAstV and BRV was 8.14-fold higher than that for the calves co-infected with BoAstV and other viruses (OR=8.14, P=0.001). Further, the co-infection of BoAstV/BRV/bovine kobuvirus (BKoV) might increase the risk of calf diarrhoea by 14.82-fold, compared with that of BoAstV and other viruses (OR=14.82, P <0.001). Then, nearly complete genomic sequences of nine BoAstV strains were assembled by using next-generation sequencing (NGS) method. Sequence alignment against known astrovirus (AstV) strains at the levels of both amino acids and nucleotides showed a high genetic diversity. Four genotypes were identified, including two known genotypes MAstV-28 (n=3) and MAstV-33 (n=2) and two novel genotypes designated tentatively as MAstV-34 (n=1) and MAstV-35 (n=3). In addition, seven out of nine BoAstV strains showed possible inter-genotype recombination and cross-species recombination. Therefore, our results increase the knowledge about the prevalence and the genetic evolution of BoAstV and provide evidence for the association between BoAstV infection and calf diarrhoea.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China
| | - Chuanwen Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China
| | - Yongchong Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China
| | - Qingjie Peng
- Wuhan Keqian Biology Co.Ltd, Wuhan, 430070, PR China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.,Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, PR China
| | - Changmin Hu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jianguo Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xi Chen
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China.,Wuhan Keqian Biology Co.Ltd, Wuhan, 430070, PR China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, PR China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.,Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, 430070, PR China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.,Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and and Rural Affairs, Huazhong Agriculture University, Wuhan 430070, PR China
| |
Collapse
|
18
|
Wildi N, Seuberlich T. Neurotropic Astroviruses in Animals. Viruses 2021; 13:1201. [PMID: 34201545 PMCID: PMC8310007 DOI: 10.3390/v13071201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 11/16/2022] Open
Abstract
Astrovirus infections are among the main causes of diarrhea in children, but their significance for animal health has remained underestimated and largely unknown. This is changing due to the increasing amount of newly identified neurotropic astroviruses in cases of nonsuppurative encephalitis and neurological disease in humans, pigs, ruminant species and minks. Neurological cases in ruminants and humans usually occur sporadically and as isolated cases. This contrasts with the situation in pigs and minks, in which diseases associated with neurotropic astroviruses are endemic and occur on the herd level. Affected animals show neurological signs such as mild ataxia to tetraplegia, loss of orientation or trembling, and the outcome is often fatal. Non-suppurative inflammation with perivascular cuffing, gliosis and neuronal necrosis are typical histological lesions of astrovirus encephalitis. Since astroviruses primarily target the gastrointestinal tract, it is assumed that they infect the brain through the circulatory system or retrograde following the nerves. The phylogenetic analysis of neurotropic astroviruses has revealed that they are genetically closely related, suggesting the presence of viral determinants for tissue tropism and neuroinvasion. In this review, we summarize the current knowledge on neurotropic astrovirus infections in animals and propose future research activities.
Collapse
Affiliation(s)
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| |
Collapse
|
19
|
Roach SN, Langlois RA. Intra- and Cross-Species Transmission of Astroviruses. Viruses 2021; 13:v13061127. [PMID: 34208242 PMCID: PMC8230745 DOI: 10.3390/v13061127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Astroviruses are non-enveloped, single-stranded RNA viruses that infect mammalian and avian species. In humans, astrovirus infections are one of the most common causes of gastroenteritis in children. Infection has also been linked to serious neurological complications, especially in immunocompromised individuals. More extensive disease has also been characterized in non-human mammalian and avian species. To date, astroviruses have been detected in over 80 different avian and mammalian hosts. As the number of hosts continues to rise, the need to understand how astroviruses transmit within a given species as well as to new host species becomes increasingly important. Here, we review the current understanding of astrovirus transmission, the factors that influence viral spread, and the potential for cross-species transmission. Additionally, we highlight the current gaps in knowledge and areas of future research that will be key to understanding astrovirus transmission and zoonotic potential.
Collapse
Affiliation(s)
- Shanley N. Roach
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence:
| |
Collapse
|
20
|
Garner E, Davis BC, Milligan E, Blair MF, Keenum I, Maile-Moskowitz A, Pan J, Gnegy M, Liguori K, Gupta S, Prussin AJ, Marr LC, Heath LS, Vikesland PJ, Zhang L, Pruden A. Next generation sequencing approaches to evaluate water and wastewater quality. WATER RESEARCH 2021; 194:116907. [PMID: 33610927 DOI: 10.1016/j.watres.2021.116907] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/03/2021] [Indexed: 05/24/2023]
Abstract
The emergence of next generation sequencing (NGS) is revolutionizing the potential to address complex microbiological challenges in the water industry. NGS technologies can provide holistic insight into microbial communities and their functional capacities in water and wastewater systems, thus eliminating the need to develop a new assay for each target organism or gene. However, several barriers have hampered wide-scale adoption of NGS by the water industry, including cost, need for specialized expertise and equipment, challenges with data analysis and interpretation, lack of standardized methods, and the rapid pace of development of new technologies. In this critical review, we provide an overview of the current state of the science of NGS technologies as they apply to water, wastewater, and recycled water. In addition, a systematic literature review was conducted in which we identified over 600 peer-reviewed journal articles on this topic and summarized their contributions to six key areas relevant to the water and wastewater fields: taxonomic classification and pathogen detection, functional and catabolic gene characterization, antimicrobial resistance (AMR) profiling, bacterial toxicity characterization, Cyanobacteria and harmful algal bloom identification, and virus characterization. For each application, we have presented key trends, noteworthy advancements, and proposed future directions. Finally, key needs to advance NGS technologies for broader application in water and wastewater fields are assessed.
