1
|
Sriramdasu S, Sharma S, Ansari AR, Phatak NV, Tikoo K. Borneol Ameliorates Non-Alcoholic Fatty Liver Disease via Promoting AMPK-Mediated Lipophagy. J Biochem Mol Toxicol 2025; 39:e70182. [PMID: 39967315 DOI: 10.1002/jbt.70182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/02/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
Despite the worldwide surge in the prevalence of non-alcoholic fatty liver disease (NAFLD), however, no efficacious treatment has been clinically approved to date for combating this condition, necessitating elucidation of new therapeutic compounds. Our research presented evidence pertaining to the successful induction of NAFLD in C57BL/6 mice using a multiple liver insults paradigm. This was achieved by concurrently administering thioacetamide (100 mg/kg i.p.) along with high-fat and high-fructose diet (HFFrD) for 10 weeks. Following this, the beneficial effect of borneol, a bicyclic monoterpenoid, was observed in NAFLD mice in a dose-dependent manner. Borneol administration for 4 weeks led to significant improvement in morphometric, metabolic profiles, liver functions, and oxidative stress parameters. Accumulation of lipids in hepatic tissues, which is characteristic feature of NAFLD, was confirmed by H&E, as well as oil-red O staining was alleviated by borneol. Our investigation elucidated the pro-autophagic effect of borneol via AMPK activation, thereby leading to the downstream activation of autophagy effector proteins, that is, Beclin1, ATG5, ATG7, and LC3 I-II, which helps to diminish the hepatic lipid loads through augmentation of lipophagy. This study demonstrates that borneol combats NAFLD through augmentation of AMPK-mediated lipophagy offering a promising therapeutic strategy against NAFLD.
Collapse
Affiliation(s)
- Shalemraju Sriramdasu
- Laboratory of Epigenetics and Diseases, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Shivam Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Abid Reza Ansari
- Laboratory of Epigenetics and Diseases, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Nikhil Vinayak Phatak
- Laboratory of Epigenetics and Diseases, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, SAS Nagar, Punjab, India
| |
Collapse
|
2
|
Tanwar AK, Chatterjee D, Jain N, Sharma S, Tikoo K, Singh IP. Chemical Basis of the Traditional Ayurvedic Detoxification Process of the Toxic Medicinal Plant Plumbago zeylanica. JOURNAL OF NATURAL PRODUCTS 2025; 88:15-23. [PMID: 39752382 DOI: 10.1021/acs.jnatprod.3c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Certain medicinal plants utilized in the traditional ayurvedic system are poisonous when used raw, but are used following a detoxification process. The Ayurvedic Formulary of India (AFI) provides details about these detoxification (known as "sodhana") processes as per traditional procedures. This research endeavor aimed to uncover the fundamental principles underlying the detoxification approach applied to Plumbago zeylanica, commonly referred to as "swet chitrak", in which plumbagin is the primary toxic constituent. Both unprocessed and processed (detoxified) extracts as well as the detoxification media were subjected to analysis for secondary metabolites using different analytical techniques. This investigation revealed a reduction in plumbagin content, its conversion to epoxyplumbagin and zeylanone and a noteworthy decrease in cis- and trans-isoshinanolone during detoxification. Furthermore, it was confirmed that pure plumbagin when subjected to the same detoxification conditions, is partially converted into epoxyplumbagin, and that cis and trans-isoshinanolone showed interconversion. The current work establishes the chemical basis of the age-old traditional ayurvedic process of detoxification of P. zeylanica.
Collapse
|
3
|
Chandran H, Ramakrishnan GS, Mekala JR, Anjaneyulu SR. Evaluating the Synergistic Antioxidant, Anti-microbial and Adsorbent Potential of Andrographis Paniculata Extract and Gold Nanoparticles. Cell Biochem Biophys 2024:10.1007/s12013-024-01627-9. [PMID: 39719519 DOI: 10.1007/s12013-024-01627-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 12/26/2024]
Abstract
The present study introduces a minimalistic and cost-effective approach to synthesising Gold nanoparticles (AuNPs) using aqueous leaf extracts of Andrographis paniculata. In this synthesis, bioactive metabolites in the leaf extract act as reducing agents, converting Au³⁺ ions to metallic Au⁰, while proteins in the extract form a stabilising layer around the nanoparticles to prevent agglomeration and maintain particle size stability. The synthesised AuNPs were systematically characterised using a range of analytical techniques. UV-visible spectroscopy verified the presence of surface plasmon resonance, Fourier-transform infrared (FTIR) spectroscopy identified key functional groups, X-ray diffraction (XRD) revealed high crystallinity, and Transmission Electron Microscopy (TEM) indicated particle sizes ranging from approximately 4-15 nm. Additionally, Energy Dispersive X-ray (EDX) analysis confirmed the elemental composition of the nanoparticles. The biological efficacy of the synthesised AuNPs was rigorously evaluated. Antioxidant activity, assessed via DPPH and ABTS assays, showed notable results, with inhibition rates of 87.35% and 75% at a sample concentration of 100 µg/mL, respectively. In vitro cytotoxicity studies on Vero cells demonstrated a significant reduction in cell viability, reaching a minimum of 18.22% at the highest tested concentration of 100 µg/mL. Antimicrobial assays indicated strong activity against Salmonella typhii and Escherichia coli, with comparatively lower efficacy against Pseudomonas aeruginosa and Bacillus cereus. Furthermore, adsorption studies showed the AuNPs' high efficiency in removing 99% of crystal violet dye (500 mg/L) within 30 min under optimised conditions (pH 4.5, temperature 33 °C, and an AuNP dosage of 200 mg/L). This comprehensive analysis indicates that the synthesised AuNPs from A. paniculata exhibit promising properties for applications in biomedicine and wastewater treatment.
Collapse
Affiliation(s)
- Hema Chandran
- Department of Biotechnology, Madha Engineering College, Chennai, 600 069, Tamil Nadu, India
| | - Gnana Sekaran Ramakrishnan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, AP, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram, Guntur, AP, India
| | - Sai Ramesh Anjaneyulu
- Department of Biotechnology, Prathyusha Engineering College, Tiruvallur, Chennai, 602025, Tamilnadu, India.
| |
Collapse
|
4
|
Alimohammadvand S, Zenjanab MK, Pakchin PS, Abdolahinia ED, Barar J, Omidi Y, Pourseif MM, Fathi M, Shayegh J. Aripiprazole-loaded niosome/chitosan-gold nanoparticles for breast cancer chemo-photo therapy. BMC Biotechnol 2024; 24:108. [PMID: 39719556 DOI: 10.1186/s12896-024-00939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
INTRODUCTION Breast cancer, a formidable global health challenge for women, necessitates innovative therapeutic strategies with enhanced efficacy and minimal side effects. Aripiprazole (ARI), a widely used schizophrenia medication, exhibits promising potential in the treatment of breast cancer. As cancer therapy evolves towards a combination approach, multimodal nano-based delivery systems, such as ARI-loaded niosomes (NIOs) combined with Chitosan-Au nanoparticles for chemo-photothermal therapy, show promise over traditional chemotherapy alone by enhancing targeted efficacy and minimizing side effects. METHODS In this study, a niosomal formulation was designed, incorporating ARI and chitosan-coated AuNPs (i.e. NIOs/AuNPs-CS/ARI), to study the synergistic effect of photothermal/chemotherapy in breast cancer cells. RESULTS The nanosystems were characterized using UV-Vis spectroscopy and Fourier-transform infrared spectroscopy (FT-IR), confirming the successful synthesis steps. The hydrodynamic diameter of NIOs/AuNPs-CS was determined to be 44.62 nm with a zeta potential of -0.836. Also, Transmission Electron Microscopy (TEM) and Field-Emission Scanning Electron Microscopical (FE-SEM) analysis were performed to assess the size and morphology of NPs. The loading efficiency of ARI in NIOs and NIOs/AuNPs-CS was 75% and 88%, respectively. Furthermore, the release rate of the drug from NIOs/AuNPs-CS is higher than blank NIOs at two pH values (5.8 and 7.4). The cellular uptake of AuNPs-CS-encapsulated NIOs was considerably higher than that of blank NIOs. The Annexin V/PI staining assay showed that the apoptosis/necrosis rate was high in NIOs/AuNPs-CS/ARI (46%) and NIOs/ARI (36%) in 48 h. The results of MTT assessments demonstrated higher cytotoxicity by ARI-loaded NPs. The viability of MCF-7 cells treated with NIOs/AuNPs-CS/ARI was reduced from 60% and 50% to 40% and 20%, respectively, after 24 and 48 h upon laser irradiation. CONCLUSION The results of this experiment demonstrated the remarkable effectiveness of NIOs/AuNPs-CS/ARI in cancer treatment, owing to their unique properties, including the PTT capability and pH sensitivity.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Masoumeh Kaveh Zenjanab
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Samadi Pakchin
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, 33313, USA
| | - Jaleh Barar
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Mohammad M Pourseif
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Engineered Biomaterial Research Center, Khazar University, Baku, Azerbaijan
| | - Marziyeh Fathi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar Branch, Shabestar, Iran.
| |
Collapse
|
5
|
Gharibkandi NA, Majkowska-Pilip A, Walczak R, Wierzbicki M, Bilewicz A. Au@ 109Pd Core-Shell Nanoparticles Conjugated to Panitumumab for the Combined β --Auger Electron Therapy of Triple-Negative Breast Cancer. Int J Mol Sci 2024; 25:13555. [PMID: 39769315 PMCID: PMC11676729 DOI: 10.3390/ijms252413555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Apart from HER2-positive, triple-negative breast cancer (TNBC) is the second most highly invasive type of breast cancer. Although TNBC does not overexpress HER2 receptors, it has been observed that EGFR protein expression is present in this specific type of tumor, making it an attractive target for immune and radiopharmaceutical treatments. In our current study, we used 109Pd (T1/2 = 13.7 h) in the form of a 109Pd/109mAg in vivo generator as a source of β- particles and Auger electrons in targeted radionuclide therapy for TNBC. 109Pd, obtained through neutron irradiation of the 108Pd target, was deposited onto 15 nm gold nanoparticles to form Au@109Pd core-shell nanoparticles, which were then conjugated to the panitumumab antibody. Au@109Pd-PEG-panitumumab nanoparticles were bound, internalized, and partially routed to the nucleus in MDA-MB-231 human breast cancer cells overexpressing EGFR receptors. The Au@109Pd-panitumumab radioconjugate significantly reduced the metabolic activity of MDA-MB-231 cells in a dose-dependent manner. In conclusion, we have found that Au@109Pd-PEG-panitumumab nanoparticles show potential as a therapeutic agent for combined β--Auger electron targeted radionuclide therapy of TNBC. The simultaneous emission of β-, conversion, and Auger electrons from the 109Pd/109mAg generator, similar to 161Tb conjugates, significantly enhances the therapeutic effect. The partial localization of these nanoparticles into the cell nucleus, provided by the panitumumab vector, ensures effective therapy with Auger electrons. This is particularly important for the treatment of drug-resistant TNBC cells.
