1
|
Kumar SD, Lee JK, Radhakrishnan NK, Bang JK, Kim B, Chaudhary SC, Chelladurai A, Ganbaatar B, Kim EY, Lee CW, Yang S, Kim Y, Shin SY. Antibacterial, Antibiofilm, and Anti-inflammatory Effects of a Novel Thrombin-Derived Peptide in Sepsis Models: Insights into Underlying Mechanisms. J Med Chem 2024; 67:19791-19812. [PMID: 39475485 DOI: 10.1021/acs.jmedchem.4c02157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We developed two short helical antimicrobial peptides, HVF18-a3 and its d-enantiomer, HVF18-a3-d, derived from the thrombin C-terminal peptide HVF18. These peptides exhibit potent antimicrobial activity against various bacteria by compromising both the outer and inner membranes, with low hemolytic activity. They are stable in the presence of physiological salts and human serum, exhibiting a low potential for developing drug resistance and excellent antibiofilm activity against Gram-negative bacteria. HVF18-a3-d also neutralized lipopolysaccharide (LPS) through direct binding interactions and suppressed the production of inflammatory cytokines through the inflammatory signaling pathway mediated by Toll-like receptor 4 in RAW264.7 cells stimulated with LPS. Both pre- and post-treatment with HVF18-a3-d significantly protected mice against fatal septic shock induced by carbapenem resistant Acinetobacter baumannii. These findings suggest HVF18-a3 and HVF18-a3-d are promising candidates for developing antibiotics against Gram-negative sepsis.
Collapse
Affiliation(s)
- S Dinesh Kumar
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | | | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute (KBSI), Ochang, Chung Buk 28119, Republic of Korea
- Dandicure Inc, Ochang, Chung Buk 28119, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Shubhash Chandra Chaudhary
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Ajish Chelladurai
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Byambasuren Ganbaatar
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun Young Kim
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sungtae Yang
- Department of Microbiology, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju 61452, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Song Yub Shin
- Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
2
|
Song D, Kim B, Kim M, Lee JK, Choi J, Lee H, Shin S, Shin D, Nam HY, Lee Y, Lee S, Kim Y, Seo J. Impact of Conjugation of the Reactive Oxygen Species (ROS)-Generating Catalytic Moiety with Membrane-Active Antimicrobial Peptoids: Promoting Multitarget Mechanism and Enhancing Selectivity. J Med Chem 2024; 67:15148-15167. [PMID: 39207209 DOI: 10.1021/acs.jmedchem.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antimicrobial peptides (AMPs) represent promising therapeutic modalities against multidrug-resistant bacterial infections. As a mimic of natural AMPs, peptidomimetic oligomers like peptoids (i.e., oligo-N-substituted glycines) have been utilized for antimicrobials with resistance against proteolytic degradation. Here, we explore the conjugation of catalytic metal-binding motifs─the amino terminal Cu(II) and Ni(II) binding (ATCUN) motif─with cationic amphipathic antimicrobial peptoids to enhance their efficacy. Upon complexation with Cu(II) or Ni(II), the conjugates catalyzed hydroxyl radical generation, and 22 and 22-Cu exhibited over 10-fold improved selectivity compared to the parent peptoid, likely due to reduced hydrophobicity. Cu-ATCUN-peptoids caused bacterial membrane disruption, aggregation of intracellular biomolecules, DNA oxidation, and lipid peroxidation, promoting multiple killing mechanisms. In a mouse sepsis model, 22 demonstrated antimicrobial and anti-inflammatory efficacy with low toxicity. This study suggests a strategy to improve the potency of membrane-acting antimicrobial peptoids by incorporating ROS-generating motifs, thereby adding oxidative damage as a killing mechanism.
Collapse
Affiliation(s)
- Dasom Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minsang Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jin Kyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sujin Shin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Dongmin Shin
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ho Yeon Nam
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yunho Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
- Department of Bio-Analysis Science, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Márton RA, Sebők C, Mackei M, Tráj P, Vörösházi J, Kemény Á, Neogrády Z, Mátis G. Pap12-6: A host defense peptide with potent immunomodulatory activity in a chicken hepatic cell culture. PLoS One 2024; 19:e0302913. [PMID: 38728358 PMCID: PMC11086923 DOI: 10.1371/journal.pone.0302913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.
Collapse
Affiliation(s)
- Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
4
|
Zheng Y, Gao Y, Zhu W, Bai XG, Qi J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur J Med Chem 2024; 268:116300. [PMID: 38452729 DOI: 10.1016/j.ejmech.2024.116300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome caused by an infection. Toll-like receptor 4 (TLR4) is activated by endogenous molecules released by injured or necrotic tissues. Additionally, TLR4 is remarkably sensitive to infection of various bacteria and can rapidly stimulate host defense responses. The TLR4 signaling pathway plays an important role in sepsis by activating the inflammatory response. Accordingly, as part of efforts to improve the inflammatory response and survival rate of patients with sepsis, several drugs have been developed to regulate the inflammatory signaling pathways mediated by TLR4. Inhibition of TLR4 signal transduction can be directed toward either TLR4 directly or other proteins in the TLR4 signaling pathway. Here, we review the advances in the development of small-molecule agents and peptides targeting regulation of the TLR4 signaling pathway, which are characterized according to their structural characteristics as polyphenols, terpenoids, steroids, antibiotics, anthraquinones, inorganic compounds, and others. Therefore, regulating the expression of the TLR4 signaling pathway and modulating its effects has broad prospects as a target for the treatment of lung, liver, kidneys, and other important organs injury in sepsis.
