1
|
Zhang J, Yuan P, Nichols CG, Maksaev G. Molecular basis of TRPV3 channel blockade by intracellular polyamines. Commun Biol 2025; 8:727. [PMID: 40348873 PMCID: PMC12065880 DOI: 10.1038/s42003-025-08103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025] Open
Abstract
ThermoTRPV1-4 channels are involved in the regulation of multiple physiological processes, including thermo- and pain perception, thermoregulation, itch, and nociception and therefore tight control of their activity is a critical requirement for correct perception of noxious stimuli and pain. We previously reported a voltage-dependent inhibition of TRPV1-4 channels by intracellular polyamines that could be explained by high affinity spermine binding in, and passage through, the permeation path. Here, using electrophysiology and cryo-electron microscopy, we elucidate molecular details of TRPV3 blockade by endogenous spermine and its analog NASPM. We identify a high-affinity polyamine interaction site at the intracellular side of the pore, formed by residues E679 and E682, with no significant contribution of residues at the channel selectivity filter. A cryo-EM structure of TRPV3 in the presence of NASPM reveals conformational changes coupled to polyamine blockade. Paradoxically, although the TRPV3 'gating switch' is in the 'activated' configuration, the pore is closed at both gates. A modified blocking model, in which spermine interacts with the cytoplasmic entrance to the channel, from which spermine may permeate, or cause closure of the channel, provides a unifying explanation for electrophysiological and structural data and furnishes the essential background for further exploitation of this regulatory process.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Yuan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Simon T, Thole T, Castelli S, Timmermann B, Jazmati D, Schwarz R, Fuchs J, Warmann S, Hubertus J, Schmidt M, Rogasch J, Körber F, Vokuhl C, Schäfer J, Schulte JH, Deubzer H, Rosswog C, Fischer M, Lang P, Langer T, Astrahantseff K, Lode H, Hero B, Eggert A. GPOH Guidelines for Diagnosis and First-line Treatment of Patients with Neuroblastic Tumors, update 2025. KLINISCHE PADIATRIE 2025; 237:117-140. [PMID: 40345224 DOI: 10.1055/a-2556-4302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The clinical course of neuroblastoma is more heterogeneous than any other malignant disease. Many low-risk patients experience regression after limited or even no chemotherapy. However, more than half of high-risk patients die from disease despite intensive multimodal treatment. Precise disease characterization for each patient at diagnosis is key for risk-adapted treatment. The guidelines presented here incorporate results from national and international clinical trials to produce recommendations for diagnosing and treating neuroblastoma patients in German hospitals outside of clinical trials.
Collapse
Affiliation(s)
- Thorsten Simon
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Theresa Thole
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Sveva Castelli
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Beate Timmermann
- Westgerman Protontherapycenter Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Danny Jazmati
- Department of Radiation Oncology, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | | | - Jörg Fuchs
- Pediatric Surgery and Urology, University of Tübingen, Tübingen, Germany
| | - Steven Warmann
- Department of Pediatric Surgery, Charité University Hospital Berlin, Berlin, Germany
| | - Jochen Hubertus
- Department of Pediatric Surgery, Marien-Hospital Witten, Witten, Germany
| | | | - Julian Rogasch
- Nuclear Medicine, Charité University Hospital Berlin, Berlin, Germany
| | - Friederike Körber
- Institut und Poliklinik für Radiologische Diagnostik, Kinderradiologie, University of Cologne, Cologne, Germany
| | - Christian Vokuhl
- Pediatric Pathology, Institute for Pathology, University of Bonn, Bonn, Germany
| | - Jürgen Schäfer
- Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | | | - Hedwig Deubzer
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Carolina Rosswog
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Matthias Fischer
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
- Experimental Pediatric Oncology, University of Cologne, Cologne, Germany
| | - Peter Lang
- Pediatric Oncology and Hematology, University of Tübingen, Tübingen, Germany
| | - Thorsten Langer
- Childrens' Hospital, University Hospital Schleswig-Holstein Lübeck Campus, Lübeck, Germany
| | - Kathy Astrahantseff
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| | - Holger Lode
- Pediatric Oncology and Hematology, University of Greifswald, Greifswald, Germany
| | - Barbara Hero
- Pediatric Oncology and Hematology, University of Cologne, Cologne, Germany
| | - Angelika Eggert
- Pediatric Oncology and Hematology, Charité University Hospital Berlin, Berlin, Germany
| |
Collapse
|
3
|
Sena LA. Polyamine metabolism in prostate cancer. Curr Opin Oncol 2025; 37:223-232. [PMID: 40071465 PMCID: PMC11971019 DOI: 10.1097/cco.0000000000001134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW Normal and malignant prostate engage in high rates of de novo polyamine synthesis. This review considers how polyamine metabolism regulates prostate cancer initiation and progression. RECENT FINDINGS The androgen receptor (AR) establishes a metabolic program to drive robust polyamine synthesis in the normal prostate. Upon malignant transformation, this AR-driven metabolic program persists and is optimized for oncogenesis by the proto-oncogene MYC and/or alterations to PI3K signaling. A deeper understanding of the function of polyamines in prostate cancer may be obtained by considering their function in the normal prostate. SUMMARY Recent findings support ongoing research into the role of polyamines in driving prostate cancer initiation and progression and suggest targeting polyamine metabolism remains a promising therapeutic strategy for prevention and treatment of prostate cancer.
Collapse
Affiliation(s)
- Laura A Sena
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University; Baltimore, Maryland, USA
| |
Collapse
|
4
|
Liu H, Liu Y, Wang X, Xiao Z, Ni Q, Yu X, Luo G. Antitumor potential of polyamines in cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103487 DOI: 10.3724/abbs.2025030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The dysregulation of polyamines in tumors has made polyamine metabolism an appealing target for cancer therapy. Gene mutations drive the reprogramming of polyamine metabolism in tumors, presenting promising opportunities for clinical treatment. The proposed strategies involve inhibiting polyamine biosynthesis while also targeting the polyamine transport system as antitumor approaches. A growing number of drugs aimed at polyamine biosynthesis and transport systems are undergoing clinical trials. Polyamine metabolism plays a role in regulating cancer signaling pathways, suggesting potential combination therapies for cancer treatment. Furthermore, supplemental polyamine substances have demonstrated antitumor activity, indicating that combining polyamines with downstream targets or immunotherapy could offer significant clinical benefits. These discoveries open new avenues for leveraging polyamine metabolism in anticancer therapy.
Collapse
Affiliation(s)
- He Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xinyue Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
5
|
Koulmi K, Cattelan L, Litvinov IV. Evaluating Difluoromethylornithine Safety and Efficacy for Non-Melanoma Skin Cancer Chemoprevention: A Systematic Review. J Cutan Med Surg 2025; 29:143-149. [PMID: 39614759 DOI: 10.1177/12034754241302818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Recent FDA approval of difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase for the prevention of neuroblastoma in children, has renewed interest in this medication for the prevention of other cancers including keratinocyte carcinomas (KCs). It has been investigated for cancer chemoprevention, including neoplasms of the colon, breast, and prostate. METHODS We assessed the current body of literature that determines DFMO efficacy and safety in non-melanoma skin cancer prevention. A systematic search of PubMed Central, and Web of Sciences was performed. RESULTS In this analysis, 12 studies were included evaluating 1618 patients. Most patients were Caucasian 90% (1452/1618) with a mean age of 61 years, and 73% (1214/1618) had previously been diagnosed with KC. For oral DFMO, reduction in KC was significant in 24% (291/1214) of patients. Nonsignificant reduction was observed in 17% (207/1214) of patients. The remaining studies, representing 59% (716/1214) of patients explored DFMO's pharmacological/biological effects without elucidating its direct impact on KC. Topical DFMO shows modest efficacy in reducing the number of actinic keratosis (AK), as indicated in 4 studies representing 38.12% (154/404) of patients. For patients taking the oral eflornithine, the most frequently reported adverse events included reversible ototoxicity (11% of patients) gastrointestinal disturbances (10.39%). For the topical DFMO transient local cutaneous eruptions were common impacting 28.76% (111/386) of patients. CONCLUSION Current evidence highlights the lack of conclusive data supporting the efficacy of oral DFMO, making it difficult to recommend its use. Conversely, topical DFMO demonstrates more promising outcomes in preventing AKs, presenting a potentially useful alternative in select patients.
Collapse
Affiliation(s)
- Kaouthar Koulmi
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Leila Cattelan
- Division of Dermatology, McGill University, Montreal, QC, Canada
| | - Ivan V Litvinov
- Cancer Research Program, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
6
|
Swanson MA, Szarowicz C, Pike ST, Schultz CR, Bachmann AS, Dowling TC. Novel LC-MS/MS assay to quantify D,L-alpha-difluoromethylornithine (DFMO) in mouse plasma. Methods Enzymol 2025; 715:423-436. [PMID: 40382153 DOI: 10.1016/bs.mie.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
D,L-alpha-difluoromethylornithine (DFMO) is an irreversible inhibitor of ornithine decarboxylase (ODC) that is being investigated to treat cancers such as pediatric neuroblastoma. A novel and sensitive LC-MS/MS assay was developed and validated to quantify DFMO concentrations in support of pre-clinical pharmacokinetic studies in mice. The study was performed using a Shimadzu triple quad LC-MS/MS equipped with an Atlantis HILIC Silica 3 µm 2.1 × 100 mm column, and an isocratic mobile phase (75:25 acetonitrile and 0.2 % formic acid) at a flow rate of 0.5 mL/min. Multiple Reaction Monitoring (MRM) was used to identify the precursor ion (183 m/z) with quantification of daughter ions at transitions of 183 > 120.10, 183 > 166.10, and 183 > 80.05. Plasma standards and quality control samples (20 µL) were processed using protein precipitation with cold acetonitrile. The lower limit of detection (LLOQ) was 5 ng/mL. Assay performance was determined from multiple runs (n = 10) with standards ranging from 250-50,000 ng/mL and three levels of quality control (500, 4000, and 40,000 ng/mL). Standard curves were linear with r2 values between 0.9960 and 0.9999. Quality control samples were stable and exhibited maximum inter-day % bias of ≤3 % and CV% of ≤0.7 %. The assay was successfully applied to an in vivo study to determine the pharmacokinetics of DFMO in athymic nu/nu mice.
Collapse
Affiliation(s)
- Matthew A Swanson
- Department of Biological Sciences, College of Arts and Sciences, Ferris State University, Big Rapids, MI, United States
| | - Carlye Szarowicz
- Department of Biological Sciences, College of Arts and Sciences, Ferris State University, Big Rapids, MI, United States
| | - Schuyler T Pike
- Department of Biological Sciences, College of Arts and Sciences, Ferris State University, Big Rapids, MI, United States
| | - Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Thomas C Dowling
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, MI, United States.
| |
Collapse
|
7
|
Schultz CR, VanSickle EA, Bupp CP, Bachmann AS. Monitoring ODC activity and polyamines in Bachmann-Bupp syndrome patient biological samples. Methods Enzymol 2025; 715:257-270. [PMID: 40382142 DOI: 10.1016/bs.mie.2025.01.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Polyamines are aliphatic molecules that include putrescine, spermidine, and spermine. Polyamines are present in most living organisms including humans. These positively charged molecules play important roles in cell physiology and pathology by contributing to embryonic cell development, regulation of cell division and, if overproduced, the stimulation of cancer cell proliferation and tumorigenesis. We recently discovered Bachmann-Bupp Syndrome (BABS); a rare neurodevelopmental disorder linked to de novo mutations in the ornithine decarboxylase 1 (ODC1) gene. ODC1 gene mutations that are linked to BABS always produce C-terminally truncated versions of the enzyme ornithine decarboxylase (ODC). These shortened ODC proteins remain enzymatically active and are not cleared by the proteasome, therefore leading to ODC protein accumulation in cells. ODC is a key enzyme of polyamine biosynthesis by converting ornithine to putrescine, and if accumulated, can lead to high putrescine levels in human cells including red blood cells (RBCs) and primary dermal fibroblasts. Here we describe how to quantitatively measure ODC enzymatic activity and the polyamines by a radiolabeled 14C-ornithine assay and by reverse phase (RP)-HPLC, respectively. While these methods have been developed decades ago, many publications provide incomplete protocols with omission of experimental details, which inadvertently can lead to mistakes, inconclusive results, and failed experiments. There is a growing number of laboratories that have become interested in exploring polyamines (in part due to metabolomics analyses in human health-related studies). The detailed protocols of this chapter provide step-by-step guidance detailing how to measure ODC activity and polyamines in human RBCs.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; International Center for Polyamine Disorders, Grand Rapids, MI, United States
| | - Elizabeth A VanSickle
- International Center for Polyamine Disorders, Grand Rapids, MI, United States; Division of Medical Genetics, Corewell Health/Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; International Center for Polyamine Disorders, Grand Rapids, MI, United States; Division of Medical Genetics, Corewell Health/Helen DeVos Children's Hospital, Grand Rapids, MI, United States
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States; International Center for Polyamine Disorders, Grand Rapids, MI, United States.