Collapse
Affiliation(s)
- Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, 1306 Evansdale Drive, Morgantown, WV 26505, United States.
| | - Benjamin C Davis
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Erin Milligan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Matthew Forrest Blair
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ishi Keenum
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Ayella Maile-Moskowitz
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Jin Pan
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Mariah Gnegy
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Krista Liguori
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States
| | - Aaron J Prussin
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Linsey C Marr
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Lenwood S Heath
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Peter J Vikesland
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, 225 Stranger Street, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, 1145 Perry Street, Blacksburg, VA 24061, United States.
| |
Collapse
|
21
|
Singh S, Kumar V, Kapoor D, Dhanjal DS, Bhatia D, Jan S, Singh N, Romero R, Ramamurthy PC, Singh J. Detection and disinfection of COVID-19 virus in wastewater. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:1917-1933. [PMID: 33642964 PMCID: PMC7898499 DOI: 10.1007/s10311-021-01202-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 05/20/2023]
Abstract
The coronavirus disease 2019, COVID-19, caused by the severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, appears as a major pandemic having adverse impact on public health and economic activities. Since viral replication in human enterocytes results in its faecal shedding, wastewater surveillance is an ideal, non-invasive, cost-effective and an early warning epidemiological approach to detect the genetic material of SARS-CoV-2. Here, we review techniques for the detection of SARS-CoV-2 in municipal wastewater, and disinfectants used to control viral spread. For detection, concentration of ribonucleic acid involves ultrafiltration, ultracentrifugation and polyethylene glycol precipitation. Identification is done by reverse transcriptase amplification, nucleic acid sequence-based amplification, helicase dependent amplification, loop-mediated isothermal amplification, recombinase polymerase amplification, high throughput screening and biosensor assays. Disinfectants include ultraviolet radiations, ozone, chlorine dioxide, hypochlorites and hydrogen peroxide. Wastewater surveillance data indicates viral presence within longer detection window, and provides transmission dynamics earlier than classical methods. This is particularly relevant for pre-symptomatic and asymptomatic COVID-19 cases.
Collapse
Affiliation(s)
- Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, 560012 India
| | - Vijay Kumar
- Regional Ayurveda Research Institute for Drug Development, Gwalior, MP 474009 India
| | - Dhriti Kapoor
- Department of Botany, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Deepika Bhatia
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Sadaf Jan
- Department of Botany, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Nasib Singh
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101 India
| | - Romina Romero
- Laboratorio de Investigaciones Medioambientales de Zonas Áridas (LIMZA), Depto. Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Iquique, Chile
| | - Praveen C. Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Sciences, Bangalore, 560012 India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
22
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
23
|
Yang Q, Rivailler P, Zhu S, Yan D, Xie N, Tang H, Zhang Y, Xu W. Detection of multiple viruses potentially infecting humans in sewage water from Xinjiang Uygur Autonomous Region, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142322. [PMID: 33254887 DOI: 10.1016/j.scitotenv.2020.142322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
The progress of sequencing technologies has facilitated metagenomics projects on environmental samples like sewage water. The present study concerned the analysis of sewage samples collected from 3 locations in Xinjiang Uygur Autonomous Region in China. The analysis focused on RNA viruses known to infect humans and identified viruses from 10 families. The proportion of human virus species in the sewage samples was relatively stable with an average of 17%. Thirty virus species known to infect humans were identified and they belonged to 6 families: Picornaviridae (12), Astroviridae (11), Reoviridae (3), Caliciviridae (2), Papillomaviridae (1) and Picobirnaviridae (1). A total of 16 full-length genomes were generated from Astroviridae, Picornaviridae (Salivirus and Kobuvirus) and Picobirnaviridae. Astroviruses appeared to be the most present viruses and were detected in all sewage samples. Analyzing the virome of sewage samples should help to monitor any potential risks to public health.