Collapse
Affiliation(s)
- Yunyun Zheng
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Yingying Gao
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Weiru Zhu
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China
| | - Xian-Guang Bai
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| | - Jinxu Qi
- Medicine College of Pingdingshan University, Pingdingshan, Henan, 467000, China.
| |
Collapse
|
5
|
Kim M, Chaudhary SC, Kim B, Kim Y. Protective Effects of Rhamnetin in Carbapenem-Resistant Acinetobacter baumannii-Induced Sepsis Model and the Underlying Mechanism. Int J Mol Sci 2023; 24:15603. [PMID: 37958587 PMCID: PMC10647638 DOI: 10.3390/ijms242115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a well-known harmful bacterium that causes severe health disorders and dysregulates the host immune response associated with inflammation. Upon examining the suppressive activity of natural flavonoid rhamnetin on various pro-inflammatory cytokines in a CRAB-induced septic shock mouse model, we found that rhamnetin inhibited the production of IL-1β and IL-18, two pro-inflammatory cytokines associated with pyroptotic cell death, a process dependent on caspase-1. In this study, we investigated the antioxidant and anti-apoptotic activities of rhamnetin and the underlying mechanism of action in a CRAB infection. In the CRAB-induced septic shock mouse model, rhamnetin reduced the level of lipopolysaccharide (LPS) in lung lysates, resulting in the inhibition of TLR4-mediated inflammatory signaling. Notably, rhamnetin reduced intracellular reactive oxygen species (ROS) generation in macrophages and inhibited apoptotic and pyroptotic cell injury induced by CRAB infection. Therefore, rhamnetin inhibited LPS-induced pro-inflammatory mediators, hindering apoptotic and pyroptotic processes and contributing to a recovery effect in CRAB-induced sepsis mice by suppressing oxidative stress. Taken together, our study presents the potential role of rhamnetin in protecting against oxidative damage induced by CRAB infection through a TLR4 and ROS-mediated pyroptotic pathway, showing an alternative mechanism for sepsis prevention. Therefore, rhamnetin is a promising therapeutic candidate for treating CRAB-induced sepsis.
Collapse
Affiliation(s)
| | | | | | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea; (M.K.); (S.C.C.); (B.K.)
| |
Collapse
|
6
|
Bakare OO, Gokul A, Niekerk LA, Aina O, Abiona A, Barker AM, Basson G, Nkomo M, Otomo L, Keyster M, Klein A. Recent Progress in the Characterization, Synthesis, Delivery Procedures, Treatment Strategies, and Precision of Antimicrobial Peptides. Int J Mol Sci 2023; 24:11864. [PMID: 37511621 PMCID: PMC10380191 DOI: 10.3390/ijms241411864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases are constantly evolving to bypass antibiotics or create resistance against them. There is a piercing alarm for the need to improve the design of new effective antimicrobial agents such as antimicrobial peptides which are less prone to resistance and possess high sensitivity. This would guard public health in combating and overcoming stubborn pathogens and mitigate incurable diseases; however, the emergence of antimicrobial peptides' shortcomings ranging from untimely degradation by enzymes to difficulty in the design against specific targets is a major bottleneck in achieving these objectives. This review is aimed at highlighting the recent progress in antimicrobial peptide development in the area of nanotechnology-based delivery, selectivity indices, synthesis and characterization, their doping and coating, and the shortfall of these approaches. This review will raise awareness of antimicrobial peptides as prospective therapeutic agents in the medical and pharmaceutical industries, such as the sensitive treatment of diseases and their utilization. The knowledge from this development would guide the future design of these novel peptides and allow the development of highly specific, sensitive, and accurate antimicrobial peptides to initiate treatment regimens in patients to enable them to have accommodating lifestyles.
