1
|
Intharuksa A, Arunotayanun W, Takuathung MN, Boongla Y, Chaichit S, Khamnuan S, Prasansuklab A. Therapeutic Potential of Herbal Medicines in Combating Particulate Matter (PM)-Induced Health Effects: Insights from Recent Studies. Antioxidants (Basel) 2024; 14:23. [PMID: 39857357 PMCID: PMC11762796 DOI: 10.3390/antiox14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Particulate matter (PM), particularly fine (PM2.5) and ultrafine (PM0.1) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications. This review comprehensively examines the protective potential of natural products against PM-induced health issues across various physiological systems, including the respiratory, cardiovascular, skin, neurological, gastrointestinal, and ocular systems. It provides valuable insights into the health risks associated with PM exposure and highlights the therapeutic promise of herbal medicines by focusing on the natural products that have demonstrated protective properties in both in vitro and in vivo PM2.5-induced models. Numerous herbal medicines and phytochemicals have shown efficacy in mitigating PM-induced cellular damage through their ability to counteract oxidative stress, suppress pro-inflammatory responses, and enhance cellular defense mechanisms. These combined actions collectively protect tissues from PM-related damage and dysfunction. This review establishes a foundation for future research and the development of effective interventions to combat PM-related health issues. However, further studies, including in vivo and clinical trials, are essential to evaluate the safety, optimal dosages, and long-term effectiveness of herbal treatments for patients under chronic PM exposure.
Collapse
Affiliation(s)
- Aekkhaluck Intharuksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Warunya Arunotayanun
- Kanchanabhishek Institute of Medical and Public Health Technology, Faculty of Public Health and Allied Health Science, Praboromarajchanok Institute, Nonthaburi 11150, Thailand
| | - Mingkwan Na Takuathung
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yaowatat Boongla
- Department of Sustainable Development Technology, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (A.I.); (S.C.)
| | - Suthiwat Khamnuan
- Faculty of Pharmacy, Western University, Pathum Thani 12150, Thailand;
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence on Natural Products for Neuroprotection and Anti-Ageing, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Olivieri F, Biscetti L, Pimpini L, Pelliccioni G, Sabbatinelli J, Giunta S. Heart rate variability and autonomic nervous system imbalance: Potential biomarkers and detectable hallmarks of aging and inflammaging. Ageing Res Rev 2024; 101:102521. [PMID: 39341508 DOI: 10.1016/j.arr.2024.102521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
The most cutting-edge issue in the research on aging is the quest for biomarkers that transcend molecular and cellular domains to encompass organismal-level implications. We recently hypothesized the role of Autonomic Nervous System (ANS) imbalance in this context. Studies on ANS functions during aging highlighted an imbalance towards heightened sympathetic nervous system (SNS) activity, instigating a proinflammatory milieu, and attenuated parasympathetic nervous system (PNS) function, which exerts anti-inflammatory effects via the cholinergic anti-inflammatory pathway (CAP) and suppression of the hypothalamic-pituitary-adrenal (HPA) axis. This scenario strongly suggests that ANS imbalance can fuel inflammaging, now recognized as one of the most relevant risk factors for age-related disease development. Recent recommendations have increasingly highlighted the need for actionable strategies to improve the quality of life for older adults by identifying biomarkers that can be easily measured, even in asymptomatic individuals. We advocate for considering ANS imbalance as a biomarker of aging and inflammaging. Measures of ANS imbalance, such as heart rate variability (HRV), are relatively affordable, non-invasive, and cost-effective, making this hallmark easily diagnosable. HRV gains renewed significance within the aging research landscape, offering a tangible link between pathophysiological perturbations and age-related health outcomes.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | | | | | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy.
| | - Sergio Giunta
- Casa di Cura Prof. Nobili (Gruppo Garofalo GHC), Castiglione dei Pepoli, Bologna, Italy
| |
Collapse
|
3
|
Haddad P, Ogurtsova K, Lucht S, Glaubitz L, Höppe P, Nowak D, Angerer P, Hoffmann B. Short-term exposure to ultrafine and fine particulate matter with multipollutant modelling on heart rate variability among seniors and children from the CorPuScula (coronary, pulmonary, sanguis) longitudinal study in Germany. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1278506. [PMID: 38455908 PMCID: PMC10910943 DOI: 10.3389/fepid.2023.1278506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 03/09/2024]
Abstract
Background Short-term exposure particulate matter with a diameter of 10 µm or less (PM10) and fine particulate matter (PM2.5) has been associated with heart rate variability (HRV), but exposure to ultrafine particles (UFP) has been less well examined. We investigated the associations between the HRV outcomes and short-term exposure to UFP, PM10 and PM2.5 among school-aged children and seniors. Methods CorPuScula (Coronary, Pulmonary and Sanguis) is a longitudinal, repeated-measure panel study conducted in 2000-2002 in Munich, Germany including 52 seniors (58-94 years old) with 899 observations and 50 children (6-10 years old) with 925 observations. A 10-min resting electrocardiogram was performed to assess resting HRV outcomes [Standard Deviation of Normal to Normal Intervals (SDNN), Root Mean Square of Successive Differences between Normal Heartbeats (RMSSD), Low Frequency power (LF), High Frequency power (HF), ration between low and high frequency (LF/HF)]. UFP and PM exposures were measured near the care home and school yard for seniors and children, respectively. Mean exposures during the day of examination (9-21 h) as well as 3-h, 12-h, 24-h, one-day, and two-day lags were assessed. Linear mixed-effect models were used to investigate the associations between short-term air pollution and HRV outcomes separately in children and seniors. The models were adjusted for sex, age, weather conditions (temperature, precipitation, and water vapor pressure), BMI, lifestyle and medical information. Two and multipollutant models adjusted for NO2 and O3 were performed. Results Among seniors, we observed increases in SDNN, LF, HF and LF/HF ratio after short-term exposure to UFP (hourly and daily lags) in contrast to decreases in SDNN and RMSSD after exposure to PM10. Associations were generally robust to two- and multipollutant adjustment. Among children, we observed increases of the LF/HF ratio after short-term exposures to UFP at lags 12 and 24 h. In contrast, we observed decreases of the ratio after exposure to PM2.5 and PM10. Results were largely unchanged for multipollutant modelling, however we found a more pronounced increase in SDNN and LF/HF (UFP lag 12 and 24 h) after adjusting for NO2. Conclusions Overall, among seniors, we observed associations of UFP and PM10 exposure with sympathetic responses of the ANS, which play an important role in sudden heart attacks or arrhythmia. Among children we found more inconsistent associations between UFP and a delayed increase in HRV. Adjusting for co-pollutants including NO2 and O3 yielded robust results.
Collapse
Affiliation(s)
- Pascale Haddad
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katherine Ogurtsova
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sarah Lucht
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Real-World Evidence & Insights, Cardinal Health, Dublin, OH, United States
| | - Lina Glaubitz
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Höppe
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dennis Nowak
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Angerer
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Barbara Hoffmann
- Institute for Occupational Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Raju S, Woo H, Koehler K, Fawzy A, Liu C, Putcha N, Balasubramanian A, Peng RD, Lin CT, Lemoine C, Wineke J, Berger RD, Hansel NN, McCormack MC. Indoor Air Pollution and Impaired Cardiac Autonomic Function in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2023; 207:721-730. [PMID: 36288428 PMCID: PMC10037475 DOI: 10.1164/rccm.202203-0523oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Rationale: Indoor air pollution represents a modifiable risk factor for respiratory morbidity in chronic obstructive pulmonary disease (COPD). The effects of indoor air pollution, as well as the impact of interventions to improve indoor air quality, on cardiovascular morbidity in COPD remain unknown. Objectives: To determine the association between indoor particulate matter (PM) and heart rate variability (HRV), a measure of cardiac autonomic function tied to cardiovascular morbidity and mortality, as well as the impact of household air purifiers on HRV. Methods: Former smokers with moderate-severe COPD were recruited from a 6-month randomized controlled trial of a portable air cleaner intervention to undergo paired assessment of both in-home PM and HRV using 24-hour Holter monitoring at up to five time points. Primary outcomes were HRV measures tied to cardiovascular morbidity (standard deviation of normal-to-normal intervals [SDNN] and root mean square of successive differences between normal-to-normal intervals [RMSSD]). Measurements and Results: Eighty-five participants contributed 317 HRV measurements. A twofold increase in household PM ⩽2.5 µm in aerodynamic diameter was associated with decreases in SDNN (β, -2.98% [95% confidence interval (CI), -5.12 to -0.78]) and RMSSD (β, -4.57% [95% CI, -10.1 to -1.60]). The greatest effects were observed with ultrafine particles (<100 nm) (RMSSD; β, -16.4% [95% CI, -22.3 to -10.1]) and among obese participants. Participants randomized to the active air cleaner saw improvements in RMSSD (β, 25.2% [95% CI, 2.99 to 52.1]), but not SDNN (β, 2.65% [95% CI, -10.8 to 18.1]), compared with the placebo group. Conclusions: This is the first U.S. study to describe the association between household PM and cardiac autonomic function among individuals with COPD, as well as the potential cardiovascular health benefits of household air cleaners.