Collapse
Affiliation(s)
- Nasrin Abbasi Gharibkandi
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
| | - Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
- Department of Nuclear Medicine, Central Clinical Hospital of the Ministry of the Interior and Administration, Wołoska 137 St., 02-507 Warsaw, Poland
| | - Rafał Walczak
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
| | - Mateusz Wierzbicki
- Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8 St., 02-786 Warsaw, Poland;
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16 St., 03-195 Warsaw, Poland; (N.A.G.); (R.W.)
| |
Collapse
|
6
|
Singh DD, Haque S, Kim Y, Han I, Yadav DK. Remodeling of tumour microenvironment: strategies to overcome therapeutic resistance and innovate immunoengineering in triple-negative breast cancer. Front Immunol 2024; 15:1455211. [PMID: 39720730 PMCID: PMC11666570 DOI: 10.3389/fimmu.2024.1455211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) stands as the most complex and daunting subtype of breast cancer affecting women globally. Regrettably, treatment options for TNBC remain limited due to its clinical complexity. However, immunotherapy has emerged as a promising avenue, showing success in developing effective therapies for advanced cases and improving patient outcomes. Improving TNBC treatments involves reducing side effects, minimizing systemic toxicity, and enhancing efficacy. Unlike traditional cancer immunotherapy, engineered nonmaterial's can precisely target TNBC, facilitating immune cell access, improving antigen presentation, and triggering lasting immune responses. Nanocarriers with enhanced sensitivity and specificity, specific cellular absorption, and low toxicity are gaining attention. Nanotechnology-driven immunoengineering strategies focus on targeted delivery systems using multifunctional molecules for precise tracking, diagnosis, and therapy in TNBC. This study delves into TNBC's tumour microenvironment (TME) remodeling, therapeutic resistance, and immunoengineering strategies using nanotechnology.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Youngsun Kim
- Department of Obstetrics and Gynecology, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Ihn Han
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical & Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Dharmendra Kumar Yadav
- Department of Biologics, College of Pharmacy, Hambakmoeiro 191, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
7
|
Akhtar S, Zuhair F, Nawaz M, Khan FA. Green synthesis, characterization, morphological diversity, and colorectal cancer cytotoxicity of gold nanoparticles. RSC Adv 2024; 14:36576-36592. [PMID: 39553281 PMCID: PMC11565694 DOI: 10.1039/d4ra06340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/19/2024] Open
Abstract
The synthesis of gold nanoparticles (AuNPs) via green methods is advantageous due to their economic viability, reduced environmental pollution, and safety towards human health. According to our best knowledge, there is limited documented research on synthesizing AuNPs using gum Arabic (GA) and cinnamon (CNM) and studying their anticancer activities against colorectal cancer cells. This study presents a simple approach to synthesizing AuNPs using GA and CNM, characterized by advanced analytical techniques, including UV-Vis and FTIR spectroscopies, SEM, EDS, TEM, SAED, Zeta sizer, and Zeta potential. The absorption spectra displayed characteristic bands between 520-530 nm, confirming the successful synthesis of AuNPs. TEM analysis revealed that AuNPs@GA exhibited a spherical shape, while AuNPs@CNM displayed diverse morphologies (e.g., spherical, hexagonal, and diamond shapes) with average sizes of approximately 12 nm and 17 nm, respectively. SEM/EDS data confirmed the presence of AuNPs alongside organic compounds such as carbon, oxygen, and phosphorus. The cytotoxic effects of these AuNPs were evaluated on colorectal cancer cells (HCT-116) and healthy cells (HEK-293) using an MTT assay. Notably, AuNPs@GA resulted in a 43.61% loss in cell viability at the dose of 5 μg mL-1, while AuNPs@CNM led to an impressive 80.33% loss. The calculated IC50 values were 9.14 μg mL-1 for AuNPs@GA and 11.76 μg mL-1 for AuNPs@CNM, highlighting the potential of these AuNPs as effective agents in colon cancer treatment. This study not only addresses the lack of research on GA and CNM in NP synthesis but also demonstrates their promising anticancer properties, paving the way for further exploration in cancer therapeutics.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Fatimah Zuhair
- Department of Biophysics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| |
Collapse
|
8
|
Seku K, Bhagavanth Reddy G, Osman AI, Hussaini SS, Kumar NS, Al-Abri M, Pejjai B, Alreshaidan SB, Al-Fatesh AS, Kadimpati KK. Modified frankincense resin stabilized gold nanoparticles for enhanced antioxidant and synergetic activity in in-vitro anticancer studies. Int J Biol Macromol 2024; 278:134935. [PMID: 39179088 DOI: 10.1016/j.ijbiomac.2024.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
For the first time, Frankincense resin (FR) has been carboxymethylated to produce CMFR - AuNPs and the conjugate was utilized for the Doxorubicin drug loading. The carboxymethylation of the carboxylic, phenolic, and hydroxyl functional groups of FR has been developed into carboxymethylated Frankincense resin (CMFR). A novel CMFR-AuNPs was synthesized using the developed CMFR as a stabilizing and reducing agent. The antibacterial, antioxidant, and in-vitro anticancer activities were investigated by using CMFR-AuNPs and CMFR - AuNPs@DOX. CMFR-AuNPs demonstrated antioxidative properties by quenching DPPH radicals effectively. CMFR-AuNPs and DOX@CMFR-AuNPs demonstrated strong antibacterial activity against K. pneumoniae, S. aureus, B. subtilis, and E. coli. The cell viability was tested for CMFR -AuNPs at various concentrations of Dox-loaded CMFR -AuNPs (CMFR-AuNPs + Dox1, CMFR-AuNPs + Dox 2, & CMFR-AuNPs + Dox 3). The highest inhibition was observed on MCF-7 and HeLa cell lines using CMFR-AuNPs + Dox 3, respectively. Various techniques such as UV, FTIR, TGA, XRD, SEM, EDAX and TEM were used to characterize the designed CMFR and CMFR-AuNPs. After carboxy methylation, the amorphous nature of FR changed to crystallinity, as reflected in the XRD spectra. The XRD spectrum of the CMFR- AuNPs showed FCC structure due to the involvement of hydroxyl and carboxylic functional groups of CMFR strongly bound with the AuNPs. TGA results revealed that the CMFR is thermally more stable than FR. TEM revealed that CMFR - AuNPs were well dispersed, spherical, and hexagonal with an average diameter of 7 to 10 nm, while the size of doxorubicin loaded (DOX@CMFR-AuNPs) AuNPs was 11 to 13 nm. Green CMFR-AuNPs have the potential to enhance the drug loading and anticancer efficacy of drugs.
Collapse
Affiliation(s)
- Kondaiah Seku
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman.
| | - G Bhagavanth Reddy
- Department of Chemistry, Palamuru University PG Center, Wanaparthy, Telangana State, India
| | - Ahmed I Osman
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, United Kingdom of Great Britain and Northern Ireland.
| | - Syed Sulaiman Hussaini
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences -, Shinas, Sultanate of Oman
| | - Nadavala Siva Kumar
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Mohammed Al-Abri
- Nanotechnology Research Center, Sultan Qaboos University, Muscat, Oman; Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
| | - Babu Pejjai
- Department of Physics, Sri Venkateshwara College of Engineering, Karakambadi Road, Tirupati 517507, India
| | - Salwa B Alreshaidan
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 800, Riyadh 11451, Saudi Arabia
| | - Ahmed S Al-Fatesh
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Kishore Kumar Kadimpati
- Department of Environmental Biotechnology, Faculty of Power and Environmental Engineering, Akademicka 2, Silesian University of Technology, 44 - 100 Gliwice, Poland.
| |
Collapse
|
9
|
Musielak M, Bakun P, Liwarska J, Skupin-Mrugalska P, Piotrowski I, Suchorska W. Precision medicine in breast cancer: Targeting molecular subtypes with gold nanoparticle-loaded liposomes. Adv Med Sci 2024; 69:331-338. [PMID: 39025260 DOI: 10.1016/j.advms.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Breast cancer is a complex disease with several molecular subtypes that respond differently to therapy. This paper describes liposomes loaded with gold nanoparticles as a targeted drug delivery method in the rapidly developing precision breast cancer treatment area. The aim was to investigate the cytotoxicity level and cellular uptake using several breast cancer cell lines and a normal breast cell line. MATERIALS AND METHODS We synthesized gold nanoparticles incorporated in liposomes. Nanostructures were incubated with breast cancer cell lines of different subtypes. The analysis included MTT assay, flow cytometry and immunofluorescence. RESULTS Cell viability varied among different cancer cells. Moreover, the time- and concentration-dependent manner of viability change was observed. The internalization of liposomes with gold nanoparticles and nanoparticles alone determined different results depending on molecular breast cancer subtypes. The luminal B and triple-negative breast cancer cells demonstrated the highest resistance and sensitivity, respectively. The intensity of cells' interaction with the proposed nanostructures was observed in both cell lines. In this study, we compare the molecular subtypes of breast cancer and discuss how this novel method might improve the therapy success. CONCLUSIONS Our research sheds light on the possibility of new individualized treatments for breast cancer patients, opening the path for better results and a more detailed cancer therapy strategy.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland.
| | - Paweł Bakun
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland; Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, Poland
| | - Julia Liwarska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
10
|
Singla P, Broughton T, Sullivan MV, Garg S, Berlinguer‐Palmini R, Gupta P, Smith KJ, Gardner B, Canfarotta F, Turner NW, Velliou E, Amarnath S, Peeters M. Double Imprinted Nanoparticles for Sequential Membrane-to-Nuclear Drug Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309976. [PMID: 38973256 PMCID: PMC11423068 DOI: 10.1002/advs.202309976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/14/2024] [Indexed: 07/09/2024]
Abstract
Efficient and site-specific delivery of therapeutics drugs remains a critical challenge in cancer treatment. Traditional drug nanocarriers such as antibody-drug conjugates are not generally accessible due to their high cost and can lead to serious side effects including life-threatening allergic reactions. Here, these problems are overcome via the engineering of supramolecular agents that are manufactured with an innovative double imprinting approach. The developed molecularly imprinted nanoparticles (nanoMIPs) are targeted toward a linear epitope of estrogen receptor alfa (ERα) and loaded with the chemotherapeutic drug doxorubicin. These nanoMIPs are cost-effective and rival the affinity of commercial antibodies for ERα. Upon specific binding of the materials to ERα, which is overexpressed in most breast cancers (BCs), nuclear drug delivery is achieved via receptor-mediated endocytosis. Consequentially, significantly enhanced cytotoxicity is elicited in BC cell lines overexpressing ERα, paving the way for precision treatment of BC. Proof-of-concept for the clinical use of the nanoMIPs is provided by evaluating their drug efficacy in sophisticated three-dimensional (3D) cancer models, which capture the complexity of the tumor microenvironment in vivo without requiring animal models. Thus, these findings highlight the potential of nanoMIPs as a promising class of novel drug compounds for use in cancer treatment.