| |
Collapse
|
8
|
Sesen J, Martinez T, Busatto S, Poluben L, Nassour H, Stone C, Ashok K, Moses MA, Smith ER, Ghalali A. AZIN1 level is increased in medulloblastoma and correlates with c-Myc activity and tumor phenotype. J Exp Clin Cancer Res 2025; 44:56. [PMID: 39962590 PMCID: PMC11831846 DOI: 10.1186/s13046-025-03274-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND AZIN1 is a cell cycle regulator that is upregulated in a variety of cancers. AZIN1 overexpression can induce a more aggressive tumor phenotype via increased binding and resultant inhibition of antizyme. Antizyme is a protein that normally functions as an anti-tumor regulator that facilitates the deactivation of several growth-promoting proteins including c-Myc. MYC plays a critical role in medulloblastoma pathogenesis. Its amplification serves as a defining characteristic of group 3 medulloblastomas, associated with the most aggressive clinical course, greater frequency of metastases, and shorter survival times. METHODS Medulloblastoma tissues (68 TMA, and 45 fresh tissues, and 31 controls) were stained (fluorescence and immunohistochemical) for AZIN1. Western blotting and ELISA were used to detect the AZIN1 level. Phenotypically aggressive cellular features were measured by increased invasion, colony formation and proliferation. CRISPR-Cas9-mediated AZIN1 knocked-out cells were orthotopically implanted in the cerebellum of nude mice (n = 8/group) with a stereotactic frame. Tumor growth was monitored using the In Vivo Imaging System (IVIS). RESULTS Here, we investigated the role of AZIN1 expression in medulloblastoma. We found that overexpression of AZIN1 in medulloblastoma cells induces phenotypically aggressive features. Conducting in vivo studies we found that knocking-out AZIN1 in tumors corresponds with reduced tumor progression and prolonged survival. Clinical specimens are revealing that AZIN1 is highly expressed and directly correlates with MYC amplification status in patients. CONCLUSION These data implicate AZIN1 as a putative regulator of medulloblastoma pathogenesis and suggest that it may have clinical application as both a biomarker and novel therapeutic target.
Collapse
Affiliation(s)
- Julie Sesen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Tyra Martinez
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Busatto
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Larysa Poluben
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Hassan Nassour
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caroline Stone
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Karthik Ashok
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aram Ghalali
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Schramm J, Sholler C, Menachery L, Vazquez L, Saulnier Sholler G. Polyamine Inhibition with DFMO: Shifting the Paradigm in Neuroblastoma Therapy. J Clin Med 2025; 14:1068. [PMID: 40004600 PMCID: PMC11856405 DOI: 10.3390/jcm14041068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Neuroblastoma is a common childhood malignancy, and high-risk presentations, including an MYCN amplified status, continue to result in poor survival. Difluoromethylornithine (DFMO) is a new and well-tolerated treatment for high-risk neuroblastoma. This review article discusses preclinical and clinical data that resulted in the establishment of DFMO as a treatment for neuroblastoma. The review of preclinical data includes a summary of the contribution of polyamine synthetic pathways to high-risk neuroblastoma, the effect that MYCN has on polyamine synthetic pathways, and the proposed mechanism by which DFMO inhibits tumorigenesis. This understanding has led to the discussion of various preclinical combination therapies that may result in a synergistic therapeutic response for high-risk neuroblastoma. We review the clinical trials that show the successful treatment of high-risk neuroblastoma with DFMO, including comparative analysis and traditional neuroblastoma trials using propensity score matching. We review the regulatory path by which DFMO gained approval from the Federal Drug Administration for use as a maintenance therapy following the traditional high-risk neuroblastoma therapy. Finally, we discuss the role of DFMO in future clinical research for neuroblastoma and additional pediatric cancers.
Collapse
|
10
|
Ruggieri V, Scaricamazza S, Bracaglia A, D'Ercole C, Parisi C, D'Angelo P, Proietti D, Cappelletti C, Macone A, Lozanoska-Ochser B, Bouchè M, Latella L, Valle C, Ferri A, Giordani L, Madaro L. Polyamine metabolism dysregulation contributes to muscle fiber vulnerability in ALS. Cell Rep 2025; 44:115123. [PMID: 39932195 DOI: 10.1016/j.celrep.2024.115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/11/2024] [Accepted: 12/06/2024] [Indexed: 05/02/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease causing progressive paralysis due to motor neuron degeneration with no curative therapy despite extensive biomedical research. One of the primary targets of ALS is skeletal muscle, which undergoes profound functional changes as the disease progresses. To better understand how altered innervation interferes with muscle homeostasis during disease progression, we generated a spatial transcriptomics dataset of skeletal muscle in the SOD1G93A mouse model of ALS. Using this strategy, we identified polyamine metabolism as one of the main altered pathways in affected muscle fibers. By establishing a correlation between the vulnerability of muscle fibers and the dysregulation of this metabolic pathway, we show that disrupting polyamine homeostasis causes impairments similar to those seen in ALS muscle. Finally, we show that restoration of polyamine homeostasis rescues the muscle phenotype in SOD1G93A mice, opening new perspectives for the treatment of ALS.
Collapse
Affiliation(s)
- Veronica Ruggieri
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Silvia Scaricamazza
- Laboratories of Neurochemistry and of Molecular and Cellular Neurobiology, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy; National Research Council (CNR), Institute of Translational Pharmacology (IFT), 00133 Rome, Italy
| | - Andrea Bracaglia
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Chiara D'Ercole
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Cristina Parisi
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Paolo D'Angelo
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy
| | - Daisy Proietti
- Cell Therapy for Myopathies Unit, Division of Neurosciences, San Raffaele Hospital, 20132 Milano, Italy
| | - Chiara Cappelletti
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alberto Macone
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Marina Bouchè
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy
| | - Lucia Latella
- National Research Council (CNR), Institute of Translational Pharmacology (IFT), 00133 Rome, Italy
| | - Cristiana Valle
- Laboratories of Neurochemistry and of Molecular and Cellular Neurobiology, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy; National Research Council (CNR), Institute of Translational Pharmacology (IFT), 00133 Rome, Italy
| | - Alberto Ferri
- Laboratories of Neurochemistry and of Molecular and Cellular Neurobiology, IRCCS, Fondazione Santa Lucia, 00143 Rome, Italy; National Research Council (CNR), Institute of Translational Pharmacology (IFT), 00133 Rome, Italy
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France.
| | - Luca Madaro
- Department of Anatomical, Histological, Forensic Sciences and Orthopedics, Sapienza University of Rome, 00161 Rome, Italy; Laboratory affiliated with Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy.
| |
Collapse
|
11
|
Matser YA, Samim A, Fiocco M, van de Mheen M, van der Ham M, de Sain-van der Velden MG, Verhoeven-Duif NM, van Grotel M, Kraal KC, Dierselhuis MP, van Eijkelenburg NK, Langenberg KP, van Noesel MM, van Kuilenburg AB, Tytgat GA. Urinary Catecholamines Predict Relapse During Complete Remission in High-Risk Neuroblastoma. JCO Precis Oncol 2025; 9:e2400491. [PMID: 39983076 PMCID: PMC11867808 DOI: 10.1200/po-24-00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/23/2024] [Accepted: 01/06/2025] [Indexed: 02/23/2025] Open
Abstract
PURPOSE Urinary catecholamine metabolites are well-known biomarkers for the diagnosis (Dx) of neuroblastoma, but their clinical significance in determining therapy response during treatment is not well established. Therefore, catecholamines are not included in criteria for assessing response and complete remission (CR). This study investigated the use of urinary catecholamines in response monitoring and predicting survival outcomes. METHODS From 2005 to 2021, a panel of eight urinary catecholamines were measured in patients with high-risk neuroblastoma at Dx and at standard evaluation moments during treatment. At the same time points, response and CR were assessed according to the revised International Neuroblastoma Response Criteria. RESULTS The total cohort consists of 153 high-risk patients, and at least one of the eight metabolites was elevated (ie, catecholamine status positive) in 141 of 146 (97%), 104 of 128 (81%), and 39 of 69 (57%) patients at Dx, postinduction, and at CR, respectively. Primary tumor resection significantly reduced catecholamine levels (P < .01). A positive catecholamine status at Dx, during treatment, and at the end of treatment was not significantly associated with event-free survival (EFS) or overall survival (OS). However, in patients who achieved CR, those with a positive catecholamine status had poor EFS (38% v 80%, respectively; P < .01) and OS (52% v 86%, respectively; P = .01) compared with those with a negative catecholamine status. Notably, 3-methoxytyramine levels at CR seem to be a prognostic marker for poor OS (hazard ratio, 7.5 [95% CI, 2.0 to 28.6]). CONCLUSION Catecholamine measurements contribute to the assessment of CR and identifies patients with high-risk neuroblastoma with an increased risk of relapse and death.
Collapse
Affiliation(s)
| | - Atia Samim
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center, Utrecht, the Netherlands
| | - Marta Fiocco
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Biomedical Data Science, Section Medical Statistics, Leiden University Medical Centre, Leiden, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| | | | - Maria van der Ham
- Department of Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | - Nanda M. Verhoeven-Duif
- Department of Genetics, Section Metabolic Diagnostics, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | | | | | | | | | | | - Max M. van Noesel
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center, Utrecht, the Netherlands
| | - André B.P. van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, Free University Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Godelieve A.M. Tytgat
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
12
|
Jahangiri L. Metabolic targeting of neuroblastoma, an update. Cancer Lett 2024; 611:217393. [PMID: 39681211 DOI: 10.1016/j.canlet.2024.217393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
Neuroblastoma is a paediatric cancer of the sympathetic nervous system that originates from the neural crest and can be categorised into stages and risk groups. Risk groups inform treatment options and high-risk cases bear a 50 % probability of relapse post-treatment remission. In neuroblastoma, MYCN amplification is the strongest predictor of unfavourable patient prognosis; circa 50 % of high-risk cases display MYCN amplification. This dismal prognosis is perhaps influenced by the MYCN-driven metabolic rewiring of these cells since the MYC family is indicated in the regulation of proliferation, cell death, metabolism, differentiation, and protein synthesis. This review aims to capture the most recent studies that investigate metabolic rewiring in MYCN-amplified and MYCN-activated cells from the perspective of alterations to glycolysis, the TCA cycle, and oxidative phosphorylation, in addition to changes to amino acid, nucleotide, and lipid metabolism that can be relevant to therapy. A better understanding of the metabolic profile of MYCN-amplified disease will facilitate the identification of effective treatment options and improve the prognosis of high-risk neuroblastoma patients.