Collapse
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Arun Gokul
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Omolola Aina
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ademola Abiona
- Department of Biochemistry, Faculty of Basic Medical Sciences, Olabisi Onabanjo University, Sagamu 2002, Nigeria
| | - Adele Mariska Barker
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Gerhard Basson
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Mbukeni Nkomo
- Department of Botany, H13 Botany Building, University of Zululand, Private Bag X1001, KwaDlangezwa 3886, South Africa
| | - Laetitia Otomo
- Department of Plant Sciences, Qwaqwa Campus, University of the Free State, Phuthadithjaba 9866, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
7
|
Lee H, Kim B, Kim M, Yoo S, Lee J, Hwang E, Kim Y. Characterization of the Antimicrobial Activities of Trichoplusia ni Cecropin A as a High-Potency Therapeutic against Colistin-Resistant Escherichia coli. Pharmaceutics 2023; 15:1752. [PMID: 37376200 DOI: 10.3390/pharmaceutics15061752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
The spread of colistin-resistant bacteria is a serious threat to public health. As an alternative to traditional antibiotics, antimicrobial peptides (AMPs) show promise against multidrug resistance. In this study, we investigated the activity of the insect AMP Tricoplusia ni cecropin A (T. ni cecropin) against colistin-resistant bacteria. T. ni cecropin exhibited significant antibacterial and antibiofilm activities against colistin-resistant Escherichia coli (ColREC) with low cytotoxicity against mammalian cells in vitro. Results of permeabilization of the ColREC outer membrane as monitored through 1-N-phenylnaphthylamine uptake, scanning electron microscopy, lipopolysaccharide (LPS) neutralization, and LPS-binding interaction revealed that T. ni cecropin manifested antibacterial activity by targeting the outer membrane of E. coli with strong interaction with LPS. T. ni cecropin specifically targeted toll-like receptor 4 (TLR4) and showed anti-inflammatory activities with a significant reduction of inflammatory cytokines in macrophages stimulated with either LPS or ColREC via blockade of TLR4-mediated inflammatory signaling. Moreover, T. ni cecropin exhibited anti-septic effects in an LPS-induced endotoxemia mouse model, confirming its LPS-neutralizing activity, immunosuppressive effect, and recovery of organ damage in vivo. These findings demonstrate that T. ni cecropin exerts strong antimicrobial activities against ColREC and could serve as a foundation for the development of AMP therapeutics.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seoyeong Yoo
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinkyeong Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Eunha Hwang
- Center for Research Equipment, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Eshtiaghi S, Nazari R, Fasihi-Ramandi M. Molecular Docking, Anti-Biofilm & Antibacterial Activities and Therapeutic Index of mCM11 Peptide on Acinetobacter baumannii Strains. Curr Microbiol 2023; 80:191. [PMID: 37093361 DOI: 10.1007/s00284-023-03217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/09/2023] [Indexed: 04/25/2023]
Abstract
Despite the huge efforts of microbiologists, infectious diseases have yet remained one of the leading causes of death in humans, further highlighting the research priority for controlling opportunistic pathogens. Many researchers have used antibacterial peptides to solve the problem of antibiotic resistance. This research is thus conducted to investigate the antibacterial and anti-biofilm activity of a novel modified cecropin-melittin 11-peptide with improved therapeutic properties and lower side effects. After synthesis and purification of mCM11 (NH2-WRLFRRILRVL-NH2) by solid-phase synthesis and HPLC methods, respectively, the antibacterial and biofilm inhibitory activities were explored in vitro. TMHMM was used to confirm the reaction of mCM11 on the plasma membrane of the prokaryotic cells. The interaction between mCM11 on Acinetobacter baumannii strains was investigated by molecular docking using ClusPro2.0. Hemolysis and therapeutic indexes were also calculated to quantify the relative safety and adverse effects of mCM11. According to the results, mCM11 has a high inhibitory and lethal effect on A. baumannii strains due to its cationic properties and new specific sequence. Molecular docking revealed the release of a significant amount of energy when mCM11 binds to the surface of A. baumannii in an appropriate site. The findings indicated that mCM11 IC50 (4 μg/mL) lysed 2.78% of RBCs; moreover, 8 strains of Acinetobacter baumannii showed a favorable therapeutic index. The mCM11 exhibits strong antibacterial and antibiofilm activities against A. baumannii strains, suggesting its potential therapeutic role in infections caused by these strains. Similar to its impact on A. baumannii, mCM11 could be a suitable alternative to antibiotics in combat against antibiotic-resistant bacteria in the in vivo experiments.
Collapse
Affiliation(s)
- Sajjad Eshtiaghi
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Razieh Nazari
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran.
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Lee H, Krishnan M, Kim M, Yoon YK, Kim Y. Rhamnetin, a Natural Flavonoid, Ameliorates Organ Damage in a Mouse Model of Carbapenem-Resistant Acinetobacter baumannii-Induced Sepsis. Int J Mol Sci 2022; 23:12895. [PMID: 36361685 PMCID: PMC9656386 DOI: 10.3390/ijms232112895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/15/2023] Open
Abstract
In sepsis, the persistence of uncontrolled inflammatory response of infected host cells eventually leads to severe lung and organ failure and, ultimately, death. Carbapenem-resistant Acinetobacter baumannii (CRAB), causative bacteria of sepsis and lung failure in acute cases, belongs to a group of critical pathogens that cannot be eradicated using the currently available antibiotics. This underlines the necessity of developing new modes of therapeutics that can control sepsis at the initial stages. In this study, we investigated the anti-inflammatory activities in vitro and in vivo and the antiseptic effects of rhamnetin, a naturally occurring flavonoid. We found that among its isoforms, the potency of rhamnetin was less explored but rhamnetin possessed superior anti-inflammatory activity with least cytotoxicity. Rhamnetin showed significant anti-inflammatory effects in lipopolysaccharide-, CRAB-, and Escherichia coli (E. coli)-stimulated mouse macrophages by inhibiting the release of interleukin-6 and nitric oxide. In a mouse model of sepsis infected with clinically isolated CRAB or E. coli, rhamnetin significantly reduced the bacterial burden in the organs. In addition, normalized pro-inflammatory cytokine levels in lung lysates and histological analysis of lung tissue indicated alleviation of lung damage. This study implies that a potent natural product such as rhamnetin could be a future therapeutic for treating carbapenem-resistant gram-negative sepsis.