Collapse
Affiliation(s)
- Pankaj Singla
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Thomas Broughton
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- NIHR, Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Mark V. Sullivan
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | - Saweta Garg
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Rolando Berlinguer‐Palmini
- The Bio‐Imaging Unit, Medical SchoolNewcastle UniversityWilliam Leech BuildingNewcastle Upon TyneNE2 4HHUK
| | - Priyanka Gupta
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional ScienceUniversity College LondonLondonW1W 7TYUK
| | - Katie J Smith
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Ben Gardner
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | | | - Nicholas W. Turner
- Department of ChemistryUniversity of SheffieldDainton BuildingSheffieldS3 7HFUK
| | - Eirini Velliou
- Centre for 3D models of Health and Disease, Division of Surgery and Interventional ScienceUniversity College LondonLondonW1W 7TYUK
| | - Shoba Amarnath
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- Immune Regulation Laboratory, NU Biosciences, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
- NIHR, Biomedical Research CentreNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| | - Marloes Peeters
- Department of Chemical EngineeringThe University of ManchesterEngineering building A, East Booth Street, Oxford RoadManchesterM13 9PLUK
- School of EngineeringNewcastle UniversityMerz Court, Claremont RoadNewcastle Upon TyneNE1 7RUUK
- Center for Cancer Research, NU Cancer, Faculty of Medical SciencesNewcastle UniversityNewcastle Upon TyneNE2 4HHUK
| |
Collapse
|
11
|
Navyatha B, Nara S. The effects of conjugating anti-MUC1 aptamers on gold nanobipyramids and nanostars for photothermal cancer ablation. Nanomedicine (Lond) 2024; 19:1957-1975. [PMID: 39136402 PMCID: PMC11485751 DOI: 10.1080/17435889.2024.2384351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 10/09/2024] Open
Abstract
Aim: To ascertain the impact of shape and surface modification of anisotropic nanoparticles on the toxicity and photothermal efficiency toward cancerous cell lines.Methods: Gold nanobipyramids and nanostars surface modified with MUC1 aptamer were used in the current study to explore the toxicity and photothermal efficiency on MCF7 breast cancer cell lines via MTT assay.Results: Surface functionalization with MUC1 aptamer showed significant reduction in % cytotoxicity and increase in % specific internalization of nanostructures into MCF7 cell lines. Further, the photothermal studies accomplished at IC50 concentration for 6 h of treatment and laser exposure for 15 min reported that aptamer-conjugated nanobipyramids were more effective and specific toward MCF7 cell lines than aptamer-conjugated nanostars.Conclusion: This work establishes a platform for the development of tailored photoablation based gold nanostructures for in vivo studies.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, U.P., 211004, India
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302, Andhra Pradesh,India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, U.P., 211004, India
| |
Collapse
|
12
|
Eze FN, Eze RC, Okpara KE, Adekoya AE, Kalu HN. Design and development of locust bean gum-endowed/Phyllanthus reticulatus anthocyanin- functionalized biogenic gold nanosystem for enhanced antioxidative and anticancer chemotherapy. Int J Biol Macromol 2024; 275:133687. [PMID: 38972650 DOI: 10.1016/j.ijbiomac.2024.133687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Herein, the design and fabrication of an anticancer nanoplatform (LBG/PRA-NG) based on locust bean gum-stabilized nanogold and functionalized with Phyllanthus reticulatus anthocyanins was described. LBG/PRA-NG was prepared in an eco-friendly, one-pot approach at room temperature, mediated by the anthocyanins and gum as bio-reductant and stabilizer, respectively. The nanostructure was elaborately characterized by FESEM, TEM, UV-visible, DLS, Zeta potential, FTIR, XRD, TGA/DTG, and XPS analysis. Its anticancer attributes were examined based on cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines, as well as the generation of intracellular reactive oxygen species. The results revealed the successful formation of a homogenous and highly stable nanocomposite (LBG/PRA-NG), with quasi-spherical shape, small size (14.73 nm), Zeta potential and PDI values of -58.30 mV and 0.237, respectively. The presence of a plasmonic peak at 525 nm was indicative of AuNPs. Compared to the galactomannan and anthocyanin, LBG/PRA-NG exhibited superior antioxidative properties with IC50 values of 35.44 μg/mL against DPPH and 24.55 μg/mL against ABTS+. Notably, LBG/PRA-NG also demonstrated enhanced anticancer properties relative to LBG and anthocyanins, with IC50 values of 16.17 μg/mL and 25.06 μg/mL against MCF-7 and MDA-MB-231 cells. Meanwhile, the normal cells (HEK-293 and L929) resisted the innocuous effects of LBG/PRA-NG. Furthermore, treatment of breast cancer cells with LBG/PRA-NG drastically elevated the intracellular ROS levels. This suggested that the anticancer activity of LBG/PRA-NG may be mediated via amplification of ROS/oxidative stress-induced apoptosis. Altogether, these findings indicate the remarkable potential of LBG/PRA-NC in the development of anticancer therapy.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- College of Agricultural and Natural Sciences, Joseph Ayo Babalola University, Ikeji-Arakeji, Osun State, Nigeria.
| | - Roseline Chika Eze
- Faculty of Environment and Resource Studies, Mahidol University, Salaya District, Nakhon Pathom 73170, Thailand.
| | - Kingsley Ezechukwu Okpara
- Institute of Geosciences and Environmental Management, Rivers State University, P.M.B. 5080 Port Harcourt, Nigeria
| | - Ademola Ezekiel Adekoya
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, 612 00 Brno-Královo Pole, Czechia.
| | - Helen Nwaocha Kalu
- College of Agricultural Economics, Rural Sociology and Extension, Michael Okpara University of Agriculture Umudike, P.M.B. 7267 Umuahia, Abia State, Nigeria
| |
Collapse
|
13
|
Leena Panigrahi L, Samal P, Ranjan Sahoo S, Sahoo B, Pradhan AK, Mahanta S, Rath SK, Arakha M. Nanoparticle-mediated diagnosis, treatment, and prevention of breast cancer. NANOSCALE ADVANCES 2024; 6:3699-3713. [PMID: 39050943 PMCID: PMC11265592 DOI: 10.1039/d3na00965c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
By virtue of their advanced physicochemical properties, nanoparticles have attracted significant attention from researchers for application in diverse fields of medical science. Breast cancer, presenting a high risk of morbidity and mortality, frequently occurs in women and is considered a malignant tumor. Globally, breast cancer is considered the second leading cause of death. Accordingly, its poor prognosis, invasive metastasis, and relapse have motivated oncologists and nano-medical researchers to develop highly potent nanotherapies to cure this deadly disease. In this case, nanoparticles have emerged as responsive platforms for breast cancer management, providing new approaches to improve the diagnostic accuracy, deliver targeted therapies, and limit the progression of this disease. Recently, smart nano-carriers encapsulating drugs, ligands, and tracking probes have been developed for the specific therapy of breast cancers. Further, efforts have been devoted to developing various nano-systems with minimal toxicity. The aim of this review is to present a background on novel nanotheranostic methods that can be employed to diagnose and treat breast cancers and encourage readers to focus on the development of novel nanomedicine for breast cancers and other deadly diseases. In this context, we discuss different methods for the diagnosis, treatment, and prevention of breast cancers using different metal and metal oxide nanoparticles.
Collapse
Affiliation(s)
- Lipsa Leena Panigrahi
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Pallavi Samal
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Sameer Ranjan Sahoo
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Banishree Sahoo
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Arun Kumar Pradhan
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| | - Sailendra Mahanta
- School of Pharmacy, The Assam Kaziranga University Koraikhowa, NH-37 Jorhat Assam 785 006 India
| | - Sandip Kumar Rath
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine Atlanta Georgia USA
| | - Manoranjan Arakha
- Center For Biotechnology, Siksha O Anusandhan University Bhubaneswar Odisha 751003 India
| |
Collapse
|
14
|
Roy M, Hussain F. Mitigation of Breast Cancer Cells' Invasiveness via Down Regulation of ETV7, Hippo, and PI3K/mTOR Pathways by Vitamin D3 Gold-Nanoparticles. Int J Mol Sci 2024; 25:5348. [PMID: 38791386 PMCID: PMC11120902 DOI: 10.3390/ijms25105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Metastasis in breast cancer is the major cause of death in females (about 30%). Based on our earlier observation that Vitamin D3 downregulates mTOR, we hypothesized that Vitamin D3 conjugated to gold nanoparticles (VD3-GNPs) reduces breast cancer aggressiveness by downregulating the key cancer controller PI3K/AKT/mTOR. Western blots, migration/invasion assays, and other cell-based, biophysical, and bioinformatics studies are used to study breast cancer cell aggressiveness and nanoparticle characterization. Our VD3-GNP treatment of breast cancer cells (MCF-7 and MDA-MB-231) significantly reduces the aggressiveness (cancer cell migration and invasion rates > 45%) via the simultaneous downregulation of ETV7 and the Hippo pathway. Consistent with our hypothesis, we, indeed, found a downregulation of the PI3K/AKT/mTOR pathway. It is surprising that the extremely low dose of VD3 in the nano formulation (three orders of magnitude lower than in earlier studies) is quite effective in the alteration of cancer invasiveness and cell signaling pathways. Clearly, VD3-GNPs are a viable candidate for non-toxic, low-cost treatment for reducing breast cancer aggressiveness.
Collapse
Affiliation(s)
- Moumita Roy
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| | - Fazle Hussain
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
15
|
Palani N, Vijayakumar P, Monisha P, Ayyadurai S, Rajadesingu S. Electrospun nanofibers synthesized from polymers incorporated with bioactive compounds for wound healing. J Nanobiotechnology 2024; 22:211. [PMID: 38678271 PMCID: PMC11056076 DOI: 10.1186/s12951-024-02491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
The development of innovative wound dressing materials is crucial for effective wound care. It's an active area of research driven by a better understanding of chronic wound pathogenesis. Addressing wound care properly is a clinical challenge, but there is a growing demand for advancements in this field. The synergy of medicinal plants and nanotechnology offers a promising approach to expedite the healing process for both acute and chronic wounds by facilitating the appropriate progression through various healing phases. Metal nanoparticles play an increasingly pivotal role in promoting efficient wound healing and preventing secondary bacterial infections. Their small size and high surface area facilitate enhanced biological interaction and penetration at the wound site. Specifically designed for topical drug delivery, these nanoparticles enable the sustained release of therapeutic molecules, such as growth factors and antibiotics. This targeted approach ensures optimal cell-to-cell interactions, proliferation, and vascularization, fostering effective and controlled wound healing. Nanoscale scaffolds have significant attention due to their attractive properties, including delivery capacity, high porosity and high surface area. They mimic the Extracellular matrix (ECM) and hence biocompatible. In response to the alarming rise of antibiotic-resistant, biohybrid nanofibrous wound dressings are gradually replacing conventional antibiotic delivery systems. This emerging class of wound dressings comprises biopolymeric nanofibers with inherent antibacterial properties, nature-derived compounds, and biofunctional agents. Nanotechnology, diminutive nanomaterials, nanoscaffolds, nanofibers, and biomaterials are harnessed for targeted drug delivery aimed at wound healing. This review article discusses the effects of nanofibrous scaffolds loaded with nanoparticles on wound healing, including biological (in vivo and in vitro) and mechanical outcomes.