Collapse
Affiliation(s)
- Leila Jahangiri
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham, NG11 8NS, UK; Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
13
|
Kumar R, Jonnatan S, Sanin DE, Vakkala V, Kadam A, Kumar S, Dalrymple SL, Zhao L, Foley J, Holbert CE, Nwafor A, Kittane S, Penner E, Apostolova P, Warner S, Dang CV, Toska E, Thompson EA, Isaacs JT, De Marzo AM, Pearce EL, Stewart TM, Casero RA, Denmeade SR, Sena LA. Androgen receptor drives polyamine synthesis creating a vulnerability for prostate cancer. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.12.24318845. [PMID: 39711733 PMCID: PMC11661327 DOI: 10.1101/2024.12.12.24318845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Supraphysiological androgen (SPA) treatment can paradoxically restrict growth of castration-resistant prostate cancer with high androgen receptor (AR) activity, which is the basis for use of Bipolar Androgen Therapy (BAT) for patients with this disease. While androgens are widely appreciated to enhance anabolic metabolism, how SPA-mediated metabolic changes alter prostate cancer progression and therapy response is unknown. Here, we report that SPA markedly increased intracellular and secreted polyamines in prostate cancer models. This occurred through AR binding at enhancer sites upstream of the ODC1 promoter to increase abundance of ornithine decarboxylase (ODC), a rate-limiting enzyme of polyamine synthesis, and de novo synthesis of polyamines from arginine. SPA-stimulated polyamines enhance prostate cancer fitness, as dCas9-KRAB-mediated inhibition of AR regulation of ODC1 or direct ODC inhibition by difluoromethylornithine (DFMO) increased efficacy of SPA. Mechanistically, this occurred in part due to increased activity of S-adenosylmethionine decarboxylase 1 (AMD1), which was stimulated both by AR and by loss of negative feedback by polyamines, leading to depletion of its substrate S-adenosylmethionine and global protein methylation. These data provided the rationale for a clinical trial testing the safety and efficacy of BAT in combination with DFMO for patients with metastatic castration-resistant prostate cancer. Pharmacodynamic studies of this drug combination in the first five patients on trial indicated that the drug combination resulted in effective polyamine depletion in plasma. Thus, the AR potently stimulates polyamine synthesis, which constitutes a vulnerability in prostate cancer treated with SPA that can be targeted therapeutically.
Collapse
|
14
|
Shakeel A, Baloch A, Kumari V, Kazmi SKZ, Aftab K, Abid S, Syed A, Yousuf J, Hasanain M, Anjum MU, Mahmmoud Fadelallah Eljack M. Iwilfin (eflornithine) approved by the FDA as the first and only oral maintenance therapy for high-risk neuroblastoma in adult and pediatric patients: Narrative review. Medicine (Baltimore) 2024; 103:e40662. [PMID: 39612452 PMCID: PMC11608686 DOI: 10.1097/md.0000000000040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
Neural crest progenitor cells give rise to neuroblasts, the growing nerve cells of the sympathetic nervous system. These cells can undergo changes leading to neuroblastoma, a malignancy responsible for 15% of all pediatric cancer-related deaths. The molecular pathogenesis of this pediatric cancer involves complex genetic alterations, such as MYCN amplification, chromosomal abnormalities, and gene expression changes. Despite aggressive therapies, survival rates for children with high-risk neuroblastoma (HRNB) have not improved significantly compared to those with less severe forms of the disease. This highlights the challenge of managing HRNB and underscores the need for new, effective treatments. A comprehensive treatment regimen, including immunotherapy, radiation therapy, myeloablative chemotherapy, and surgical removal, has been employed to achieve remission in HRNB patients. While dinutuximab beta immunotherapy is an effective and widely used treatment, it has several potential side effects that must be carefully monitored. New drugs are being developed to reduce these side effects without compromising efficacy. One such drug is DL-alpha-difluoromethylornithine (DFMO), approved by the FDA under the brand name Iwilfin. Numerous clinical trials have shown that DFMO, when used as maintenance therapy, significantly improves event-free survival and overall survival in neuroblastoma patients. However, DFMO has adverse effects that require continuous monitoring. Further research is needed to minimize these side effects and improve its efficacy, particularly in addressing resistance caused by long-term use.
Collapse
Affiliation(s)
- Ayesha Shakeel
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Aniqa Baloch
- Department of Medicine and Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Versha Kumari
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | | - Kanza Aftab
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Shiza Abid
- Department of Medicine and Surgery, Ayub Medical College, Abbottabad, Pakistan
| | - Amna Syed
- Department of Medicine and Surgery, Dow University of Health Sciences, Karachi, Pakistan
| | - Juvairia Yousuf
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Hasanain
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Muhammad Umair Anjum
- Department of Internal Medicine, Jinnah Sindh Medical University, Karachi, Pakistan
| | | |
Collapse
|
15
|
Duke ES, Bradford D, Sinha AK, Mishra-Kalyani PS, Lerro CC, Rivera D, Wearne E, Miller CP, Leighton J, Sabit H, Zhao H, Lane A, Scepura B, Pazdur R, Singh H, Kluetz PG, Donoghue M, Drezner N. US Food and Drug Administration Approval Summary: Eflornithine for High-Risk Neuroblastoma After Prior Multiagent, Multimodality Therapy. J Clin Oncol 2024; 42:3047-3057. [PMID: 38917371 PMCID: PMC11365752 DOI: 10.1200/jco.24.00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/22/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
On December 13, 2023, the US Food and Drug Administration (FDA) approved eflornithine (IWILFIN, US WorldMeds) to reduce the risk of relapse in adult and pediatric patients with high-risk neuroblastoma who have demonstrated at least a partial response to prior multiagent, multimodality therapy including anti-GD2 immunotherapy. The approval was based on an externally controlled trial (ECT) consisting of a single-arm trial, study 3(b), compared with an external control (EC) derived from a National Cancer Institute/Children's Oncology Group-sponsored clinical trial (Study ANBL0032) and supported by confirmatory evidence. In the protocol-specified primary analysis, the event-free survival hazard ratio (HR) was 0.48 (95% CI, 0.27 to 0.85) and overall survival HR was 0.32 (95% CI, 0.15 to 0.70). The most common adverse reactions (≥5%) were hearing loss, otitis media, pyrexia, pneumonia, and diarrhea. Notably, this is the first oncology drug approval which relies on an ECT as the primary clinical data to support substantial evidence of effectiveness. This was made possible by a distinctly high-quality, comparable EC data set with consistent treatment effect estimations demonstrated in multiple sensitivity and supportive analyses. Eflornithine's manageable safety profile and strong nonclinical and mechanistic data provided further support for the approval, and the evidentiary package was evaluated in the context of high unmet need in a rare, life-threatening cancer.
Collapse
Affiliation(s)
- Elizabeth S Duke
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Diana Bradford
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Arup K Sinha
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | | | - Catherine C Lerro
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD
| | - Donna Rivera
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD
| | - Emily Wearne
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Claudia P Miller
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - John Leighton
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Hairat Sabit
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Hong Zhao
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Ashley Lane
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Barbara Scepura
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Richard Pazdur
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| | - Harpreet Singh
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD
| | - Paul G Kluetz
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD
| | - Martha Donoghue
- Oncology Center of Excellence, US Food and Drug Administration, Silver Spring, MD
| | - Nicole Drezner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD
| |
Collapse
|
16
|
Sánchez MÁN, Martinez-Sanchez MA, Sierra-Cruz M, Lambertos A, Rico-Chazarra S, Oliva-Bolarín A, Román AB, Yuste JE, Martínez CM, Mika A, Frutos MD, Llamoza-Torres CJ, Córdoba-Chacón J, Ramos-Molina B. Increased hepatic putrescine levels as a new potential factor related to the progression of metabolic dysfunction-associated steatotic liver disease. J Pathol 2024; 264:101-111. [PMID: 39022853 PMCID: PMC11300153 DOI: 10.1002/path.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Marta Sierra-Cruz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Sara Rico-Chazarra
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alba Oliva-Bolarín
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Andrés Balaguer Román
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Enrique Yuste
- Metabolomics Platform of CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Carlos Manuel Martínez
- Experimental Pathology Platform, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Camilo J. Llamoza-Torres
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Division of Liver Diseases, Department of Gastroenterology and Hepatology, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Córdoba-Chacón
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
17
|
Tegegn DF, Wirtu SF. The impact of thermophysical properties on eflornithine drug solute in acetone and ethyl acetate solvent interactions at varying concentrations and temperatures. BMC Chem 2024; 18:153. [PMID: 39152501 PMCID: PMC11328388 DOI: 10.1186/s13065-024-01262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/05/2024] [Indexed: 08/19/2024] Open
Abstract
The study was conducted on the impact of thermophysical properties on eflornithine drug solute-solvent interactions in aqueous ethyl acetate and acetone at different concentrations and temperatures. The aim of this study is to enhance the understanding of eflornithine's behavior in different solvents, which is crucial for its effective use in pharmaceutical applications. The density, molar volume, viscometric, and conductometric characteristics of the eflornithine drug solutions (0.025, 0.05, 0.075, 0.1, and 0.125 mol/kg) in acetone and 25% (v/v) aqueous ethyl acetate were measured within a temperature range of 298.15 K-318.15 K. Based on the determined density parameters, the following parameters were assessed: viscosity (η), equivalent molar conductance, limiting apparent molar volume (V0φ), apparent molar volume of transfer (V0φtr), and apparent molar volume (Vφ). The Masson empirical relationship and the viscosity-to-Jones-Dole (JD) equation were used to evaluate the partial molar volume (Vφ), experimental slope (SV), viscosity, and density data. Temperature and concentration were used to determine each parameter. For each set of dilutions, conductometric studies were conducted in both study solvents. The gathered data was analyzed in order to evaluate the ion-solvent interactions. The Walden product Λomηo's positive temperature coefficient values indicate that the drug eflornithine functions as a structural modifier in acetone and aqueous acetyl acetate systems. The structure-making and breaking characteristics of the polar solvents acetone and ethyl acetate were identified.
Collapse
Affiliation(s)
- Dereje Fedasa Tegegn
- Department of Chemistry, College of Natural and Computational Science, Dambi Dollo University, P. O. Box. 260, Dambi Dollo, Oromia, Ethiopia.
| | - Shuma Fayera Wirtu
- Department of Chemistry, College of Natural and Computational Science, Dambi Dollo University, P. O. Box. 260, Dambi Dollo, Oromia, Ethiopia
| |
Collapse
|
18
|
Zhu X, Zhang M, Shen L, Su W. Visible-Light-Induced Hydrodifluoromethylation of Unactivated Alkenes with Difluoroacetic Anhydride. J Org Chem 2024; 89:8828-8835. [PMID: 38848324 DOI: 10.1021/acs.joc.4c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
We herein described a practical and efficient protocol for hydrodifluoromethylation of unactivated alkenes using readily available difluoroacetic anhydride as a difluoromethyl source by merging photocatalysis and N-hydroxyphthalimide activation. This method features a wide substrate scope and excellent compatibility with various functional groups, as demonstrated by more than 50 examples, including bioactive molecules and pharmaceutical derivatives. Mechanism investigation indicated that N-hydroxyphthalimide may also serve as the hydrogen atom donor.
Collapse
Affiliation(s)
- Xiaoliang Zhu
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Min Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lujie Shen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Weiping Su
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
19
|
Jiang J, Yu Y. Eflornithine for treatment of high-risk neuroblastoma. Trends Pharmacol Sci 2024; 45:577-578. [PMID: 38749882 PMCID: PMC11162306 DOI: 10.1016/j.tips.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 04/17/2024] [Indexed: 06/09/2024]
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmaceutical Sciences, Department of Anatomy and Neurobiology, Drug Discovery Center, Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Ying Yu
- Department of Pharmaceutical Sciences, Department of Anatomy and Neurobiology, Drug Discovery Center, Neuroscience Institute, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Conte B, Casey DL, Tringale KR, Honeyman J, Narayan NJC, LaQuaglia MP, Gerstle JT, Modak S, Kushner BH, Kramer K, Wolden SL. Intraoperative Radiation Therapy for Relapsed or Refractory High-Risk Neuroblastoma: A 27-Year Experience. Pract Radiat Oncol 2024; 14:e226-e232. [PMID: 38310488 PMCID: PMC11948304 DOI: 10.1016/j.prro.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/05/2024]
Abstract
PURPOSE To evaluate outcomes after intraoperative radiation therapy (IORT) in high-risk neuroblastoma (NB), including local control, overall survival, and toxicity. METHODS AND MATERIALS This was a single institution retrospective study of 92 pediatric patients with NB treated with IORT from 1995 to 2022. Each IORT application was considered a separate event for a total of 110 sites treated. Local failure was calculated using the cumulative incidence function and survival by Kaplan-Meier method from the day of surgery. RESULTS All patients had high-risk relapsed or treatment refractory disease. Median age was 6 years (range, 2-34 years). Median follow-up for all patients and surviving patients was 16 months and 4 years, respectively. All patients previously received chemotherapy, 93% had prior external beam radiation therapy to the site of IORT (median dose, 21.6 Gy; range, 10-36 Gy), and 94% had a prior surgery for tumor resection. The median IORT dose was 12 Gy (range, 8-18 Gy) and median area treated was 18 cm2 (range, 2.5-60 cm2). The cumulative incidence of local failure was 23% at 2 years and 29% at 5 years. The overall survival (OS) was 44% at 2 years and 29% at 5 years. Local failure after IORT was associated with worse OS (hazard ratio, 1.74; 95% CI, 1.07-2.84; P = .0267). Toxicity from IORT was rare, with postoperative complications likely related to IORT seen in 7 (8%) patients. CONCLUSIONS Our study represents the largest, most recent analysis of the efficacy and safety of IORT in patients with relapsed or refractory NB. Less than one-third of patients failed locally at 5 years, and achieving local control affected overall survival. Minimal toxicities directly related to IORT were observed. Overall, IORT is an effective and safe technique to achieve local control in high-risk relapsed or refractory neuroblastoma.