Collapse
Affiliation(s)
| | | | - Kirsten Koehler
- Department of Environmental Health Sciences and Engineering and
| | | | | | | | | | - Roger D. Peng
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Cheng Ting Lin
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chantal Lemoine
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; and
| | - Jennifer Wineke
- Department of Psychiatry, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Nadia N. Hansel
- Department of Medicine and
- Department of Environmental Health Sciences and Engineering and
| | - Meredith C. McCormack
- Department of Medicine and
- Department of Environmental Health Sciences and Engineering and
| |
Collapse
|
5
|
Jiang Y, Chen R, Peng W, Luo Y, Chen X, Jiang Q, Han B, Su G, Duan Y, Huo J, Qu X, Fu Q, Kan H. Hourly Ultrafine Particle Exposure and Acute Myocardial Infarction Onset: An Individual-Level Case-Crossover Study in Shanghai, China, 2015-2020. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1701-1711. [PMID: 36668989 DOI: 10.1021/acs.est.2c06651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Associations between ultrafine particles (UFPs) and hourly onset of acute myocardial infarction (AMI) have rarely been investigated. We aimed to evaluate the impacts of UFPs on AMI onset and the lag patterns. A time-stratified case-crossover study was performed among 20,867 AMI patients from 46 hospitals in Shanghai, China, between January 2015 and December 2020. Hourly data of AMI onset and number concentrations of nanoparticles of multiple size ranges below 0.10 μm (0.01-0.10, UFP/PNC0.01-0.10; 0.01-0.03, PNC0.01-0.03; 0.03-0.05, PNC0.03-0.05; and 0.05-0.10 μm, PNC0.05-0.10) were collected. Conditional logistic regressions were applied. Transient exposures to these nanoparticles were significantly associated with AMI onset, with almost linear exposure-response curves. These associations occurred immediately after exposure, lasted for approximately 6 h, and attenuated to be null thereafter. Each interquartile range increase in concentrations of total UFPs, PNC0.01-0.03, PNC0.03-0.05, and PNC0.05-0.10 during the preceding 0-6 h was associated with increments of 3.29, 2.08, 2.47, and 2.93% in AMI onset risk, respectively. The associations were stronger during warm season and at high temperatures and were robust after adjusting for criteria air pollutants. Our findings provide novel evidence that hourly UFP exposure is associated with immediate increase in AMI onset risk.
Collapse
Affiliation(s)
- Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Wenhui Peng
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai 200072, China
| | - Yun Luo
- Department of Cardiology, Jiujiang No. 1 People's Hospital, Jiujiang 332000, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo First Hospital, Ningbo 315010, China
| | - Qianfeng Jiang
- Department of Cardiology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi 563000, China
| | - Bingjiang Han
- Department of Cardiology, The Second Hospital of Jiaxing (The Second Affiliated Hospital of Jiaxing University), Jiaxing 314000, China
| | - Guohai Su
- Jinan Central Hospital, Jinan 250013, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Juntao Huo
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Xinkai Qu
- Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
- Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
6
|
Die Feinstaubbelastung Radfahrender im innerstädtischen Straßenverkehr. ZENTRALBLATT FÜR ARBEITSMEDIZIN, ARBEITSSCHUTZ UND ERGONOMIE 2023. [DOI: 10.1007/s40664-023-00494-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ZusammenfassungFahrradfahren als Form der aktiven Fortbewegung bietet viele gesundheitliche Vorteile durch eine gesteigerte körperliche Aktivität. In städtischer Umgebung können diese Vorteile aufgrund der intensivierten Respiration beim Radfahren und der Nähe zum Fahrzeugverkehr mit einer assoziierten Exposition von verkehrsbedingter partikulärer Luftverschmutzung durch Feinstaub beeinträchtigt werden. Das Ziel dieser Übersichtsarbeit ist, eine Darstellung der aktuellen Literatur mit mobil erhobenen Daten zur Feinstaubbelastung Radfahrender im urbanen Raum zu geben sowie die darin beschriebenen Einflussfaktoren der Feinstaubkonzentrationen aus Meteorologie, Verkehr, Architektur und zeitlichen Bedingungen zu beschreiben. Fahrradfahren repräsentiert diesbezüglich eine effiziente Vorgehensweise zur Charakterisierung individueller Feinstaubbelastungen mit der Möglichkeit einer hohen räumlich-zeitlichen Auflösung. Unter Beachtung der Hintergrundkonzentration können Aussagen zur relativen Schadstoffexposition und des einhergehenden Gesundheitsrisikos mit Erkenntnissen zugunsten einer umweltverträglichen innerstädtischen Verkehrsplanung getroffen werden.
Collapse
|
7
|
Feng S, Huang F, Zhang Y, Feng Y, Zhang Y, Cao Y, Wang X. The pathophysiological and molecular mechanisms of atmospheric PM 2.5 affecting cardiovascular health: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114444. [PMID: 38321663 DOI: 10.1016/j.ecoenv.2022.114444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 02/08/2024]
Abstract
BACKGROUND Exposure to ambient fine particulate matter (PM2.5, with aerodynamic diameter less than 2.5 µm) is a leading environmental risk factor for global cardiovascular health concern. OBJECTIVE To provide a roadmap for those new to this field, we reviewed the new insights into the pathophysiological and cellular/molecular mechanisms of PM2.5 responsible for cardiovascular health. MAIN FINDINGS PM2.5 is able to disrupt multiple physiological barriers integrity and translocate into the systemic circulation and get access to a range of secondary target organs. An ever-growing body of epidemiological and controlled exposure studies has evidenced a causal relationship between PM2.5 exposure and cardiovascular morbidity and mortality. A variety of cellular and molecular biology mechanisms responsible for the detrimental cardiovascular outcomes attributable to PM2.5 exposure have been described, including metabolic activation, oxidative stress, genotoxicity, inflammation, dysregulation of Ca2+ signaling, disturbance of autophagy, and induction of apoptosis, by which PM2.5 exposure impacts the functions and fates of multiple target cells in cardiovascular system or related organs and further alters a series of pathophysiological processes, such as cardiac autonomic nervous system imbalance, increasing blood pressure, metabolic disorder, accelerated atherosclerosis and plaque vulnerability, platelet aggregation and thrombosis, and disruption in cardiac structure and function, ultimately leading to cardiovascular events and death. Therein, oxidative stress and inflammation were suggested to play pivotal roles in those pathophysiological processes. CONCLUSION Those biology mechanisms have deepen insights into the etiology, course, prevention and treatment of this public health concern, although the underlying mechanisms have not yet been entirely clarified.
Collapse
Affiliation(s)
- Shaolong Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangfang Huang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yuqi Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yashi Feng
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Ying Zhang
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, School of Public Health, Guilin Medical University, Guilin 541199, China
| | - Yunchang Cao
- The Department of Molecular Biology, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Xinming Wang
- Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; The State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
8
|
Zhang S, Breitner S, Pickford R, Lanki T, Okokon E, Morawska L, Samoli E, Rodopoulou S, Stafoggia M, Renzi M, Schikowski T, Zhao Q, Schneider A, Peters A. Short-term effects of ultrafine particles on heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120245. [PMID: 36162563 DOI: 10.1016/j.envpol.2022.120245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
An increasing number of epidemiological studies have examined the association between ultrafine particles (UFP) and imbalanced autonomic control of the heart, a potential mechanism linking particulate matter air pollution to cardiovascular disease. This study systematically reviews and meta-analyzes studies on short-term effects of UFP on autonomic function, as assessed by heart rate variability (HRV). We searched PubMed and Web of Science for articles published until June 30, 2022. We extracted quantitative measures of UFP effects on HRV with a maximum lag of 15 days from single-pollutant models. We assessed the risk of bias in the included studies regarding confounding, selection bias, exposure assessment, outcome measurement, missing data, and selective reporting. Random-effects models were applied to synthesize effect estimates on HRV of various time courses. Twelve studies with altogether 1,337 subjects were included in the meta-analysis. For an increase of 10,000 particles/cm3 in UFP assessed by central outdoor measurements, our meta-analysis showed immediate decreases in the standard deviation of the normal-to-normal intervals (SDNN) by 4.0% [95% confidence interval (CI): 7.1%, -0.9%] and root mean square of successive R-R interval differences (RMSSD) by 4.7% (95% CI: 9.1%, 0.0%) within 6 h after exposure. The immediate decreases in SDNN and RMSSD associated with UFP assessed by personal measurements were smaller and borderline significant. Elevated UFP were also associated with decreases in SDNN, low-frequency power, and the ratio of low-frequency to high-frequency power when pooling estimates of lags across hours to days. We did not find associations between HRV and concurrent-day UFP exposure (daily average of at least 18 h) or exposure at lags ≥ one day. Our study indicates that short-term exposure to ambient UFP is associated with decreased HRV, predominantly as an immediate response within hours. This finding highlights that UFP may contribute to the onset of cardiovascular events through autonomic dysregulation.