Collapse
Affiliation(s)
- Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Department of Chemistry, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem, 636 016, Tamil Nadu, India
| | - Saravanakumar Ayyadurai
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur, 603 203, Tamil Nadu, India.
| |
Collapse
|
16
|
sanei M, Amirheidari B, Satarzadeh N. Mutuality of epigenetic and nanoparticles: two sides of a coin. Heliyon 2024; 10:e23679. [PMID: 38187314 PMCID: PMC10767507 DOI: 10.1016/j.heliyon.2023.e23679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Nowadays nanoparticles (NPs) due to their multidimensional applications in enormous different fields, has become an exciting research topic. In particular, they could attract a noticeable interest as drug deliver with increased bioavailability, therapeutic efficacy and drug specificity. Epigenetic can be considered as a complex network of molecular mechanism which are engaged in gene expression and have a vital role in regulation of environmental effects on ethology of different disorders like neurological disorders, cancers and cardiovascular diseases. For many of them epigenetic therapy was proposed although its application accompanied with limitations, due to drug toxicity. In this review we evaluate two aspects to epigenetic in the field of NPs: firstly, the role of epigenetic in regulation of nanotoxicity and secondly application of NPs as potential carriers for epidrugs.
Collapse
Affiliation(s)
- Maryam sanei
- Islamic Azad University, Faculty of Medicine, Mashhad branch, Mashhad, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Naghmeh Satarzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Extremophile and Productive Microorganisms Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
17
|
Ahmad S, Ahmad S, Xu Q, Khan I, Cao X, Yang R, Yan H. Green synthesis of gold and silver nanoparticles using crude extract of Aconitum violaceum and evaluation of their antibacterial, antioxidant and photocatalytic activities. Front Bioeng Biotechnol 2024; 11:1320739. [PMID: 38268939 PMCID: PMC10807692 DOI: 10.3389/fbioe.2023.1320739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Green synthesis of metal nanoparticles (NPs) has received extensive attention over other conventional approaches due to their non-toxic nature and more biocompatibility. Herein we report gold and silver NPs (AuNPs@AV and AgNPs@AV) prepared by employing a green approach using crude extract of Aconitum violaceum Jacquem. ex Stapf. The synthesized NPs were characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD), UV/Visible spectroscopy, Fourier Transform Infrared (FTIR), X-ray Photoelectron Spectroscopy (XPS), and Zeta Potential. Morphological analysis showed spherical and triangular shapes of the NPs with average size of <100 nm. The AuNPs@AV and AgNPs@AV exhibited effective antibacterial activities, with minimum inhibitory concentrations (MICs) of 95 and 70 μg/mL against Lactobacillus acidophilus (L. acidophilus) and 90 and 65 μg/mL against Escherichia coli (E. coli), respectively. Strong antioxidant effect of AuNPs@AV and AgNPs@AV were reported against DPPH radical and PTIO within range of IC50 values; 161-80 μg/ml as compared to the standard (23-11 μg/mL) respectively. Moreover, the AuNPs@AV and AgNPs@AV showed efficient photocatalytic activity and degraded 89.88% and 93.7% methylene blue (MB) dye under UV light, respectively.
Collapse
Affiliation(s)
- Shahbaz Ahmad
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal, Dir Upper, Khyber Pakhtunkhwa, Pakistan
| | - Qianqian Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an, China
| | - Xiaoyu Cao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ruimin Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hai Yan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
18
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Functionalized Gold Nanoparticles Suppress the Proliferation of Human Lung Alveolar Adenocarcinoma Cells by Deubiquitinating Enzymes Inhibition. ACS OMEGA 2023; 8:40622-40638. [PMID: 37929120 PMCID: PMC10620884 DOI: 10.1021/acsomega.3c05452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Functionalized gold nanoparticles (AuNPs) are widely used in therapeutic applications, but little is known regarding the impact of their surface functionalization in the process of toxicity against cancer cells. This study investigates the anticancer effects of 5 nm spherical AuNPs functionalized with tannate, citrate, and PVP on deubiquitinating enzymes (DUBs) in human lung alveolar adenocarcinoma (A549) cells. Our findings show that functionalized AuNPs reduce the cell viability in a concentration- and time-dependent manner as measured by modified lactate dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. An increased generation of intracellular reactive oxygen species (ROS) and depletion of glutathione (GSH/GSSG) ratio was observed with the highest AuNP concentration of 10 μg/mL. The expression of DUBs such as ubiquitin specific proteases (USP7, USP8, and USP10) was slightly inhibited when treated with concentrations above 2.5 μg/mL. Moreover, functionalized AuNPs showed an inhibitory effect on protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and wingless-related integration site (Wnt) signaling proteins, and this could further trigger mitochondrial related-apoptosis by the upregulation of caspase-3, caspase-9, and PARP in A549 cells. Furthermore, our study shows a mechanistic understanding of how functionalized AuNPs inhibit the DUBs, consequently suppressing cell proliferation, and can be modulated as an approach toward anticancer therapy. The study also warrants the need for future work to investigate the effect of functionalized AuNPs on DUB on other cancer cell lines both in vitro and in vivo.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Taiwo Hassan Akere
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Swaroop Chakraborty
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Eugenia Valsami-Jones
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Hanene Ali-Boucetta
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
19
|
Lorenzana-Vázquez G, Pavel I, Meléndez E. Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules 2023; 28:molecules28114453. [PMID: 37298929 DOI: 10.3390/molecules28114453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Nanoparticles have been used to transport drugs to various body parts to treat cancer. Our interest is in gold nanoparticles (AuNPs) since they have the capacity to absorb light and convert it to heat, inducing cellular damage. This property is known as photothermal therapy (PTT) and has been studied in cancer treatment. In the present study, biocompatible citrate-reduced AuNPs were functionalized with a biologically active compound, 2-thiouracil (2-TU), of potential anticancer activity. Both the unfunctionalized (AuNPs) and functionalized (2-TU-AuNPs) were purified and characterized by UV-Vis absorption spectrophotometry, Zeta potential, and Transmission Electron Microscopy. Results showed monodispersed, spherical AuNPs with a mean core diameter of 20 ± 2 nm, a surface charge of -38 ± 5 mV, and a localized surface plasmon resonance peak at 520 nm. As a result of functionalization, the mean core diameter of 2-TU-AuNPs increased to 24 ± 4 nm, and the surface charge increased to -14 ± 1 mV. The functionalization of AuNPs and the load efficiency were further established through Raman spectroscopy and UV-Vis absorption spectrophotometry. The antiproliferative activities of AuNPs, 2-TU and 2-TU-AuNPs were examined by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay in the MDA-MB-231 breast cancer cell line. It was established that AuNPs significantly enhanced the antiproliferative activity of 2-TU. Furthermore, the irradiation of the samples with visible light at 520 nm decreased the half-maximal inhibitory concentration by a factor of 2. Thus, the 2-TU drug concentration and its side effect during treatments could be significantly reduced by synergistically exploiting the antiproliferative activity of 2-TU loaded onto AuNPs and the PTT effect of AuNPs.
Collapse
Affiliation(s)
| | - Ioana Pavel
- Department of Physical and Environmental Sciences, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | - Enrique Meléndez
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA
| |
Collapse
|
20
|
Torres-Ortiz D, García-Alcocer G, Loske AM, Fernández F, Becerra-Becerra E, Esparza R, Gonzalez-Reyna MA, Estevez M. Green Synthesis and Antiproliferative Activity of Gold Nanoparticles of a Controlled Size and Shape Obtained Using Shock Wave Extracts from Amphipterygium adstringens. Bioengineering (Basel) 2023; 10:bioengineering10040437. [PMID: 37106624 PMCID: PMC10136038 DOI: 10.3390/bioengineering10040437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
In this study, green chemistry was used as a tool to obtain gold nanoparticles using Amphipterygium adstringens extracts as a synthesis medium. Green ethanolic and aqueous extracts were obtained using ultrasound and shock wave-assisted extraction. Gold nanoparticles with sizes ranging between 100 and 150 nm were obtained with ultrasound aqueous extract. Interestingly, homogeneous quasi-spherical gold nanoparticles with sizes between 50 and 100 nm were achieved with shock wave aqueous-ethanolic extracts. Furthermore, 10 nm gold nanoparticles were obtained by the traditional methanolic macerate extraction method. The physicochemical characteristics, morphology, size, stability, and Z potential of the nanoparticles were determined using microscopic and spectroscopic techniques. The viability assay in leukemia cells (Jurkat) was performed using two different sets of gold nanoparticles, with final IC50 values of 87 µM and 94.7 µM, reaching a maximum cell viability decrease of 80% The results do not indicate a significant difference between the cytotoxic effects produced by the gold nanoparticles synthesized in this study and vincristine on normal lymphoblasts (CRL-1991).
Collapse
Affiliation(s)
- Daniela Torres-Ortiz
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Guadalupe García-Alcocer
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
- Correspondence: (G.G.-A.); (M.E.)
| | - Achim M. Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Edgardo Becerra-Becerra
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Santiago de Querétaro 76010, Querétaro, Mexico
| | - Rodrigo Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Marlen Alexis Gonzalez-Reyna
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Miriam Estevez
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Querétaro, Mexico
- Correspondence: (G.G.-A.); (M.E.)
| |
Collapse
|
21
|
The Cultivation Modality and Barrier Maturity Modulate the Toxicity of Industrial Zinc Oxide and Titanium Dioxide Nanoparticles on Nasal, Buccal, Bronchial, and Alveolar Mucosa Cell-Derived Barrier Models. Int J Mol Sci 2023; 24:ijms24065634. [PMID: 36982705 PMCID: PMC10056597 DOI: 10.3390/ijms24065634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
As common industrial by-products, airborne engineered nanomaterials are considered important environmental toxins to monitor due to their potential health risks to humans and animals. The main uptake routes of airborne nanoparticles are nasal and/or oral inhalation, which are known to enable the transfer of nanomaterials into the bloodstream resulting in the rapid distribution throughout the human body. Consequently, mucosal barriers present in the nose, buccal, and lung have been identified and intensively studied as the key tissue barrier to nanoparticle translocation. Despite decades of research, surprisingly little is known about the differences among various mucosa tissue types to tolerate nanoparticle exposures. One limitation in comparing nanotoxicological data sets can be linked to a lack of harmonization and standardization of cell-based assays, where (a) different cultivation conditions such as an air-liquid interface or submerged cultures, (b) varying barrier maturity, and (c) diverse media substitutes have been used. The current comparative nanotoxicological study, therefore, aims at analyzing the toxic effects of nanomaterials on four human mucosa barrier models including nasal (RPMI2650), buccal (TR146), alveolar (A549), and bronchial (Calu-3) mucosal cell lines to better understand the modulating effects of tissue maturity, cultivation conditions, and tissue type using standard transwell cultivations at liquid-liquid and air-liquid interfaces. Overall, cell size, confluency, tight junction localization, and cell viability as well as barrier formation using 50% and 100% confluency was monitored using trans-epithelial-electrical resistance (TEER) measurements and resazurin-based Presto Blue assays of immature (e.g., 5 days) and mature (e.g., 22 days) cultures in the presence and absence of corticosteroids such as hydrocortisone. Results of our study show that cellular viability in response to increasing nanoparticle exposure scenarios is highly compound and cell-type specific (TR146 6 ± 0.7% at 2 mM ZnO (ZnO) vs. ~90% at 2 mM TiO2 (TiO2) for 24 h; Calu3 93.9 ± 4.21% at 2 mM ZnO vs. ~100% at 2 mM TiO2). Nanoparticle-induced cytotoxic effects under air-liquid cultivation conditions declined in RPMI2650, A549, TR146, and Calu-3 cells (~0.7 to ~0.2-fold), with increasing 50 to 100% barrier maturity under the influence of ZnO (2 mM). Cell viability in early and late mucosa barriers where hardly influenced by TiO2 as well as most cell types did not fall below 77% viability when added to Individual ALI cultures. Fully maturated bronchial mucosal cell barrier models cultivated under ALI conditions showed less tolerance to acute ZnO nanoparticle exposures (~50% remaining viability at 2 mM ZnO for 24 h) than the similarly treated but more robust nasal (~74%), buccal (~73%), and alveolar (~82%) cell-based models.
