1
|
Hong K, Li C, Ai J, Han X, Han B, Qin Q, Deng H, Wu T, Zhao X, Huang W, Zhan J, You Y. Biogenic amines degradation ability of Saccharomyces cerevisiae I45 and Pichia sp. NW5 & LB60 and their application in beer fermentation. Food Res Int 2025; 202:115726. [PMID: 39967102 DOI: 10.1016/j.foodres.2025.115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
Biogenic amines (BAs) are abundant in craft beer and pose toxicological risks to consumers. Certain microbes have shown potential for degrading BAs. This study, for the first time, used beer as a fermentation system to screen three yeast strains: Saccharomyces cerevisiae I45, Pichia kluyveri NW5, and Pichia terricola LB60, which effectively reduced BA levels in stout beer. The degradation rates for tryptamine by S. cerevisiae I45, tyramine by P. kluyveri NW5, and putrescine by P. terricola LB60 were 55.76 %, 41.75 %, and 36.53 %, respectively. After mixed fermentation, the total BAs degradation rate in the stout beer was 48.81 %, and the highest degradation rates of the representative bioamines tryptamine and putrescine were 40.52 % and 50.96 %, respectively. Additionally, glycerol yield and ester content were significantly increased, without negatively impacting the beer's volatile aroma components, while enhancing characteristic aromas like rose and tropical fruit. These findings provide a theoretical basis and technical guidance for improving the safety and sensory quality of craft beer.
Collapse
Affiliation(s)
- Kexin Hong
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Chenyu Li
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; School of Advanced Agricultural Sciences, Peking University, Beijing 100871 China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700 Jiangsu, China
| | - Jingya Ai
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; College of Food Science and Engineering, Ningxia University, West Helan Mountain Road 489, Xixia District, Yinchuan, Ningxia, Hui Autonomous Region 750021, China
| | - Xiaoyu Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Bing Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Qiuxing Qin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700 Jiangsu, China
| | - Huan Deng
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Tianyang Wu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Xiaoxuan Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700 Jiangsu, China
| | - Weidong Huang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China
| | - Yilin You
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Viticulture and Enology, China Agricultural University, Tsinghua East Road 17, Haidian District, Beijing 100083 China.
| |
Collapse
|
2
|
Izquierdo-Cañas PM, Del Fresno JM, Malfeito-Ferreira M, Mena-Morales A, García-Romero E, Heras JM, Loira I, González C, Morata A. Wine bioacidification: Fermenting Airén grape juices with Lachancea thermotolerans and Metschnikovia pulcherrima followed by sequential Saccharomyces cerevisiae inoculation. Int J Food Microbiol 2025; 427:110977. [PMID: 39557001 DOI: 10.1016/j.ijfoodmicro.2024.110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Biological acidification and bioprotection are interesting tools to overcome some problems of climate change and fit some consumer requirements for fresher wine styles. Juices of Airén (Vitis vinifera L.) were fermented by Lachancea thermotolerans (Lt) and Metschnikowia pulcherrima (Mp) starters and compared with Saccharomyces cerevisiae (Sc). Fermentations were monitored and wines were analysed for standard parameters and volatile fractions by SPE-GC-MS. Wines were evaluated by an experienced tasting panel. All ferments reached dryness with lower volatile acidity and lower ethanol than the control. All strains of Lt used for biological acidification reduced the pH values of wines (pH 3.25-3.56) more than chemical acidification with 1.5 g/L of tartaric acid (pH 3.64). Wines were characterised by different total acidity and volatile composition according to the yeasts used. Lt and Mp produced wines with higher perception of freshness and acidity than Sc control, probably elicited by the higher production of lactic acid complemented with higher contents of succinic acid (+0.2-0.6 g/L). Overall, the results showed that bioacidification is a practical alternative to chemical acidification to cope with either climate change or consumer demand for fresher wine styles.
Collapse
Affiliation(s)
- Pedro Miguel Izquierdo-Cañas
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Spain.
| | - Juan Manuel Del Fresno
- enotecUPM. Escuela Técnica Superior de Ingería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid. Avenida Puerta de Hierro 2, 28040 Madrid, Spain.
| | - Manuel Malfeito-Ferreira
- LEAF, Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| | - Adela Mena-Morales
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Spain.
| | - Esteban García-Romero
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Spain.
| | | | - Iris Loira
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Spain.
| | - Carmen González
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Spain.
| | - Antonio Morata
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Albacete s/n, 13700 Tomelloso, Spain.
| |
Collapse
|
3
|
Nakatani M, Ohtani R, Umezawa K, Uchise T, Matsuo Y, Fukuta Y, Obata E, Katabuchi A, Kizaki K, Kitazume H, Ohashi M, Johzuka K, Kurata A, Uegaki K. Characterization and application of Lachancea thermotolerans isolates for sake brewing. J Biosci Bioeng 2025; 139:30-35. [PMID: 39489649 DOI: 10.1016/j.jbiosc.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Non-conventional yeasts are increasingly being used in the production of fermented beverages owing to their ability to create unique and high-quality products. The yeast Lachancea thermotolerans is of great industrial significance, particularly in the production of l(+)-lactic acid, which is beneficial for acidifying wine, beer, and potentially sake. To explore its potential in sake brewing, three L. thermotolerans strains were isolated from natural environments and their physiological and fermentative characteristics were examined. The isolates surpassed the L. thermotolerans type strain (NBRC 1985) in lactic acid production under various culture conditions and exhibited comparable growth rates to that of Saccharomyces cerevisiae at 15-20 °C. Sake brewing tests using these isolates yielded approximately 3500 ppm of lactic acid, with a slightly lower production of aroma components compared to that produced by sake yeast, and an ethanol content of approximately 11-12 % was obtained. Reverse transcription-quantitative polymerase chain reaction revealed variable expression in putative lactate dehydrogenase genes depending on the culture conditions. Our findings suggest that L. thermotolerans strains can be used in sake brewing to produce unique sake.
Collapse
Affiliation(s)
- Miyu Nakatani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Rina Ohtani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kiwamu Umezawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Taiyo Uchise
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Yoshifumi Matsuo
- Industrial Research Center of Shiga Prefecture, 232 Kamitoyama, Ritto, Shiga 520-3004, Japan
| | - Yasuhisa Fukuta
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Eri Obata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Aruma Katabuchi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Kento Kizaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hana Kitazume
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Masataka Ohashi
- Nara Prefecture Institute of Industrial Development, 129-1 Kashiwagi, Nara 630-8031, Japan
| | - Katsuki Johzuka
- Astrobiology Center, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Atsushi Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Koichi Uegaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
4
|
Vicente J, Benito S, Marquina D, Santos A. Subpopulation-specific gene expression in Lachancea thermotolerans uncovers distinct metabolic adaptations to wine fermentation. Curr Res Food Sci 2024; 10:100954. [PMID: 39760014 PMCID: PMC11699796 DOI: 10.1016/j.crfs.2024.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Gene expression is the first step in translating genetic information into quantifiable traits. This study analysed gene expression in 23 strains across six subpopulations of Lachancea thermotolerans, shaped by anthropization, under winemaking conditions to understand the impact of adaptation on transcriptomic profiles and fermentative performance, particularly regarding lactic acid production. Understanding the gene expression differences linked to lactic acid production could allow a more rational address of biological acidification while optimizing yeast-specific nutritional requirements during fermentation. By sequencing mRNA during exponential growth and fermentation in synthetic grape must, we identified unique expression patterns linked to the strains originated from wine-related environments. Global expression analysis revealed that anthropized subpopulations, particularly Europe/Domestic-2 and Europe-Mix, exhibited distinct gene expression profiles related to fermentation processes such as glycolysis and pyruvate metabolism. These processes were differentially expressed, along with other important biological processes during fermentation, such as nitrogen and fatty acid metabolism. This study highlights that anthropization has driven metabolic specialization in L. thermotolerans, enhancing traits like lactic acid production, which is a trait of interest in modern winemaking. Correlation analysis further linked lactic acid dehydrogenase genes with key metabolic pathways, indicating adaptive gene expression regulation. Additionally, differences in other metabolites of oenological interest as glycerol or aroma compounds production are highlighted. Here, we provide insights into the evolutionary processes shaping the transcriptomic diversity of L. thermotolerans, emphasizing the impact of winemaking environments on driving specific metabolic adaptations, including lactic acid production.
Collapse
Affiliation(s)
- Javier Vicente
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, 28040, Madrid, Spain
| | - Domingo Marquina
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
5
|
Jiranek V. The prospect of superior yeast for winemaking: recent successes through bioprospecting. Curr Opin Biotechnol 2024; 90:103200. [PMID: 39288658 DOI: 10.1016/j.copbio.2024.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
This article provides a selective review of recent reports that describe developments in the pursuit of superior yeast for winemaking through bioprospecting. In recent years, the focus of researchers and starter-culture companies has broadened. No longer are the targets merely strains that are reliable and sensorily inoffensive. Rather, efforts have expanded to seek much greater precision in these age-old targets and/or strains that address aspects of sustainability by enabling reduced waste, fewer chemicals or less energy input.
Collapse
Affiliation(s)
- Vladimir Jiranek
- School of Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton SO17 1BJ, UK; School of Agriculture, Food and Wine, the University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
6
|
Vaquero C, Escott C, Loira I, López C, González C, Fresno JMD, Guamis B, Morata A. Effect of Ultra-High Pressure Homogenisation (UHPH) on the Co-Inoculation of Lachancea thermotolerans and Metschnikowia pulcherrima in Tempranillo Must. Biomolecules 2024; 14:1498. [PMID: 39766205 PMCID: PMC11673755 DOI: 10.3390/biom14121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The utilisation of non-Saccharomyces yeasts in co-inoculation and non-thermal technologies for must sterilisation is becoming increasingly prevalent due to their notable utility and potential. This new approach optimises the fermentation process and contributes to facilitating the production of wines with distinctive characteristics, improving their stability, and without organoleptic repercussions. Two trials were conducted concurrently, designated as A and B, using the same Tempranillo red must. In each trial, UHPH-treated and untreated must (serving as the control) were compared. The non-Saccharomyces yeasts (Lachancea thermotolerans and Metschnikowia pulcherrima) were identical in both trials, and fermentations were terminated by a Saccharomyces cerevisiae inoculated after 7 days (ternary fermentation). In Trial A, different percentages of the initial inoculum were employed with respect to the total volume that must be fermented, with the objective of evaluating the influence and competitiveness between yeasts. Trial B was designed to investigate the impact of two nutrients that provide vitamins, energy, and protection from oxidative stress on the development of these yeasts and their metabolic expression. Microbiological analysis and measurements of oenological parameters were carried out, acidification was assessed, volatile compounds were analysed, and the colour spectrum was measured by spectrophotometry. It was observed in both trials that the prevalence of Lachancea thermotolerans (Lt) was longer than that of Metschnikowia pulcherrima (Mp) and that the use of quercetin + thiamine had a positive effect on yeast growth. Furthermore, the combination of Lt and Mp yeasts demonstrated remarkable synergy, resulting in the production of a substantial quantity of lactic acid (>5 g/L). With regard to aroma compounds, the UHPH must have exhibited a nearly twofold increase in ethyl lactate. Additionally, the total polyphenol index (TPI) was observed to be 8-10% higher in wines derived from UHPH musts, indicating that this technology may potentially safeguard against oxidation.