Collapse
Affiliation(s)
- Hyeju Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Minju Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Targeted Modification and Structure-Activity Study of GL-29, an Analogue of the Antimicrobial Peptide Palustrin-2ISb. Antibiotics (Basel) 2022; 11:antibiotics11081048. [PMID: 36009917 PMCID: PMC9405102 DOI: 10.3390/antibiotics11081048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered as promising antimicrobial agents due to their potent bioactivity. Palustrin-2 peptides were previously found to exhibit broad-spectrum antimicrobial activity with low haemolytic activity. Therefore, GL-29 was used as a template for further modification and study. Firstly, the truncated analogue, GL-22, was designed to examine the function of the ‘Rana box’, which was confirmed to have no impact on antimicrobial activity. The results of antimicrobial activity assessment against seven microorganisms demonstrated GL-22 to have a broad-spectrum antimicrobial activity, but weak potency against Candida albicans (C. albicans). These data were similar to those of GL-29, but GL-22 showed much lower haemolysis and lower cytotoxicity against HaCaT cells. Moreover, GL-22 exhibited potent in vivo activity at 4 × MIC against Staphylococcus aureus (S. aureus)-infected larvae. Several short analogues, from the C-terminus and N-terminus of GL-22, were modified to identify the shortest functional motif. However, the results demonstrated that the shorter peptides did not exhibit potent antimicrobial activity, and the factors that affect the bioactive potency of these short analogues need to be further studied.
Collapse
|
11
|
Wang K, Lei Q, Ma H, Jiang M, Yang T, Ma Q, Datsomor O, Zhan K, Zhao G. Phloretin Protects Bovine Rumen Epithelial Cells from LPS-Induced Injury. Toxins (Basel) 2022; 14:toxins14050337. [PMID: 35622584 PMCID: PMC9147548 DOI: 10.3390/toxins14050337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/04/2022] Open
Abstract
Lipopolysaccharide (LPS) is an endotoxin that induces immune and inflammatory responses in the rumen epithelium of dairy cows. It is well-known that flavonoid phloretin (PT) exhibits anti-oxidative, anti-inflammatory and antibacterial activity. The aim of this research was to explore whether PT could decrease LPS-induced damage to bovine rumen epithelial cells (BRECs) and its molecular mechanisms of potential protective efficacy. BRECs were pretreated with PT for 2 h and then stimulated with LPS for the assessment of various response indicators. The results showed that 100 µM PT had no significant effect on the viability of 10 µg/mL LPS-induced BRECs, and this dose was used in follow-up studies. The results showed that PT pre-relieved the decline in LPS-induced antioxidant indicators (T-AOC and GSH-PX). PT pretreatment resulted in decreased interleukin-1β (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α) and chemokines (CCL2, CCL5, CCL20) expression. The underlying mechanisms explored reveal that PT may contribute to inflammatory responses by regulating Toll-like receptor 4 (TLR4), nuclear transcription factor-κB p65 (NF-κB p65), and ERK1/2 (p42/44) signaling pathways. Moreover, further studies found that LPS-induced BRECs showed decreased expression of claudin-related genes (ZO-1, Occludin); these were attenuated by pretreatment with PT. These results suggest that PT enhances the antioxidant properties of BRECs during inflammation, reduces gene expression of pro-inflammatory cytokines and chemokines, and enhances barrier function. Overall, the results suggest that PT (at least in vitro) offers some protective effect against LPS-induced ruminal epithelial inflammation. Further in vivo studies should be conducted to identify strategies for the prevention and amelioration of short acute rumen acidosis (SARA) in dairy cows using PT.
Collapse
|
12
|
Antimicrobial and Immunomodulatory Effects of Selected Chemokine and Antimicrobial Peptide on Cytokine Profile during Salmonella Typhimurium Infection in Mouse. Antibiotics (Basel) 2022; 11:antibiotics11050607. [PMID: 35625251 PMCID: PMC9137564 DOI: 10.3390/antibiotics11050607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
The antimicrobial and immunomodulatory capacities of the peptide Css54 and the chemokine MCP-1 were tested. The first, a peptide isolated from the venom of the scorpion Centruroides suffusus suffusus was synthesized chemically. In contrast, the second is a monocyte chemoattractant expressed as a recombinant protein in our lab. It was observed in vitro that Css54 inhibited the growth of Salmonella enterica serovar Typhimurium (6.2 µg/mL). At high concentrations, it was toxic to macrophages (25 µg/mL), activated macrophage phagocytosis (1.5 µg/mL), and bound Salmonella LPS (3 µg/mL). On the other hand, the recombinant MCP-1 neither inhibited the growth of Salmonella Typhimurium nor was it toxic to macrophages (up to 25 µg/mL), nor activated macrophage phagocytosis or bound Salmonella LPS (up to 3 µg/mL). Although it was observed in vivo in mice Balb/C that both Css54 and MCP-1 did not resolve the intraperitoneal infection by S. Typhimurium, Css54 decreased the expression of IL-6 and increased IL-10, IL-12p70, and TNF-α levels; meanwhile, MCP-1 decreased the expression of IFN-γ and increased IL-12p70 and TNF-α. It was also observed that the combination of both molecules Css54 and MCP-1 increased the expression of IL-10 and TNF-α.