Collapse
|
22
|
Triphenylphosphonium conjugated gold nanotriangles impact Pi3K/AKT pathway in breast cancer cells: a photodynamic therapy approach. Sci Rep 2023; 13:2230. [PMID: 36754981 PMCID: PMC9908940 DOI: 10.1038/s41598-023-28678-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Although gold nanoparticles based photodynamic therapy (PDT) were reported to improve efficacy and specificity, the impact of surface charge in targeting cancer is still a challenge. Herein, we report gold nanotriangles (AuNTs) tuned with anionic and cationic surface charge conjugating triphenylphosphonium (TPP) targeting breast cancer cells with 5-aminoleuvinic acid (5-ALA) based PDT, in vitro. Optimized surface charge of AuNTs with and without TPP kill breast cancer cells. By combining, 5-ALA and PDT, the surface charge augmented AuNTs deliver improved cellular toxicity as revealed by MTT, fluorescent probes and flow cytometry. Further, the 5-ALA and PDT treatment in the presence of AuNTs impairs cell survival Pi3K/AKT signaling pathway causing mitochondrial dependent apoptosis. The cumulative findings demonstrate that, cationic AuNTs with TPP excel selective targeting of breast cancer cells in the presence of 5-ALA and PDT.
Collapse
|
23
|
The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life (Basel) 2023; 13:life13020466. [PMID: 36836823 PMCID: PMC9965924 DOI: 10.3390/life13020466] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
Collapse
|
24
|
Nguyen T, Maniyar A, Sarkar M, Sarkar TR, Neelgund GM. The Cytotoxicity of Carbon Nanotubes and Hydroxyapatite, and Graphene and Hydroxyapatite Nanocomposites against Breast Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:556. [PMID: 36770518 PMCID: PMC9919526 DOI: 10.3390/nano13030556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Cancer is a current dreadful disease and the leading cause of death. Next to cardiovascular diseases, cancer is the most severe threat to human life and health. Breast cancer is the most common invasive cancer diagnosed in women. Each year about 2.3 million women are diagnosed with breast cancer. In consideration of the severity of breast cancer, herein we designed the biocompatible nanomaterials, CNTs-HAP and GR-HAP, through grafting of hydroxyapatite (HAP) to carbon nanotubes (CNTs) and graphene (GR) nanosheets. CNTs-HAP and GR-HAP have been tested for their cytotoxicity, growth and motility inhibitory effects, and their effects on the mesenchymal markers. All these demonstrated significant dose-dependent and time-dependent in vitro cytotoxicity against SUM-159 and MCF-7 breast cancer cell lines. The cell viability assay showed that the CNTs-HAP was more effective over SUM-159 cells than MCF-7 cells. It found that the increase in the concentration of GR-HAP has inhibited the clonogenic ability of breast cancer cells. The GR-HAP exhibited a substantial inhibitory effect on the cell motility of SUM-159 cell lines. It was investigated that the expression of vimentin (mesenchymal marker) was majorly reduced in SUM-159 cells by GR-HAP.
Collapse
Affiliation(s)
- Tristan Nguyen
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Anuj Maniyar
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Mrinmoy Sarkar
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Gururaj M. Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
25
|
Fotooh Abadi L, Kumar P, Paknikar K, Gajbhiye V, Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. J Nanobiotechnology 2023; 21:19. [PMID: 36658575 PMCID: PMC9850711 DOI: 10.1186/s12951-022-01750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| | - Pramod Kumar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Kishore Paknikar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India ,grid.417971.d0000 0001 2198 7527Department of Chemistry, Indian Institute of Technology, Mumbai, 400 076 India
| | - Virendra Gajbhiye
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Smita Kulkarni
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| |
Collapse
|
26
|
Pradhan R, Dey A, Taliyan R, Puri A, Kharavtekar S, Dubey SK. Recent Advances in Targeted Nanocarriers for the Management of Triple Negative Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15010246. [PMID: 36678877 PMCID: PMC9866847 DOI: 10.3390/pharmaceutics15010246] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a life-threatening form of breast cancer which has been found to account for 15% of all the subtypes of breast cancer. Currently available treatments are significantly less effective in TNBC management because of several factors such as poor bioavailability, low specificity, multidrug resistance, poor cellular uptake, and unwanted side effects being the major ones. As a rapidly growing field, nano-therapeutics offers promising alternatives for breast cancer treatment. This platform provides a suitable pathway for crossing biological barriers and allowing sustained systemic circulation time and an improved pharmacokinetic profile of the drug. Apart from this, it also provides an optimized target-specific drug delivery system and improves drug accumulation in tumor cells. This review provides insights into the molecular mechanisms associated with the pathogenesis of TNBC, along with summarizing the conventional therapy and recent advances of different nano-carriers for the management of TNBC.
Collapse
Affiliation(s)
- Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Anuradha Dey
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute—Frederick, Frederick, MD 21702, USA
| | - Sanskruti Kharavtekar
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
- Medical Research, R&D Healthcare Division, Emami Ltd., Kolkata 700056, India
- Correspondence: (R.T.); (S.K.D.); Tel.: +91-6378-364-745 (R.T.); +91-8239-703-734 (S.K.D.)
| |
Collapse
|
27
|
Akter Z, Khan FZ, Khan MA. Gold Nanoparticles in Triple-Negative Breast Cancer Therapeutics. Curr Med Chem 2023; 30:316-334. [PMID: 34477507 DOI: 10.2174/0929867328666210902141257] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer with enhanced metastasis and poor survival. Though chemotherapy, radiotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and gene delivery are used to treat TNBC, various side effects limit these therapeutics against TNBC. In this review article, we have focused on the mechanism of action of gold nanoparticles (AuNPs) to enhance the efficacy of therapeutics with targeted delivery on TNBC cells. METHODS Research data were accumulated from PubMed, Scopus, Web of Science, and Google Scholar using searching criteria "gold nanoparticles and triple-negative breast cancer" and "gold nanoparticles and cancer". Though we reviewed many old papers, the most cited papers were from the last ten years. RESULTS Various studies indicate that AuNPs can enhance bioavailability, site-specific drug delivery, and efficacy of chemotherapy, radiotherapy, PTT, and PDT as well as modulate gene expression. The role of AuNPs in the modulation of TNBC therapeutics through the inhibition of cell proliferation, progression, and metastasis has been proved in vitro and in vivo studies. As these mechanistic actions of AuNPs are most desirable to develop drugs with enhanced therapeutic efficacy against TNBC, it might be a promising approach to apply AuNPs for TNBC therapeutics. CONCLUSION This article reviewed the mechanism of action of AuNPs and their application in the enhancement of therapeutics against TNBC. Much more attention is required for studying the role of AuNPs in developing them either as a single or synergistic anticancer agent against TNBC.
Collapse
Affiliation(s)
- Zakia Akter
- Biological Sciences Department, The University of Texas at Dallas, Richardson, Texas, USA
| | - Fabiha Zaheen Khan
- Biochemistry and Molecular Biology, Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Md Asaduzzaman Khan
- Key laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, P.R. China
| |
Collapse
|
28
|
EGF-conjugated bio-safe luteolin gold nanoparticles induce cellular toxicity and cell death mediated by site-specific rapid uptake in human triple negative breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
29
|
A review on the epigenetics modifications to nanomaterials in humans and animals: novel epigenetic regulator. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Abstract
In the nanotechnology era, nanotechnology applications have been intensifying their prospects to embrace all the vigorous sectors persuading human health and animal. The safety and concerns regarding the widespread use of engineered nanomaterials (NMA) and their potential effect on human health still require further clarification. Literature elucidated that NMA exhibited significant adverse effects on various molecular and cellular alterations. Epigenetics is a complex process resulting in the interactions between an organism’s environment and genome. The epigenetic modifications, including histone modification and DNA methylation, chromatin structure and DNA accessibility alteration, regulate gene expression patterns. Disturbances of epigenetic markers induced by NMA might promote the sensitivity of humans and animals to several diseases. Also, this paper focus on the epigenetic regulators of some dietary nutrients that have been confirmed to stimulate the epigenome and, more exactly, DNA histone modifications and non-histone proteins modulation by acetylation, and phosphorylation inhibition, which counteracts oxidative stress generations. The present review epitomizes the recent evidence of the potential effects of NMA on histone modifications, in addition to in vivo and in vitro cytosine DNA methylation and its toxicity. Furthermore, the part of epigenetic fluctuations as possible translational biomarkers for uncovering untoward properties of NMA is deliberated.
Collapse
|
30
|
Anticancer and chemosensitization effects of cannabidiol in 2D and 3D cultures of TNBC: involvement of GADD45α, integrin-α5, -β5, -β1, and autophagy. Drug Deliv Transl Res 2022; 12:2762-2777. [PMID: 35217991 PMCID: PMC9811521 DOI: 10.1007/s13346-022-01137-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2022] [Indexed: 01/07/2023]
Abstract
To date, promising therapy for triple negative breast cancer (TNBC) remains a serious concern clinically because of poor prognosis, resistance, and recurrence. Herein, anti-cancer potential of synthetic cannabidiol (CBD; Purisys, GA; GMP grade) was explored either alone or as a chemosensitizer followed by post-treatment with doxorubicin (DOX) in TNBC (i.e., MDA-MB-231 and MDA-MB-468) cells. In comparison to 2D cultures, CBD showed greater IC50 values in 3D (LDP2 hydrogel based) cultures of MDA-MB-231 (6.26-fold higher) and MDA-MB-468 (10.22-fold higher) cells. Next-generation RNA sequencing revealed GADD45A, GADD45G, FASN, LOX, and integrin (i.e., -α5, -β5) genes to be novelly altered by CBD in MDA-MB-231 cells. CIM-16 plate-based migration assay and western blotting disclosed that CBD induces anti-migratory effects in TNBC cells by decreasing fibronectin, vimentin, and integrins-α5, -β5, and -β1. Western blotting, RT-qPCR, and immunocytochemistry revealed that CBD inhibited autophagy (decreased Beclin1, and ATG-5, -7, and -16) of TNBC cells. CBD pre-treatment increased DOX sensitivity in TNBC cells. CBD pre-treatment accompanied by DOX treatment decreased LOX and integrin-α5, and increased caspase 9 protein respectively in MDA-MB-468 cells.