Collapse
Affiliation(s)
- Cristian Vaquero
- Madrid Culinary Campus (MACC), Universidad Pontificia de Comillas, Calle Alberto Aguilera 23, 28015 Madrid, Spain
| | - Carlos Escott
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Sección Departamental de Farmacia Galénica y Tecnología Alimentaria, Facultad de Veterinaria, Universidad Complutense de Madrid, Avenida Puerta de Hierro s/n, 28040 Madrid, Spain;
| | - Iris Loira
- enotecUPM, Escuela Técnica Superior de Ingería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid, Spain; (I.L.); (C.L.); (C.G.); (J.M.D.F.); (A.M.)
| | - Carmen López
- enotecUPM, Escuela Técnica Superior de Ingería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid, Spain; (I.L.); (C.L.); (C.G.); (J.M.D.F.); (A.M.)
| | - Carmen González
- enotecUPM, Escuela Técnica Superior de Ingería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid, Spain; (I.L.); (C.L.); (C.G.); (J.M.D.F.); (A.M.)
| | - Juan Manuel Del Fresno
- enotecUPM, Escuela Técnica Superior de Ingería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid, Spain; (I.L.); (C.L.); (C.G.); (J.M.D.F.); (A.M.)
| | - Buenaventura Guamis
- Centre d’Innovació, Recerca i Transferència en Tecnologia dels Aliments (CIRTTA), TECNIO, XaRTA, Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Antonio Morata
- enotecUPM, Escuela Técnica Superior de Ingería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Avenida Puerta de Hierro 2, 28040 Madrid, Spain; (I.L.); (C.L.); (C.G.); (J.M.D.F.); (A.M.)
| |
Collapse
|
7
|
Corbu VM, Dumbravă AȘ, Gheorghe-Barbu I, Csutak O. Epiphytic Yeasts from South Romania for Preventing Food Microbial Contamination. Life (Basel) 2024; 14:1087. [PMID: 39337871 PMCID: PMC11433553 DOI: 10.3390/life14091087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Epiphytic yeasts represent an important source for the development of novel strategies aiming to combat food microbial contamination. The present study deals with the characterization of nine yeast strains belonging to Starmerella, Candida, Metschinikowia, Lachancea, Kodamaea and Pichia genera, isolated from the surface of plants from the Botanical Garden "Dimitrie Brandza" (Bucharest, Romania) for use as antimicrobial and probiotic agents. The tests involved the determination of the safe status, cell growth under stress conditions, and activity against pathogenic Candida and bacteria strains, respectively, as well as phytopathogenic filamentous fungi and lipolytic activity. None of the nine strains showed all the characteristics for virulence and pathogenicity, with the rare positive results being explained rather by their adaptability to the habitats of origin. The strains Lachancea thermotolerans CMGB-ST12 and Kodamaea ohmeri CMGB-ST19 grew at 37 °C; Metschnikowia reukaufii CMGB-ST21.2, M. reukaufii CMGB-ST.8.1 and M. reukaufii CMGB ST10 grew in the presence of 10% NaCl, while L. thermotolerans CMGB-ST12 and K. ohmeri CMGB-ST19 tolerated both acidic and alkaline pH values well (3.0 to 12.0). The studied yeast strains showed good antimicrobial activity against Candida krusei, Candida albicans and Gram-negative bacterial strains, with K. ohmeri CMGB-ST19 and Pichia membranaefaciens CMGB-ST53 inhibiting up to 100% the development of filamentous fungi. All the strains produced lipases for tributyrin hydrolysis, the best producer being Starmerella bombi CMGB-ST1, and only Candida magnoliae CMGB-ST8.2 tested positive against other probiotic yeasts. Overall, our nine yeast strains show high potential for industrial applications, for obtaining probiotic products and for preventing the development of a wide range of microbial food contaminants.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania;
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania;
| | - Andreea Ștefania Dumbravă
- Department of Technological Irradiation (IRASM), Horia Hulubei National Institute of Physics and Nuclear Engineering—IFIN-HH, 077125 Măgurele, Romania;
- Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Aleea Portocalelor, no. 1–3, 060101 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania;
- Department of Microbiology and Botany, Faculty of Biology, University of Bucharest, Aleea Portocalelor, no. 1–3, 060101 Bucharest, Romania
| | - Ortansa Csutak
- Department of Genetics, Faculty of Biology, University of Bucharest, Aleea Portocalelor 1-3, 060101 Bucharest, Romania;
- Research Institute of University of Bucharest (ICUB), University of Bucharest, B.P. Hasdeu Street 7, 050568 Bucharest, Romania;
| |
Collapse
|
8
|
Vion C, Le Mao I, Yeramian N, Muro M, Bernard M, Da Costa G, Richard T, Marullo P. Targeted 1-H-NMR wine analyses revealed specific metabolomic signatures of yeast populations belonging to the Saccharomyces genus. Food Microbiol 2024; 120:104463. [PMID: 38431337 DOI: 10.1016/j.fm.2024.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to explore the non-volatile metabolomic variability of a large panel of strains (44) belonging to the Saccharomyces cerevisiae and Saccharomyces uvarum species in the context of the wine alcoholic fermentation. For the S. cerevisiae strains flor, fruit and wine strains isolated from different anthropic niches were compared. This phenotypic survey was achieved with a special focus on acidity management by using natural grape juices showing opposite level of acidity. A 1H NMR based metabolomics approach was developed for quantifying fifteen wine metabolites that showed important quantitative variability within the strains. Thanks to the robustness of the assay and the low amount of sample required, this tool is relevant for the analysis of the metabolomic profile of numerous wines. The S. cerevisiae and S. uvarum species displayed significant differences for malic, succinic, and pyruvic acids, as well as for glycerol and 2,3-butanediol production. As expected, S. uvarum showed weaker fermentation fitness but interesting acidifying properties. The three groups of S. cerevisiae strains showed different metabolic profiles mostly related to their production and consumption of organic acids. More specifically, flor yeast consumed more malic acid and produced more acetic acid than the other S. cerevisiae strains which was never reported before. These features might be linked to the ability of flor yeasts to shift their metabolism during wine oxidation.
Collapse
Affiliation(s)
- Charlotte Vion
- Biolaffort, Bordeaux, France; UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France
| | - Ines Le Mao
- UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France
| | - Nadine Yeramian
- Microbiology Division, Department of Biotechnology and Food Science, Faculty of Science-University of Burgos, Spain
| | - Maïtena Muro
- Biolaffort, Bordeaux, France; UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France
| | - Margaux Bernard
- Biolaffort, Bordeaux, France; UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France
| | - Grégory Da Costa
- UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France
| | - Tristan Richard
- UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France
| | - Philippe Marullo
- Biolaffort, Bordeaux, France; UMR 1366 Œnologie, Université de Bordeaux, INRAE, Bordeaux INP, BSA, ISVV, France.
| |
Collapse
|
9
|
Tyibilika V, Setati ME, Bloem A, Divol B, Camarasa C. Differences in the management of intracellular redox state between wine yeast species dictate their fermentation performances and metabolite production. Int J Food Microbiol 2024; 411:110537. [PMID: 38150773 DOI: 10.1016/j.ijfoodmicro.2023.110537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/29/2023]
Abstract
The maintenance of the balance between oxidised and reduced redox cofactors is essential for the functioning of many cellular processes in all living organisms. While the electron transport chain plays a key role in maintaining this balance under respiratory conditions, its inactivity in the absence of oxygen poses a challenge that yeasts such as Saccharomyces cerevisiae overcome through the production of various metabolic end-products during alcoholic fermentation. In this study, we investigated the diversity occurring between wine yeast species in their management of redox balance and its consequences on the fermentation performances and the formation of metabolites. To this aim, we quantified the changes in NAD(H) and NADP(H) concentrations and redox status throughout the fermentation of 6 wine yeast species. While the availability of NADP and NADPH remained balanced and stable throughout the process for all the strains, important differences between species were observed in the dynamics of NAD and NADH intracellular pools. A comparative analysis of these data with the fermentation capacity and metabolic profiles of the strains revealed that Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans strains were able to reoxidise NADH to NAD throughout the fermentation, mainly by the formation of glycerol. These species exhibited good fermentation capacities. Conversely, Starmerella bacillaris and Metschnikowia pulcherrima species were unable to regenerate NAD as early as one third of sugars were consumed, explaining at least in part their poor growth and fermentation performances. The Kluyveromyces marxianus strain exhibited a specific behaviour, by maintaining similar levels of NAD and NADH throughout the process. This balance between oxidised and reduced redox cofactors ensured the consumption of a large part of sugars by this species, despite a low fermentation rate. In addition, the dynamics of redox cofactors affected the production of by-products by the various strains either directly or indirectly, through the formation of precursors. Major examples are the increased formation of glycerol by S. bacillaris and M. pulcherrima strains, as a way of trying to reoxidise NADH, and the greater capacity to produce acetate and derived metabolites of yeasts capable of maintaining their redox balance. Overall, this study provided new insight into the contribution of the management of redox status to the orientation of yeast metabolism during fermentation. This information should be taken into account when developing strategies for more efficient and effective fermentation.