Collapse
Affiliation(s)
- Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Regina Pickford
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Kuopio, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Enembe Okokon
- Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Matteo Renzi
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Tamara Schikowski
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Qi Zhao
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; IBE-Chair of Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany; Partner-Site Munich, German Research Center for Cardiovascular Research (DZHK), Munich, Germany
| |
Collapse
|
9
|
Lin S, Ryan I, Paul S, Deng X, Zhang W, Luo G, Dong GH, Nair A, Yu F. Particle surface area, ultrafine particle number concentration, and cardiovascular hospitalizations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119795. [PMID: 35863707 DOI: 10.1016/j.envpol.2022.119795] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
While the health impacts of larger particulate matter, such as PM10 and PM2.5, have been studied extensively, research regarding ultrafine particles (UFPs or PM0.1) and particle surface area concentration (PSC) is lacking. This case-crossover study assessed the associations between exposure to PSC and UFP number concentration (UFPnc) and hospital admissions for cardiovascular diseases (CVDs) in New York State (NYS), 2013-2018. We used a time-stratified case-crossover design to compare the PSC and UFPnc levels between hospitalization days and control days (similar days without admissions) for each CVD case. We utilized NYS hospital discharge data to identify all CVD cases who resided in NYS. UFP simulation data from GEOS-Chem-APM, a state-of-the-art chemical transport model, was used to define PSC and UFPnc. Using a multi-pollutant model and conditional logistic regression, we assessed excess risk (ER)% per inter-quartile change of PSC and UFPnc after controlling for meteorological factors, co-pollutants, and time-varying variables. We found immediate and lasting associations between PSC and overall CVDs (lag0-lag0-6: ERs% (95% CI%) ranges: 0.4 (0.1,0.7) - 0.9 (0.7-1.2), and delayed and prolonged ERs%: 0.1-0.3 (95% CIs: 0.1-0.5) between UFPnc and CVDs (lag0-3-lag0-6). Exposure to larger PSC was associated with immediate ER increases in stroke, hypertension, and ischemic heart diseases (1.1%, 0.7%, 0.8%, respectively, all p < 0.05). The adverse effects of PSC on CVDs were highest among children (5-17 years old), in the fall and winter, and during cold temperatures. In conclusion, we found an immediate, lasting effects of PSC on overall CVDs and a delayed, prolonged impact of UFPnc. PSC was a more sensitive indicator than UFPnc. The PSC effects were higher among certain CVD subtypes, in children, in certain seasons, and during cold days. Further studies are needed to validate our findings and evaluate the long-term effects.
Collapse
Affiliation(s)
- Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA.
| | - Ian Ryan
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Sanchita Paul
- Department of Environmental & Sustainable Engineering, University at Albany, State University of New York, Albany, NY, USA
| | - Xinlei Deng
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Wangjian Zhang
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Guang-Hui Dong
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Arshad Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| | - Fangqun Yu
- Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
10
|
Faridi S, Brook RD, Yousefian F, Hassanvand MS, Nodehi RN, Shamsipour M, Rajagopalan S, Naddafi K. Effects of respirators to reduce fine particulate matter exposures on blood pressure and heart rate variability: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119109. [PMID: 35271952 PMCID: PMC10411486 DOI: 10.1016/j.envpol.2022.119109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Particulate-filtering respirators (PFRs) have been recommended as a practical personal-level intervention to protect individuals from the health effects of particulate matter exposure. However, the cardiovascular benefits of PFRs including improvements in key surrogate endpoints remain unclear. We performed a systematic review and meta-analysis of randomized studies (wearing versus not wearing PFRs) reporting the effects on blood pressure (BP) and heart rate variability (HRV). The search was performed on January 3, 2022 to identify published papers until this date. We queried three English databases, including PubMed, Web of Science Core Collection and Scopus. Of 527 articles identified, eight trials enrolling 312 participants (mean age ± standard deviation: 36 ± 19.8; 132 female) met our inclusion criteria for analyses. Study participants wore PFRs from 2 to 48 h during intervention periods. Wearing PFRs was associated with a non-significant pooled mean difference of -0.78 mmHg (95% confidence interval [CI]: -2.06, 0.50) and -0.49 mmHg (95%CI: -1.37, 0.38) in systolic and diastolic BP (SBP and DBP). There was a marginally significant reduction of mean arterial pressure (MAP) by nearly 1.1 mmHg (95%CI: -2.13, 0.01). The use of PFRs was associated with a significant increase of 38.92 ms2 (95%CI: 1.07, 76.77) in pooled mean high frequency (power in the high frequency band (0.15-0.4 Hz)) and a reduction in the low (power in the low frequency band (0.04-0.15Hz))-to-high frequency ratio [-0.14 (95%CI: -0.27, 0.00)]. Other HRV indices were not significantly changed. Our meta-analysis demonstrates modest or non-significant improvements in BP and many HRV parameters from wearing PFRs over brief periods. However, these findings are limited by the small number of trials as well as variations in experimental designs and durations. Given the mounting global public health threat posed by air pollution, larger-scale trials are warranted to elucidate more conclusively the potential health benefits of PFRs.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kazem Naddafi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Renzi M, Stafoggia M, Michelozzi P, Davoli M, Forastiere F, Solimini AG. Long-term exposure to air pollution and risk of venous thromboembolism in a large administrative cohort. Environ Health 2022; 21:21. [PMID: 35086531 PMCID: PMC8793234 DOI: 10.1186/s12940-022-00834-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Venous thromboembolisms (VTE) are one of the most frequent cause among the cardiovascular diseases. Despite the association between long-term exposure to air pollution and cardiovascular outcomes have been widely explored in epidemiological literature, little is known about the air pollution related effects on VTE. We aimed to evaluate this association in a large administrative cohort in 15 years of follow-up. METHODS Air pollution exposure (NO2, PM10 and PM2.5) was derived by land use regression models obtained by the ESCAPE framework. Administrative health databases were used to identify VTE cases. To estimate the association between air pollutant exposures and risk of hospitalizations for VTE (in total and divided in deep vein thrombosis (DVT) and pulmonary embolism (PE)), we used Cox regression models, considering individual, environmental (noise and green areas), and contextual characteristics. Finally, we considered potential effect modification for individual covariates and previous comorbidities. RESULTS We identified 1,954 prevalent cases at baseline and 20,304 cases during the follow-up period. We found positive associations between PM2.5 exposures and DVT, PE and VTE with hazard ratios (HRs) up to 1.082 (95% confidence intervals: 0.992, 1.181), 1.136 (0.994, 1.298) and 1.074 (0.996, 1.158) respectively for 10 μg/m3 increases. The association was stronger in younger subjects (< 70 years old compared to > 70 years old) and among those who had cancer. CONCLUSION The effect of pollutants on PE and VTE hospitalizations, although marginally non-significant, should be interpreted as suggestive of a health effect that deserves attention in future studies.
Collapse
Affiliation(s)
- Matteo Renzi
- Department of Epidemiology, Health Authority Service, ASL Rome 1, 00147, Rome, Italy.