Collapse
Affiliation(s)
- Brianna Conte
- University of Miami Miller School of Medicine, Miami, Florida.
| | - Dana L Casey
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina
| | - Kathryn R Tringale
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joshua Honeyman
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nicole J C Narayan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael P LaQuaglia
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin Ted Gerstle
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakeel Modak
- Department of Pediatrics, Neuroblastoma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian H Kushner
- Department of Pediatrics, Neuroblastoma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kim Kramer
- Department of Pediatrics, Neuroblastoma Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suzanne L Wolden
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
21
|
Gandra D, Mulama DH, Foureau DM, McKinney KQ, Kim E, Smith K, Haw J, Nagulapally A, Saulnier Sholler GL. DFMO inhibition of neuroblastoma tumorigenesis. Cancer Med 2024; 13:e7207. [PMID: 38686627 PMCID: PMC11058673 DOI: 10.1002/cam4.7207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Most high-risk neuroblastoma patients who relapse succumb to disease despite the existing therapy. We recently reported increased event-free and overall survival in neuroblastoma patients receiving difluoromethylornithine (DFMO) during maintenance therapy. The effect of DFMO on cellular processes associated with neuroblastoma tumorigenesis needs further elucidation. Previous studies have shown cytotoxicity with IC50 values >5-15 mM, these doses are physiologically unattainable in patients, prompting further mechanistic studies at therapeutic doses. METHODS We characterized the effect of DFMO on cell viability, cell cycle, apoptosis, neurosphere formation, and protein expression in vitro using five established neuroblastoma cell lines (BE2C, CHLA-90, SHSY5Y, SMS-KCNR, and NGP) at clinically relevant doses of 0, 50, 100, 500, 1000, and 2500 μM. Limiting Dilution studies of tumor formation in murine models were performed. Statistical analysis was done using GraphPad and the level of significance set at p = 0.05. RESULTS There was not a significant loss of cell viability or gain of apoptotic activity in the in vitro assays (p > 0.05). DFMO treatment initiated G1 to S phase cell cycle arrest. There was a dose-dependent decrease in frequency and size of neurospheres and a dose-dependent increase in beta-galactosidase activity in all cell lines. Tumor formation was decreased in xenografts both with DFMO-pretreated cells and in mice treated with DFMO. CONCLUSION DFMO treatment is cytostatic at physiologically relevant doses and inhibits tumor initiation and progression in mice. This study suggests that DFMO, inhibits neuroblastoma by targeting cellular processes integral to neuroblastoma tumorigenesis at clinically relevant doses.
Collapse
Affiliation(s)
- Divya Gandra
- Department of PediatricsPenn State Health Children's HospitalHersheyPennsylvaniaUSA
| | - David H. Mulama
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - David M. Foureau
- Department of MedicineLevine Cancer InstituteCharlotteNorth CarolinaUSA
| | | | - Elizabeth Kim
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - Kaitlyn Smith
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - Jason Haw
- Department of PediatricsLevine Children's HospitalCharlotteNorth CarolinaUSA
| | - Abhinav Nagulapally
- Department of PediatricsPenn State Health Children's HospitalHersheyPennsylvaniaUSA
| | | |
Collapse
|
22
|
Bachmann AS, VanSickle EA, Michael J, Vipond M, Bupp CP. Bachmann-Bupp syndrome and treatment. Dev Med Child Neurol 2024; 66:445-455. [PMID: 37469105 PMCID: PMC10796844 DOI: 10.1111/dmcn.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.
Collapse
Affiliation(s)
- André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
| | - Elizabeth A VanSickle
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Julianne Michael
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Marlie Vipond
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| |
Collapse
|
23
|
Hogarty MD, Ziegler DS, Franson A, Chi YY, Tsao-Wei D, Liu K, Vemu R, Gerner EW, Bruckheimer E, Shamirian A, Hasenauer B, Balis FM, Groshen S, Norris MD, Haber M, Park JR, Matthay KK, Marachelian A. Phase 1 study of high-dose DFMO, celecoxib, cyclophosphamide and topotecan for patients with relapsed neuroblastoma: a New Approaches to Neuroblastoma Therapy trial. Br J Cancer 2024; 130:788-797. [PMID: 38200233 PMCID: PMC10912730 DOI: 10.1038/s41416-023-02525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].
Collapse
Affiliation(s)
- Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Andrea Franson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yueh-Yun Chi
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Denice Tsao-Wei
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rohan Vemu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Anasheh Shamirian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Beth Hasenauer
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank M Balis
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Groshen
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Julie R Park
- St. Jude Children's Research Hospital, University of Tennessee, Memphis, TN, USA
| | - Katherine K Matthay
- UCSF Benioff Children's Hospital, UCSF School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Araz Marachelian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
24
|
Liu Q, Yan X, Li R, Yuan Y, Wang J, Zhao Y, Fu J, Su J. Polyamine Signal through HCC Microenvironment: A Key Regulator of Mitochondrial Preservation and Turnover in TAMs. Int J Mol Sci 2024; 25:996. [PMID: 38256070 PMCID: PMC10816144 DOI: 10.3390/ijms25020996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and, with increasing research on the tumor immune microenvironment (TIME), the immunosuppressive micro-environment of HCC hampers further application of immunotherapy, even though immunotherapy can provide survival benefits to patients with advanced liver cancer. Current studies suggest that polyamine metabolism is not only a key metabolic pathway for the formation of immunosuppressive phenotypes in tumor-associated macrophages (TAMs), but it is also profoundly involved in mitochondrial quality control signaling and the energy metabolism regulation process, so it is particularly important to further investigate the role of polyamine metabolism in the tumor microenvironment (TME). In this review, by summarizing the current research progress of key enzymes and substrates of the polyamine metabolic pathway in regulating TAMs and T cells, we propose that polyamine biosynthesis can intervene in the process of mitochondrial energy metabolism by affecting mitochondrial autophagy, which, in turn, regulates macrophage polarization and T cell differentiation. Polyamine metabolism may be a key target for the interactive dialog between HCC cells and immune cells such as TAMs, so interfering with polyamine metabolism may become an important entry point to break intercellular communication, providing new research space for developing polyamine metabolism-based therapy for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (Q.L.); (X.Y.); (R.L.); (Y.Y.); (J.W.); (Y.Z.); (J.F.)
| |
Collapse
|
25
|
Oesterheld J, Ferguson W, Kraveka JM, Bergendahl G, Clinch T, Lorenzi E, Berry D, Wada RK, Isakoff MS, Eslin DE, Brown VI, Roberts W, Zage P, Harrod VL, Mitchell DS, Hanson D, Saulnier Sholler GL. Eflornithine as Postimmunotherapy Maintenance in High-Risk Neuroblastoma: Externally Controlled, Propensity Score-Matched Survival Outcome Comparisons. J Clin Oncol 2024; 42:90-102. [PMID: 37883734 PMCID: PMC10730038 DOI: 10.1200/jco.22.02875] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 10/28/2023] Open
Abstract
PURPOSE Long-term survival in high-risk neuroblastoma (HRNB) is approximately 50%, with mortality primarily driven by relapse. Eflornithine (DFMO) to reduce risk of relapse after completion of immunotherapy was investigated previously in a single-arm, phase II study (NMTRC003B; ClinicalTrials.gov identifier: NCT02395666) that suggested improved event-free survival (EFS) and overall survival (OS) compared with historical rates in a phase III trial (Children Oncology Group ANBL0032; ClinicalTrials.gov identifier: NCT00026312). Using patient-level data from ANBL0032 as an external control, we present new analyses to further evaluate DFMO as HRNB postimmunotherapy maintenance. PATIENTS AND METHODS NMTRC003B (2012-2016) enrolled patients with HRNB (N = 141) after standard up-front or refractory/relapse treatment who received up to 2 years of continuous treatment with oral DFMO (750 ± 250 mg/m2 twice a day). ANBL0032 (2001-2015) enrolled patients with HRNB postconsolidation, 1,328 of whom were assigned to dinutuximab (ch.14.18) treatment. Selection rules identified 92 NMTRC003B patients who participated in (n = 87) or received up-front treatment consistent with (n = 5) ANBL0032 (the DFMO/treated group) and 852 patients from ANBL0032 who could have been eligible for NMTRC003B after immunotherapy, but did not enroll (the NO-DFMO/control group). The median follow-up time for DFMO/treated patients was 6.1 years (IQR, 5.2-7.2) versus 5.0 years (IQR, 3.5-7.0) for NO-DFMO/control patients. Kaplan-Meier and Cox regression compared EFS and OS for overall groups, 3:1 (NO-DFMO:DFMO) propensity score-matched cohorts balanced on 11 baseline demographic and disease characteristics with exact matching on MYCN, and additional sensitivity analyses. RESULTS DFMO after completion of immunotherapy was associated with improved EFS (hazard ratio [HR], 0.50 [95% CI, 0.29 to 0.84]; P = .008) and OS (HR, 0.38 [95% CI, 0.19 to 0.76]; P = .007). The results were confirmed with propensity score-matched cohorts and sensitivity analyses. CONCLUSION The externally controlled analyses presented show a relapse risk reduction in patients with HRNB treated with postimmunotherapy DFMO.
Collapse
Affiliation(s)
| | - William Ferguson
- Saint Louis University School of Medicine, Cardinal Glennon Children's Hospital, St Louis, MO
| | - Jacqueline M. Kraveka
- MUSC Shawn Jenkins Children's Hospital, Medical University of South Carolina, Charleston, SC
- Division of Pediatric Hematology-Oncology, Hollings Cancer Center, Charleston, SC
| | - Genevieve Bergendahl
- Penn State Health Children's Hospital and Penn State College of Medicine, Hershey, PA
| | - Thomas Clinch
- Biometrics and Clinical Development, USWM, LLC, Louisville, KY
| | | | - Don Berry
- Berry Consultants, Austin, TX
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Austin, TX
| | | | - Michael S. Isakoff
- Center for Cancer and Blood Disorders, Connecticut Children's Medical Center, Hartford, CT
- University of Connecticut School of Medicine, Farmington, CT
| | | | - Valerie I. Brown
- Penn State Health Children's Hospital and Penn State College of Medicine, Hershey, PA
| | - William Roberts
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA
| | - Peter Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA
| | - Virginia L. Harrod
- Dell Children's Medical Center, University of Texas Dell Medical School, Austin, TX
| | - Deanna S. Mitchell
- Helen DeVos Children's Hospital, Michigan State University, Grand Rapids, MI
| | - Derek Hanson
- Department of Pediatrics, Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, NJ
| | | |
Collapse
|
26
|
Sims EK, Kulkarni A, Hull A, Woerner SE, Cabrera S, Mastrandrea LD, Hammoud B, Sarkar S, Nakayasu ES, Mastracci TL, Perkins SM, Ouyang F, Webb-Robertson BJ, Enriquez JR, Tersey SA, Evans-Molina C, Long SA, Blanchfield L, Gerner EW, Mirmira RG, DiMeglio LA. Inhibition of polyamine biosynthesis preserves β cell function in type 1 diabetes. Cell Rep Med 2023; 4:101261. [PMID: 37918404 PMCID: PMC10694631 DOI: 10.1016/j.xcrm.2023.101261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/18/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
In preclinical models, α-difluoromethylornithine (DFMO), an ornithine decarboxylase (ODC) inhibitor, delays the onset of type 1 diabetes (T1D) by reducing β cell stress. However, the mechanism of DFMO action and its human tolerability remain unclear. In this study, we show that mice with β cell ODC deletion are protected against toxin-induced diabetes, suggesting a cell-autonomous role of ODC during β cell stress. In a randomized controlled trial (ClinicalTrials.gov: NCT02384889) involving 41 recent-onset T1D subjects (3:1 drug:placebo) over a 3-month treatment period with a 3-month follow-up, DFMO (125-1,000 mg/m2) is shown to meet its primary outcome of safety and tolerability. DFMO dose-dependently reduces urinary putrescine levels and, at higher doses, preserves C-peptide area under the curve without apparent immunomodulation. Transcriptomics and proteomics of DFMO-treated human islets exposed to cytokine stress reveal alterations in mRNA translation, nascent protein transport, and protein secretion. These findings suggest that DFMO may preserve β cell function in T1D through islet cell-autonomous effects.