Collapse
Affiliation(s)
- Viwe Tyibilika
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Mathabatha E Setati
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Audrey Bloem
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France
| | - Benoit Divol
- South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Carole Camarasa
- UMR SPO, INRAE, Institut Agro, Université de Montpellier, Montpellier, France; South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
10
|
Windholtz S, Nioi C, Coulon J, Masneuf-Pomarede I. Bioprotection by non-Saccharomyces yeasts in oenology: Evaluation of O 2 consumption and impact on acetic acid bacteria. Int J Food Microbiol 2023; 405:110338. [PMID: 37506548 DOI: 10.1016/j.ijfoodmicro.2023.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Bioprotection by yeast addition is increasingly used in oenology as an alternative to sulfur dioxide (SO2). Recent studies have also shown that it is likely to consume dissolved O2. This ability could limit O2 for other microorganisms and the early oxidation of the grape must. However, the ability of yeasts to consume O2 in a context of bioprotection was poorly studied so far considering the high genetic diversity of non-Saccharomyces. The first aim of the present study was to perform an O2 consumption rate (OCR) screening of strains from a large multi species collection found in oenology. The results demonstrate significant inter and intra species diversity with regard to O2 consumption. In the must M. pulcherrima consumes O2 faster than Saccharomyces cerevisiae and then other studied non-Saccharomyces species. The O2 consumption was also evaluate in the context of a yeast mix used as industrial bioprotection (Metschnikowia pulcherrima and Torulaspora delbrueckii) in red must. These non-Saccharomyces yeasts were then showed to limit the growth of acetic acid bacteria, with a bioprotective effect comparable to that of the addition of sulfur dioxide. Laboratory experiment confirmed the negative impact of the non-Saccharomyces yeasts on Gluconobacter oxydans that may be related to O2 consumption. This study sheds new lights on the use of bioprotection as an alternative to SO2 and suggest the possibility to use O2 consumption measurements as a new criteria for non-Saccharomyces strain selection in a context of bioprotection application for the wine industry.
Collapse
Affiliation(s)
- Sara Windholtz
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France.
| | - Claudia Nioi
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| | - Joana Coulon
- BioLaffort, 11 Rue Aristide Bergès, 33270 Floirac, France
| | - Isabelle Masneuf-Pomarede
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Sciences Agro, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33170 Gradignan, France
| |
Collapse
|
11
|
Comuzzo P, del Fresno JM, Voce S, Loira I, Morata A. Emerging biotechnologies and non-thermal technologies for winemaking in a context of global warming. Front Microbiol 2023; 14:1273940. [PMID: 37869658 PMCID: PMC10588647 DOI: 10.3389/fmicb.2023.1273940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
In the current situation, wine areas are affected by several problems in a context of global warming: asymmetric maturities, pH increasing, high alcohol degree and flat wines with low freshness and poor aroma profile. The use of emerging biotechnologies allows to control or manage such problems. Emerging non-Saccharomyces as Lachancea thermotolerans are very useful for controlling pH by the formation of stable lactic acid from sugars with a slight concomitant alcohol reduction. Lower pH improves freshness increasing simultaneously microbiological stability. The use of Hanseniaspora spp. (specially H. vineae and H. opuntiae) or Metschnikowia pulcherrima promotes a better aroma complexity and improves wine sensory profile by the expression of a more complex metabolic pattern and the release of extracellular enzymes. Some of them are also compatible or synergic with the acidification by L. thermotolerans, and M. pulcherrima is an interesting biotool for reductive winemaking and bioprotection. The use of bioprotection is a powerful tool in this context, allowing oxidation control by oxygen depletion, the inhibition of some wild microorganisms, improving the implantation of some starters and limiting SO2. This can be complemented with the use of reductive yeast derivatives with high contents of reducing peptides and relevant compounds such as glutathione that also are interesting to reduce SO2. Finally, the use of emerging non-thermal technologies as Ultra High-Pressure Homogenization (UHPH) and Pulsed Light (PL) increases wine stability by microbial control and inactivation of oxidative enzymes, improving the implantation of emerging non-Saccharomyces and lowering SO2 additions. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Piergiorgio Comuzzo
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | | | - Sabrina Voce
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Iris Loira
- enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
| | - Antonio Morata
- enotecUPM, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Ruiz J, de Celis M, Diaz‐Colunga J, Vila JCC, Benitez‐Dominguez B, Vicente J, Santos A, Sanchez A, Belda I. Predictability of the community-function landscape in wine yeast ecosystems. Mol Syst Biol 2023; 19:e11613. [PMID: 37548146 PMCID: PMC10495813 DOI: 10.15252/msb.202311613] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Predictively linking taxonomic composition and quantitative ecosystem functions is a major aspiration in microbial ecology, which must be resolved if we wish to engineer microbial consortia. Here, we have addressed this open question for an ecological function of major biotechnological relevance: alcoholic fermentation in wine yeast communities. By exhaustively phenotyping an extensive collection of naturally occurring wine yeast strains, we find that most ecologically and industrially relevant traits exhibit phylogenetic signal, allowing functional traits in wine yeast communities to be predicted from taxonomy. Furthermore, we demonstrate that the quantitative contributions of individual wine yeast strains to the function of complex communities followed simple quantitative rules. These regularities can be integrated to quantitatively predict the function of newly assembled consortia. Besides addressing theoretical questions in functional ecology, our results and methodologies can provide a blueprint for rationally managing microbial processes of biotechnological relevance.
Collapse
Affiliation(s)
- Javier Ruiz
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Department of Microbial and Plant BiotechnologyCentre for Biological Research (CIB‐CSIC)MadridSpain
| | - Miguel de Celis
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
- Department of Soil, Plant and Environmental QualityInstitute of Agricultural Sciences (ICA‐CSIC)MadridSpain
| | - Juan Diaz‐Colunga
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Jean CC Vila
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of BiologyStanford UniversityStanfordCAUSA
| | - Belen Benitez‐Dominguez
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Javier Vicente
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Antonio Santos
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| | - Alvaro Sanchez
- Department of Ecology & Evolutionary BiologyYale UniversityNew HavenCTUSA
- Department of Microbial BiotechnologyNational Centre for Biotechnology (CNB‐CSIC)MadridSpain
| | - Ignacio Belda
- Department of Genetics, Physiology and Microbiology, Biology FacultyComplutense University of MadridMadridSpain
| |
Collapse
|
13
|
Galaz V, Franco W. Lachancea quebecensis a Novel Isolate for the Production of Craft Beer. Foods 2023; 12:3347. [PMID: 37761056 PMCID: PMC10529567 DOI: 10.3390/foods12183347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Yeasts are ubiquitously present in different natural sources. Some of these yeasts have interesting characteristics for the production of fermented food products. This study characterized Lachancea thermotolerans and L. quebecensis isolated from insects to determine their brewing potential. The yeasts were evaluated according to their fermentative potential in glucose and maltose-defined media and their resistance to ethanol and hop. Finally, craft beer was elaborated at a laboratory scale (10 L). The yeasts utilized glucose as the only carbon source and produced 3.25 ± 1.77, and 4.25 ± 1.06% (v/v), of ethanol for L. thermotolerans and quebecensis, respectively. While in the maltose-defined medium, ethanol content reached 3.25 ± 0.45, and 3.92 ± 0.36, respectively. The presence of alpha acids and ethanol affected the growth of L. quebecensis, which showed lower growth at 90 IBU and 8 ethanol% (v/v) mixtures. The craft beer brewed with L. quebecensis in monoculture experiments showed fruity flavors associated with ethyl acetate and isoamyl acetate. The ethanol content reached 3.50 ± 0.46% (v/v). The beer pH was 4.06 ± 0.20, with a lactic acid concentration of 1.21 ± 0.05 g/L. The sensory panel identified the beer as "fruity", "floral", "hoppy", "sweet", and "sour". To our knowledge, this is the first time L. quebecensis was reported as a potential candidate for sour beer production with reduced ethanol content.
Collapse
Affiliation(s)
- Valeria Galaz
- Department of Chemical Engineering and Bioprocess, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
| | - Wendy Franco
- Department of Chemical Engineering and Bioprocess, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile;
- Departamento de Ciencias de la Salud, Carrera de Nutrición y Dietética, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| |
Collapse
|
14
|
New malic acid producer strains of Saccharomyces cerevisiae for preserving wine acidity during alcoholic fermentation. Food Microbiol 2023; 112:104209. [PMID: 36906297 DOI: 10.1016/j.fm.2022.104209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In the context of climate change, the chemical composition of wines is characterized by a massive drop of malic acid concentration in grape berries. Then wine professionals have to find out physical and/or microbiological solutions to manage wine acidity. The aim of this study is to develop wine Saccharomyces cerevisiae strains able to produce significant amount of malic acid during the alcoholic fermentation. By applying a large phenotypic survey in small scale fermentations, the production level of malic acid in seven grape juices confirmed the importance of the grape juice in the production of malic acid during the alcoholic fermentation. Beside the grape juice effect, our results demonstrated that extreme individuals able to produce up to 3 g/L of malic acid can be selected by crossing together appropriate parental strains. A multivariate analysis of the dataset generated illustrate that the initial the amount of malic acid produced by yeast is a determining exogenous factor for controlling the final pH of wine. Interestingly most of the acidifying strains selected are particularly enriched in alleles that have been previously reported for increasing the level of malic acid at the end of the alcoholic fermentation. A small set of acidifying strains were compared with strains able to consume a large amount of malic acid previously selected. The total acidity of resulting wines was statistically different and a panelist of 28 judges was able to discriminate the two groups of strains during a free sorting task analysis.