Collapse
|
31
|
Sun Q, Li T, Yu Y, Li Y, Sun Z, Duan J. The critical role of epigenetic mechanisms involved in nanotoxicology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1789. [PMID: 35289073 DOI: 10.1002/wnan.1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Over the past decades, nanomaterials (NMs) have been widely applied in the cosmetic, food, engineering, and medical fields. Along with the prevalence of NMs, the toxicological characteristics exhibited by these materials on health and the environment have gradually attracted attentions. A growing number of evidences have indicated that epigenetics holds an essential role in the onset and development of various diseases. NMs could cause epigenetic alterations such as DNA methylation, noncoding RNA (ncRNA) expression, and histone modifications. NMs might alternate either global DNA methylation or the methylation of specific genes to affect the biological function. Abnormal upregulation or downregulation of ncRNAs might also be a potential mechanism for the toxic effects caused by NMs. In parallel, the phosphorylation, acetylation, and methylation of histones also take an important part in the process of NMs-induced toxicity. As the adverse effects of NMs continue to be explored, mechanisms such as chromosomal remodeling, genomic imprinting, and m6 A modification are also gradually coming into the limelight. Since the epigenetic alterations often occur in the early development of diseases, thus the relevant studies not only provide insight into the pathogenesis of diseases, but also screen for the prospective biomarkers for early diagnosis and prevention. This review summarizes the epigenetic alterations elicited by NMs, hoping to provide a clue for nanotoxicity studies and security evaluation of NMs. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Pisárčik M, Lukáč M, Jampílek J, Pašková Ľ, Bilka F, Bilková A, Devínsky F, Vaľko J, Horáková R, Hošek J, Březina M, Opravil T. Controlled synthesis of gemini surfactant-capped gold nanoparticles. Gemini structure-nanoparticle properties relationship study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: promising combination strategies. Drug Discov Today 2022; 27:103386. [PMID: 36182068 DOI: 10.1016/j.drudis.2022.103386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ∼20% for drug delivery alone.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Jia-Lin Yang
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
34
|
Dorovskikh SI, Vikulova ES, Sergeevichev DS, Guselnikova TY, Zheravin AA, Nasimov DA, Vasilieva MB, Chepeleva EV, Saprykin AI, Basova TV, Morozova NB. Biological Studies of New Implant Materials Based on Carbon and Polymer Carriers with Film Heterostructures Containing Noble Metals. Biomedicines 2022; 10:biomedicines10092230. [PMID: 36140329 PMCID: PMC9496383 DOI: 10.3390/biomedicines10092230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, and PtIr films on these carriers. A noble metal layer as thin as 1 µm provided clear X-ray imaging of 1−2.5 mm thick CFR-PEEK samples. The coated and pristine CCM and CFR-PEEK samples were further surface-modified with Au and Ag nanoparticles (NPs) through MOCVD and physical vapor deposition (PVD) processes, respectively. The composition and microstructural features, the NPs sizes, and surface concentrations were determined. In vitro biological studies included tests for cytotoxicity and antibacterial properties. A series of samples were selected for subcutaneous implantation in rats (up to 3 months) and histological studies. The bimetallic PtIr-based heterostructures showed no cytotoxicity in vitro, but were less biocompatible due to a dense two-layered fibrous capsule. AuNP heterostructures on CFR-PEEK promoted cell proliferation in vitro and exhibited a strong inhibition of bacterial growth (p < 0.05) and high in vitro biocompatibility, especially Au/Ir structures. AgNP heterostructures showed a more pronounced antibacterial effect, while their in vivo biocompatibility was better than that of the pristine CFR-PEEK, but worse than that of AuNP heterostructures.
Collapse
Affiliation(s)
- Svetlana I. Dorovskikh
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Evgeniia S. Vikulova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - David S. Sergeevichev
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Tatiana Ya. Guselnikova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexander A. Zheravin
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Dmitriy A. Nasimov
- Rzhanov Institute of Semiconductor Physics SB RAS, 13 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Maria B. Vasilieva
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, 1, Pirogov Str., 630090 Novosibirsk, Russia
| | - Elena V. Chepeleva
- «E. Meshalkin National Medical Research Center» of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya Str., 630055 Novosibirsk, Russia
| | - Anatoly I. Saprykin
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Tamara V. Basova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Natalya B. Morozova
- Nikolaev Institute of Inorganic Chemistry Siberian Branch of the Russian Academy of Sciences SB RAS, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-3833309556
| |
Collapse
|
35
|
Faid AH, Shouman SA, Badr YA, Sharaky M. Enhanced photothermal heating and combination therapy of gold nanoparticles on a breast cell model. BMC Chem 2022; 16:66. [PMID: 36071502 PMCID: PMC9454161 DOI: 10.1186/s13065-022-00859-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022] Open
Abstract
Multi-drug resistance (MDR) in addition to the damage to non-malignant normal cells are the most difficult in cancer treatment. Drug delivery and Plasmonic photothermal therapy based on the use of resonant metallic nanoparticles have developed as promising techniques to destroy cancer cells selectively. In the present work, gold nanoparticles (AuNPs) were synthesized using trisodium citrate. The prepared AuNPs have a small size of 14 ± 4 nm and exhibit high stability with Zeta potential − 18 mV, AuNPs showed higher photothermal heating efficiency compared to irradiation with a 532 nm laser alone on the breast cancer cell line (MCF-7). Treatment of MCF-7 cells with 0.125 mM AuNPs coupled with laser irradiation for 6 min was found to significantly reduce (34%) the cell viability compared to 5% obtained with AuNPs in the same concentration and 26% with laser irradiation for 6 min without AuNPs. Moreover, the prepared AuNPs were used as an anticancer drug carrier for Doxorubicin (Dox), upon loading Dox to AuNPs there was a slight increase in the particle size to 16 ± 2 nm, FT-IR spectroscopic results showing the binding of Dox to AuNPs was through the –NH group. The potential cytotoxicity of the DOX@AuNPs nanocomposite was significantly increased compared to free DOX on the MCF7 cell line with a decrease in IC50. All these results suggested the potential use of AuNPs as therapeutic photothermal agents and drug carriers in cancer therapy.
Collapse
Affiliation(s)
- Amna H Faid
- National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt.
| | - Samia A Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Giza, Egypt
| | - Yehia A Badr
- National Institute of Laser Enhanced Science (NILES), Cairo University, Giza, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Giza, Egypt
| |
Collapse
|
36
|
Bhatti R, Shakeel H, Malik K, Qasim M, Khan MA, Ahmed N, Jabeen S. Inorganic Nanoparticles: Toxic Effects, Mechanisms of Cytotoxicity and Phytochemical Interactions. Adv Pharm Bull 2022; 12:757-762. [PMID: 36415644 PMCID: PMC9675927 DOI: 10.34172/apb.2022.077] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/28/2021] [Accepted: 09/28/2021] [Indexed: 05/03/2025] Open
Abstract
During the last few decades, nanotechnology has gained many applications in almost all fields of life because of the unique properties of nanoparticles (NPs). Nanotechnology has specially marked its name in the field of medicine. However, NPs toxicity is detrimental to human health and is a prime concern in applied medicine. They can cause insomnia, vertigo, madarosis, epistaxis, hypokalemia, lymphopenia, Alzheimer's and Parkinson's diseases, etc. There is a gap in knowledge regarding the study of the toxicological effects of NPs. Mechanisms that are responsible for this toxicity are not fully understood yet. Phytochemicals have natural therapeutic effects of reducing metal NPs' toxicity by acting as stabilizers and nontoxic reducing agents. However, the interaction between phytochemicals and NPs is remained to be elucidated. This review will provide in-depth knowledge about the various types of inorganic NPs and their associated toxicities, key parameters determining the toxic behaviour of NPs, and the mechanisms behind their cytotoxicity. It also emphasizes the need for further research to understand the interaction between various phytochemicals and NPs for therapeutic purposes.
Collapse
Affiliation(s)
- Rashid Bhatti
- Molecular Medicine Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Hadia Shakeel
- Molecular Medicine Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Kausar Malik
- Molecular Medicine Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Mohsin Ahmad Khan
- Development of Recombinant Biopharmaceuticals Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Development of Recombinant Biopharmaceuticals Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shajia Jabeen
- Molecular Medicine Lab, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
37
|
Pogribna M, Word B, Lyn-Cook B, Hammons G. Effect of titanium dioxide nanoparticles on histone modifications and histone modifying enzymes expression in human cell lines. Nanotoxicology 2022; 16:409-424. [DOI: 10.1080/17435390.2022.2085206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Marta Pogribna
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Word
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| | - George Hammons
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food & Drug Administration, Jefferson, AR, USA
| |
Collapse
|
38
|
Rehman Y, Qutaish H, Kim JH, Huang XF, Alvi S, Konstantinov K. Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2462. [PMID: 35889688 PMCID: PMC9319169 DOI: 10.3390/nano12142462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnOx, iron oxide, maghemite quantum flakes, La2O3-x, TaOx, cerium nanodots, ITO, MgO1-x) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.
Collapse
Affiliation(s)
- Yaser Rehman
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Hamzeh Qutaish
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Jung Ho Kim
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
| | - Xu-Feng Huang
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| | - Sadia Alvi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia;
| | - Konstantin Konstantinov
- Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia; (Y.R.); (H.Q.); (J.H.K.)
- Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia;
| |
Collapse
|
39
|
Rajeshkumar S, Parameswari RP, Jayapriya J, Tharani M, Ali H, Aljarba NH, Alkahtani S, Alarifi S. Apoptotic and Antioxidant Activity of Gold Nanoparticles Synthesized Using Marine Brown Seaweed: An In Vitro Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5746761. [PMID: 35872865 PMCID: PMC9300303 DOI: 10.1155/2022/5746761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
A major paradigm shift in the field of nanobiotechnology is the invention of an eco-friendly, economical, and green approach for synthesis of metal nanoparticles. In the present study, we have synthesized gold nanoparticles (AuNPs) using aqueous extracts of marine brown seaweed Sargassum longifolium. The synthesized nanoparticle was subjected to characterization using different techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, atomic force microscope, scanning electron microscope, transmission electron microscope, and elemental dispersive X-ray diffraction. Further, the seaweed extract and the synthesized AuNPs were evaluated for its anticancer effect using MG-63 human osteosarcoma cells besides in vitro antioxidant effect. The formation of S. longifolium-mediated synthesis of gold nanoparticles was demonstrated by UV-Vis spectroscopy. Presence of elemental gold was confirmed by EDX analysis. TEM analysis demonstrated spherical morphology of the synthesized AuNPs and SEM analysis revealed the particle size to be in the range of 10-60 nm. The FTIR showed the presence of hydroxyl functional groups. The toxicity of S. longifolium extract and the synthesized AuNPs was tested using brine shrimp lethality assay at different concentrations with results showing both seaweed extract and AuNPs to be nontoxic. Both S. longifolium and AuNPs exhibited significant antioxidant activity by scavenging DPPH free radicals and H2O2 radicals. Significant antiproliferative effect was observed against MG-63 osteosarcoma cells. It was also shown that the seaweed extract and the AuNPs induced cytotoxicity in cell lines by mechanism of apoptosis. In conclusion, this study provided insight on AuNPs synthesized from S. longifolium as a potent antioxidant and anticancer agent.