Collapse
|
13
|
Krishnan M, Choi J, Jang A, Choi S, Yeon J, Jang M, Lee Y, Son K, Shin SY, Jeong MS, Kim Y. Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule. Proc Natl Acad Sci U S A 2022; 119:e2115669119. [PMID: 35238667 PMCID: PMC8915966 DOI: 10.1073/pnas.2115669119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 01/21/2023] Open
Abstract
SignificanceSimilar to mammalian TLR4/MD-2, the Toll9/MD-2-like protein complex in the silkworm, Bombyx mori, acts as an innate pattern-recognition receptor that recognizes lipopolysaccharide (LPS) and induces LPS-stimulated expression of antimicrobial peptides such as cecropins. Here, we report that papiliocin, a cecropin-like insect antimicrobial peptide from the swallowtail butterfly, competitively inhibits the LPS-TLR4/MD-2 interaction by directly binding to human TLR4/MD-2. Structural elements in papiliocin, which are important in inhibiting TLR4 signaling via direct binding, are highly conserved among insect cecropins, indicating that its TLR4-antagonistic activity may be related to insect Toll9-mediated immune response against microbial infection. This study highlights the potential of papiliocin as a potent TLR4 antagonist and safe peptide antibiotic for treating gram-negative sepsis.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Jiwon Yeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Mihee Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Kkabi Son
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| | - Soon Young Shin
- Department of Biological Sciences, Konkuk University, Seoul 05029, South Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, South Korea
| |
Collapse
|
14
|
Kim SE, Lee J, An JU, Kim TH, Oh CW, Ko YJ, Krishnan M, Choi J, Yoon DY, Kim Y, Oh DK. Regioselectivity of an arachidonate 9S-lipoxygenase from Sphingopyxis macrogoltabida that biosynthesizes 9S,15S- and 11S,17S-dihydroxy fatty acids from C20 and C22 polyunsaturated fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159091. [PMID: 34902567 DOI: 10.1016/j.bbalip.2021.159091] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/14/2021] [Accepted: 12/04/2021] [Indexed: 12/19/2022]
Abstract
Lipoxygenases (LOXs) biosynthesize lipid mediators (LMs) as human signaling molecules. Among LMs, specialized pro-resolving mediators (SPMs) are involved in the resolution of inflammation and infection in humans. Here, the putative LOX from the bacterium Sphingopyxis macrogoltabida was identified as arachidonate 9S-LOX. The enzyme catalyzed oxygenation at the n-12 position of C20 and C22 polyunsaturated fatty acids (PUFAs) to form 9S- and 11S-hydroperoxy fatty acids, which were reduced to 9S- and 11S-hydroxy fatty acids (HFAs) by cysteine, respectively, and it catalyzed again oxygenation at the n-6 position of HFAs to form 9S,15S- and 11S,17S-DiHFAs, respectively. The regioselective residues of 9S-LOX were determined as lle395 and Val569 based on the amino acid alignment and homology models. The regioselectivity of the I395F variant was changed from the n-12 position on C20 PUFA to the n-6 position to form 15S-HFAs. This may be due to the reduction of the substrate-binding pocket by replacing the smaller Ile with a larger Phe. The V569W variant had a significantly lower second‑oxygenating activity compared to wild-type 9S-LOX because the insertion of the hydroxyl group of the first‑oxygenating products at the active site was seemed to be hindered by substituting a larger Trp for a smaller Val. The compounds, 11S-hydroxydocosapentaenoic acid, 9S,15S-dihydroxyeicosatetraenoic acid, 9S,15S-dihydroxyeicosapentaenoic acid, 11S,17S-hydroxydocosapentaenoic acid, and 11S,17S-dihydroxydocosahexaenoic acid, were newly identified by polarimeter, LC-MS/MS, and NMR. 11S,17S-DiHFAs as SPM isomers biosynthesized from C22 PUFAs showed anti-inflammatory activities in mouse and human cells. Our study contributes may stimulate physiological studies by providing new LMs.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Ung An
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae-Hun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chae-Won Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yoon-Joo Ko
- National Center for Inter-University Research Facilities (NCIRF), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Do-Young Yoon
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Deok-Kun Oh
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
15
|