Collapse
|
15
|
De Guidi I, Legras JL, Galeote V, Sicard D. Yeast domestication in fermented food and beverages: past research and new avenues. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
16
|
Kogan HV, Elikan AB, Glaser KF, Bergmann JM, Raymond LM, Prado-Irwin SR, Snow JW. Colonization of Honey Bee Digestive Tracts by Environmental Yeast Lachancea thermotolerans Is Naturally Occurring, Temperature Dependent, and Impacts the Microbiome of Newly Emerged Bees. Microbiol Spectr 2023; 11:e0519422. [PMID: 36790179 PMCID: PMC10100982 DOI: 10.1128/spectrum.05194-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Honey bees are critical pollinators in both agricultural and ecological settings. Recent declines in honey bee colonies in the United States have put increased strain on agricultural pollination. Although there are many environmental stressors implicated in honey bee disease, there has been intensifying focus on the role of microbial attacks on honey bee health. Despite the long-standing appreciation for the association of fungi of various groups with honey bees and their broader environment, the effects of these interactions on honey bee health are incompletely understood. Here, we report the discovery of colonization of the honey bee digestive tract by the environmental yeast Lachancea thermotolerans. Experimental colonization of honey bee digestive tracts by L. thermotolerans revealed that this yeast species maintains high levels in the honey bee midgut only at temperatures below the typical colony temperature. In newly eclosed bees, L. thermotolerans colonization alters the microbiome, suggesting that environmental yeasts can impact its composition. Future studies should be undertaken to better understand the role of L. thermotolerans and other environmental yeasts in honey bee health. IMPORTANCE Although many fungal species are found in association with honey bees and their broader environment, the effects of these interactions on honey bee health are largely unknown. Here, we report the discovery that a yeast commonly found in the environment can be found at high levels in honey bee digestive tracts. Experimentally feeding this yeast to honey bees showed that the yeast's ability to maintain high levels in the digestive tract is influenced by temperature and can lead to alterations of the microbiome in young bees. These studies provide a foundation for future studies to better understand the role of environmental yeasts in honey bee health.
Collapse
Affiliation(s)
- Helen V. Kogan
- Biology Department, Barnard College, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Combined Use of Schizosaccharomyces pombe and a Lachancea thermotolerans Strain with a High Malic Acid Consumption Ability for Wine Production. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The development of new fermentative strategies exploiting the potential of different wine-related species is of great interest for new winemaking conditions and consumer preferences. One of the most promising non-conventional approaches to wine fermentation is the combined use of deacidifying and acidifying yeasts. Lachancea thermotolerans shows several other properties besides lactic acid production; among them, high malic acid consumption is of great interest in the production of red wines for avoiding undesirable refermentations once bottled. The combination of a L. thermotolerans strain that is able to consume malic acid with a Schizosaccharomyces pombe strain helps to ensure malic acid elimination during alcoholic fermentation while increasing the final acidity by lactic acid production. To properly assess the influence of this alternative strategy, we developed combined fermentations between specific strains of L. thermotolerans and S. pombe under sequential inoculation. Both species showed a great performance under the studied conditions, influencing not only the acidity but also the aromatic compound profiles of the resulting wines. The new proposed biotechnological strategy reduced the final concentrations of ethanol, malic acid and succinic acid, while it increased the concentrations of lactic acid and esters.
Collapse
|
18
|
Friedrich A, Gounot JS, Tsouris A, Bleykasten C, Freel K, Caradec C, Schacherer J. Contrasting Genomic Evolution Between Domesticated and Wild Kluyveromyces lactis Yeast Populations. Genome Biol Evol 2023; 15:evad004. [PMID: 36634937 PMCID: PMC9897184 DOI: 10.1093/gbe/evad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
The process of domestication has variable consequences on genome evolution leading to different phenotypic signatures. Access to the complete genome sequences of a large number of individuals makes it possible to explore the different facets of this domestication process. Here, we sought to explore the genome evolution of Kluyveromyces lactis, a yeast species well known for its involvement in dairy processes and also present in natural environments. Using a combination of short- and long-read sequencing strategies, we investigated the genomic variability of 41 K. lactis isolates and found that the overall genetic diversity of this species is very high (θw = 3.3 × 10-2) compared with other species such as Saccharomyces cerevisiae (θw = 1.6 × 10-2). However, the domesticated dairy population shows a reduced level of diversity (θw = 1 × 10-3), probably due to a domestication bottleneck. In addition, this entire population is characterized by the introgression of the LAC4 and LAC12 genes, responsible for lactose fermentation and coming from the closely related species, Kluyveromyces marxianus, as previously described. Our results highlighted that the LAC4/LAC12 gene cluster was acquired through multiple and independent introgression events. Finally, we also identified several genes that could play a role in adaptation to dairy environments through copy number variation. These genes are involved in sugar consumption, flocculation, and drug resistance, and may play a role in dairy processes. Overall, our study illustrates contrasting genomic evolution and sheds new light on the impact of domestication processes on it.
Collapse
Affiliation(s)
- Anne Friedrich
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | | | - Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | | | - Kelle Freel
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | - Claudia Caradec
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg 67000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| |
Collapse
|
19
|
Gardner JM, Alperstein L, Walker ME, Zhang J, Jiranek V. Modern yeast development: finding the balance between tradition and innovation in contemporary winemaking. FEMS Yeast Res 2023; 23:foac049. [PMID: 36255399 PMCID: PMC9990983 DOI: 10.1093/femsyr/foac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/11/2022] [Accepted: 02/01/2023] [Indexed: 11/13/2022] Open
Abstract
A key driver of quality in wines is the microbial population that undertakes fermentation of grape must. Winemakers can utilise both indigenous and purposefully inoculated yeasts to undertake alcoholic fermentation, imparting wines with aromas, flavours and palate structure and in many cases contributing to complexity and uniqueness. Importantly, having a toolbox of microbes helps winemakers make best use of the grapes they are presented with, and tackle fermentation difficulties with flexibility and efficiency. Each year the number of strains available commercially expands and more recently, includes strains of non-Saccharomyces, strains that have been improved using both classical and modern yeast technology and mixed cultures. Here we review what is available commercially, and what may be in the future, by exploring recent advances in fermentation relevant strain improvement technologies. We also report on the current use of microbes in the Australian wine industry, as reported by winemakers, as well as regulations around, and sentiment about the potential use of genetically modified organisms in the future.
Collapse
Affiliation(s)
- Jennifer M Gardner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Lucien Alperstein
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Michelle E Walker
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Jin Zhang
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, PMB1, Glen Osmond 5064, South Australia, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae 5064, South Australia, Australia
| |
Collapse
|
20
|
Villarreal P, Villarroel CA, O'Donnell S, Agier N, Quintero-Galvis JF, Peña TA, Nespolo RF, Fischer G, Varela C, Cubillos FA. Late Pleistocene-dated divergence between South Hemisphere populations of the non-conventional yeast L. cidri. Environ Microbiol 2022; 24:5615-5629. [PMID: 35769023 DOI: 10.1111/1462-2920.16103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/12/2023]
Abstract
Most organisms belonging to the Saccharomycotina subphylum have high genetic diversity and a vast repertoire of metabolisms and lifestyles. Lachancea cidri is an ideal yeast model for exploring the interplay between genetics, ecological function and evolution. Lachancea cidri diverged from the Saccharomyces lineage before the whole-genome duplication and is distributed across the South Hemisphere, displaying an important ecological success. We applied phylogenomics to investigate the genetic variation of L. cidri isolates obtained from Australia and South America. Our approach revealed the presence of two main lineages according to their geographic distribution (Aus and SoAm). Estimation of the divergence time suggests that SoAm and Aus lineages diverged near the last glacial maximum event during the Pleistocene (64-8 KYA). Interestingly, we found that the French reference strain is closely related to the Australian strains, with a recent divergence (405-51 YA), likely associated to human movements. Additionally, we identified different lineages within the South American population, revealing that Patagonia contains a similar genetic diversity comparable to that of other lineages in S. cerevisiae. These findings support the idea of a Pleistocene-dated divergence between South Hemisphere lineages, where the Nothofagus and Araucaria ecological niches likely favoured the extensive distribution of L. cidri in Patagonia.
Collapse
Affiliation(s)
- Pablo Villarreal
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos A Villarroel
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile.,Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
| | - Sam O'Donnell
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Nicolas Agier
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Julian F Quintero-Galvis
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Tomas A Peña
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Roberto F Nespolo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.,Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Universidad Católica de Chile, Santiago, Chile.,Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Gilles Fischer
- Laboratory of Computational and Quantitative Biology, CNRS, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Cristian Varela
- The Australian Wine Research Institute, Glen Osmond, Adelaide, South Australia, Australia.,Department of Wine and Food Science, University of Adelaide, Glen Osmond, Adelaide, South Australia, Australia
| | - Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| |
Collapse
|
21
|
Escott C, Vaquero C, Loira I, López C, González C, Morata A. Synergetic Effect of Metschnikowia pulcherrima and Lachancea thermotolerans in Acidification and Aroma Compounds in Airén Wines. Foods 2022; 11:foods11223734. [PMID: 36429326 PMCID: PMC9689907 DOI: 10.3390/foods11223734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
On the one hand, the species Lachancea thermotolerans is known for its high genetic diversity, allowing for the existence of strains that produce high concentrations of lactic acid. In contrast, the species Metschnikowia pulcherrima is renowned for its high enzymatic activity capable of producing aromatic esters during fermentation. By enhancing acidity and boosting the concentration of aromatic compounds, both species are currently used to enhance the organoleptic profile of wines. In this regard, ternary fermentations with M. pulcherrima and L. thermotolerans were carried out and the wines produced were further analysed with GC-FID, FTIR, and UV-Vis spectrophotometry. The outcomes showed that the species M. pulcherrima favored an increase in ethyl lactate (between 37 and 41 mg/L) along with an increased concentration of 2-phenylethyl alcohol (between 30 and 35 mg/L), whereas the species L. thermotolerans was able to produce 1 g/L of lactic acid in ternary fermentations. Additionally, pH levels were slightly lower in these fermentations and the color of the white wines produced showed less chemical oxidation as hue values were lower than the control. Finally, the ternary fermentations of L. thermotolerans and M. pulcherrima had higher overall rating in the tasting. In conclusion, ternary fermentations involving these two non-Saccharomyces species are suggested as a substitute for spontaneous fermentations in the production of wines from neutral varieties to express freshness more vividly. This biotechnology may be further favored by the possibility of applying emerging technologies for the removal of microorganisms in grapes and musts.