- Department of Health Statistics and Biometry, University of Rome "La Sapienza", Rome, Italy.
| | - Massimo Stafoggia
- Department of Epidemiology, Health Authority Service, ASL Rome 1, 00147, Rome, Italy
- Institute of Environmental Medicine, Karolinska Instituet, Stockholm, Sweden
| | - Paola Michelozzi
- Department of Epidemiology, Health Authority Service, ASL Rome 1, 00147, Rome, Italy
| | - Marina Davoli
- Department of Epidemiology, Health Authority Service, ASL Rome 1, 00147, Rome, Italy
| | - Francesco Forastiere
- National Research Council of Italy, Institute of Innovation and Biomedical Research (IRIB), , Palermo, Italy
| | - Angelo G Solimini
- Department of Public Health and Infectious Diseases, University of Rome "La Sapienza", Rome, Italy
| |
Collapse
|
12
|
Pallikadavath S, Vali Z, Patel R, Mavilakandy A, Peckham N, Clegg M, Sandilands AJ, Ng GA. The Influence of Environmental Air Pollution on Ventricular Arrhythmias: A Scoping Review. Curr Cardiol Rev 2022; 18:e160422203685. [PMID: 35430968 PMCID: PMC9893149 DOI: 10.2174/1573403x18666220416203716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Exposure to air pollution is a recognised risk factor for cardiovascular disease and has been associated with supraventricular arrhythmias. The effect of air pollution on ventricular arrhythmias is less clear. This scoping review assessed the effects of particulate and gaseous air pollutants on the incidence of ventricular arrhythmias. METHODS MEDLINE and EMBASE databases were searched for studies assessing the effects of air pollutants on ventricular tachycardia and ventricular fibrillation. These pollutants were particulate matter (PM) 2.5, PM10, Nitrogen Dioxide (NO2), Carbon Monoxide (CO), Sulphur Dioxide (SO2), and Ozone (O3). RESULTS This review identified 27 studies: nine in individuals with implantable cardioverter defibrillators, five in those with ischaemic heart disease, and 13 in the general population. Those with ischaemic heart disease appear to have the strongest association with ventricular arrhythmias in both gaseous and particulate pollution, with all three studies assessing the effects of PM2.5 demonstrating some association with ventricular arrythmia. Results in the general and ICD population were less consistent. CONCLUSION Individuals with ischaemic heart disease may be at an increased risk of ventricular arrhythmias following exposure to air pollution.
Collapse
Affiliation(s)
- Susil Pallikadavath
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Zakariyya Vali
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Roshan Patel
- Leicester Medical School, College of Life Sciences, University of Leicester, UK
| | - Akash Mavilakandy
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nicholas Peckham
- Centre for Statistics in Medicine, University of Oxford, Oxford, UK
| | - Matt Clegg
- Department of Geography, University of Birmingham, Birmingham, UK
| | - Alastair J. Sandilands
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - G. André Ng
- Department of Cardiovascular Sciences, University of Leicester and the NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
13
|
Tang S, Li T, Fang J, Chen R, Cha Y, Wang Y, Zhu M, Zhang Y, Chen Y, Du Y, Yu T, Thompson DC, Godri Pollitt KJ, Vasiliou V, Ji JS, Kan H, Zhang JJ, Shi X. The exposome in practice: an exploratory panel study of biomarkers of air pollutant exposure in Chinese people aged 60-69 years (China BAPE Study). ENVIRONMENT INTERNATIONAL 2021; 157:106866. [PMID: 34525388 DOI: 10.1016/j.envint.2021.106866] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 05/05/2023]
Abstract
The exposome overhauls conventional environmental health impact research paradigms and provides a novel methodological framework that comprehensively addresses the complex, highly dynamic interplays of exogenous exposures, endogenous exposures, and modifiable factors in humans. Holistic assessments of the adverse health effects and systematic elucidation of the mechanisms underlying environmental exposures are major scientific challenges with widespread societal implications. However, to date, few studies have comprehensively and simultaneously measured airborne pollutant exposures and explored the associated biomarkers in susceptible healthy elderly subjects, potentially resulting in the suboptimal assessment and management of health risks. To demonstrate the exposome paradigm, we describe the rationale and design of a comprehensive biomarker and biomonitoring panel study to systematically explore the association between individual airborne exposure and adverse health outcomes. We used a combination of personal monitoring for airborne pollutants, extensive human biomonitoring, advanced omics analysis, confounding information, and statistical methods. We established an exploratory panel study of Biomarkers of Air Pollutant Exposure in Chinese people aged 60-69 years (China BAPE), which included 76 healthy residents from a representative community in Jinan City, Shandong Province. During the period between September 2018 and January 2019, we conducted prospective longitudinal monitoring with a 3-day assessment every month. This project: (1) leveraged advanced tools for personal airborne exposure monitoring (external exposures); (2) comprehensively characterized biological samples for exogenous and endogenous compounds (e.g., targeted and untargeted monitoring) and multi-omics scale measurements to explore potential biomarkers and putative toxicity pathways; and (3) systematically evaluated the relationships between personal exposure to air pollutants, and novel biomarkers of exposures and effects using exposome-wide association study approaches. These findings will contribute to our understanding of the mechanisms underlying the adverse health impacts of air pollution exposures and identify potential adverse clinical outcomes that can facilitate the development of effective prevention and targeted intervention techniques.
Collapse
Affiliation(s)
- Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Tiantian Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yu'e Cha
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanwen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mu Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yi Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanjun Du
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Tianwei Yu
- Institute for Data and Decision Analytics, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - David C Thompson
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado, Aurora, CO 80045, USA
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06520, USA
| | - John S Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China; Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Junfeng Jim Zhang
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu 215316, China; Global Health Institute & Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
14
|
Li L, Hu D, Zhang W, Cui L, Jia X, Yang D, Liu S, Deng F, Liu J, Guo X. Effect of short-term exposure to particulate air pollution on heart rate variability in normal-weight and obese adults. Environ Health 2021; 20:29. [PMID: 33726760 PMCID: PMC7968215 DOI: 10.1186/s12940-021-00707-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 05/16/2023]
Abstract
BACKGROUND The adverse effects of particulate air pollution on heart rate variability (HRV) have been reported. However, it remains unclear whether they differ by the weight status as well as between wake and sleep. METHODS A repeated-measure study was conducted in 97 young adults in Beijing, China, and they were classified by body mass index (BMI) as normal-weight (BMI, 18.5-24.0 kg/m2) and obese (BMI ≥ 28.0 kg/m2) groups. Personal exposures to fine particulate matter (PM2.5) and black carbon (BC) were measured with portable exposure monitors, and the ambient PM2.5/BC concentrations were obtained from the fixed monitoring sites near the subjects' residences. HRV and heart rate (HR) were monitored by 24-h Holter electrocardiography. The study period was divided into waking and sleeping hours according to time-activity diaries. Linear mixed-effects models were used to investigate the effects of PM2.5/BC on HRV and HR in both groups during wake and sleep. RESULTS The effects of short-term exposure to PM2.5/BC on HRV were more pronounced among obese participants. In the normal-weight group, the positive association between personal PM2.5/BC exposure and high-frequency power (HF) as well as the ratio of low-frequency power to high-frequency power (LF/HF) was observed during wakefulness. In the obese group, personal PM2.5/BC exposure was negatively associated with HF but positively associated with LF/HF during wakefulness, whereas it was negatively correlated to total power and standard deviation of all NN intervals (SDNN) during sleep. An interquartile range (IQR) increase in BC at 2-h moving average was associated with 37.64% (95% confidence interval [CI]: 25.03, 51.51%) increases in LF/HF during wakefulness and associated with 6.28% (95% CI: - 17.26, 6.15%) decreases in SDNN during sleep in obese individuals, and the interaction terms between BC and obesity in LF/HF and SDNN were both statistically significant (p < 0.05). The results also suggested that the effects of PM2.5/BC exposure on several HRV indices and HR differed in magnitude or direction between wake and sleep. CONCLUSIONS Short-term exposure to PM2.5/BC is associated with HRV and HR, especially in obese individuals. The circadian rhythm of HRV should be considered in future studies when HRV is applied.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
| | - Xu Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China.
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
15
|
Huang C, Tang M, Li H, Wen J, Wang C, Gao Y, Hu J, Lin J, Chen R. Particulate matter air pollution and reduced heart rate variability: How the associations vary by particle size in Shanghai, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111726. [PMID: 33396057 DOI: 10.1016/j.ecoenv.2020.111726] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND It remains unclear which size of particles has the strongest effects on heart rate variability (HRV). OBJECTIVE To explore the association between HRV parameters and daily variations of size-fractionated particle number concentrations (PNCs). METHODS We conducted a longitudinal repeated-measure study among 78 participants with a 24-h continuous ambulatory Holter electrocardiographic recorder in Shanghai, China, from January 2015 to June 2019. Linear mixed-effects models were employed to evaluate the changes of HRV parameters associated with PNCs of 7 size ranges from 0.01 to 10 μm after controlling for environmental and individual confounders. RESULTS On the concurrent day, decreased HRV parameters were associated with increased PNCs of 0.01-0.3 μm, and smaller particles showed greater effects. For an interquartile range increase in ultrafine particles (UFP, those < 0.1 μm, 2453 particles/cm3), the declines in very-low-frequency power, low-frequency power, high-frequency power, standard deviation of normal R-R intervals, root mean square of the successive differences between R-R intervals and percentage of adjacent normal R-R intervals with a difference ≥ 50 ms were 5.06% [95% confidence interval (CI): 2.09%, 7.94%], 7.65% (95%CI: 2.73%, 12.32%), 9.49% (95%CI: 4.64%, 14.09%), 5.10% (95%CI: 2.21%, 7.91%), 8.09% (95%CI: 4.39%, 11.65%) and 24.98% (95%CI: 14.70%, 34.02%), respectively. These results were robust to the adjustment of criteria air pollutants, temperature at different lags, and the status of heart medication. CONCLUSIONS Particles less than 0.3 μm (especially UFP) may dominate the acute effects of particulate air pollution on cardiac autonomic dysfunction.