Collapse
Affiliation(s)
- Emily K Sims
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Abhishek Kulkarni
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Audrey Hull
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Nationwide Children's Hospital Pediatric Residency Program, Columbus, OH 43205, USA
| | - Stephanie E Woerner
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Susanne Cabrera
- Department of Pediatrics, Section of Endocrinology and Diabetes, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lucy D Mastrandrea
- Division of Pediatric Endocrinology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Batoul Hammoud
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Teresa L Mastracci
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Susan M Perkins
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fangqian Ouyang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Jacob R Enriquez
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah A Tersey
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Carmella Evans-Molina
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medicine and the Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - S Alice Long
- Benaroya Research Institute, Center for Translational Immunology, Seattle, WA 98101, USA
| | - Lori Blanchfield
- Benaroya Research Institute, Center for Translational Immunology, Seattle, WA 98101, USA
| | | | - Raghavendra G Mirmira
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA.
| | - Linda A DiMeglio
- Division of Pediatric Endocrinology and Diabetology, Herman B. Wells Center for Pediatric Research, Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
27
|
Chicco D, Haupt R, Garaventa A, Uva P, Luksch R, Cangelosi D. Computational intelligence analysis of high-risk neuroblastoma patient health records reveals time to maximum response as one of the most relevant factors for outcome prediction. Eur J Cancer 2023; 193:113291. [PMID: 37708628 DOI: 10.1016/j.ejca.2023.113291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
OBJECTIVE Seek new candidate prognostic markers for neuroblastoma outcome, relapse or progression. MATERIALS AND METHODS In this multicentre and retrospective study, Random Forests coupled with recursive feature elimination techniques were applied to electronic records (55 clinical features) of 3034 neuroblastoma patients. To assess model performance and feature importance, dataset was split into a training set (80%) and a test set (20%). RESULTS In the test set, the mean Matthews correlation coefficient for the Random Forests models was greater than 0.46. Feature importance analysis revealed that, together with maximum response to first-line treatment (D_MAX_RESP), time to maximum response to first-line treatment (TIME_MAX_RESP.days) is a relevant predictor of both patients' outcome and relapse\progression. We showed the prognostic value of the max response to first-line treatment in clinically relevant subsets of high-, intermediate-, and low-risk patients for both overall and relapse-free survival (Log-rank p-value<0.0001). In high-risk patients older than 18 months and stage 4 tumour achieving a complete response or very good partial response, patients who exhibited a D_MAX_RESP greater than 9 months showed a better prognosis with respect to patients achieving D_MAX_RESP earlier than 9 months (overall survival): hazard ratio 3.3 95% confidence interval 1.8-5.9, Log-rank p-value p < 0.0001; relapse-free survival: 3.2 95%CI 1.8-5.6, Log-rank p-value p < 0.0001). CONCLUSION Our findings evidence the emerging role of the TIME_MAX_RESP.days in addition to the D_MAX_RESP as relevant predictors of outcome and relapse\progression in neuroblastoma with potential clinical impact on the management and treatment of patients.
Collapse
Affiliation(s)
- Davide Chicco
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Dipartimento di Informatica Sistemistica e Comunicazione, Università di Milano-Bicocca, Milan, Italy
| | - Riccardo Haupt
- DOPO Clinic, Department of Hematology/Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Paolo Uva
- Unità di Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberto Luksch
- S.C. Pediatria oncologica, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Davide Cangelosi
- Unità di Bioinformatica Clinica, IRCCS Istituto Giannina Gaslini, Genoa, Italy.
| |
Collapse
|
28
|
Alexander ET, Fahey E, Phanstiel O, Gilmour SK. Loss of Anti-Tumor Efficacy by Polyamine Blocking Therapy in GCN2 Null Mice. Biomedicines 2023; 11:2703. [PMID: 37893077 PMCID: PMC10604246 DOI: 10.3390/biomedicines11102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
GCN2 is one of the main sensors of amino acid starvation stress, and its activation in the stressful tumor microenvironment plays a crucial role in tumor survival and progression. We hypothesized that elevated polyamine biosynthesis and subsequent depletion of precursor arginine activates GCN2, thus rewiring metabolism to support tumor cell survival and drive myeloid immunosuppressive function. We sought to determine if the anti-tumor efficacy of a polyamine blocking therapy (PBT) may be mediated by its effect on GCN2. Unlike wild-type mice, PBT treatment in GCN2 knockout mice bearing syngeneic B16.F10 or EG7 tumors resulted in no tumor growth inhibition and no changes in the profile of infiltrating tumor immune cells. Studies with murine bone marrow cell cultures showed that increased polyamine metabolism and subsequent arginine depletion and GCN2 activation played an essential role in the generation and cytoprotective autophagy of myeloid derived suppressor cells (MDSCs) as well as the M2 polarization and survival of macrophages, all of which were inhibited by PBT. In all, our data suggest that polyamine-dependent GCN2 signaling in stromal cells promotes tumor growth and the development of the immunosuppressive tumor microenvironment, and that the PBT anti-tumor effect is mediated, at least in part, by targeting GCN2.
Collapse
Affiliation(s)
- Eric T. Alexander
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| | - Erin Fahey
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, Biomolecular Research Annex, 12722 Research Parkway, Orlando, FL 32826, USA;
| | - Susan K. Gilmour
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA; (E.T.A.)
| |
Collapse
|
29
|
Walker DM, Lazarova TI, Riesinger SW, Poirier MC, Messier T, Cunniff B, Walker VE. WR1065 conjugated to thiol-PEG polymers as novel anticancer prodrugs: broad spectrum efficacy, synergism, and drug resistance reversal. Front Oncol 2023; 13:1212604. [PMID: 37576902 PMCID: PMC10419174 DOI: 10.3389/fonc.2023.1212604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
The lack of anticancer agents that overcome innate/acquired drug resistance is the single biggest barrier to achieving a durable complete response to cancer therapy. To address this issue, a new drug family was developed for intracellular delivery of the bioactive aminothiol WR1065 by conjugating it to discrete thiol-PEG polymers: 4-star-PEG-S-S-WR1065 (4SP65) delivers four WR1065s/molecule and m-PEG6-S-S-WR1065 (1LP65) delivers one. Infrequently, WR1065 has exhibited anticancer effects when delivered via the FDA-approved cytoprotectant amifostine, which provides one WR1065/molecule extracellularly. The relative anticancer effectiveness of 4SP65, 1LP65, and amifostine was evaluated in a panel of 15 human cancer cell lines derived from seven tissues. Additional experiments assessed the capacity of 4SP65 co-treatments to potentiate the anticancer effectiveness and overcome drug resistance to cisplatin, a chemotherapeutic, or gefitinib, a tyrosine kinase inhibitor (TKI) targeting oncogenic EGFR mutations. The CyQUANT®-NF proliferation assay was used to assess cell viability after 48-h drug treatments, with the National Cancer Institute COMPARE methodology employed to characterize dose-response metrics. In normal human epithelial cells, 4SP65 or 1LP65 enhanced or inhibited cell growth but was not cytotoxic. In cancer cell lines, 4SP65 and 1LP65 induced dose-dependent cytostasis and cytolysis achieving 99% cell death at drug concentrations of 11.2 ± 1.2 µM and 126 ± 15.8 µM, respectively. Amifostine had limited cytostatic effects in 11/14 cancer cell lines and no cytolytic effects. Binary pairs of 4SP65 plus cisplatin or gefitinib increased the efficacy of each partner drug and surmounted resistance to cytolysis by cisplatin and gefitinib in relevant cancer cell lines. 4SP65 and 1LP65 were significantly more effective against TP53-mutant than TP53-wild-type cell lines, consistent with WR1065-mediated reactivation of mutant p53. Thus, 4SP65 and 1LP65 represent a unique prodrug family for innovative applications as broad-spectrum anticancer agents that target p53 and synergize with a chemotherapeutic and an EGFR-TKI to prevent or overcome drug resistance.
Collapse
Affiliation(s)
- Dale M. Walker
- The Burlington HC Research Group, Inc., Jericho, VT, United States
| | | | | | - Miriam C. Poirier
- Carcinogen–DNA Interactions Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terri Messier
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| | - Vernon E. Walker
- Department of Pathology and Laboratory Medicine, Redox Biology and Pathology Program, Larner College of Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
30
|
Tangella AV, Gajre AS, Chirumamilla PC, Rathhan PV. Difluoromethylornithine (DFMO) and Neuroblastoma: A Review. Cureus 2023; 15:e37680. [PMID: 37206500 PMCID: PMC10190116 DOI: 10.7759/cureus.37680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Neuroblastoma is a type of cancer that affects the sympathetic nervous system and is the most common extracranial solid tumor in children. Difluoromethylornithine (DFMO) is a drug that has shown promise as a treatment option for high-risk neuroblastoma. This review aims to provide an overview of the current research on the use of DFMO in neuroblastoma treatment. The review includes a discussion of the mechanisms of action of DFMO, as well as its potential for use in combination with other treatments such as chemotherapy and immunotherapy. The review also examines the current clinical trials involving DFMO in high-risk neuroblastoma patients and provides insights into the challenges and future directions for the use of DFMO in neuroblastoma treatment. Overall, the review highlights the potential of DFMO as a promising therapy for neuroblastoma and highlights the need for further research to fully understand its potential benefits and limitations.
Collapse
Affiliation(s)
| | - Ashwin S Gajre
- Internal Medicine, Lokmanya Tilak Municipal Medical College and Hospital, Mumbai, IND
| | | | | |
Collapse
|
31
|
Aravindan N, Natarajan M, Somasundaram DB, Aravindan S. Chemoprevention of neuroblastoma: progress and promise beyond uncertainties. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:9. [PMID: 38249515 PMCID: PMC10798790 DOI: 10.20517/2394-4722.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Neuroblastoma is the most common extracranial solid tumor in children and comprises one-tenth of all childhood cancer deaths. The current clinical therapy for this deadly disease is multimodal, involving an induction phase with alternating regimens of high-dose chemotherapeutic drugs and load reduction surgery; a consolidation phase with more intensive chemotherapy, radiotherapy, and stem cell transplant; and a maintenance phase with immunotherapy and immune-activating cytokine treatment. Despite such intensive treatment, children with neuroblastoma have unacceptable life quality and survival, warranting preventive measures to regulate the cellular functions that orchestrate tumor progression, therapy resistance, metastasis, and tumor relapse/recurrence. Globally, active efforts are underway to identify novel chemopreventive agents, define their mechanism(s) of action, and assess their clinical benefit. Some chemoprevention strategies (e.g., retinoids, difluoromethylornithine) have already been adopted clinically as part of maintenance phase therapy. Several agents are in the pipeline, while many others are in preclinical characterization. Here we review the classes of chemopreventive agents investigated for neuroblastoma, including cellular events targeted, mode(s) of action, and the level of development. Our review: (i) highlights the pressing need for new and improved chemopreventive strategies for progressive neuroblastoma; (ii) lists the emerging classes of chemopreventive agents for neuroblastoma; and (iii) recognizes the relevance of targeting dynamically evolving hallmark functions of tumor evolution (e.g., survival, differentiation, lineage transformation). With recent gains in the understanding of tumor evolution processes and preclinical and clinical efforts, it is our strong opinion that effective chemopreventive strategies for aggressive neuroblastoma are a near reality.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA
| | - Mohan Natarajan
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center at San Antonio, San Antonio, TX 78229, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
32
|
Chow CL, Havighurst T, Lozar T, Jones TD, Kim K, Bailey HH. Ototoxicity of Long-Term α-Difluoromethylornithine for Skin Cancer Prevention. Laryngoscope 2023; 133:676-682. [PMID: 35620919 PMCID: PMC9701242 DOI: 10.1002/lary.30231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Evaluate the effects of α-difluoromethylornithine (DFMO) on hearing thresholds as part of a randomized, double-blind, placebo-controlled trial. METHODS Subjects were randomized and assigned to the control (placebo) or experimental (DFMO) group. DFMO or placebo were administered orally (500 mg/m2 /day) for up to 5 years. RESULTS Subjects taking DFMO had, on average, increased hearing thresholds from baseline across the frequency range compared to subjects in the control group. Statistical analysis revealed this was significant in the lower frequency range. CONCLUSIONS This randomized controlled trial revealed the presence of increased hearing thresholds associated with long-term DFMO use. As a whole, DFMO may help prevent and treat certain types of cancers; however, it can result in some degree of hearing loss even when administered at low doses. This study further highlights the importance of closely monitoring hearing thresholds in subjects taking DFMO. Laryngoscope, 133:676-682, 2023.