Krishnan M, Choi J, Jang A, Yoon YK, Kim Y. Antiseptic 9-Meric Peptide with Potency against Carbapenem-Resistant Acinetobacter baumannii Infection. Int J Mol Sci 2021; 22:12520. [PMID: 34830401 PMCID: PMC8621208 DOI: 10.3390/ijms222212520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Carbapenem-resistant A. baumannii (CRAB) infection can cause acute host reactions that lead to high-fatality sepsis, making it important to develop new therapeutic options. Previously, we developed a short 9-meric peptide, Pro9-3D, with significant antibacterial and cytotoxic effects. In this study, we attempted to produce safer peptide antibiotics against CRAB by reversing the parent sequence to generate R-Pro9-3 and R-Pro9-3D. Among the tested peptides, R-Pro9-3D had the most rapid and effective antibacterial activity against Gram-negative bacteria, particularly clinical CRAB isolates. Analyses of antimicrobial mechanisms based on lipopolysaccharide (LPS)-neutralization, LPS binding, and membrane depolarization, as well as SEM ultrastructural investigations, revealed that R-Pro9-3D binds strongly to LPS and impairs the membrane integrity of CRAB by effectively permeabilizing its outer membrane. R-Pro9-3D was also less cytotoxic and had better proteolytic stability than Pro9-3D and killed biofilm forming CRAB. As an LPS-neutralizing peptide, R-Pro9-3D effectively reduced LPS-induced pro-inflammatory cytokine levels in RAW 264.7 cells. The antiseptic abilities of R-Pro9-3D were also investigated using a mouse model of CRAB-induced sepsis, which revealed that R-Pro9-3D reduced multiple organ damage and attenuated systemic infection by acting as an antibacterial and immunosuppressive agent. Thus, R-Pro9-3D displays potential as a novel antiseptic peptide for treating Gram-negative CRAB infections.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| | - Young Kyung Yoon
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, Korea University Anam Hospital, Korea University, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (M.K.); (J.C.); (A.J.)
| |
Collapse
|
16
|
Tan A, Xu F, Yokoyama C, Yano S, Konno H. Design, synthesis, and evaluation of the self-assembled antimicrobial peptides based on the ovalbumin-derived peptide TK913. J Pept Sci 2021; 28:e3375. [PMID: 34725889 DOI: 10.1002/psc.3375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 09/28/2021] [Indexed: 11/06/2022]
Abstract
The preparation, self-assembly, and antimicrobial activity of peptides based on TK913 is described. TK9Z4 incorporating a Pro-Pro motif exhibited self-assembly but no cytotoxicity. However, peptide TKZ3 (obtained by changing the amino acid sequence of TK9Z4) showed morphological changes at different concentrations, potent antimicrobial activity, low cytotoxicity, and trypsin resistance. Accordingly, TKZ3 is proposed as new AMP derived from ovalbumin-derived peptides.
Collapse
Affiliation(s)
- Ao Tan
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Fusheng Xu
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Chikako Yokoyama
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan
| |
Collapse
|
17
|
Choi J, Jang A, Yoon YK, Kim Y. Development of Novel Peptides for the Antimicrobial Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Infection. Pharmaceutics 2021; 13:pharmaceutics13111800. [PMID: 34834215 PMCID: PMC8619914 DOI: 10.3390/pharmaceutics13111800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) infection has a high mortality rate, making the development of novel effective antibiotic therapeutic strategies highly critical. Antimicrobial peptides can outperform conventional antibiotics regarding drug resistance and broad-spectrum activity. PapMA, an 18-residue hybrid peptide, containing N-terminal residues of papiliocin and magainin 2, has previously demonstrated potent antibacterial activity. In this study, PapMA analogs were designed by substituting Ala15 or Phe18 with Ala, Phe, and Trp. PapMA-3 with Trp18 showed the highest bacterial selectivity against CRAB, alongside low cytotoxicity. Biophysical studies revealed that PapMA-3 permeabilizes CRAB membrane via strong binding to LPS. To reduce toxicity via reduced antibiotic doses, while preventing the emergence of multi-drug resistant bacteria, the efficacy of PapMA-3 in combination with six selected antibiotics was evaluated against clinical CRAB isolates (C1–C5). At 25% of the minimum inhibition concentration, PapMA-3 partially depolarized the CRAB membrane and caused sufficient morphological changes, facilitating the entry of antibiotics into the bacterial cell. Combining PapMA-3 with rifampin significantly and synergistically inhibited CRAB C4 (FICI = 0.13). Meanwhile, combining PapMA-3 with vancomycin or erythromycin, both potent against Gram-positive bacteria, demonstrated remarkable synergistic antibiofilm activity against Gram-negative CRAB. This study could aid in the development of combination therapeutic approaches against CRAB.
Collapse
Affiliation(s)
- Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
| | - Young Kyung Yoon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Korea;
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (J.C.); (A.J.)