Collapse
Affiliation(s)
- Chang Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H.Chan School of Public Health, Boston, MA, USA
| | - Jianfen Wen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Jingyu Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Cole-Hunter T, Dhingra R, Fedak KM, Good N, L'Orange C, Luckasen G, Mehaffy J, Walker E, Wilson A, Balmes J, Brook RD, Clark ML, Devlin RB, Volckens J, Peel JL. Short-term differences in cardiac function following controlled exposure to cookstove air pollution: The subclinical tests on volunteers exposed to smoke (STOVES) study. ENVIRONMENT INTERNATIONAL 2021; 146:106254. [PMID: 33221594 PMCID: PMC7775898 DOI: 10.1016/j.envint.2020.106254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Exposure to household air pollution from solid fuel combustion for cooking and heating is an important risk factor for premature death and disability worldwide. Current evidence supports an association of ambient air pollution with cardiovascular disease but is limited for household air pollution and for cardiac function. Controlled exposure studies can complement evidence provided by field studies. OBJECTIVES To investigate effects of short-term, controlled exposures to emissions from five cookstoves on measures of cardiac function. METHODS Forty-eight healthy adults (46% female; 20-36 years) participated in six, 2-h exposures ('treatments'), including emissions from five cookstoves and a filtered-air control. Target fine particulate matter (PM2.5) exposure-concentrations per treatment were: control, 0 µg/m3; liquefied petroleum gas, 10 µg/m3; gasifier, 35 µg/m3; fan rocket, 100 µg/m3; rocket elbow, 250 µg/m3; and three stone fire, 500 µg/m3. Participants were treated in a set (pre-randomized) sequence as groups of 4 to minimize order bias and time-varying confounders. Heart rate variability (HRV) and cardiac repolarization metrics were calculated as 5-min means immediately and at 3 h following treatment, for analysis in linear mixed-effects models comparing cookstove to control. RESULTS Short-term differences in SDNN (standard deviation of duration of all NN intervals) and VLF (very-low frequency power) existed for several cookstoves compared to control. While all cookstoves compared to control followed a similar trend for SDNN, the greatest effect was seen immediately following three stone fire (β = -0.13 ms {%}; 95% confidence interval = -0.22, -0.03%), which reversed in direction at 3 h (0.03%; -0.06, 0.13%). VLF results were similar in direction and timing to SDNN; however, other HRV or cardiac repolarization results were not similar to those for SDNN. DISCUSSION We observed some evidence of short-term, effects on HRV immediately following cookstove treatments compared to control. Our results suggest that cookstoves with lower PM2.5 emissions are potentially capable of affecting cardiac function, similar to stoves emitting higher PM2.5 emissions.
Collapse
Affiliation(s)
- Tom Cole-Hunter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Centre for Air Pollution, Energy, and Health Research, University of New South Wales, Sydney, NSW, Australia; International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Radhika Dhingra
- Department of Environmental Sciences and Engineering, University of North Carolina, NC, USA; Environmental Public Health Division, United States Environmental Protection Agency, Chapel Hill, NC, USA
| | - Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Nicholas Good
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Christian L'Orange
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | | | - John Mehaffy
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Ethan Walker
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - John Balmes
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maggie L Clark
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Robert B Devlin
- Environmental Public Health Division, United States Environmental Protection Agency, Chapel Hill, NC, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
| | - Jennifer L Peel
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
Hu J, Fan H, Li Y, Li H, Tang M, Wen J, Huang C, Wang C, Gao Y, Kan H, Lin J, Chen R. Fine particulate matter constituents and heart rate variability: A panel study in Shanghai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141199. [PMID: 32771785 DOI: 10.1016/j.scitotenv.2020.141199] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Short-term exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an established indicator of cardiac autonomic function, but it remains uncertain which specific constituents of PM2.5 had key impacts. OBJECTIVE To examine the short-term associations between various PM2.5 constituents and HRV measures. METHODS We conducted a retrospective panel study among 78 participants who received repeated 24-h electrocardiogram testing in Shanghai, China from 2015 to 2019. We obtained daily concentrations of 14 main chemical constituents of PM2.5 from a fixed-site monitor. During 3 or 4 rounds of follow-ups, we measured 6 HRV parameters, including 3 frequency-domain parameters (power in very low frequency, low frequency and high frequency) and 3 time-domain parameters (standard deviation of normal-to-normal intervals, root mean square successive difference and percent of adjacent normal R-R intervals with a difference ≥50 msec). We used linear mixed-effects models to analyze the data after controlling for time trends, environmental and individual risk factors. RESULTS The average daily PM2.5 exposure was 45.8 μg/m3 during the study period. The present-day exposure to PM2.5 had the strongest negative influences on various HRV indicators. These associations attenuated greatly on lag 1 d or lag 2 d. Elemental carbon, organic carbon, nitrate, sulfate, arsenic, cadmium, chromium and nickel were consistently associated with reduced HRV parameters in both single-constituent models and constituent-PM2.5 models. CONCLUSION Our study highlighted the key roles of traffic-related components of PM2.5 in inhibiting cardiac autonomic function.
Collapse
Affiliation(s)
- Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Fan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Yinliang Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Minna Tang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfen Wen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Huang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Cuiping Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jingyu Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Shanghai Typhoon Institute/CMA, Shanghai Key Laboratory of Meteorology and Health, Shanghai 200030, China.
| |
Collapse
|
18
|
Cipryan L, Kutac P, Dostal T, Zimmermann M, Krajcigr M, Jandackova V, Sram R, Jandacka D, Hofmann P. Regular running in an air-polluted environment: physiological and anthropometric protocol for a prospective cohort study (Healthy Aging in Industrial Environment Study - Program 4). BMJ Open 2020; 10:e040529. [PMID: 33303450 PMCID: PMC7733192 DOI: 10.1136/bmjopen-2020-040529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Ambient air pollution is a global environmental problem, which causes adverse health effects and premature deaths worldwide. Although regular exercise and physical activity have evident health benefits, the influence of long-term air pollution exposure during regular outdoor running has not been definitively clarified. METHODS AND ANALYSIS This study protocol describes the physiological and anthropometric perspectives of the 'Healthy Aging in Industrial Environment' Study - Programme 4 (4HAIE). The 4HAIE research project is intended to be a single-centre, prospective, longitudinal and multidisciplinary cohort study. The presented study protocol describes the cross-sectional measurements and analyses. Overall, 1500 adult participants (age 18-65 years), runners and inactive individuals, living in a high or low air-polluted area of the Czech Republic will be recruited. We will measure and analyse biomarkers of oxidative stress and inflammation in the blood, exercise capacity (graded exercise test and spiroergometry), blood pressure, lung function (spirometry), cardiac autonomic regulation and anthropometry (body composition). ETHICS AND DISSEMINATION The 4HAIE study protocol has already been approved by the Ethics Committee of the University of Ostrava (3/2018). A detailed participant information sheet will be provided to each individual prior to obtaining their written informed consent. The study poses little to no risk to participants. The findings of this study will be disseminated at regional and international conferences, in peer-reviewed journals and via social and broadcast media.