Collapse
|
22
|
Paradiso VM, Sanarica L, Zara I, Pisarra C, Gambacorta G, Natrella G, Cardinale M. Cultivar-Dependent Effects of Non- Saccharomyces Yeast Starter on the Oenological Properties of Wines Produced from Two Autochthonous Grape Cultivars in Southern Italy. Foods 2022; 11:3373. [PMID: 36359986 PMCID: PMC9654587 DOI: 10.3390/foods11213373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 10/21/2024] Open
Abstract
Global warming poses a threat to winemaking worldwide, especially in dry-warm regions such as Southern Italy. Must fermentation with non-Saccharomyces yeast starter is a possible approach to limit the negative effects of climate change, leading to desirable effects such as an increase in total acidity and/or aroma improvement. The aim of this study was to evaluate the effects of the use of a non-Saccharomyces starter (Lachancea thermotolerans) on the chemical and sensory properties of wines obtained by the the fermentation of two autochthonous Apulian grape cultivars, namely Bombino nero and Minutolo, as compared to the traditional Saccharomyces cerevisiae-driven fermentation. Bombino and Minutolo wines fermented with either Lachancea thermotolerans or Saccharomyces cerevisiae were characterized for their oenological parameters, volatile profiles, and sensory properties. Both chemical and sensory properties were affected by the yeast starter. Inoculation of L. thermotolerans increased sensory complexity, with different floral and sweet-like attributes for both cultivars. Bombino nero, a neutral cultivar, showed a clear effect on wine composition, with both an increase in lactic acid and a change in the volatile profile. On the contrary, the impact of L. thermotolerans was partially masked in Minutolo due to the strong primary aroma background of this highly terpenic cultivar. In this work, we evidenced a notable cultivar × yeast interaction, showing how generalizations of the effects of non-Saccharomyces yeasts on vinification are difficult to achieve, as they show a cultivar-specific outcome.
Collapse
Affiliation(s)
- Vito Michele Paradiso
- Laboratory of Agri-Food Microbiology and Food Technologies, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy
| | - Luigi Sanarica
- Enolife s.r.l., Viale delle Industrie, 74020 Montemesola, Italy
| | - Ignazio Zara
- I.I.S.S. Istituto di Istruzione Secondaria Superiore Basile Caramia–Gigante, Via Cisternino, 284, 70010 Locorotondo, Italy
| | - Chiara Pisarra
- Enolife s.r.l., Viale delle Industrie, 74020 Montemesola, Italy
| | - Giuseppe Gambacorta
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/a, 70126 Bari, Italy
| | - Giuseppe Natrella
- Department of Soil, Plant and Food Sciences, University of Bari, Via Amendola 165/a, 70126 Bari, Italy
| | - Massimiliano Cardinale
- Laboratory of Agri-Food Microbiology and Food Technologies, Department of Biological and Environmental Sciences and Technologies, University of Salento, S.P. 6 Lecce-Monteroni, 73100 Lecce, Italy
| |
Collapse
|
23
|
Battjes J, Melkonian C, Mendoza SN, Haver A, Al-Nakeeb K, Koza A, Schrubbers L, Wagner M, Zeidan AA, Molenaar D, Teusink B. Ethanol-lactate transition of Lachancea thermotolerans is linked to nitrogen metabolism. Food Microbiol 2022; 110:104167. [DOI: 10.1016/j.fm.2022.104167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022]
|
24
|
Non-Saccharomyces Are Also Forming the Veil of Flor in Sherry Wines. FERMENTATION 2022. [DOI: 10.3390/fermentation8090456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biological ageing is an essential process for obtaining some distinctive Sherry wines, such as Fino and Manzanilla. It occurs after the fermentation of the grape must due to the appearance of a biofilm on the surface of the wine called “veil of flor”. Yeasts belonging to the Saccharomyces cerevisiae species mainly comprise such biofilm. Although other species have also been found, these have been traditionally considered spoilage. Indeed, it has even been hypothesised that they may not be able to form biofilm on their own under such conditions. In the present work, four different non-Saccharomyces yeasts isolated from barrels in the Jerez area under biological ageing have been characterised through their physiological abilities, including extracellular enzymatic and biofilm-forming capabilities. Results showed not only a surprising ethanol tolerance, above 15.5% in all cases, but also a significant degree of extracellular enzyme production, highlighting the urease and proteolytic activities found in Pichia manshurica, as well as lipolytic activity in Pichia kudriavzevii, Pichia membranifaciens and Wicherhamomyces anomalus. As a conclusion, these non-Saccharomyces could be very interesting in the oenological field, beyond improving the organoleptic characteristics as well as technological features in these wines.
Collapse
|
25
|
Englezos V, Jolly NP, Di Gianvito P, Rantsiou K, Cocolin L. Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Abstract
Fermented beverages have been consumed for millennia and today support a global industry producing diverse products. Saccharomyces yeasts currently dominate the fermented beverage industry, but consumer demands for alternative products with a variety of sensory profiles and actual or perceived health benefits are driving the diversification and use of non-Saccharomyces yeasts. The diversity of flavours, aromas, and other sensory characteristics that can be obtained by using non-Saccharomyces yeasts in fermentation is, in large part, due to the diverse secondary metabolites they produce compared to conventional Saccharomyces yeast. Here, we review the use of metabolomic analyses of non-Saccharomyces yeasts to explore their impact on the sensory characteristics of fermented beverages. We highlight several key species currently used in the industry, including Brettanomyces, Torulaspora, Lachancea, and Saccharomycodes, and emphasize the future potential for the use of non-Saccharomyces yeasts in the production of diverse fermented beverages.
Collapse
|
27
|
Postigo V, Sanz P, García M, Arroyo T. Impact of Non- Saccharomyces Wine Yeast Strains on Improving Healthy Characteristics and the Sensory Profile of Beer in Sequential Fermentation. Foods 2022; 11:2029. [PMID: 35885271 PMCID: PMC9318315 DOI: 10.3390/foods11142029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The use of non-Saccharomyces yeasts in brewing is a useful tool for developing new products to meet the growing consumer demand for innovative products. Non-Saccharomyces yeasts can be used both in single and in mixed fermentations with Saccharomyces cerevisiae, as they are able to improve the sensory profile of beers, and they can be used to obtain functional beers (with a low ethanol content and melatonin production). The aim of this study was to evaluate this capacity in eight non-Saccharomyces strains isolated from Madrid agriculture. For this purpose, single fermentations were carried out with non-Saccharomyces strains and sequential fermentations with non-Saccharomyces and the commercial strain SafAle S-04. The Wickerhamomyces anomalus strain CLI 1028 was selected in pure culture for brewing beer with a low ethanol content (1.25% (v/v)) for its fruity and phenolic flavours and the absence of wort flavours. The best-evaluated strains in sequential fermentation were CLI 3 (Hanseniaspora vineae) and CLI 457 (Metschnikowia pulcherrima), due to their fruity notes as well as their superior bitterness, body, and balance. Volatile compounds and melatonin production were analysed by GC and HPLC, respectively. The beers were sensory-analysed by a trained panel. The results of the study show the potential of non-Saccharomyces strains in the production of low-alcohol beers, and as a flavour enhancement in sequential fermentation.
Collapse
Affiliation(s)
- Vanesa Postigo
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
- Brewery La Cibeles, Petróleo 34, 28918 Leganes, Spain
| | - Paula Sanz
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| | - Margarita García
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| | - Teresa Arroyo
- Department of Agri-Food, Madrid Institute for Rural, Food and Agriculture Research and Development (IMIDRA), El Encín, A-2, km 38.2, 28805 Alcala de Henares, Spain; (P.S.); (M.G.); (T.A.)
| |
Collapse
|
28
|
Multiparametric Approach to Interactions between Saccharomyces cerevisiae and Lachancea thermotolerans during Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of a significant part of current wine technology research is to better understand and monitor mixed culture fermentations and optimize the microbiological processes and characteristics of the final wine. In this context, the yeast couple formed by Lachancea thermotolerans and Saccharomyces cerevisiae is of particular interest. The diverse results observed in the literature have shown that wine characteristics are dependent on both interactions between yeasts and environmental and fermentation parameters. Here, we took a multiparametric approach to study the impact of fermentation parameters on three different but related aspects of wine fermentation: population dynamics, fermentation, and volatile compound production. An experimental design was used to assess the effects of four independent factors (temperature, oxygenation, nitrogen content, inoculum ratio) on variables representing these three aspects. Temperature and, to a lesser extent, oxygenation and the inoculum ratio, were shown to constitute key factors in optimizing the presence of Lachancea thermotolerans during fermentation. The inoculum ratio also appeared to greatly impact lactic acid production, while the quantity of nitrogen seemed to be involved more in the management of aroma compound production. These results showed that a global approach to mixed fermentations is not only pertinent, but also constitutes an important tool for controlling them.
Collapse
|
29
|
Morata A, Arroyo T, Bañuelos MA, Blanco P, Briones A, Cantoral JM, Castrillo D, Cordero-Bueso G, Del Fresno JM, Escott C, Escribano-Viana R, Fernández-González M, Ferrer S, García M, González C, Gutiérrez AR, Loira I, Malfeito-Ferreira M, Martínez A, Pardo I, Ramírez M, Ruiz-Muñoz M, Santamaría P, Suárez-Lepe JA, Vilela A, Capozzi V. Wine yeast selection in the Iberian Peninsula: Saccharomyces and non- Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries. Crit Rev Food Sci Nutr 2022; 63:10899-10927. [PMID: 35687346 DOI: 10.1080/10408398.2022.2083574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Yeast selection for the wine industry in Spain started in 1950 for the understanding of the microbial ecology, and for the selection of optimal strains to improve the performance of alcoholic fermentation and the overall wine quality. This process has been strongly developed over the last 30 years, firstly on Saccharomyces cerevisiae, and, lately, with intense activity on non-Saccharomyces. Several thousand yeast strains have been isolated, identified and tested to select those with better performance and/or specific technological properties. The present review proposes a global survey of this massive ex-situ preservation of eukaryotic microorganisms, a reservoir of biotechnological solutions for the wine sector, overviewing relevant screenings that led to the selection of strains from 12 genera and 22 species of oenological significance. In the first part, the attention goes to the selection programmes related to relevant wine-producing areas (i.e. Douro, Extremadura, Galicia, La Mancha and Uclés, Ribera del Duero, Rioja, Sherry area, and Valencia). In the second part, the focus shifted on specific non-Saccharomyces genera/species selected from different Spanish and Portuguese regions, exploited to enhance particular attributes of the wines. A fil rouge of the dissertation is the design of tailored biotechnological solutions for wines typical of given geographic areas.