- Correspondence: ; Tel.: +822-450-3421; Fax: +822-447-5987
| |
Collapse
|
18
|
Sultana A, Luo H, Ramakrishna S. Antimicrobial Peptides and Their Applications in Biomedical Sector. Antibiotics (Basel) 2021; 10:1094. [PMID: 34572676 PMCID: PMC8465024 DOI: 10.3390/antibiotics10091094] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
In a report by WHO (2014), it was stated that antimicrobial resistance is an arising challenge that needs to be resolved. This resistance is a critical issue in terms of disease or infection treatment and is usually caused due to mutation, gene transfer, long-term usage or inadequate use of antimicrobials, survival of microbes after consumption of antimicrobials, and the presence of antimicrobials in agricultural feeds. One of the solutions to this problem is antimicrobial peptides (AMPs), which are ubiquitously present in the environment. These peptides are of concern due to their special mode of action against a wide spectrum of infections and health-related problems. The biomedical field has the highest need of AMPs as it possesses prominent desirable activity against HIV-1, skin cancer, breast cancer, in Behcet's disease treatment, as well as in reducing the release of inflammatory cells such as TNFα, IL-8, and IL-1β, enhancing the production of anti-inflammatory cytokines such as IL-10 and GM-CSF, and in wound healing properties. This review has highlighted all the major functions and applications of AMPs in the biomedical field and concludes the future potential of AMPs.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China;
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore;
| |
Collapse
|
19
|
Purification and Characterization of Trochus radiatus Derived Low Molecular Weight Bactericidal Polypeptide Active Against ESKAPE Pathogens. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Peptides Affecting the Outer Membrane Lipid Asymmetry System (MlaA-OmpC/F) Reduce Avian Pathogenic Escherichia coli (APEC) Colonization in Chickens. Appl Environ Microbiol 2021; 87:e0056721. [PMID: 34132592 DOI: 10.1128/aem.00567-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC), an extraintestinal pathogenic E. coli (ExPEC), causes colibacillosis in chickens and is reportedly associated with urinary tract infections and meningitis in humans. Development of resistance is a major limitation of current ExPEC antibiotic therapy. New antibacterials that can circumvent resistance problem such as antimicrobial peptides (AMPs) are critically needed. Here, we evaluated the efficacy of Lactobacillus rhamnosus GG (LGG)-derived peptides against APEC and uncovered their potential antibacterial targets. Three peptides (NPSRQERR [P1], PDENK [P2], and VHTAPK [P3]) displayed inhibitory activity against APEC. These peptides were effective against APEC in biofilm and chicken macrophage HD11 cells. Treatment with these peptides reduced the cecum colonization (0.5 to 1.3 log) of APEC in chickens. Microbiota analysis revealed two peptides (P1 and P2) decreased Enterobacteriaceae abundance with minimal impact on overall cecal microbiota of chickens. Bacterial cytological profiling showed peptides disrupt APEC membranes either by causing membrane shedding, rupturing, or flaccidity. Furthermore, gene expression analysis revealed that peptides downregulated the expression of ompC (>13.0-fold), ompF (>11.3-fold), and mlaA (>4.9-fold), genes responsible for the maintenance of outer membrane (OM) lipid asymmetry. Consistently, immunoblot analysis also showed decreased levels of OmpC and MlaA proteins in APEC treated with peptides. Alanine scanning studies revealed residues crucial (P1, N, E, R and P; P2, D and E; P3, T, P, and K) for their activity. Overall, our study identified peptides with a new antibacterial target that can be developed to control APEC infections in chickens, thereby curtailing poultry-originated human ExPEC infections. IMPORTANCE Avian pathogenic Escherichia coli (APEC) is a subgroup of extraintestinal pathogenic E. coli (ExPEC) and considered a foodborne zoonotic pathogen transmitted through consumption of contaminated poultry products. APEC shares genetic similarities with human ExPECs, including uropathogenic E. coli (UPEC) and neonatal meningitis E. coli (NMEC). Our study identified Lactobacillus rhamnosus GG (LGG)-derived peptides (P1 [NPSRQERR], P2 [PDENK], and P3 [VHTAPK]) effective in reducing APEC infection in chickens. Antimicrobial peptides (AMPs) are regarded as ideal candidates for antibacterial development because of their low propensity for resistance development and ability to kill resistant bacteria. Mechanistic studies showed peptides disrupt the APEC membrane by affecting the MlaA-OmpC/F system responsible for the maintenance of outer membrane (OM) lipid asymmetry, a promising new druggable target to overcome resistance problems in Gram-negative bacteria. Altogether, these peptides can provide a valuable approach for development of novel anti-ExPEC therapies, including APEC, human ExPECs, and other related Gram-negative pathogens. Furthermore, effective control of APEC infections in chickens can curb poultry-originated ExPEC infections in humans.
Collapse
|
21
|
OMN6 a novel bioengineered peptide for the treatment of multidrug resistant Gram negative bacteria. Sci Rep 2021; 11:6603. [PMID: 33758343 PMCID: PMC7988117 DOI: 10.1038/s41598-021-86155-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/11/2021] [Indexed: 01/31/2023] Open
Abstract
New antimicrobial agents are urgently needed, especially to eliminate multidrug resistant Gram-negative bacteria that stand for most antibiotic-resistant threats. In the following study, we present superior properties of an engineered antimicrobial peptide, OMN6, a 40-amino acid cyclic peptide based on Cecropin A, that presents high efficacy against Gram-negative bacteria with a bactericidal mechanism of action. The target of OMN6 is assumed to be the bacterial membrane in contrast to small molecule-based agents which bind to a specific enzyme or bacterial site. Moreover, OMN6 mechanism of action is effective on Acinetobacter baumannii laboratory strains and clinical isolates, regardless of the bacteria genotype or resistance-phenotype, thus, is by orders-of-magnitude, less likely for mutation-driven development of resistance, recrudescence, or tolerance. OMN6 displays an increase in stability and a significant decrease in proteolytic degradation with full safety margin on erythrocytes and HEK293T cells. Taken together, these results strongly suggest that OMN6 is an efficient, stable, and non-toxic novel antimicrobial agent with the potential to become a therapy for humans.