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
| | - Petr Kutac
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
| | - Matthew Zimmermann
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
| | - Miroslav Krajcigr
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
| | - Vera Jandackova
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
- Department of Epidemiology and Public Health, University of Ostrava, Ostrava, Czech Republic
| | - Radim Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
- Centre for Epidemiological Research, University of Ostrava, Ostrava, Czech Republic
| | - Daniel Jandacka
- Department of Human Movement Science, University of Ostrava, Ostrava, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport & Health, Exercise Physiology, Training & Training Therapy Research Group, University of Graz, Graz, Austria
| |
Collapse
|
19
|
Wyatt LH, Devlin RB, Rappold AG, Case MW, Diaz-Sanchez D. Low levels of fine particulate matter increase vascular damage and reduce pulmonary function in young healthy adults. Part Fibre Toxicol 2020; 17:58. [PMID: 33198760 PMCID: PMC7670817 DOI: 10.1186/s12989-020-00389-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Fine particulate matter (PM2.5) related mild inflammation, altered autonomic control of cardiovascular function, and changes to cell function have been observed in controlled human exposure studies. METHODS To measure the systemic and cardiopulmonary impacts of low-level PM exposure, we exposed 20 healthy, young volunteers to PM2.5, in the form of concentrated ambient particles (mean: 37.8 μg/m3, SD 6.5), and filtered air (mean: 2.1 μg/m3, SD 2.6). In this double-blind, crossover study the exposure order was randomized. During the 4 h exposure, volunteers (7 females and 13 males) underwent light intensity exercise to regulate ventilation rate. We measured pulmonary, cardiac, and hematologic end points before exposure, 1 h after exposure, and again 20 h after exposure. RESULTS Low-level PM2.5 resulted in both pulmonary and extra-pulmonary changes characterized by alterations in systematic inflammation markers, cardiac repolarization, and decreased pulmonary function. A mean increase in PM2.5 concentration (37.8 μg/m3) significantly increased serum amyloid A (SAA), C-reactive protein (CRP), soluble intercellular adhesion molecule-1 (sICAM-1), and soluble vascular cell adhesion molecule-1 (sVCAM-1), 1 h after exposure by 8.7, 9.1, 10.7, and 6.6%, respectively, relative to the filtered air control. SAA remained significantly elevated (34.6%) 20 h after PM2.5 exposure which was accompanied by a 5.7% decrease in percent neutrophils. Decreased pulmonary function was observed 1 h after exposure through a 0.8 and 1.2% decrease in forced expiratory volume in 1 s (FEV1) and FEV1/ forced vital capacity (FEV1/FVC) respectively. Additionally, sex specific changes were observed in repolarization outcomes following PM2.5 exposure. In males, P-wave and QRS complex were increased by 15.4 and 5.4% 1 h after exposure. CONCLUSIONS This study is the first controlled human exposure study to demonstrate biological effects in response to exposure to concentrated ambient air PM2.5 particles at levels near the PM2.5 US NAAQS standard. CLINICAL TRIAL REGISTRATION INFORMATION clinicaltrials.gov ; Identifier: NCT03232086 . The study was registered retrospectively on July 25, 2017, prior to final data collection on October 25, 2017 and data analysis.
Collapse
Affiliation(s)
- Lauren H Wyatt
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA.
| | - Robert B Devlin
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Ana G Rappold
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - Martin W Case
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| | - David Diaz-Sanchez
- Public Health and Integrated Toxicology Division, Human Studies Facility, United States Environmental Protection Agency (USEPA), Research Triangle Park, 104 Mason Farm Rd, Chapel Hill, NC, 27514, USA
| |
Collapse
|
20
|
Choi KH, Bae S, Kim S, Kwon HJ. Indoor and outdoor PM 2.5 exposure, and anxiety among schoolchildren in Korea: a panel study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27984-27994. [PMID: 32399886 DOI: 10.1007/s11356-020-08900-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
This panel study aimed to evaluate the associations between short-term exposure to indoor and outdoor PM2.5 and anxiety in schoolchildren. During 3 waves in March, July, and November 2018 with 7 days per wave, 52 children aged 10 years were recruited from two schools in a city in Korea. To assess outdoor exposure, we used PM2.5 concentration measures for every hour at the national measurement station (NMS) closest to the two participating schools. To assess indoor exposure, we measured PM2.5 concentration at the children's homes and in classrooms, based on 30-min average. Based on time-activity logs, personal average daily exposure values were calculated for each participant, according to exposure values assessed at 30-min intervals by location. Children's anxiety was assessed via the Korean version of the State Anxiety Inventory for children every day during each wave. Linear mixed effects model was conducted to analyze the association between PM2.5 exposure and anxiety using repeated measurements. Personal exposure to PM2.5 by time-activity log was the highest in March and at home. A low correlation coefficient was observed between PM2.5 concentrations at home and at the NMS (ρ = 0.36, p < 0.0001) whereas a high correlation coefficient was observed between PM2.5 concentrations in classrooms and at the NMS (ρ = 0.64, p < 0.0001). There was no association between PM2.5 exposure and anxiety in children based on the analysis of repeated measurements during the study period. Since previous studies reported controversial results, long-term follow-up studies are needed in various regions to further investigate the associations between PM2.5 exposure and children's mental health.
Collapse
Affiliation(s)
- Kyung-Hwa Choi
- Department of Preventive Medicine, Dankook University College of Medicine, 119 Dandaero, Dongnam-gu, Cheonan, Chungnam, 31116, Republic of Korea
| | - Sanghyuk Bae
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sungroul Kim
- Department of Environmental Health Science, Soonchunhyang University, Asan, Republic of Korea
| | - Ho-Jang Kwon
- Department of Preventive Medicine, Dankook University College of Medicine, 119 Dandaero, Dongnam-gu, Cheonan, Chungnam, 31116, Republic of Korea.
| |
Collapse
|
21
|
Alemayehu YA, Asfaw SL, Terfie TA. Exposure to urban particulate matter and its association with human health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27491-27506. [PMID: 32410189 DOI: 10.1007/s11356-020-09132-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Human health and environmental risks are increasing following air pollution associated with vehicular and industrial emissions in which particulate matter is a constituent. The purpose of this review was to assess studies on the health effects and mortality induced by particles published for the last 15 years. The literature survey indicated the existence of strong positive associations between fine and ultrafine particles' exposure and cardiovascular, hypertension, obesity and type 2 diabetes mellitus, cancer health risks, and mortality. Its exposure is also associated with increased odds of hypertensive and diabetes disorders of pregnancy and premature deaths. The ever increasing hospital admission and mortality due to heart failure, diabetes, hypertension, and cancer could be due to long-term exposure to particles in different countries. Therefore, its effect should be communicated for legal and scientific actions to minimize emissions mainly from traffic sources.
Collapse
Affiliation(s)
| | - Seyoum Leta Asfaw
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tadesse Alemu Terfie
- Center for Environmental Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Takyi SA, Basu N, Arko-Mensah J, Botwe P, Amoabeng Nti AA, Kwarteng L, Acquah A, Tettey P, Dwomoh D, Batterman S, Robins T, Fobil JN. Micronutrient-rich dietary intake is associated with a reduction in the effects of particulate matter on blood pressure among electronic waste recyclers at Agbogbloshie, Ghana. BMC Public Health 2020; 20:1067. [PMID: 32631289 PMCID: PMC7339459 DOI: 10.1186/s12889-020-09173-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Informal recycling of electronic waste (e-waste) releases particulate matter (PM) into the ambient air. Human exposure to PM has been reported to induce adverse effects on cardiovascular health. However, the impact of PM on the cardiovascular health of e-waste recyclers in Ghana has not been studied. Although intake of micronutrient-rich diet is known to modify these PM-induced adverse health effects, no data are available on the relationship between micronutrient status of e-waste recyclers and the reported high-level exposure to PM. We therefore investigated whether the intake of micronutrient-rich diets ameliorates the adverse effects of ambient exposure to PM2.5 on blood pressure (BP). METHODS This study was conducted among e-waste and non-e-waste recyclers from March 2017 to October 2018. Dietary micronutrient (Fe, Ca, Mg, Se, Zn, and Cu) intake was assessed using a 2-day 24-h recall. Breathing zone PM2.5 was measured with a real-time monitor. Cardiovascular indices such as systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP) were measured using a sphygmomanometer. Ordinary least-squares regression models were used to estimate the joint effects of ambient exposure to PM2.5 and dietary micronutrient intake on cardiovascular health outcomes. RESULTS Fe was consumed in adequate quantities, while Ca, Se, Zn, Mg, and Cu were inadequately consumed among e-waste and non-e-waste recyclers. Dietary Ca, and Fe intake was associated with reduced SBP and PP of e-waste recyclers. Although PM2.5 levels were higher in e-waste recyclers, exposures in the control group also exceeded the WHO 24-h guideline value (25 μg/m3). Exposure to 1 μg/m3 of PM2.5 was associated with an increased heart rate (HR) among e-waste recyclers. Dietary Fe intake was associated with a reduction in systolic blood pressure levels of e-waste recyclers after PM exposure. CONCLUSIONS Consistent adequate dietary Fe intake was associated with reduced effects of PM2.5 on SBP of e-waste recyclers overtime. Nonetheless, given that all other micronutrients are necessary in ameliorating the adverse effects of PM on cardiovascular health, nutrition-related policy dialogues are required. Such initiatives would help educate informal e-waste recyclers and the general population on specific nutrients of concern and their impact on the exposure to ambient air pollutants.