Collapse
Affiliation(s)
- Cynthia L. Chow
- Consulting Audiology Associates, LLC, Oak Park, Illinois, USA
| | - Thomas Havighurst
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Taja Lozar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Todd D. Jones
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - KyungMann Kim
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| | - Howard H. Bailey
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine & Public Health, Madison, Wisconsin, USA
| |
Collapse
|
33
|
Gao J, Chen Y, Wang H, Li X, Li K, Xu Y, Xie X, Guo Y, Yang N, Zhang X, Ma D, Lu HS, Shen YH, Liu Y, Zhang J, Chen YE, Daugherty A, Wang DW, Zheng L. Gasdermin D Deficiency in Vascular Smooth Muscle Cells Ameliorates Abdominal Aortic Aneurysm Through Reducing Putrescine Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204038. [PMID: 36567267 PMCID: PMC9929270 DOI: 10.1002/advs.202204038] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/16/2022] [Indexed: 06/17/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common vascular disease associated with significant phenotypic alterations in vascular smooth muscle cells (VSMCs). Gasdermin D (GSDMD) is a pore-forming effector of pyroptosis. In this study, the role of VSMC-specific GSDMD in the phenotypic alteration of VSMCs and AAA formation is determined. Single-cell transcriptome analyses reveal Gsdmd upregulation in aortic VSMCs in angiotensin (Ang) II-induced AAA. VSMC-specific Gsdmd deletion ameliorates Ang II-induced AAA in apolipoprotein E (ApoE)-/- mice. Using untargeted metabolomic analysis, it is found that putrescine is significantly reduced in the plasma and aortic tissues of VSMC-specific GSDMD deficient mice. High putrescine levels trigger a pro-inflammatory phenotype in VSMCs and increase susceptibility to Ang II-induced AAA formation in mice. In a population-based study, a high level of putrescine in plasma is associated with the risk of AAA (p < 2.2 × 10-16 ), consistent with the animal data. Mechanistically, GSDMD enhances endoplasmic reticulum stress-C/EBP homologous protein (CHOP) signaling, which in turn promotes the expression of ornithine decarboxylase 1 (ODC1), the enzyme responsible for increased putrescine levels. Treatment with the ODC1 inhibitor, difluoromethylornithine, reduces AAA formation in Ang II-infused ApoE-/- mice. The findings suggest that putrescine is a potential biomarker and target for AAA treatment.
Collapse
Affiliation(s)
- Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Yanghui Chen
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Huiqing Wang
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xin Li
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Ke Li
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
| | - Xianwei Xie
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFuzhou350001P. R. China
| | - Yansong Guo
- Department of CardiologyShengli Clinical Medical College of Fujian Medical UniversityFujian Provincial HospitalFujian Provincial Key Laboratory of Cardiovascular DiseaseFujian Provincial Center for GeriatricsFujian Clinical Medical Research Center for Cardiovascular DiseasesFujian Heart Failure Center AllianceFuzhou350001P. R. China
| | - Nana Yang
- Weifang Key Laboratory of Animal Model Research on Cardiovascular and Cerebrovascular DiseasesWeifang Medical UniversityWeifang261053P. R. China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyMinistry of EducationHebei Medical UniversityZhongshan East Road No. 361Shijiazhuang050017P. R. China
| | - Dong Ma
- Department of Biochemistry and Molecular BiologyThe Key Laboratory of Neural and Vascular BiologyChina Administration of EducationHebei Medical UniversityHebei050017P. R. China
| | - Hong S. Lu
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Ying H. Shen
- Division of Cardiothoracic SurgeryMichael E. DeBakey Department of SurgeryBaylor College of MedicineDepartment of Cardiovascular SurgeryTexas Heart InstituteHoustonTX77030USA
| | - Yong Liu
- Hubei Key Laboratory of Cell HomeostasisCollege of Life SciencesInstitute for Advanced StudiesWuhan UniversityWuhan430072P. R. China
| | - Jifeng Zhang
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Y. Eugene Chen
- Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborMI48109USA
| | - Alan Daugherty
- Department of PhysiologySaha Cardiovascular Research CenterUniversity of KentuckySouth LimestoneLexingtonKY40536‐0298USA
| | - Dao Wen Wang
- Division of CardiologyDepartment of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic DisordersTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyJiefang Avenue NO.1095, Qiaokou DistrictWuhan430000P. R. China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems BiomedicineSchool of Basic Medical SciencesKey Laboratory of Molecular Cardiovascular Science of Ministry of EducationNHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchHealth Science CenterPeking UniversityBeijing100191P. R. China
- Beijing Tiantan HospitalChina National Clinical Research Center for Neurological DiseasesAdvanced Innovation Center for Human Brain ProtectionBeijing Institute of Brain DisordersThe Capital Medical UniversityBeijing100050P. R. China
- Hangzhou Qianjiang Distinguished ExpertHangzhou Institute of Advanced TechnologyHangzhou310026P. R. China
| |
Collapse
|
34
|
Sfakianos AP, Raven RM, Willis AE. The pleiotropic roles of eIF5A in cellular life and its therapeutic potential in cancer. Biochem Soc Trans 2022; 50:1885-1895. [PMID: 36511302 PMCID: PMC9788402 DOI: 10.1042/bst20221035] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 11/19/2023]
Abstract
Protein synthesis is dysregulated in the majority of cancers and this process therefore provides a good therapeutic target. Many novel anti-cancer agents are directed to target the initiation stage of translation, however, translation elongation also holds great potential as a therapeutic target. The elongation factor eIF5A that assists the formation of peptidyl bonds during the elongation process is of considerable interest in this regard. Overexpression of eIF5A has been linked with the development of a variety of cancers and inhibitors of the molecule have been proposed for anti-cancer clinical applications. eIF5A is the only protein in the cell that contains the post-translational modification hypusine. Hypusination is a two-step enzymatic process catalysed by the Deoxyhypusine Synthase (DHPS) and Deoxyhypusine Hydroxylase (DOHH). In addition, eIF5A can be acetylated by p300/CBP-associated factor (PCAF) which leads to translocation of the protein to the nucleus and its deactivation. In addition to the nucleus, eIF5A has been found in the mitochondria and the endoplasmic reticulum (ER) with eIF5A localisation related to function from regulation of mitochondrial activity and apoptosis to maintenance of ER integrity and control of the unfolded protein response (UPR). Given the pleiotropic functions of eIF5A and by extension the hypusination enzymes, this system is being considered as a target for a range of cancers including multiple myeloma, B-Cell lymphoma, and neuroblastoma. In this review, we explore the role of eIF5A and discuss the therapeutic strategies that are currently developing both in the pre- and the clinical stage.
Collapse
Affiliation(s)
| | - Rebecca Mallory Raven
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| | - Anne Elizabeth Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge, U.K
| |
Collapse
|
35
|
Fahrmann JF, Saini NY, Chia-Chi C, Irajizad E, Strati P, Nair R, Fayad LE, Ahmed S, Lee HJ, Iyer S, Steiner R, Vykoukal J, Wu R, Dennison JB, Nastoupil L, Jain P, Wang M, Green M, Westin J, Blumenberg V, Davila M, Champlin R, Shpall EJ, Kebriaei P, Flowers CR, Jain M, Jenq R, Stein-Thoeringer CK, Subklewe M, Neelapu SS, Hanash S. A polyamine-centric, blood-based metabolite panel predictive of poor response to CAR-T cell therapy in large B cell lymphoma. Cell Rep Med 2022; 3:100720. [PMID: 36384092 PMCID: PMC9729795 DOI: 10.1016/j.xcrm.2022.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory (r/r) large B cell lymphoma (LBCL) results in durable response in only a subset of patients. MYC overexpression in LBCL tumors is associated with poor response to treatment. We tested whether an MYC-driven polyamine signature, as a liquid biopsy, is predictive of response to anti-CD19 CAR-T therapy in patients with r/r LBCL. Elevated plasma acetylated polyamines were associated with non-durable response. Concordantly, increased expression of spermidine synthase, a key enzyme that regulates levels of acetylated spermidine, was prognostic for survival in r/r LBCL. A broad metabolite screen identified additional markers that resulted in a 6-marker panel (6MetP) consisting of acetylspermidine, diacetylspermidine, and lysophospholipids, which was validated in an independent set from another institution as predictive of non-durable response to CAR-T therapy. A polyamine centric metabolomics liquid biopsy panel has predictive value for response to CAR-T therapy in r/r LBCL.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Neeraj Y Saini
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Chang Chia-Chi
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA; Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Paolo Strati
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ranjit Nair
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Luis E Fayad
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Hun Ju Lee
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Swaminathan Iyer
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Raphael Steiner
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Ranran Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | - Loretta Nastoupil
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Preetesh Jain
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Green
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Jason Westin
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Viktoria Blumenberg
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marco Davila
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Richard Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christopher R Flowers
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Jain
- Department of Blood and Marrow Transplant and Cellular Therapy, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| | - Robert Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Christoph K Stein-Thoeringer
- National Center for Tumor Diseases (NCT), Neuenheimer Feld 460, 69120 Heidelberg, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, 81377 Munich, Germany; German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg, Germany; Laboratory for Translational Cancer Immunology, Gene Center of the LMU Munich, Munich, Germany.
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
37
|
Holbert CE, Cullen MT, Casero RA, Stewart TM. Polyamines in cancer: integrating organismal metabolism and antitumour immunity. Nat Rev Cancer 2022; 22:467-480. [PMID: 35477776 PMCID: PMC9339478 DOI: 10.1038/s41568-022-00473-2] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The natural mammalian polyamines putrescine, spermidine and spermine are essential for both normal and neoplastic cell function and replication. Dysregulation of metabolism of polyamines and their requirements is common in many cancers. Both clinical and experimental depletion of polyamines have demonstrated their metabolism to be a rational target for therapy; however, the mechanisms through which polyamines can establish a tumour-permissive microenvironment are only now emerging. Recent data indicate that polyamines can play a major role in regulating the antitumour immune response, thus likely contributing to the existence of immunologically 'cold' tumours that do not respond to immune checkpoint blockade. Additionally, the interplay between the microbiota and associated tissues creates a tumour microenvironment in which polyamine metabolism, content and function can all be dramatically altered on the basis of microbiota composition, dietary polyamine availability and tissue response to its surrounding microenvironment. The goal of this Perspective is to introduce the reader to the many ways in which polyamines, polyamine metabolism, the microbiota and the diet interconnect to establish a tumour microenvironment that facilitates the initiation and progression of cancer. It also details ways in which polyamine metabolism and function can be successfully targeted for therapeutic benefit, including specifically enhancing the antitumour immune response.