Collapse
Affiliation(s)
- A Morata
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - T Arroyo
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - M A Bañuelos
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - P Blanco
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - A Briones
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - J M Cantoral
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - D Castrillo
- Estación de Viticultura e Enoloxía de Galicia (EVEGA-AGACAL), Leiro, Ourense, Spain
| | - G Cordero-Bueso
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - J M Del Fresno
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - C Escott
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - R Escribano-Viana
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - M Fernández-González
- Tecnología de alimentos, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - S Ferrer
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M García
- Departamento de Investigación Agroalimentaria, IMIDRA, Finca El Encín, Madrid, Spain
| | - C González
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A R Gutiérrez
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - I Loira
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Malfeito-Ferreira
- Departamento Recursos Naturais Ambiente e Território (DRAT), Linking Landscape Environment Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomía, Tapada da Ajuda, Lisboa, Portugal
| | - A Martínez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - I Pardo
- ENOLAB, Institut de Biotecnologia i Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - M Ramírez
- Departamento de Ciencias Biomédicas, Facultad de Ciencias (Edificio Antiguo Rectorado), Universidad de Extremadura, Badajoz, Spain
| | - M Ruiz-Muñoz
- Laboratorio de Microbiología. Dept. de Biomedicina, Biotecnología y Salud Pública. Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - P Santamaría
- Finca La Grajera, Instituto de Ciencias de la Vid y el Vino (Universidad de La Rioja, Gobierno de La Rioja, CSIC), Logroño, Spain
| | - J A Suárez-Lepe
- EnotecUPM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
| | - A Vilela
- CQ-VR, Chemistry Research Centre, School of Life and Environmental Sciences (ECVA), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - V Capozzi
- National Research Council (CNR) of Italy, c/o CS-DAT, Institute of Sciences of Food Production, Foggia, Italy
| |
Collapse
|
30
|
Vicente J, Baran Y, Navascués E, Santos A, Calderón F, Marquina D, Rauhut D, Benito S. Biological management of acidity in wine industry: A review. Int J Food Microbiol 2022; 375:109726. [DOI: 10.1016/j.ijfoodmicro.2022.109726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
|
31
|
Impact of Lachancea thermotolerans on Chemical Composition and Sensory Profiles of Viognier Wines. J Fungi (Basel) 2022; 8:jof8050474. [PMID: 35628730 PMCID: PMC9146010 DOI: 10.3390/jof8050474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Viognier is a warm climate grape variety prone to loss of acidity and accumulation of excessive sugars. The yeast Lachancea thermotolerans can improve the stability and balance of such wines due to the partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in co-inoculations and sequential inoculations with Saccharomyces cerevisiae in high sugar/pH Viognier fermentations. The results highlighted the dichotomy between the non-acidified and the bio-acidified L. thermotolerans treatments, with either comparable or up to 0.5 units lower pH relative to the S. cerevisiae control. Significant differences were detected in a range of flavour-active yeast volatile metabolites. The perceived acidity mirrored the modulations in wine pH/TA, as confirmed via “Rate-All-That-Apply” sensory analysis. Despite major variations in the volatile composition and acidity alike, the varietal aromatic expression (i.e., stone fruit aroma/flavour) remained conserved between the treatments.
Collapse
|
32
|
|
33
|
Vicente J, Navascués E, Calderón F, Santos A, Marquina D, Benito S. An Integrative View of the Role of Lachancea thermotolerans in Wine Technology. Foods 2021; 10:foods10112878. [PMID: 34829158 PMCID: PMC8625220 DOI: 10.3390/foods10112878] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022] Open
Abstract
The interest in Lachancea thermotolerans, a yeast species with unusual characteristics, has notably increased in all ecological, evolutionary, and industrial aspects. One of the key characteristics of L. thermotolerans is the production of high quantities of lactic acid compared to other yeast species. Its evolution has mainly been driven by the influence of the environment and domestication, allowing several metabolic traits to arise. The molecular regulation of the fermentative process in L. thermotolerans shows interesting routes that play a complementary or protective role against fermentative stresses. One route that is activated under this condition is involved in the production of lactic acid, presenting a complete system for its production, showing the involvement of several enzymes and transporters. In winemaking, the use of L. thermotolerans is nowadays mostly focused in early–medium-maturity grape varieties, in which over-ripening can produce wines lacking acidity and with high concentrations of ethanol. Recent studies have reported new positive influences on quality apart from lactic acid acidification, such as improvements in color, glutathione production, aroma, malic acid, polysaccharides, or specific enzymatic activities that constitute interesting new criteria for selecting better strains. This positive influence on winemaking has increased the availability of commercial strains during recent years, allowing comparisons among some of those products. Initially, the management of L. thermotolerans was thought to be combined with Saccaharomyces cerevisiae to properly end alcoholic fermentation, but new studies are innovating and reporting combinations with other key enological microorganisms such as Schizosaccharomyces pombe, Oenocous oeni, Lactiplantibacillus plantarum, or other non-Saccharomyces.
Collapse
Affiliation(s)
- Javier Vicente
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Eva Navascués
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain; (E.N.); (F.C.)
- Pago de Carraovejas, Camino de Carraovejas, S/N, 47300 Valladolid, Spain
| | - Fernando Calderón
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain; (E.N.); (F.C.)
| | - Antonio Santos
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Domingo Marquina
- Unit of Microbiology, Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain; (J.V.); (A.S.); (D.M.)
| | - Santiago Benito
- Department of Chemistry and Food Technology, Polytechnic University of Madrid, Ciudad Universitaria, S/N, 28040 Madrid, Spain; (E.N.); (F.C.)
- Correspondence: ; Tel.: +34-9133-63710 or +34-9133-63984
| |
Collapse
|
34
|
Madden AA, Lahue C, Gordy CL, Little JL, Nichols LM, Calvert MD, Dunn RR, Smukowski Heil C. Sugar-seeking insects as a source of diverse bread-making yeasts with enhanced attributes. Yeast 2021; 39:108-127. [PMID: 34687090 DOI: 10.1002/yea.3676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/17/2021] [Indexed: 11/10/2022] Open
Abstract
Insects represent a particularly interesting habitat in which to search for novel yeasts of value to industry. Insect-associated yeasts have the potential to have traits relevant to modern food and beverage production due to insect-yeast interactions, with such traits including diverse carbohydrate metabolisms, high sugar tolerance, and general stress tolerance. Here, we consider the potential value of insect-associated yeasts in the specific context of baking. We isolated 63 yeast strains from 13 species of hymenoptera from the United States, representing 37 yeast species from 14 genera. Screening for the ability to ferment maltose, a sugar important for bread production, resulted in the identification of 13 strains of Candida, Lachancea, and Pichia species. We assessed their ability to leaven dough. All strains produced baked loaves comparable to a commercial baking strain of Saccharomyces cerevisiae. The same 13 strains were also grown under various sugar and salt conditions relevant to osmotic challenges experienced in the manufacturing processes and the production of sweet dough. We show that many of these yeast strains, most notably strains of Lachancea species, grow at a similar or higher rate and population size as commercial baker's yeast. We additionally assessed the comparative phenotypes and genetics of insect-associated S. cerevisiae strains unable to ferment maltose and identified baking-relevant traits, including variations in the HOG1 signaling pathway and diverse carbohydrate metabolisms. Our results suggest that non-conventional yeasts have high potential for baking and, more generally, showcase the success of bioprospecting in insects for identifying yeasts relevant for industrial uses.
Collapse
Affiliation(s)
- Anne A Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,The Microbe Institute, Everett, Massachusetts, USA
| | - Caitlin Lahue
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA.,University of North Carolina Chapel-Hill, Chapel Hill, North Carolina, USA
| | - Claire L Gordy
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Joy L Little
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Lauren M Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Martha D Calvert
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA.,Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Robert R Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, USA
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
35
|
Binati RL, Salvetti E, Bzducha-Wróbel A, Bašinskienė L, Čižeikienė D, Bolzonella D, Felis GE. Non-conventional yeasts for food and additives production in a circular economy perspective. FEMS Yeast Res 2021; 21:6380488. [PMID: 34601574 DOI: 10.1093/femsyr/foab052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Yeast species have been spontaneously participating in food production for millennia, but the scope of applications was greatly expanded since their key role in beer and wine fermentations was clearly acknowledged. The workhorse for industry and scientific research has always been Saccharomyces cerevisiae. It occupies the largest share of the dynamic yeast market, that could further increase thanks to the better exploitation of other yeast species. Food-related 'non-conventional' yeasts (NCY) represent a treasure trove for bioprospecting, with their huge untapped potential related to a great diversity of metabolic capabilities linked to niche adaptations. They are at the crossroad of bioprocesses and biorefineries, characterized by low biosafety risk and produce food and additives, being also able to contribute to production of building blocks and energy recovered from the generated waste and by-products. Considering that the usual pattern for bioprocess development focuses on single strains or species, in this review we suggest that bioprospecting at the genus level could be very promising. Candida, Starmerella, Kluyveromyces and Lachancea were briefly reviewed as case studies, showing that a taxonomy- and genome-based rationale could open multiple possibilities to unlock the biotechnological potential of NCY bioresources.
Collapse
Affiliation(s)
- Renato L Binati
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Elisa Salvetti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Anna Bzducha-Wróbel
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c St., 02-776 Warsaw, Poland
| | - Loreta Bašinskienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų St. 19A, 44249 Kaunas, Lithuania
| | - Dalia Čižeikienė
- Department of Food Science and Technology, Kaunas University of Technology, Radvilėnų St. 19A, 44249 Kaunas, Lithuania
| | - David Bolzonella
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| | - Giovanna E Felis
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca' Vignal 2, 37134 Verona (VR), Italy
| |
Collapse
|
36
|
Phenotypic characterization of cell-to-cell interactions between two yeast species during alcoholic fermentation. World J Microbiol Biotechnol 2021; 37:186. [PMID: 34580785 DOI: 10.1007/s11274-021-03154-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Microbial multispecies ecosystems are responsible for many biotechnological processes and are particularly important in food production. In wine fermentations, in addition to the natural microbiota, several commercially relevant yeast species may be co-inoculated to achieve specific outcomes. However, such multispecies fermentations remain largely unpredictable because of multilevel interactions between naturally present and/or co-inoculated species. Understanding the nature of such interactions has therefore become essential for successful implementation of such strategies. Here we investigate interactions between strains of Saccharomyces cerevisiae and Lachancea thermotolerans. Co-fermentations with both species sharing the same bioreactor (physical contact) were compared to co-fermentations with physical separation between the species in a membrane bioreactor ensuring free exchange of metabolites. Yeast culturability, viability and the production of core metabolites were monitored. The previously reported negative interaction between these two yeast species was confirmed. Physical contact greatly reduced the culturability and viability of L. thermotolerans and led to earlier cell death, compared to when these yeasts were co-fermenting without cell-cell contact. In turn, in the absence of cell-cell contact, L. thermotolerans metabolic activity led to an earlier decline in culturability in S. cerevisiae. Cell-cell contact did not result in significant differences in the major fermentation metabolites ethanol, acetic acid and lactic acid, but impacted on the production of some volatile compounds.