Collapse
Affiliation(s)
- Sylvia A Takyi
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana.
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - John Arko-Mensah
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Paul Botwe
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Afua Asabea Amoabeng Nti
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Lawrencia Kwarteng
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Augustine Acquah
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Prudence Tettey
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Duah Dwomoh
- Department of Biostatistics, School of Public Health, University of Ghana, Accra, Ghana
| | - Stuart Batterman
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Robins
- Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julius N Fobil
- Department of Biological, Environmental & Occupational Health Sciences, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| |
Collapse
|
23
|
Januszek R, Staszczak B, Siudak Z, Bartuś J, Plens K, Bartuś S, Dudek D. The relationship between increased air pollution expressed as PM 10 concentration and the frequency of percutaneous coronary interventions in patients with acute coronary syndromes-a seasonal differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21320-21330. [PMID: 32266627 PMCID: PMC7245590 DOI: 10.1007/s11356-020-08339-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 03/05/2020] [Indexed: 05/30/2023]
Abstract
The aim of the presented study was to assess the relationship between air pollution expressed as particulate air matters less than 10 μm (PM10) and acute coronary syndromes (ACSs). In this observational study, we selected regions with low pollution according to PM10 (non-polluted) and with the highest pollution (polluted). The occurrence of percutaneous coronary interventions (PCIs) in patients with ACSs was matched according to the location. The current study included 7678 patients in polluted areas and 4327 patients from non-polluted regions. Analysing the period from January to December 2017, the number of patients undergoing angioplasty in monitored catheterization laboratories and the mean daily concentration of PM10 in all selected cities were calculated for each day. The annual average concentration of PM10 amounts to 50.95 μg/m3 in polluted and 26.62 μg/m3 in non-polluted cities (P < 0.01). The rise in PM10 pollution levels was related with the increased frequency of PCIs in patients with ACSs in polluted (P < 0.01) and non-polluted (P < 0.01) areas. In the non-polluted regions, the increase in PM10 concentration by every 1 μg/m3 causes 0.22 additional ACS angioplasties per week. In polluted regions, the same increase in PM10 concentration causes 0.18 additional ACS angioplasties per week. In non-winter weeks, the mean number of ACS PCIs expressed in promiles was lower than in winter weeks in polluted (P = 0.03) and non-polluted cities (P = 0.02). The study shows that the increase in air pollution expressed as PM10 concentration and winter time influences the frequency of ACS-related PCIs.
Collapse
Affiliation(s)
- Rafał Januszek
- Department of Clinical Rehabilitation, University of Physical Education, Krakow, Poland.
- 2nd Department of Cardiology and Cardiovascular Interventions, University Hospital, ul. Kopernika 17, 31-501, Krakow, Poland.
| | | | - Zbigniew Siudak
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland
| | - Jerzy Bartuś
- Jagiellonian University Medical College, Krakow, Poland
| | | | - Stanisław Bartuś
- 2nd Department of Cardiology and Cardiovascular Interventions, University Hospital, ul. Kopernika 17, 31-501, Krakow, Poland
- 2nd Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Dariusz Dudek
- 2nd Department of Cardiology and Cardiovascular Interventions, University Hospital, ul. Kopernika 17, 31-501, Krakow, Poland
- Department of Interventional Cardiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
24
|
Chen K, Schneider A, Cyrys J, Wolf K, Meisinger C, Heier M, von Scheidt W, Kuch B, Pitz M, Peters A, Breitner S. Hourly Exposure to Ultrafine Particle Metrics and the Onset of Myocardial Infarction in Augsburg, Germany. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:17003. [PMID: 31939685 PMCID: PMC7015564 DOI: 10.1289/ehp5478] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Epidemiological evidence on the health effects of ultrafine particles (UFP) remains insufficient to infer a causal relationship that is largely due to different size ranges and exposure metrics examined across studies. Moreover, evidence regarding the association between UFP and cardiovascular disease at a sub-daily timescale is lacking. OBJECTIVE We investigated the relationship between different particle metrics, including particle number (PNC), length (PLC), and surface area (PSC) concentrations, and myocardial infarction (MI) at an hourly timescale. METHODS We collected hourly air pollution and meteorological data from fixed urban background monitoring sites and hourly nonfatal MI cases from a MI registry in Augsburg, Germany, during 2005-2015. We conducted a time-stratified case-crossover analysis with conditional logistic regression to estimate the association between hourly particle metrics and MI cases, adjusted for air temperature and relative humidity. We also examined the independent effects of a certain particle metric in two-pollutant models by adjusting for copollutants, including particulate matter (PM) with an aerodynamic diameter of ≤10μm or 2.5μm (PM10 and PM2.5, respectively), nitrogen dioxide, ozone, and black carbon. RESULTS Overall, a total of 5,898 cases of nonfatal MI cases were recorded. Exploratory analyses showed similar associations across particle metrics in the first 6-12 h. For example, interquartile range increases in PNC within the size range of 10-100 nm, PLC, and PSC were associated with an increase of MI 6 h later by 3.27% [95% confidence interval (CI): 0.27, 6.37], 5.71% (95% CI: 1.79, 9.77), and 5.84% (95% CI: 1.04, 10.87), respectively. Positive, albeit imprecise, associations were observed for PNC within the size range of 10-30 nm and 100-500 nm. Effect estimates for PLC and PSC remained similar after adjustment for PM and gaseous pollutants. CONCLUSIONS Transient exposure to particle number, length, and surface area concentrations or other potentially related exposures may trigger the onset of nonfatal myocardial infraction. https://doi.org/10.1289/EHP5478.
Collapse
Affiliation(s)
- Kai Chen
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Cyrys
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
| | - Christa Meisinger
- UNIKA-T, Ludwig-Maximilians-Universität München, Augsburg, Germany
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- MONICA/KORA Myocardial Infarction Registry, University Hospital of Augsburg, Augsburg, Germany
| | - Margit Heier
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- KORA Study Centre, University Hospital of Augsburg, Augsburg, Germany
| | - Wolfgang von Scheidt
- Department of Internal Medicine I–Cardiology, University Hospital of Augsburg, Augsburg, Germany
| | - Bernhard Kuch
- Department of Internal Medicine I–Cardiology, University Hospital of Augsburg, Augsburg, Germany
- Department of Internal Medicine/Cardiology, Hospital of Nördlingen, Nördlingen, Germany
| | - Mike Pitz
- Bavarian State Office for the Environment, Augsburg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- German Research Center for Cardiovascular Research (DZHK), Munich, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Susanne Breitner
- Institute of Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany
- Institute for Medical Information Processing, Biometry and Epidemiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
25
|
Tang CS, Chuang KJ, Chang TY, Chuang HC, Chen LH, Lung SCC, Chang LT. Effects of Personal Exposures to Micro- and Nano-Particulate Matter, Black Carbon, Particle-Bound Polycyclic Aromatic Hydrocarbons, and Carbon Monoxide on Heart Rate Variability in a Panel of Healthy Older Subjects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16234672. [PMID: 31771182 PMCID: PMC6926945 DOI: 10.3390/ijerph16234672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Abstract
As a non-invasive method, heart rate variability (HRV) has been widely used to study cardiovascular autonomous control. Environmental epidemiological studies indicated that the increase in an average concentration of particulate matter (PM) would result in a decrease in HRV, which was related to the increase of cardiovascular mortality in patients with myocardial infarction and the general population. With rapid economic and social development in Asia, how air pollutants, such as PM of different sizes and their components, affect the cardiovascular health of older people, still need to be further explored. The current study includes a 72 h personal exposure monitoring of seven healthy older people who lived in the Taipei metropolitan area. Mobile equipment, a portable electrocardiogram recorder, and the generalized additive mixed model (GAMM) were adopted to evaluate how HRV indices were affected by size-fractionated PM, particle-bound polycyclic aromatic hydrocarbons (p-PAHs), black carbon (BC), and carbon monoxide (CO). Other related confounding factors, such as age, sex, body mass index (BMI), temperature, relative humidity (RH), time, and monitoring week were controlled by fixed effects of the GAMM. Statistical analyses of multi-pollutant models showed that PM2.5–10, PM1, and nanoparticle (NP) could cause heart rate (HR), time-domain indices, and frequency-domain indices to rise; PM1–2.5 and BC would cause the frequency-domain index to rise; p-PAHs would cause HR to rise, and CO would cause time-domain index and frequency-domain index to decline. In addition, the moving average time all fell after one hour and might appear at 8 h in HRVs’ largest percentage change caused by each pollutant, results of which suggested that size-fractionated PM, p-PAHs, BC, and CO exposures have delayed effects on HRVs. In conclusion, the results of the study showed that the increase in personal pollutant exposure would affect cardiac autonomic control function of healthy older residents in metropolitan areas, and the susceptibility of cardiovascular effects was higher than that of healthy young people. Since the small sample size would limit the generalizability of this study, more studies with larger scale are warranted to better understand the HRV effects of simultaneous PM and other pollution exposures for subpopulation groups.