Collapse
Affiliation(s)
- Cassandra E Holbert
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Robert A Casero
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
38
|
Abstract
Neuroblastomas are tumours of sympathetic origin, with a heterogeneous clinical course ranging from localized or spontaneously regressing to widely metastatic disease. Neuroblastomas recapitulate many of the features of sympathoadrenal development, which have been directly targeted to improve the survival outcomes in patients with high-risk disease. Over the past few decades, improvements in the 5-year survival of patients with metastatic neuroblastomas, from <20% to >50%, have resulted from clinical trials incorporating high-dose chemotherapy with autologous stem cell transplantation, differentiating agents and immunotherapy with anti-GD2 monoclonal antibodies. The next generation of trials are designed to improve the initial response rates in patients with high-risk neuroblastomas via the addition of immunotherapies, targeted therapies (such as ALK inhibitors) and radiopharmaceuticals to standard induction regimens. Other trials are focused on testing precision medicine strategies for patients with relapsed and/or refractory disease, enhancing the antitumour immune response and improving the effectiveness of maintenance regimens, in order to prolong disease remission. In this Review, we describe advances in delineating the pathogenesis of neuroblastoma and in identifying the drivers of high-risk disease. We then discuss how this knowledge has informed improvements in risk stratification, risk-adapted therapy and the development of novel therapies.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| | - Katherine K Matthay
- Department of Paediatrics, Division of Paediatric Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
39
|
Difluoromethylornithine (DFMO) and AMXT 1501 inhibit capsule biosynthesis in pneumococci. Sci Rep 2022; 12:11804. [PMID: 35821246 PMCID: PMC9276676 DOI: 10.1038/s41598-022-16007-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/04/2022] [Indexed: 01/03/2023] Open
Abstract
Polyamines are small cationic molecules that have been linked to various cellular processes including replication, translation, stress response and recently, capsule regulation in Streptococcus pneumoniae (Spn, pneumococcus). Pneumococcal-associated diseases such as pneumonia, meningitis, and sepsis are some of the leading causes of death worldwide and capsule remains the principal virulence factor of this versatile pathogen. α-Difluoromethyl-ornithine (DFMO) is an irreversible inhibitor of the polyamine biosynthesis pathway catalyzed by ornithine decarboxylase and has a long history in modulating cell growth, polyamine levels, and disease outcomes in eukaryotic systems. Recent evidence shows that DFMO can also target arginine decarboxylation. Interestingly, DFMO-treated cells often escape polyamine depletion via increased polyamine uptake from extracellular sources. Here, we examined the potential capsule-crippling ability of DFMO and the possible synergistic effects of the polyamine transport inhibitor, AMXT 1501, on pneumococci. We characterized the changes in pneumococcal metabolites in response to DFMO and AMXT 1501, and also measured the impact of DFMO on amino acid decarboxylase activities. Our findings show that DFMO inhibited pneumococcal polyamine and capsule biosynthesis as well as decarboxylase activities, albeit, at a high concentration. AMXT 1501 at physiologically relevant concentration could inhibit both polyamine and capsule biosynthesis, however, in a serotype-dependent manner. In summary, this study demonstrates the utility of targeting polyamine biosynthesis and transport for pneumococcal capsule inhibition. Since targeting capsule biosynthesis is a promising way for the eradication of the diverse and pathogenic pneumococcal strains, future work will identify small molecules similar to DFMO/AMXT 1501, which act in a serotype-independent manner.
Collapse
|
40
|
Urban-Wójciuk Z, Graham A, Barker K, Kwok C, Sbirkov Y, Howell L, Campbell J, Woster PM, Poon E, Petrie K, Chesler L. The biguanide polyamine analog verlindamycin promotes differentiation in neuroblastoma via induction of antizyme. Cancer Gene Ther 2022; 29:940-950. [PMID: 34522028 PMCID: PMC9293756 DOI: 10.1038/s41417-021-00386-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/09/2021] [Accepted: 08/27/2021] [Indexed: 11/09/2022]
Abstract
Deregulated polyamine biosynthesis is emerging as a common feature of neuroblastoma and drugs targeting this metabolic pathway such as DFMO are in clinical and preclinical development. The polyamine analog verlindamycin inhibits the polyamine biosynthesis pathway enzymes SMOX and PAOX, as well as the histone demethylase LSD1. Based on our previous research in acute myeloid leukemia (AML), we reasoned verlindamycin may also unblock neuroblastoma differentiation when combined with all-trans-retinoic acid (ATRA). Indeed, co-treatment with verlindamycin and ATRA strongly induced differentiation regardless of MYCN status, but in MYCN-expressing cells, protein levels were strongly diminished. This process was not transcriptionally regulated but was due to increased degradation of MYCN protein, at least in part via ubiquitin-independent, proteasome-dependent destruction. Here we report that verlindamycin effectively induces the expression of functional tumor suppressor-antizyme via ribosomal frameshifting. Consistent with previous results describing the function of antizyme, we found that verlindamycin treatment led to the selective targeting of ornithine decarboxylase (the rate-limiting enzyme for polyamine biosynthesis) as well as key oncoproteins, such as cyclin D and Aurora A kinase. Retinoid-based multimodal differentiation therapy is one of the few interventions that extends relapse-free survival in MYCN-associated high-risk neuroblastoma and these results point toward the potential use of verlindamycin in this regimen.
Collapse
Affiliation(s)
- Zuzanna Urban-Wójciuk
- Division of Clinical Studies, Institute of Cancer Research, London, UK.
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK.
| | - Amy Graham
- School of Natural Sciences, University of Stirling, Stirling, UK
| | - Karen Barker
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Colin Kwok
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Yordan Sbirkov
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| | - Louise Howell
- Cell Imaging Facility, Institute of Cancer Research, London, UK
| | - James Campbell
- Bioinformatics Core Facility, Institute of Cancer Research, London, UK
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Evon Poon
- Division of Clinical Studies, Institute of Cancer Research, London, UK.
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK.
| | - Kevin Petrie
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
- School of Natural Sciences, University of Stirling, Stirling, UK
- School of Medicine, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research, London, UK
- Division of Cancer Therapeutics, Institute of Cancer Research, London, UK
| |
Collapse
|
41
|
Paudyal S, Vallejo FA, Cilingir EK, Zhou Y, Mintz KJ, Pressman Y, Gu J, Vanni S, Graham RM, Leblanc RM. DFMO Carbon Dots for Treatment of Neuroblastoma and Bioimaging. ACS APPLIED BIO MATERIALS 2022; 5:3300-3309. [PMID: 35771033 DOI: 10.1021/acsabm.2c00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroblastoma (NB) is a pediatric malignancy affecting the peripheral nervous system. Despite recent advancements in treatment, many children affected with NB continue to submit to this illness, and new therapeutic strategies are desperately needed. In recent years, studies of carbon dots (CDs) as nanocarriers have mostly focused on the delivery of anticancer agents because of their biocompatibility, good aqueous dissolution, and photostability. Their fluorescence properties, surface functionalities, and surface charges differ on the basis of the type of precursors used and the synthetic approach implemented. At present, most CDs are used as nanocarriers by directly linking them either covalently or electrostatically to drug molecules. Though most modern CDs are synthesized from large carbon macromolecules and conjugated to anticancerous drugs, constructing CDs from the anticancerous drugs and precursors themselves to increase antitumoral activity requires further investigation. Herein, CDs were synthesized using difluoromethylornithine (DFMO), an irreversible ornithine decarboxylase inhibitor commonly used in high-risk neuroblastoma treatment regiments. In this study, NB cell lines, SMS-KCNR and SK-N-AS, were treated with DFMO, the newly synthesized DFMO CDs, and conventional DFMO conjugated to black carbon dots. Bioimaging was done to determine the cellular localization of a fluorescent drug over time. The mobility of DNA mixed with DFMO CDs was evaluated by gel electrophoresis. DFMO CDs were effectively synthesized from DFMO precursor and characterized using spectroscopic methods. The DFMO CDs effectively reduced cell viability with increasing dose. The effects were dramatic in the N-MYC-amplified line SMS-KCNR at 500 μM, which is comparable to high doses of conventional DFMO at a 60-fold lower concentration. In vitro bioimaging as well as DNA electrophoresis showed that synthesized DFMO CDs were able to enter the nucleus of neuroblastoma cells and neuronal cells and interact with DNA. Our new DFMO CDs exhibit a robust advantage over conventional DFMO because they induce comparable reductions in viability at a dramatically lower concentration.
Collapse
Affiliation(s)
- Suraj Paudyal
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Frederic Anthony Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States.,University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States
| | - Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States
| | - Jun Gu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States.,HCA Florida University Hospital, 3476 S University Dr., Davie, Florida 33328, United States.,Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, Florida 33328, United States
| | - Regina M Graham
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States.,University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States.,Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|
42
|
Fiches GN, Wu Z, Zhou D, Biswas A, Li TW, Kong W, Jean M, Santoso NG, Zhu J. Polyamine biosynthesis and eIF5A hypusination are modulated by the DNA tumor virus KSHV and promote KSHV viral infection. PLoS Pathog 2022; 18:e1010503. [PMID: 35486659 PMCID: PMC9094511 DOI: 10.1371/journal.ppat.1010503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
Polyamines are critical metabolites involved in various cellular processes and often dysregulated in cancers. Kaposi’s sarcoma-associated Herpesvirus (KSHV), a defined human oncogenic virus, leads to profound alterations of host metabolic landscape to favor development of KSHV-associated malignancies. In our studies, we identified that polyamine biosynthesis and eIF5A hypusination are dynamically regulated by KSHV infection through modulation of key enzymes (ODC1 and DHPS) of these pathways. During KSHV latency, ODC1 and DHPS are upregulated along with increase of hypusinated eIF5A (hyp-eIF5A), while hyp-eIF5A is further induced along with reduction of ODC1 and intracellular polyamines during KSHV lytic reactivation. In return these metabolic pathways are required for both KSHV lytic reactivation and de novo infection. Further analysis unraveled that synthesis of critical KSHV latent and lytic proteins (LANA, RTA) depends on hypusinated-eIF5A. We also demonstrated that KSHV infection can be efficiently and specifically suppressed by inhibitors targeting these pathways. Collectively, our results illustrated that the dynamic and profound interaction of a DNA tumor virus (KSHV) with host polyamine biosynthesis and eIF5A hypusination pathways promote viral propagation, thus defining new therapeutic targets to treat KSHV-associated malignancies. Understanding virus-host interactions is crucial to develop and improve therapies. Kaposi’s sarcoma associated Herpesvirus (KSHV) is a human gamma-herpesvirus which deeply modulates the host metabolism and is associated with various cancers of endothelial and lymphoid origin. Polyamines are critical metabolites often dysregulated in cancers. In this study we demonstrated KSHV dynamically modulates polyamine metabolism to favor eIF5A hypusination and translation of critical KSHV latent and lytic proteins (LANA, RTA). Consequently, we found KSHV lytic switch from latency and de novo infection were dependent on polyamines and hypusination and pharmacological inhibition efficiently and specifically restricted KSHV infection. Our study provides new insights into KSHV alteration of the host metabolism and describe new therapeutic targets to treat KSHV-associated malignancies.
Collapse
Affiliation(s)
- Guillaume N. Fiches
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Zhenyu Wu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Dawei Zhou
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Ayan Biswas
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tai-Wei Li
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Weili Kong
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Maxime Jean
- Department of Neurology, University of Rochester Medical center, Rochester, New York, United States of America
| | - Netty G. Santoso
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
| | - Jian Zhu
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Kraveka JM, Lewis EC, Bergendahl G, Ferguson W, Oesterheld J, Kim E, Nagulapally AB, Dykema KJ, Brown VI, Roberts WD, Mitchell D, Eslin D, Hanson D, Isakoff MS, Wada RK, Harrod VL, Rawwas J, Hanna G, Hendricks WPD, Byron SA, Snuderl M, Serrano J, Trent JM, Saulnier Sholler GL. A pilot study of genomic-guided induction therapy followed by immunotherapy with difluoromethylornithine maintenance for high-risk neuroblastoma. Cancer Rep (Hoboken) 2022; 5:e1616. [PMID: 35355452 PMCID: PMC9675391 DOI: 10.1002/cnr2.1616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/16/2022] [Accepted: 02/27/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.