Collapse
|
37
|
Abstract
When fermentation research requires the comparison of many strains or conditions, the major bottleneck is a technical one. Microplate approaches are not able to produce representative fermentative performance due to their inability to truly operate anaerobically, whilst more traditional methods do not facilitate sample density sufficient to assess enough candidates to be considered even medium throughput. Two robotic platforms have been developed that address these technological shortfalls. Both are built on commercially available liquid handling platforms fitted with custom labware. Results are presented detailing fermentation performance as compared to current best practice, i.e., shake flasks fitted with airlocks and sideports. The ‘TeeBot’ is capable sampling from 96 or 384 fermentations in 100 mL or 30 mL volumes, respectively, with airlock sealing and minimal headspace. Sampling and downstream analysis are facilitated by automated liquid handling, use of 96-well sample plate format and temporary cryo-storage (<0 °C).
Collapse
|
38
|
Selection Process of a Mixed Inoculum of Non-Saccharomyces Yeasts Isolated in the D.O.Ca. Rioja. FERMENTATION 2021. [DOI: 10.3390/fermentation7030148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of non-Saccharomyces yeasts in sequential fermentations with S. cerevisiae has been proposed to improve the organoleptic characteristics involved in the quality of wine. The present study set out to select a non-Saccharomyces inoculum from the D.O.Ca. Rioja for use in winemaking. Strains included in the study belonged to Torulaspora delbrueckii, Lachancea thermotolerans, Metschnikowia pulcherrima, Zygosaccharomyces bailii, Williopsis pratensis, Debaryomyces hansenii, Pichia kluyveri, Sporidiobolus salmonicolor, Candida spp., Cryptococcus spp. and two mixed inocula of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio. In the first stage of the process, SO2 resistance and presence of enzymatic activities related to wine aroma and wine color and fining (esterase, esterase-lipase, lipase, leucine arylamidase, valine arylamidase, cystine arylamidase, β-glucosidase, pectinase, cellulose, xylanase and glucanase) were studied. In the later stages, selection criteria such as fermentative behavior, aroma compound production or influence on phenolic compounds were studied in laboratory scale vinifications. Taking into account the results obtained in the different stages of the process, a mixed inoculum of Lachancea thermotolerans-Torulaspora delbrueckii in a 30/70 ratio was finally selected. This inoculum stood out for its high implantation capacity, the production of compounds of interest such as glycerol and lactic acid and the consequent modulation of wine acidity. Given these characteristics, the selected inoculum is suitable for the production of quality wines.
Collapse
|
39
|
Yalage Don SM, Gambetta JM, Steel CC, Schmidtke LM. Elucidating the interaction of carbon, nitrogen, and temperature on the biosynthesis of Aureobasidium pullulans antifungal volatiles. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:482-494. [PMID: 33448129 DOI: 10.1111/1758-2229.12925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
The combined biochemical impact of carbon, nitrogen and temperature on the biosynthesis of the antifungal volatile organic compounds (VOCs): ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethanol produced by Aureobasidium pullulans A1 and A3 was investigated using a Box-Behnken experimental design and response surface methodology (RSM). Normalized peak areas derived from solid phase micro extraction-gas chromatography-mass spectrometry (SPME-GC-MS) analysis, indicated that initial carbon content had a significant influence on the biosynthesis of ethanol and alcohols with greater than three carbon atoms. This result suggests a dominant activity of the A. pullulans anabolic pathway to biosynthesize three higher alcohols via de novo biosynthesis of amino acids from sugar metabolism. Low concentrations of carbon (3-13 g l-1 ) with nitrogen as both ammonium and amino acids in the growth medium resulted in a higher number of significant linear and quadratic relationships. Nitrogen availability and growth temperature had significant negative linear and quadratic correlations with VOCs biosynthesis in most instances. Isolate-dependant metabolic response was evident for all abiotic parameters tested on alcohol production. The findings of this study offer new perspectives to improve the production of key antifungal compounds by antagonists in biological control systems.
Collapse
Affiliation(s)
- Sashika M Yalage Don
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
| | - Joanna M Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
- South Australian Research and Development Institute Waite Campus, GPO Box 397, Adelaide, SA, 5001, Australia
| | - Christopher C Steel
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
| | - Leigh M Schmidtke
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW, 2678, Australia
| |
Collapse
|
40
|
Native Yeasts and Lactic Acid Bacteria Isolated from Spontaneous Fermentation of Seven Grape Cultivars from the Maule Region (Chile). Foods 2021; 10:foods10081737. [PMID: 34441515 PMCID: PMC8391128 DOI: 10.3390/foods10081737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/16/2023] Open
Abstract
Grapes are a source of native yeasts and lactic acid bacteria (LAB); however, the microbial make up is dependent on the grape cultivar and the regional growth conditions. Therefore, the aim of this study was to characterize the yeast and LAB in seven grape cultivars cultivated in Chile. Grape juices were fermented at 25 °C for 7 days. Samples were collected to analyze sugar, organic acids, and ethanol. Microbial evolution was measured with culture-dependent and molecular approaches. Then, a native isolated Candida oleophila was selected for further sequential fermentations with Saccharomyces cerevisiae. The grape cultivars in the Maule showed a diversity of non-Saccharomyces yeasts, with a greater diversity observed at the beginning of the fermentation. However, species from the Hansenasporia, Metschnikowia, Torulaspora, Lachancea, and Candida genera were detected after 7 days, suggesting tolerance to environments rich in ethanol, capability may be associated to the terroir studied, which is characterized by torrid weather and antique and traditional vineyards. The alcoholic fermentation negatively impacted the LAB population, and after 7 days only Leuconostoc mesenteroides was isolated. In the sequential fermentations, C. oleophila was able to produce fermented grape juices with <1.5 g/L glucose, 12.5% (v/v) alcohol, and low concentrations of malic (<1.00 g/L) and succinic (2.05 g/L) acids, while acetic acid reached values >0.3 (g/L). To our knowledge this is the first time C. oleophila has been reported as a potential starter culture for wine production. However, more studies are necessary to fully characterize the potential of C. oleophila on wine attributes.
Collapse
|
41
|
Morata A, Loira I, González C, Escott C. Non- Saccharomyces as Biotools to Control the Production of Off-Flavors in Wines. Molecules 2021; 26:molecules26154571. [PMID: 34361722 PMCID: PMC8348789 DOI: 10.3390/molecules26154571] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.
Collapse
|
42
|
The Combined Use of Lachancea thermotolerans and Lactiplantibacillus plantarum (former Lactobacillus plantarum) in Wine Technology. Foods 2021; 10:foods10061356. [PMID: 34199225 PMCID: PMC8232010 DOI: 10.3390/foods10061356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
Most commercialized red wines are produced through alcoholic fermentation performed by yeasts of the Saccharomyces genus, and a second fermentation performed by lactic bacteria of the Oenococus oeni species once the first is completely finished. However, the classical process can suffer complications, of which the risks can increase in grape juices with high contents of sugar and pH. Due to climate change, these situations are becoming more common in the winemaking industry. The main risks in those scenarios are alcoholic-fermentation stops or sluggish and undesirable bacteria development while alcoholic fermentation is not finished yet and wine still contains residual sugars. The study propose a novel alternative that offers a solution or reduces the risk of those scenarios while increasing acidity, which is another serious problem of warm viticulture regions. The alternative consists of the combined use of Lachancea thermotolerans to reduce the pH of musts that suffer from a lack of acidity, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) to achieve malic acid stability during the first stages of alcoholic fermentation, and Saccharomyces bayanus to complete the alcoholic fermentation in difficult wines of high potential alcohol degree of over 15% (v/v). The new proposed biotechnology produced wines with higher final concentrations in lactic acid, glycerol, color intensity, ethyl lactate and 2-phenyl ethyl acetate in 2.39 g/L, 0.52 g/L, 21%, 48% and 37% respectively than the classical methodology where Saccharomyces genus performs alcoholic fermentation and later Oenococus oeni performs malolactic fermentation. Additionally, the new alternative produced wines with lower concentration in ethanol, pH, acetic acid, ethyl acetate, diacetyl and 1-propanol in 0.37% (v/v), 0.26, 0.08 g/L, 22%, 69% and 28% respectively than the classic method.
Collapse
|
43
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
44
|
Population Dynamics and Yeast Diversity in Early Winemaking Stages without Sulfites Revealed by Three Complementary Approaches. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11062494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, the use of sulfur dioxide (SO2) during the winemaking process is a controversial societal issue. In order to reduce its use, various alternatives are emerging, in particular bioprotection by adding yeasts, with different impacts on yeast microbiota in early winemaking stages. In this study, quantitative-PCR and metabarcoding high-throughput sequencing (HTS) were combined with MALDI-TOF-MS to monitor yeast population dynamic and diversity in the early stages of red winemaking process without sulfites and with bioprotection by Torulaspora delbrueckii and Metschnikowia pulcherrima addition. By using standard procedures for yeast protein extraction and a laboratory-specific database of wine yeasts, identification at species level of 95% of the isolates was successfully achieved by MALDI-TOF-MS, thus confirming that it is a promising method for wine yeast identification. The different approaches confirmed the implantation and the niche occupation of bioprotection leading to the decrease of fungal communities (HTS) and Hanseniaspora uvarum cultivable population (MALDI-TOF MS). Yeast and fungi diversity was impacted by stage of maceration and, to a lesser extent, by bioprotection and SO2, resulting in a modification of the nature and abundance of the operational taxonomic units (OTUs) diversity.