Collapse
Affiliation(s)
- Chin-Sheng Tang
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kai-Jen Chuang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ta-Yuan Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung 40402, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Li-Hsin Chen
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | | | - Li-Te Chang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
- Correspondence: ; Tel.: +886-4-2451-7250
| |
Collapse
|
26
|
Morishita M, Wang L, Speth K, Zhou N, Bard RL, Li F, Brook JR, Rajagopalan S, Brook RD. Acute Blood Pressure and Cardiovascular Effects of Near-Roadway Exposures With and Without N95 Respirators. Am J Hypertens 2019; 32:1054-1065. [PMID: 31350540 PMCID: PMC7962899 DOI: 10.1093/ajh/hpz113] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/03/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The risk for cardiovascular events increases within hours of near-roadway exposures. We aimed to determine the traffic-related air pollution (TRAP) and biological mechanisms involved and if reducing particulate matter <2.5 µm (PM2.5) inhalation is protective. METHODS Fifty healthy-adults underwent multiple 2-hour near-roadway exposures (Tuesdays to Fridays) in Ann Arbor during 2 separate weeks (randomized to wear an N95 respirator during 1 week). Monday both weeks, participants rested 2 hours in an exam room (once wearing an N95 respirator). Brachial blood pressure, aortic hemodynamics, and heart rate variability were repeatedly measured during exposures. Endothelial function (reactive hyperemia index [RHI]) was measured post-exposures (Thursdays). Black carbon (BC), total particle count (PC), PM2.5, noise and temperature were measured throughout exposures. RESULTS PM2.5 (9.3 ± 7.7 µg/m3), BC (1.3 ± 0.6 µg/m3), PC (8,375 ± 4,930 particles/cm3) and noise (69.2 ± 4.2 dB) were higher (P values <0.01) and aortic hemodynamic parameters trended worse while near-roadway (P values<0.15 vs. exam room). Other outcomes were unchanged. Aortic hemodynamics trended towards improvements with N95 respirator usage while near-roadway (P values<0.15 vs. no-use), whereas other outcomes remained unaffected. Higher near-roadway PC and BC exposures were associated with increases in aortic augmentation pressures (P values<0.05) and trends toward lower RHI (P values <0.2). N95 respirator usage did not mitigate these adverse responses (nonsignificant pollutant-respirator interactions). Near-roadway outdoor-temperature and noise were also associated with cardiovascular changes. CONCLUSIONS Exposure to real-world combustion-derived particulates in TRAP, even at relatively low concentrations, acutely worsened aortic hemodynamics. Our mixed findings regarding the health benefits of wearing N95 respirators support that further studies are needed to validate if they adequately protect against TRAP given their growing worldwide usage.
Collapse
Affiliation(s)
- Masako Morishita
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lu Wang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly Speth
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Nina Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert L Bard
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Fengyao Li
- Department of Family Medicine, College of Human Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, Ontario, Canada
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Case Western Reserve Medical School, Cleveland, Ohio, USA
| | - Robert D Brook
- Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
27
|
Cowell WJ, Brunst KJ, Malin AJ, Coull BA, Gennings C, Kloog I, Lipton L, Wright RO, Enlow MB, Wright RJ. Prenatal Exposure to PM2.5 and Cardiac Vagal Tone during Infancy: Findings from a Multiethnic Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107007. [PMID: 31663780 PMCID: PMC6867319 DOI: 10.1289/ehp4434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The autonomic nervous system plays a key role in maintaining homeostasis and responding to external stimuli. In adults, exposure to fine particulate matter (PM2.5) has been associated with reduced heart rate variability (HRV), an indicator of cardiac autonomic control. OBJECTIVES Our goal was to investigate the associations of exposure to fine particulate matter (PM2.5) with HRV as an indicator of cardiac autonomic control during early development. METHODS We studied 237 maternal-infant pairs in a Boston-based birth cohort. We estimated daily residential PM2.5 using satellite data in combination with land-use regression predictors. In infants at 6 months of age, we measured parasympathetic nervous system (PNS) activity using continuous electrocardiogram monitoring during the Repeated Still-Face Paradigm, an experimental protocol designed to elicit autonomic reactivity in response to maternal interaction and disengagement. We used multivariable linear regression to examine average PM2.5 exposure across pregnancy in relation to PNS withdrawal and activation, indexed by changes in respiration-corrected respiratory sinus arrhythmia (RSAc)-an established metric of HRV that reflects cardiac vagal tone. We examined interactions with infant sex using cross-product terms. RESULTS In adjusted models we found that a 1-unit increase in PM2.5 (in micrograms per cubic meter) was associated with a 3.53% decrease in baseline RSAc (95% CI: -6.96, 0.02). In models examining RSAc change between episodes, higher PM2.5 was generally associated with reduced PNS withdrawal during stress and reduced PNS activation during recovery; however, these associations were not statistically significant. We did not observe a significant interaction between PM2.5 and sex. DISCUSSION Prenatal exposure to PM2.5 may disrupt cardiac vagal tone during infancy. Future research is needed to replicate these preliminary findings. https://doi.org/10.1289/EHP4434.
Collapse
Affiliation(s)
- Whitney J. Cowell
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kelly J. Brunst
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ashley J. Malin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brent A. Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Lianna Lipton
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle Bosquet Enlow
- Department of Psychiatry, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Kravis Children’s Hospital, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
28
|
Zareba W, Thurston SW, Zareba G, Couderc JP, Evans K, Xia J, Watson GE, Strain JJ, McSorley E, Yeates A, Mulhern M, Shamlaye CF, Bovet P, van Wijngaarden E, Davidson PW, Myers GJ. Prenatal and recent methylmercury exposure and heart rate variability in young adults: the Seychelles Child Development Study. Neurotoxicol Teratol 2019; 74:106810. [PMID: 31128243 DOI: 10.1016/j.ntt.2019.106810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/22/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Epidemiologic evidence of an adverse association between exposure to methylmercury (MeHg) from consuming fish and heart rate variability (HRV) is inconclusive. We aimed to evaluate MeHg exposure in relation to HRV parameters in a large cohort of young adults from a high fish consuming population in the Republic of Seychelles. Main Cohort participants in the Seychelles Child Development Study were evaluated at a mean age of 19 years. Prenatal MeHg exposure was determined in maternal hair growing during pregnancy and recent exposure in participant's hair taken at the evaluation. The evaluation consisted of short (~2 h) and long (overnight) Holter recordings obtained in 514 and 203 participants, respectively. Multivariable analyses examined the association of prenatal and recent MeHg exposure (in separate models) with time-domain and frequency-domain HRV parameters in different physiologic circumstances: supine position, standing position, mental stress when undergoing a mathematics test, sleep, and long recording. Prenatal MeHg exposure was not associated with any of the 23 HRV parameters studied after adjustment for multiplicity. The recent MeHg showed a trend toward significance only for few variables in the primary model. However, after additional adjustment for activity levels, polyunsaturated fatty acids, and multiplicity none were significant after a Bonferroni adjustment. In conclusion, prenatal and recent MeHg exposure had no consistent pattern of associations to support the hypothesis that they are adversely associated with heart rate variability in this study population that consumes large amounts of fish.
Collapse
Affiliation(s)
- Wojciech Zareba
- Heart Research, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States of America.
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology; University of Rochester Medical Center, Rochester, NY, United States of America
| | - Grazyna Zareba
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jean Philippe Couderc
- Heart Research, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Katie Evans
- Department of Biostatistics and Computational Biology; University of Rochester Medical Center, Rochester, NY, United States of America
| | - Jean Xia
- Heart Research, Cardiology Division, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Gene E Watson
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - J J Strain
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Emeir McSorley
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Alison Yeates
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | - Maria Mulhern
- University of Ulster, Coleraine, Northern Ireland, United Kingdom
| | | | - Pascal Bovet
- University Institute of Social and Preventive Medicine, Lausanne, Switzerland
| | - Edwin van Wijngaarden
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America; Eastman Institute for Oral Health, University of Rochester, Rochester, NY, United States of America
| | - Philip W Davidson
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Gary J Myers
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America; Department of Neurology, University of Rochester Medical Center, Rochester, NY, United States of America
| |
Collapse
|