Collapse
Affiliation(s)
| | - Elizabeth C. Lewis
- Wayne State University School of MedicineDetroitMichiganUSA,Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA
| | | | | | | | - Elizabeth Kim
- Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA,Wesleyan UniversityMiddletownConnecticutUSA
| | | | - Karl J. Dykema
- Levine Children's Hospital, Atrium HealthCharlotteNorth CarolinaUSA
| | - Valerie I. Brown
- Penn State Children's Hospital at the Milton S. Hershey Medical Center and Penn State College of MedicineHersheyPennsylvaniaUSA
| | - William D. Roberts
- Rady Children's Hospital San Diego and UC San Diego School of MedicineSan DiegoCaliforniaUSA
| | - Deanna Mitchell
- Helen DeVos Children's Hospital at Spectrum HealthGrand RapidsMichiganUSA
| | - Don Eslin
- St. Joseph's Children's HospitalTampaFloridaUSA
| | - Derek Hanson
- Hackensack University Medical CenterHackensackNew JerseyUSA
| | - Michael S. Isakoff
- Center for Cancer and Blood DisordersConnecticut Children's Medical CenterHartfordConnecticutUSA
| | - Randal K. Wada
- Kapiolani Medical Center for Women & ChildrenHonoluluHawaiiUSA
| | | | - Jawhar Rawwas
- Children's Hospitals and Clinics of MinnesotaMinneapolisMinnesotaUSA
| | - Gina Hanna
- Orlando Health Cancer InstituteOrlandoFloridaUSA
| | | | - Sara A. Byron
- Translational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | - Matija Snuderl
- NYU Langone Health and NYU Grossman School of MedicineNew York CityNew YorkUSA
| | - Jonathan Serrano
- NYU Langone Health and NYU Grossman School of MedicineNew York CityNew YorkUSA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute (TGen)PhoenixArizonaUSA
| | | |
Collapse
|
44
|
Polyamine Immunometabolism: Central Regulators of Inflammation, Cancer and Autoimmunity. Cells 2022; 11:cells11050896. [PMID: 35269518 PMCID: PMC8909056 DOI: 10.3390/cells11050896] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
Polyamines are ubiquitous, amine-rich molecules with diverse processes in biology. Recent work has highlighted that polyamines exert profound roles on the mammalian immune system, particularly inflammation and cancer. The mechanisms by which they control immunity are still being described. In the context of inflammation and autoimmunity, polyamine levels inversely correlate to autoimmune phenotypes, with lower polyamine levels associated with higher inflammatory responses. Conversely, in the context of cancer, polyamines and polyamine biosynthetic genes positively correlate with the severity of malignancy. Blockade of polyamine metabolism in cancer results in reduced tumor growth, and the effects appear to be mediated by an increase in T-cell infiltration and a pro-inflammatory phenotype of macrophages. These studies suggest that polyamine depletion leads to inflammation and that polyamine enrichment potentiates myeloid cell immune suppression. Indeed, combinatorial treatment with polyamine blockade and immunotherapy has shown efficacy in pre-clinical models of cancer. Considering the efficacy of immunotherapies is linked to autoimmune sequelae in humans, termed immune-adverse related events (iAREs), this suggests that polyamine levels may govern the inflammatory response to immunotherapies. This review proposes that polyamine metabolism acts to balance autoimmune inflammation and anti-tumor immunity and that polyamine levels can be used to monitor immune responses and responsiveness to immunotherapy.
Collapse
|
45
|
Kim HI, Schultz CR, Chandramouli GVR, Geerts D, Risinger JI, Bachmann AS. Pharmacological targeting of polyamine and hypusine biosynthesis reduces tumor activity of endometrial cancer. J Drug Target 2022; 30:623-633. [PMID: 35100927 DOI: 10.1080/1061186x.2022.2036164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Endometrial cancer (EC) is a common and deadly cancer in women and novel therapeutic approaches are urgently needed. Polyamines (putrescine, spermidine, spermine) are critical for mammalian cell proliferation and MYC coordinately regulates polyamine metabolism through ornithine decarboxylase (ODC). ODC is a MYC target gene and rate-limiting enzyme of polyamine biosynthesis and the FDA-approved anti-protozoan drug α-difluoromethylornithine (DFMO) inhibits ODC activity and induces polyamine depletion that leads to tumor growth arrest. Spermidine is required for the hypusine-dependent activation of eukaryotic translation initiation factors 5A1 (eIF5A1) and 5A2 (eIF5A2) and connects the MYC/ODC-induced deregulation of spermidine to eIF5A1/2 protein translation, which is increased during cancer cell proliferation. We show that the eIF5A1 is significantly upregulated in EC cells compared to control cells (p = 0.000038) and that combined pharmacological targeting of ODC and eIF5A hypusination with cytostatic drugs DFMO and N1-guanyl-1,7-diaminoheptane (GC7), respectively, reduces eIF5A1 activation and synergistically induces apoptosis in EC cells. In vivo, DFMO/GC7 suppressed xenografted EC tumor growth in mice more potently than each drug alone compared to control (p = 0.002) and decreased putrescine (p = 0.045) and spermidine levels in tumor tissues. Our data suggest DFMO and GC7 combination therapy may be useful in the treatment or prevention of EC.
Collapse
Affiliation(s)
- Hong Im Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids MI
| | - Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids MI
| | | | - Dirk Geerts
- Glycostem Therapeutics, Oss, The Netherlands
| | - John I Risinger
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids MI
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids MI
| |
Collapse
|
46
|
Westphal MS, Lee E, Schadt EE, Sholler GS, Zhu J. Identification of Let-7 miRNA Activity as a Prognostic Biomarker of SHH Medulloblastoma. Cancers (Basel) 2021; 14:cancers14010139. [PMID: 35008302 PMCID: PMC8750188 DOI: 10.3390/cancers14010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric embryonal brain tumor. The current consensus classifies MB into four molecular subgroups: sonic hedgehog-activated (SHH), wingless-activated (WNT), Group 3, and Group 4. MYCN and let-7 play a critical role in MB. Thus, we inferred the activity of miRNAs in MB by using the ActMiR procedure. SHH-MB has higher MYCN expression than the other subgroups. We showed that high MYCN expression with high let-7 activity is significantly associated with worse overall survival, and this association was validated in an independent MB dataset. Altogether, our results suggest that let-7 activity and MYCN can further categorize heterogeneous SHH tumors into more and less-favorable prognostic subtypes, which provide critical information for personalizing treatment options for SHH-MB. Comparing the expression differences between the two SHH-MB prognostic subtypes with compound perturbation profiles, we identified FGFR inhibitors as one potential treatment option for SHH-MB patients with the less-favorable prognostic subtype.
Collapse
Affiliation(s)
| | - Eunjee Lee
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Eric E. Schadt
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Giselle S. Sholler
- Helen DeVos Children’s Hospital, Grand Rapids, MI 49503, USA;
- College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jun Zhu
- Sema4, 333 Ludlow St., Stamford, CT 06902, USA; (M.S.W.); (E.L.); (E.E.S.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
47
|
Structural basis of binding and inhibition of ornithine decarboxylase by 1-amino-oxy-3-aminopropane. Biochem J 2021; 478:4137-4149. [PMID: 34796899 DOI: 10.1042/bcj20210647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022]
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme for the synthesis of polyamines (PAs). PAs are oncometabolites that are required for proliferation, and pharmaceutical ODC inhibition is pursued for the treatment of hyperproliferative diseases, including cancer and infectious diseases. The most potent ODC inhibitor is 1-amino-oxy-3-aminopropane (APA). A previous crystal structure of an ODC-APA complex indicated that APA non-covalently binds ODC and its cofactor pyridoxal 5-phosphate (PLP) and functions by competing with the ODC substrate ornithine for binding to the catalytic site. We have revisited the mechanism of APA binding and ODC inhibition through a new crystal structure of APA-bound ODC, which we solved at 2.49 Å resolution. The structure unambiguously shows the presence of a covalent oxime between APA and PLP in the catalytic site, which we confirmed in solution by mass spectrometry. The stable oxime makes extensive interactions with ODC but cannot be catabolized, explaining APA's high potency in ODC inhibition. In addition, we solved an ODC/PLP complex structure with citrate bound at the substrate-binding pocket. These two structures provide new structural scaffolds for developing more efficient pharmaceutical ODC inhibitors.
Collapse
|
48
|
Nakkina SP, Gitto SB, Beardsley JM, Pandey V, Rohr MW, Parikh JG, Phanstiel O, Altomare DA. DFMO Improves Survival and Increases Immune Cell Infiltration in Association with MYC Downregulation in the Pancreatic Tumor Microenvironment. Int J Mol Sci 2021; 22:13175. [PMID: 34947972 PMCID: PMC8706739 DOI: 10.3390/ijms222413175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor five-year survival rate of less than 10%. Immune suppression along with chemoresistance are obstacles for PDAC therapeutic treatment. Innate immune cells, such as tumor-associated macrophages, are recruited to the inflammatory environment of PDAC and adversely suppress cytotoxic T lymphocytes. KRAS and MYC are important oncogenes associated with immune suppression and pose a challenge to successful therapies. Here, we targeted KRAS, through inhibition of downstream c-RAF with GW5074, and MYC expression via difluoromethylornithine (DFMO). DFMO alone and with GW5074 reduced in vitro PDAC cell viability. Both DFMO and GW5074 showed efficacy in reducing in vivo PDAC growth in an immunocompromised model. Results in immunocompetent syngeneic tumor-bearing mice showed that DFMO and combination treatment markedly decreased tumor size, but only DFMO increased survival in mice. To further investigate, immunohistochemical staining showed DFMO diminished MYC expression and increased tumor infiltration of macrophages, CD86+ cells, CD4+ and CD8+ T lymphocytes. GW5074 was not as effective in modulating the tumor infiltration of total CD3+ lymphocytes or tumor progression and maintained MYC expression. Collectively, this study highlights that in contrast to GW5074, the inhibition of MYC through DFMO may be an effective treatment modality to modulate PDAC immunosuppression.
Collapse
Affiliation(s)
- Sai Preethi Nakkina
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Sarah B. Gitto
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jordan M. Beardsley
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Veethika Pandey
- Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.G.); (V.P.)
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael W. Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| | - Jignesh G. Parikh
- Department of Pathology, Orlando VA Medical Center, 13800 Veterans Way, Orlando, FL 32827, USA;
| | - Otto Phanstiel
- Department of Medical Education, College of Medicine, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA;
| | - Deborah A. Altomare
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; (S.P.N.); (J.M.B.); (M.W.R.)
| |
Collapse
|
49
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
50
|
Tao L, Moreno‐Smith M, Ibarra‐García‐Padilla R, Milazzo G, Drolet NA, Hernandez BE, Oh YS, Patel I, Kim JJ, Zorman B, Patel T, Kamal AHM, Zhao Y, Hicks J, Vasudevan SA, Putluri N, Coarfa C, Sumazin P, Perini G, Parchem RJ, Uribe RA, Barbieri E. CHAF1A Blocks Neuronal Differentiation and Promotes Neuroblastoma Oncogenesis via Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2005047. [PMID: 34365742 PMCID: PMC8498874 DOI: 10.1002/advs.202005047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/04/2021] [Indexed: 05/28/2023]
Abstract
Neuroblastoma (NB) arises from oncogenic disruption of neural crest (NC) differentiation. Treatment with retinoic acid (RA) to induce differentiation has improved survival in some NB patients, but not all patients respond, and most NBs eventually develop resistance to RA. Loss of the chromatin modifier chromatin assembly factor 1 subunit p150 (CHAF1A) promotes NB cell differentiation; however, the mechanism by which CHAF1A drives NB oncogenesis has remained unexplored. This study shows that CHAF1A gain-of-function supports cell malignancy, blocks neuronal differentiation in three models (zebrafish NC, human NC, and human NB), and promotes NB oncogenesis. Mechanistically, CHAF1A upregulates polyamine metabolism, which blocks neuronal differentiation and promotes cell cycle progression. Targeting polyamine synthesis promotes NB differentiation and enhances the anti-tumor activity of RA. The authors' results provide insight into the mechanisms that drive NB oncogenesis and suggest a rapidly translatable therapeutic approach (DFMO plus RA) to enhance the clinical efficacy of differentiation therapy in NB patients.
Collapse
|