Collapse
Affiliation(s)
- S. Rajeshkumar
- Center for Transdisciplinary Research (CFTR), Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - R. P. Parameswari
- Center for Transdisciplinary Research (CFTR), Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - J. Jayapriya
- Center for Transdisciplinary Research (CFTR), Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - M. Tharani
- Center for Transdisciplinary Research (CFTR), Nanobiomedicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Huma Ali
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, India
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Sengupta P, Choudhury H, Dutta S, Jacob S, Kesharwani P, Gorain B. Current Strategies in Breast Cancer Therapy: Role of Epigenetics and Nanomedicine. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION 2022; 39. [DOI: 10.1002/ppsc.202100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 01/06/2025]
Abstract
AbstractBreast cancer (BC), the most common cancer in women, is incurable due to metastatic spread to distant organs. The existence of epigenetic dysregulation has been shown to contribute to the progression and even metastasize through the transition from epithelial to mesenchymal. Behind failure strategies of conventional treatments, fruitful outcomes of epigenetic drugs have provided the hope of solid tumor management where the reversal of acquired resistance of the cancer cells is possible by epigenome regulation. Several agents have been identified to target epigenetic regulators in the cancer cells exhibiting remarkable potential against solid tumors, including BC. However, unnecessary systemic exposure, solubility issues, and unsuitability for diseased conditions using conventional delivery systems limit their use as cancer therapeutics. The progression of nanotechnology in pharmaceutical delivery has revolutionized cancer therapy, where specific, targeted and efficient delivery of epigenetic agents for alteration of cancerous conditions are ensured. In this review, a focus is made on epigenetic alteration in BC condition with the deliverable potential of the nanocarriers toward the breast tumor microenvironment for proper management. The significance of targeting and controlled release of therapeutics in the improved targeting of cancer cells is highlighted.
Collapse
Affiliation(s)
- Pallav Sengupta
- Department of Physiology Faculty of Medicine, Biosciences and Nursing MAHSA University SP2, Bandar Saujana Putra Jenjarom Selangor 42610 Malaysia
- School of Medical Sciences Bharath Institute of Higher Education and Research (BIHER) Selaiyur Chennai Tamil Nadu 600126 India
| | - Hira Choudhury
- Department of Pharmaceutical Technology School of Pharmacy International Medical University Bukit Jalil Kuala Lumpur, Federal Territory of Kuala Lumpur 57000 Malaysia
| | - Sulagna Dutta
- School of Medical Sciences Bharath Institute of Higher Education and Research (BIHER) Selaiyur Chennai Tamil Nadu 600126 India
- Department of Oral Biology and Biomedical Sciences Faculty of Dentistry MAHSA University SP2 Bandar Saujana Putra Jenjarom Selangor 42610 Malaysia
| | - Shery Jacob
- Department of Pharmaceutical Sciences College of Pharmacy Gulf Medical University Ajman 4184 United Arab Emirates
| | - Prashant Kesharwani
- Department of Pharmaceutics School of Pharmaceutical Education and Research Jamia Hamdard New Delhi 110062 India
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology Birla Institute of Technology Mesra Ranchi Jharkhand 835215 India
| |
Collapse
|
41
|
Borges FA, de Camargo Drago B, Baggio LO, de Barros NR, Sant'Ana Pegorin Brasil G, Scontri M, Mussagy CU, da Silva Ribeiro MC, Milori DMBP, de Morais CP, Marangoni BS, Nicolodelli G, Mecwan M, Mandal K, Guerra NB, Menegatti CR, Herculano RD. Metronidazole-loaded gold nanoparticles in natural rubber latex as a potential wound dressing. Int J Biol Macromol 2022; 211:568-579. [PMID: 35533848 DOI: 10.1016/j.ijbiomac.2022.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Gold nanoparticles (AuNPs) have shown interesting properties and specific biofunctions, providing benefits and new opportunities for controlled release systems. In this research, we demonstrated the use of natural rubber latex (NRL) from Hevea brasiliensis as a carrier of AuNPs and the antibiotic metronidazole (MET). We prepared AuNP-MET-NRL and characterized by physicochemical, biological and in vitro release assays. The effect of AuNPs on MET release was evaluated using UV-Vis and Laser-Induced Breakdown Spectroscopy (LIBS) techniques. AuNPs synthesized by Turkevich and Frens method resulted in a spherical shape with diameters of 34.8 ± 5.5 nm. We verified that there was no emergence or disappearance of new vibrational bands. Qualitatively and quantitatively, we showed that the MET crystals dispersed throughout the NRL. The Young's modulus and elongation values at dressing rupture were in the range appropriate for human skin application. 64.70% of the AuNP-MET complex was released within 100 h, exhibiting a second-order exponential release profile. The LIBS technique allowed monitoring of the AuNP release, indicating the Au emission peak reduction at 267.57 nm over time. Moreover, the dressing displayed an excellent hemocompatibility and fibroblast cell viability. These results demonstrated that the AuNP-MET-NRL wound dressing is a promising approach for dermal applications.
Collapse
Affiliation(s)
- Felipe Azevedo Borges
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Bruno de Camargo Drago
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, Araraquara, SP, Brazil
| | - Luís Otávio Baggio
- São Paulo State University (UNESP), Department of Biotechnology, School of Sciences, Humanities and Languages, Assis, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Giovana Sant'Ana Pegorin Brasil
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, Araraquara, SP, Brazil
| | - Mateus Scontri
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | | | | | - Bruno Spolon Marangoni
- Federal University of Mato Grosso do Sul (UFMS), Institute of Physics, Campo Grande, MS, Brazil
| | - Gustavo Nicolodelli
- Federal University of Santa Catarina (UFSC), Department of Physics, Center for Physical Sciences and Mathematics (CFM), Florianópolis, SC, Brazil
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA
| | - Nayrim Brizuela Guerra
- Area of Exact Sciences and Engineering, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | | - Rondinelli Donizetti Herculano
- São Paulo State University (UNESP), Bioengineering & Biomaterials Group, School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Department of Biotechnology, School of Sciences, Humanities and Languages, Assis, SP, Brazil; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd., Los Angeles, USA.
| |
Collapse
|
42
|
New Achievements for the Treatment of Triple-Negative Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115554] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous group of malignancies that are often aggressive and associated with a poor prognosis. The development of new TNBC treatment strategies has become an urgent clinical need. Diagnosis and subtyping of TNBC are essential to establish alternative treatments and targeted therapies for every TNBC patient. Chemotherapy, particularly with anthracycline and taxanes, remains the backbone for medical management for both early and metastatic TNBC. More recently, immune checkpoint inhibitors and targeted therapy have revolutionized cancer treatment. Included in the different strategies studied for TNBC treatment is drug repurposing. Despite the numerous medications available, numerous studies in medicinal chemistry are still aimed at the synthesis of new compounds in order to find new antiproliferative agents capable of treating TNBC. Additionally, some supplemental micronutrients, nutraceuticals and functional foods can potentially reduce the risk of developing cancer or can retard the rate of growth and metastases of established malignant diseases. Finally, nanotechnology in medicine, termed nanomedicines, introduces nanoparticles of variable chemistry and architecture for cancer treatment. This review highlights the most recent studies in search of new therapies for the treatment of TNBC, along with nutraceuticals and repositioning of drugs.
Collapse
|
43
|
Phytochemical-conjugated bio-safe gold nanoparticles in breast cancer: a comprehensive update. Breast Cancer 2022; 29:761-777. [PMID: 35578088 DOI: 10.1007/s12282-022-01368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common malignancy in women and is rated among one of the three common malignancies worldwide in combination with colon and lung cancer. The escalating mortality rate of breast cancer patients has captivated the attention of the present-day researchers to come up with new management options. According to WHO, early detection, timely diagnosis and comprehensive breast cancer management are the three cornerstones for controlling breast cancer incidences per year. Multidisciplinary theragnostic approaches for simultaneous diagnosis and treatment of breast cancer have further enriched the therapeutic arsenal. Imaging and biopsy play a significant role in the diagnosis of breast cancer. The treatment plan mostly initiates with general surgery or radiation therapy followed up with adjuvant and/or neoadjuvant therapy. Conventional chemotherapeutics in breast cancer suffer from toxicity and lack of site specificity. Bio-safe gold nanoparticles hold sufficient promise for bridging this gap. Diverse phytochemicals-based synthesis routes to arrive at nano-dimensional gold with spotlight on reaction mechanisms, reaction variables, specific advantages, toxicity and their influence in breast cancer conditions are the focus of this work. This review marks the first attempt to explore the potential of phytochemical-derived nano-gold in breast cancer treatment.
Collapse
|
44
|
Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Dobešová L, Gier T, Kopečná O, Pagáčová E, Vičar T, Bestvater F, Toufar J, Bačíková A, Kopel P, Fedr R, Hildenbrand G, Falková I, Falk M, Hausmann M. Incorporation of Low Concentrations of Gold Nanoparticles: Complex Effects on Radiation Response and Fate of Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14010166. [PMID: 35057061 PMCID: PMC8781406 DOI: 10.3390/pharmaceutics14010166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Background: In oncology research, a long-standing discussion exists about pros and cons of metal nanoparticle-enhanced radiotherapy and real mechanisms behind the tumor cell response to irradiation (IR) in presence of gold nanoparticles (GNPs). A better understanding of this response is, however, necessary to develop more efficient and safety nanoparticle (NP) types designed to disturb specific processes in tumor cells. (2) Aims and Methods: We combined 3D confocal microscopy and super-resolution single molecule localization microscopy (SMLM) to analyze, at the multiscale, the early and late effects of 10 nm-GNPs on DNA double strand break (DSB) induction and repair in tumor cells exposed to different doses of photonic low-LET (linear energy transfer) radiation. The results were correlated to different aspects of short and long-term cell viability. SkBr3 breast cancer cells (selected for the highest incidence of this cancer type among all cancers in women, and because most breast tumors are treated with IR) were incubated with low concentrations of GNPs and irradiated with 60Co γ-rays or 6 MV X-rays. In numerous post-irradiation (PI) times, ranging from 0.5 to 24 h PI, the cells were spatially (3D) fixed and labeled with specific antibodies against γH2AX, 53BP1 and H3K9me3. The extent of DSB induction, multi-parametric micro- and nano-morphology of γH2AX and 53BP1 repair foci, DSB repair kinetics, persistence of unrepaired DSBs, nanoscale clustering of γH2AX and nanoscale (hetero)chromatin re-organization were measured by means of the mentioned microscopy techniques in dependence of radiation dose and GNP concentration. (3) Results: The number of γH2AX/53BP1 signals increased after IR and an additional increase was observed in GNP-treated (GNP(+)) cells compared to untreated controls. However, this phenomenon reflected slight expansion of the G2-phase cell subpopulation in irradiated GNP(+) specimens instead of enhanced DNA damage induction by GNPs. This statement is further supported by some micro- and nano-morphological parameters of γH2AX/53BP1 foci, which slightly differed for cells irradiated in absence or presence of GNPs. At the nanoscale, Ripley’s distance frequency analysis of SMLM signal coordinate matrices also revealed relaxation of heterochromatin (H3K9me3) clusters upon IR. These changes were more prominent in presence of GNPs. The slight expansion of radiosensitive G2 cells correlated with mostly insignificant but systematic decrease in post-irradiation survival of GNP(+) cells. Interestingly, low GNP concentrations accelerated DSB repair kinetics; however, the numbers of persistent γH2AX/53BP1 repair foci were slightly increased in GNP(+) cells. (4) Conclusions: Low concentrations of 10-nm GNPs enhanced the G2/M cell cycle arrest and the proportion of radiosensitive G2 cells, but not the extent of DNA damage induction. GNPs also accelerated DSB repair kinetics and slightly increased presence of unrepaired γH2AX/53BP1 foci at 24 h PI. GNP-mediated cell effects correlated with slight radiosensitization of GNP(+) specimens, significant only for the highest radiation dose tested (4 Gy).