Collapse
Affiliation(s)
- Qian Yang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Pierre Rivailler
- WHO WPRO Regional Reference Measles/Rubella Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Shuangli Zhu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Dongmei Yan
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China
| | - Na Xie
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Jianquanyi Road, Urumqi 830002, China
| | - Haishu Tang
- Xinjiang Uygur Autonomous Region Center for Disease Control and Prevention, Jianquanyi Road, Urumqi 830002, China
| | - Yong Zhang
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Wenbo Xu
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Reference Measles/Rubella Laboratory, National Health Commission Key Laboratory for Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, 155 Changbai Road, Beijing 102206, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
24
|
Sandoval-Jaime C. Astrovirus reverse genetics systems, a story of success. Curr Opin Virol 2020; 44:57-65. [PMID: 32683123 DOI: 10.1016/j.coviro.2020.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Astroviruses are one of the main causes of gastroenteritis of medical and veterinary relevance worldwide. Recently, these viruses were associated with neurological disease in mammals, including humans. Reverse genetics systems are the most powerful tool to improve our understanding of the virus replication, and eventually to develop safe vaccine candidates. In the present review, it is summarized the current knowledge on the different strategies used to develop reverse genetics systems for mamastroviruses and avastroviruses, and some of the biological answers that have provided are discussed.
Collapse
Affiliation(s)
- Carlos Sandoval-Jaime
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, Cuernavaca, Morelos 62210, Mexico.
| |
Collapse
|
25
|
Martínez-Puchol S, Rusiñol M, Fernández-Cassi X, Timoneda N, Itarte M, Andrés C, Antón A, Abril JF, Girones R, Bofill-Mas S. Characterisation of the sewage virome: comparison of NGS tools and occurrence of significant pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136604. [PMID: 31955099 DOI: 10.1016/j.scitotenv.2020.136604] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 04/14/2023]
Abstract
NGS techniques are excellent tools to monitor and identify viral pathogens circulating among the population with some limitations that need to be overcome, especially in complex matrices. Sewage contains a high amount of other microorganisms that could interfere when trying to sequence viruses for which random PCR amplifications are needed before NGS. The selection of appropriate NGS tools is important for reliable identification of viral diversity among the population. We have compared different NGS methodologies (Untargeted Viral Metagenomics, Target Enrichment Sequencing and Amplicon Deep Sequencing) for the detection and characterisation of viruses in urban sewage, focusing on three important human pathogens: papillomaviruses, adenoviruses and enteroviruses. A full picture of excreted viruses was obtained by applying Untargeted Viral Metagenomics, which detected members of four different vertebrate viral families in addition to bacteriophages, plant viruses and viruses infecting other hosts. Target Enrichment Sequencing, using specific vertebrate viral probes, allowed the detection of up to eight families containing human viruses, with high variety of types within the families and with a high genome coverage. By applying Amplicon Deep Sequencing, the diversity of enteroviruses, adenoviruses and papillomaviruses observed was higher than when applying the other two strategies and this technique allowed the subtyping of an enterovirus A71 C1 strain related to a brainstem encephalitis outbreak occurring at the same time in the sampling area. From the data obtained, we concluded that the different strategies studied provided different levels of analysis: TES is the best strategy to obtain a broad picture of human viruses present in complex samples such as sewage. Other NGS strategies are useful for studying the virome of complex samples when also targeting viruses infecting plants, bacteria, invertebrates or fungi (Untargeted Viral Metagenomics) or when observing the variety within a sole viral family is the objective of the study (Amplicon Deep Sequencing).
Collapse
Affiliation(s)
- Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Xavier Fernández-Cassi
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Natàlia Timoneda
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; Computational Genomics Lab, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Institut de Biomedicina (IBUB), Barcelona, Catalonia, Spain
| | - Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Cristina Andrés
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrés Antón
- Respiratory Viruses Unit, Virology Section, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Josep F Abril
- Computational Genomics Lab, Genetics, Microbiology & Statistics Dept., Universitat de Barcelona, Institut de Biomedicina (IBUB), Barcelona, Catalonia, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Genetics, Microbiology &Statistics Dept., Universitat de Barcelona, Barcelona, Catalonia, Spain; The Water Research Institute (IdRA); Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Sandoval-Jaime C, Guzmán-Ruiz L, López S, Arias CF. Development of a novel DNA based reverse genetics system for classic human astroviruses. Virology 2019; 535:130-135. [DOI: 10.1016/j.virol.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023]
|
27
|
Wohlgemuth N, Honce R, Schultz-Cherry S. Astrovirus evolution and emergence. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 69:30-37. [PMID: 30639546 PMCID: PMC7106029 DOI: 10.1016/j.meegid.2019.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Astroviruses are small, non-enveloped, positive-sense, single-stranded RNA viruses that belong to the Astroviridae family. Astroviruses infect diverse hosts and are typically associated with gastrointestinal illness; although disease can range from asymptomatic to encephalitis depending on the host and viral genotype. Astroviruses have high genetic variability due to an error prone polymerase and frequent recombination events between strains. Once thought to be species specific, recent evidence suggests astroviruses can spread between different host species, although the frequency with which this occurs and the restrictions that regulate the process are unknown. Recombination events can lead to drastic evolutionary changes and contribute to cross-species transmission events. This work reviews the current state of research on astrovirus evolution and emergence, especially as it relates to cross-species transmission and recombination of astroviruses.
Collapse
Affiliation(s)
- Nicholas Wohlgemuth
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38105, United States
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|