Collapse
|
45
|
Peach DAH, Carroll C, Meraj S, Gomes S, Galloway E, Balcita A, Coatsworth H, Young N, Uriel Y, Gries R, Lowenberger C, Moore M, Gries G. Nectar-dwelling microbes of common tansy are attractive to its mosquito pollinator, Culex pipiens L. BMC Ecol Evol 2021; 21:29. [PMID: 33593286 PMCID: PMC7885224 DOI: 10.1186/s12862-021-01761-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 11/14/2022] Open
Abstract
Background There is widespread interkingdom signalling between insects and microbes. For example, microbes found in floral nectar may modify its nutritional composition and produce odorants that alter the floral odor bouquet which may attract insect pollinators. Mosquitoes consume nectar and can pollinate flowers. We identified microbes isolated from nectar of common tansy, Tanacetum vulgare, elucidated the microbial odorants, and tested their ability to attract the common house mosquito, Culex pipiens. Results We collected 19 microbial isolates from T. vulgare nectar, representing at least 12 different taxa which we identified with 16S or 26S rDNA sequencing as well as by biochemical and physiological tests. Three microorganisms (Lachancea thermotolerans, Micrococcus lactis, Micrococcus luteus) were grown on culture medium and tested in bioassays. Only the yeast L. thermotolerans grown on nectar, malt extract agar, or in synthetic nectar broth significantly attracted Cx. pipiens females. The odorant profile produced by L. thermotolerans varied with the nutritional composition of the culture medium. All three microbes grown separately, but presented concurrently, attracted fewer Cx. pipiens females than L. thermotolerans by itself. Conclusions Floral nectar of T. vulgare contains various microbes whose odorants contribute to the odor profile of inflorescences. In addition, L. thermotolerans produced odorants that attract Cx. pipiens females. As the odor profile of L. thermotolerans varied with the composition of the culture medium, we hypothesize that microbe odorants inform nectar-foraging mosquitoes about the availability of certain macro-nutrients which, in turn, affect foraging decisions by mosquitoes.
Collapse
Affiliation(s)
- D A H Peach
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada. .,The University of British Columbia, 2329 West Mall, Vancouver, BC, Canada.
| | - C Carroll
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - S Meraj
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - S Gomes
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - E Galloway
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - A Balcita
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.,University of Saskatchewan, 129-72 Campus Drive, Saskatoon, SK, Canada
| | - H Coatsworth
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.,Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL, USA
| | - N Young
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Y Uriel
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - R Gries
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - C Lowenberger
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - M Moore
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - G Gries
- Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| |
Collapse
|
46
|
González-Alonso I, Walker ME, Vallejo-Pascual ME, Naharro-Carrasco G, Jiranek V. Capturing yeast associated with grapes and spontaneous fermentations of the Negro Saurí minority variety from an experimental vineyard near León. Sci Rep 2021; 11:3748. [PMID: 33580153 PMCID: PMC7881026 DOI: 10.1038/s41598-021-83123-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
‘Microbial terroir’ relates to the influence of autochthonous yeasts associated with a grape cultivar on the resultant wine. Geographic region, vineyard site and topography, climate and vintage influence the biodiversity of these microbial communities. Current research focus attempts to correlate their ‘microbial fingerprint’ to the sensorial and chemical characteristics of varietal wines from distinct geographical wine regions. This study focuses on the minor red grape variety, Negro Saurí, which has seen a resurgence in the León Appellation of Origin in Spain as a varietal wine. An experimental vineyard at Melgarajo S.A. (42° 15′ 48.68_N 5° 9′ 56.66_W) was sampled over four consecutive vintages, with autochthonous yeasts being isolated from grapes, must and pilot-scale un-inoculated fermentations, and identified by ITS sequencing. Forty-nine isolates belonging to Metschnikowia pulcherrima, Lachancea thermotolerans, Hanseniaspora uvarum and Torulaspora delbrueckii were isolated from grapes and must, and early stages of fermentation dependent on seasonal variation. Saccharomyces cerevisiae predominated throughout fermentation, as a heterogeneous and dynamic population, with seven major biotypes identified amongst 110 isolates across four consecutive vintages. Twenty-four S. cerevisiae isolates representing five strains dominated in two or more vintages. Their persistence through fermentation warrants further validation of their oenological properties as starter cultures.
Collapse
Affiliation(s)
| | | | | | | | - Vladimir Jiranek
- Department of Wine Science, The University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia. .,Australian Research Council Training Centre for Innovative Wine Production, Adelaide, Australia.
| |
Collapse
|
47
|
Influence of Non- Saccharomyces on Wine Chemistry: A Focus on Aroma-Related Compounds. Molecules 2021; 26:molecules26030644. [PMID: 33530641 PMCID: PMC7865429 DOI: 10.3390/molecules26030644] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Wine fermentation processes are driven by complex microbial systems, which comprise eukaryotic and prokaryotic microorganisms that participate in several biochemical interactions with the must and wine chemicals and modulate the organoleptic properties of wine. Among these, yeasts play a fundamental role, since they carry out the alcoholic fermentation (AF), converting sugars to ethanol and CO2 together with a wide range of volatile organic compounds. The contribution of Saccharomyces cerevisiae, the reference organism associated with AF, has been extensively studied. However, in the last decade, selected non-Saccharomyces strains received considerable commercial and oenological interest due to their specific pro-technological aptitudes and the positive influence on sensory quality. This review aims to highlight the inter-specific variability within the heterogeneous class of non-Saccharomyces in terms of synthesis and release of volatile organic compounds during controlled AF in wine. In particular, we reported findings on the presence of model non-Saccharomyces organisms, including Torulaspora delbrueckii, Hanseniaspora spp,Lachancea thermotolerans, Metschnikowia pulcherrima, Pichia spp. and Candida zemplinina, in combination with S. cerevisiae. The evidence is discussed from both basic and applicative scientific perspective. In particular, the oenological significance in different kind of wines has been underlined.
Collapse
|
48
|
Hranilovic A, Albertin W, Capone DL, Gallo A, Grbin PR, Danner L, Bastian SEP, Masneuf-Pomarede I, Coulon J, Bely M, Jiranek V. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem 2021; 349:129015. [PMID: 33545601 DOI: 10.1016/j.foodchem.2021.129015] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/06/2023]
Abstract
Wines from warm(ing) climates often contain excessive ethanol but lack acidity. The yeast Lachancea thermotolerans can ameliorate such wines due to partial conversion of sugars to lactic acid during alcoholic fermentation. This study compared the performance of five L. thermotolerans strains in two inoculation modalities (sequential and co-inoculation) to Saccharomyces cerevisiae and un-inoculated treatments in high sugar/low acidity Merlot fermentations. The pH and ethanol levels in mixed-culture dry wines were either comparable, or significantly lower than in controls (decrease of up to 0.5 units and 0.90% v/v, respectively). The analysis of volatile compounds revealed marked differences in major flavour-active yeast metabolites, including up to a thirty-fold increase in ethyl lactate in certain L. thermotolerans modalities. The wines significantly differed in acidity perception, alongside 18 other sensory attributes. Together, these results highlight the potential of some L. thermotolerans strains to produce 'fresher' wines with lower ethanol content and improved flavour/balance.
Collapse
Affiliation(s)
- Ana Hranilovic
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| | - Warren Albertin
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; ENSCBP, Bordeaux INP, 33600 Pessac, France.
| | - Dimitra Liacopoulos Capone
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Adelaide Gallo
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Paul R Grbin
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Lukas Danner
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia.
| | - Susan E P Bastian
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| | - Isabelle Masneuf-Pomarede
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France; Bordeaux Sciences Agro, 33170 Gradignan, France.
| | | | - Marina Bely
- UR Oenologie EA 4577, USC 1366 INRAE, Bordeaux INP, Université de Bordeaux, Bordeaux, France.
| | - Vladimir Jiranek
- Department of Wine Science, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia; The Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia.
| |
Collapse
|
49
|
Mendes Ferreira A, Mendes-Faia A. The Role of Yeasts and Lactic Acid Bacteria on the Metabolism of Organic Acids during Winemaking. Foods 2020; 9:E1231. [PMID: 32899297 PMCID: PMC7555314 DOI: 10.3390/foods9091231] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022] Open
Abstract
The main role of acidity and pH is to confer microbial stability to wines. No less relevant, they also preserve the color and sensory properties of wines. Tartaric and malic acids are generally the most prominent acids in wines, while others such as succinic, citric, lactic, and pyruvic can exist in minor concentrations. Multiple reactions occur during winemaking and processing, resulting in changes in the concentration of these acids in wines. Two major groups of microorganisms are involved in such modifications: the wine yeasts, particularly strains of Saccharomyces cerevisiae, which carry out alcoholic fermentation; and lactic acid bacteria, which commonly conduct malolactic fermentation. This review examines various such modifications that occur in the pre-existing acids of grape berries and in others that result from this microbial activity as a means to elucidate the link between microbial diversity and wine composition.
Collapse
Affiliation(s)
- Ana Mendes Ferreira
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| | - Arlete Mendes-Faia
- University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- WM&B—Wine Microbiology & Biotechnology Laboratory, Department of Biology and Environment, UTAD, 5001-801 Vila Real, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
50
|
Pilot Scale Fermentations of Sangiovese: An Overview on the Impact of Saccharomyces and Non-Saccharomyces Wine Yeasts. FERMENTATION 2020. [DOI: 10.3390/fermentation6030063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The production of wines with peculiar analytical and sensorial profiles, together with the microbiological control of the winemaking process, has always been one of the main objectives of the wine industry. In this perspective, the use of oenological starters containing non-Saccharomyces yeasts can represent a valid tool for achieving these objectives. Here we present the results of seven pilot scale fermentations, each of which was inoculated with a different non-Saccharomyces yeast strain and after three days with a commercial Saccharomyces cerevisiae starter. The fermentations were carried out in double on 70 L of Sangiovese grape must, the most widely planted red grape variety in Italy and particularly in Tuscany, where it is utilized for the production of more than 80% of red wines. Fermentations were monitored by assessing both the development of the microbial population and the consumption of sugars at the different sampling times. The impact of the different starters was assessed after stabilization through the evaluation of the standard analytical composition of the resulting wines, also taking into account polysaccharides and volatile compounds. Moreover, quantitative descriptive sensory analyses were carried out. Compared to the control wines obtained by inoculating the S. cerevisiae starter strain, those inoculated with non-Saccharomyces/Saccharomyces mixed starters presented a significant differentiation in the chemical-analytical composition. Moreover, sensory analysis revealed differences among wines mainly for intensity of color, astringency, and dryness mouthfeel perception.
Collapse
|