Collapse
Affiliation(s)
- Lucie Dobešová
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
- Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Theresa Gier
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (T.G.); (G.H.)
| | - Olga Kopečná
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
| | - Eva Pagáčová
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
| | - Tomáš Vičar
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00 Brno, Czech Republic;
| | - Felix Bestvater
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jiří Toufar
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
- Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
| | - Alena Bačíková
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 779 00 Olomouc, Czech Republic;
| | - Radek Fedr
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (T.G.); (G.H.)
| | - Iva Falková
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic; (L.D.); (O.K.); (E.P.); (J.T.); (A.B.); (R.F.); (I.F.)
- Correspondence: (M.F.); (M.H.); Tel.: +420-728-084-060 (M.F.); +49-6221-549-824 (M.H.)
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; (T.G.); (G.H.)
- Correspondence: (M.F.); (M.H.); Tel.: +420-728-084-060 (M.F.); +49-6221-549-824 (M.H.)
| |
Collapse
|
46
|
Hutchinson N, Wu Y, Wang Y, Kanungo M, DeBruine A, Kroll E, Gilmore D, Eckrose Z, Gaston S, Matel P, Kaltchev M, Nickel AM, Kumpaty S, Hua X, Zhang W. Green Synthesis of Gold Nanoparticles Using Upland Cress and Their Biochemical Characterization and Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:28. [PMID: 35009978 PMCID: PMC8746345 DOI: 10.3390/nano12010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/25/2023]
Abstract
This research focuses on the plant-mediated green synthesis process to produce gold nanoparticles (Au NPs) using upland cress (Barbarea verna), as various biomolecules within the upland cress act as both reducing and capping agents. The synthesized gold nanoparticles were thoroughly characterized using UV-vis spectroscopy, surface charge (zeta potential) analysis, scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), atomic force microscopy (AFM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and X-ray diffraction (XRD). The results indicated the synthesized Au NPs are spherical and well-dispersed with an average diameter ~11 nm and a characteristic absorbance peak at ~529 nm. EDX results showed an 11.13% gold content. Colloidal Au NP stability was confirmed with a zeta potential (ζ) value of -36.8 mV. X-ray diffraction analysis verified the production of crystalline face-centered cubic gold. Moreover, the antimicrobial activity of the Au NPs was evaluated using Gram-negative Escherichiacoli and Gram-positive Bacillus megaterium. Results demonstrated concentration-dependent antimicrobial properties. Lastly, applications of the Au NPs in catalysis and biomedicine were evaluated. The catalytic activity of Au NPs was demonstrated through the conversion of 4-nitrophenol to 4-aminophenol which followed first-order kinetics. Cellular uptake and cytotoxicity were evaluated using both BMSCs (stem) and HeLa (cancer) cells and the results were cell type dependent. The synthesized Au NPs show great potential for various applications such as catalysis, pharmaceutics, and biomedicine.
Collapse
Affiliation(s)
- Noah Hutchinson
- Department of Biomedical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53202, USA;
| | - Yuelin Wu
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Yale Wang
- Department of Mechanical Engineering, University of Milwaukee, Milwaukee, WI 53211, USA;
| | - Muskan Kanungo
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Anna DeBruine
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Emma Kroll
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - De’Jorra Gilmore
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Zachary Eckrose
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Stephanie Gaston
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Phoebe Matel
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Matey Kaltchev
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| | - Anne-Marie Nickel
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
| | - Subha Kumpaty
- Department of Mechanical Engineering, Milwaukee School of Engineering, Milwaukee, WI 53202, USA;
| | - Xiaolin Hua
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Wujie Zhang
- Department of Physics and Chemistry, Milwaukee School of Engineering, Milwaukee, WI 53202, USA; (M.K.); (A.D.); (E.K.); (D.G.); (Z.E.); (S.G.); (P.M.); (M.K.); (A.-M.N.)
- Biomolecular Engineering Program, Milwaukee School of Engineering, Milwaukee, WI 53202, USA
| |
Collapse
|
47
|
Cao Y, Chen C, Tao Y, Lin W, Wang P. Immunotherapy for Triple-Negative Breast Cancer. Pharmaceutics 2021; 13:2003. [PMID: 34959285 PMCID: PMC8705248 DOI: 10.3390/pharmaceutics13122003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by extensive tumor heterogeneity at both the pathologic and molecular levels, particularly accelerated aggressiveness, and terrible metastasis. It is responsible for the increased mortality of breast cancer patients. Due to the negative expression of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2, the progress of targeted therapy has been hindered. Higher immune response in TNBCs than for other breast cancer types makes immunotherapy suitable for TNBC therapy. At present, promising treatments in immunotherapy of TNBC include immune checkpoints (ICs) blockade therapy, adoptive T-cell immunotherapy, and tumor vaccine immunotherapy. In addition, nanomedicines exhibit great potential in cancer therapy through the enhanced permeability and retention (EPR) effect. Immunotherapy-involved combination therapy may exert synergistic effects by combining with other treatments, such as traditional chemotherapy and new treatments, including photodynamic therapy (PTT), photodynamic therapy (PDT), and sonodynamic therapy (SDT). This review focuses on introducing the principles and latest development as well as progress in using nanocarriers as drug-delivery systems for the immunotherapy of TNBC.
Collapse
Affiliation(s)
- Yifeng Cao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| | - Chuyang Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| | - Yi Tao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (C.C.); (Y.T.)
| |
Collapse
|
48
|
Choe HS, Shin MJ, Kwon SG, Lee H, Kim DK, Choi KU, Kim JH, Kim JH. Yolk-Shell-Type Gold Nanoaggregates for Chemo- and Photothermal Combination Therapy for Drug-Resistant Cancers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53519-53529. [PMID: 34730926 DOI: 10.1021/acsami.1c10036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Epithelial ovarian cancer is a gynecological cancer with the highest mortality rate, and it exhibits resistance to conventional drugs. Gold nanospheres have gained increasing attention over the years as photothermal therapeutic nanoparticles, owing to their excellent biocompatibility, chemical stability, and ease of synthesis; however, their practical application has been hampered by their low colloidal stability and photothermal effects. In the present study, we developed a yolk-shell-structured silica nanocapsule encapsulating aggregated gold nanospheres (aAuYSs) and examined the photothermal effects of aAuYSs on cell death in drug-resistant ovarian cancers both in vitro and in vivo. The aAuYSs were synthesized using stepwise silica seed synthesis, surface amino functionalization, gold nanosphere decoration, mesoporous organosilica coating, and selective etching of the silica template. Gold nanospheres were agglomerated in the confined silica interior of aAuYSs, resulting in the red-shifting of absorbance and enhancement of the photothermal effect under 808 nm laser irradiation. The efficiency of photothermal therapy was first evaluated by inducing aAuYS-mediated cell death in A2780 ovarian cancer cells, which were cultured in a two-dimensional culture and a three-dimensional spheroid culture. We observed that photothermal therapy using aAuYSs together with doxorubicin treatment synergistically induced the cell death of doxorubicin-resistant A2780 cancer cells in vitro. Furthermore, this type of combinatorial treatment with photothermal therapy and doxorubicin synergistically inhibited the in vivo tumor growth of doxorubicin-resistant A2780 cancer cells in a xenograft transplantation model. These results suggest that photothermal therapy using aAuYSs is highly effective in the treatment of drug-resistant cancers.
Collapse
Affiliation(s)
- Hyun-Seok Choe
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Min Joo Shin
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Seong Gyu Kwon
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Haklae Lee
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dae Kyoung Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Kyung Un Choi
- Department of Pathology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jae-Hyuk Kim
- Department of Chemical and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
49
|
Desai D, Shende P. Experimental aspects of NPY-decorated gold nanoclusters using randomized hybrid design against breast cancer cell line. Biotechnol J 2021; 16:e2100319. [PMID: 34595845 DOI: 10.1002/biot.202100319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022]
Abstract
Gold nanoclusters (AuNCs) are potential carrier system for bioactive like proteins and peptides used in various therapeutics against various ailments. Neuropeptide Y (NPY) is consists of 36 amino acids used to treat depression, obesity, epilepsy, and so on. but possess instability at higher temperatures causing its limited usage. The present study focused on the NPY-decorated AuNCs prepared using desolvation reduction technique and optimized through randomized hybrid design. ATR-FTIR, 1 H NMR and CD spectroscopic studies confirmed the AuNCs structure interaction with NPY. The optimized NPY-decorated AuNCs possessed 85.6 ± 2.08% of entrapment efficiency with 85.32 ± 7.55% of NPY release for 24 h. It displayed dose-dependent cell cytotoxicity, IC50 value of 0.7 ± 0.05 μg mL-1 and apoptosis of 68.48 ± 7.35% with controlled cell migration causing G0G1 cell arrest by penetrating cancer cell membrane on MCF-7 cell line. Furthermore, the AuNCs caused surface disruption of the cancerous cell further interrupting the protein synthesis by MAPK pathway leading to cell death. The AuNCs were stable for 3 months at 25 ± 2°C due to steric hindrance. Hence, NPY-decorated AuNCs were found to be effective on MCF-7 cell line with a significant anti-apoptotic effect, further emerging as a novel therapeutic delivery system in the management of breast cancer.
Collapse
Affiliation(s)
- Drashti Desai
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, Maharashtra, India
| |
Collapse
|
50
|
Patel N, Kommineni N, Surapaneni SK, Kalvala A, Yaun X, Gebeyehu A, Arthur P, Duke LC, York SB, Bagde A, Meckes DG, Singh M. Cannabidiol loaded extracellular vesicles sensitize triple-negative breast cancer to doxorubicin in both in-vitro and in vivo models. Int J Pharm 2021; 607:120943. [PMID: 34324983 PMCID: PMC8528640 DOI: 10.1016/j.ijpharm.2021.120943] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022]
Abstract
Extracellular Vesicles (EVs) were isolated from human umbilical cord mesenchymal stem cells (hUCMSCs) and were further encapsulated with cannabidiol (CBD) through sonication method (CBD EVs). CBD EVs displayed an average particle size of 114.1 ± 1.02 nm, zeta potential of -30.26 ± 0.12 mV, entrapment efficiency of 92.3 ± 2.21% and stability for several months at 4 °C. CBD release from the EVs was observed as 50.74 ± 2.44% and 53.99 ± 1.4% at pH 6.8 and pH 7.4, respectively after 48 h. Our in-vitro studies demonstrated that CBD either alone or in EVs form significantly sensitized MDA-MB-231 cells to doxorubicin (DOX) (*P < 0.05). Flow cytometry and migration studies revealed that CBD EVs either alone or in combination with DOX induced G1 phase cell cycle arrest and decreased migration of MDA-MB-231 cells, respectively. CBD EVs and DOX combination significantly reduced tumor burden (***P < 0.001) in MDA-MB-231 xenograft tumor model. Western blotting and immunocytochemical analysis demonstrated that CBD EVs and DOX combination decreased the expression of proteins involved in inflammation, metastasis and increased the expression of proteins involved in apoptosis. CBD EVs and DOX combination will have profound clinical significance in not only decreasing the side effects but also increasing the therapeutic efficacy of DOX in TNBC.
Collapse
Affiliation(s)
- Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Anil Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Xuegang Yaun
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA; The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Aragaw Gebeyehu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Leanne C Duke
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Sara B York
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA.
| |
Collapse
|