Collapse
|
22
|
Zhong C, Zhang F, Yao J, Zhu Y, Zhu N, Zhang Y, Liu H, Gou S, Ni J. Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. Biochem Pharmacol 2021; 186:114470. [PMID: 33610592 DOI: 10.1016/j.bcp.2021.114470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
In response to the dramatically increasing antimicrobial resistance, a series of new symmetric peptides were designed and synthesized in this study by a "WWW" motif as the symmetric center, arginine as the positive charge amino acid and the terminus symmetrically tagged with hydrophobic amino acids. Amongst the new symmetric peptide FRRW (FRRWWWRRF-NH2) presented the highest cell selectivity for bacteria over mammalian cell and exerted excellent antimicrobial potential against a broad of bacteria, especially difficult-to-kill multidrug-resistant strains clinical isolates. FRRW also displayed perfect stability in physiological salt ions and rapid killing speed as well as acted on multiple mechanisms including non-receptor mediated membrane and intra-molecular mechanisms. Importantly, FRRW emerged a low tendency of resistance in contrast to traditional antibiotics ciprofloxacin and gentamicin. What's more, FRRW could resist or alleviate or even reverse the ciprofloxacin- and gentamicin-resistance by changing the permeability of bacterial membrane and inhibiting the efflux pumps of bacteria. Furthermore, FRRW exhibited remarkable effectiveness and higher safety in vivo than polymyxin B. In summary, the new symmetric peptide FRRW was promised to be as a new antimicrobial candidate for overcoming the increasing bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
23
|
Krishnan M, Choi J, Choi S, Kim Y. Anti-Endotoxin 9-Meric Peptide with Therapeutic Potential for the Treatment of Endotoxemia. J Microbiol Biotechnol 2021; 31:25-32. [PMID: 33263333 PMCID: PMC9705858 DOI: 10.4014/jmb.2011.11011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Inflammatory reactions activated by lipopolysaccharide (LPS) of gram-negative bacteria can lead to severe septic shock. With the recent emergence of multidrug-resistant gram-negative bacteria and a lack of efficient ways to treat resulting infections, there is a need to develop novel anti-endotoxin agents. Antimicrobial peptides have been noticed as potential therapeutic molecules for bacterial infection and as candidates for new antibiotic drugs. We previously designed the 9-meric antimicrobial peptide Pro9-3 and it showed high antimicrobial activity against gram-negative bacteria. Here, to further examine its potency as an anti-endotoxin agent, we examined the antiendotoxin activities of Pro9-3 and elucidated its mechanism of action. We performed a dye-leakage experiment and BODIPY-TR cadaverine and limulus amebocyte lysate assays for Pro9-3 as well as its lysine-substituted analogue and their enantiomers. The results confirmed that Pro9-3 targets the bacterial membrane and the arginine residues play key roles in its antimicrobial activity. Pro9-3 showed excellent LPS-neutralizing activity and LPS-binding properties, which were superior to those of other peptides. Saturation transfer difference-nuclear magnetic resonance experiments to explore the interaction between LPS and Pro9-3 revealed that Trp3 and Tlr7 in Pro9-3 are critical for attracting Pro9-3 to the LPS in the gram-negative bacterial membrane. Moreover, the anti-septic effect of Pro9-3 in vivo was investigated using an LPS-induced endotoxemia mouse model, demonstrating its dual activities: antibacterial activity against gram-negative bacteria and immunosuppressive effect preventing LPS-induced endotoxemia. Collectively, these results confirmed the therapeutic potential of Pro9-3 against infection of gram-negative bacteria.
Collapse
Affiliation(s)
- Manigandan Krishnan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Joonhyeok Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3421 Fax: +82-2-447-5987 E-mail:
| |
Collapse
|
24
|
Ferreira AR, Teixeira C, Sousa CF, Bessa LJ, Gomes P, Gameiro P. How Insertion of a Single Tryptophan in the N-Terminus of a Cecropin A-Melittin Hybrid Peptide Changes Its Antimicrobial and Biophysical Profile. MEMBRANES 2021; 11:membranes11010048. [PMID: 33445476 PMCID: PMC7826622 DOI: 10.3390/membranes11010048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
In the era of antibiotic resistance, there is an urgent need for efficient antibiotic therapies to fight bacterial infections. Cationic antimicrobial peptides (CAMP) are promising lead compounds given their membrane-targeted mechanism of action, and high affinity towards the anionic composition of bacterial membranes. We present a new CAMP, W-BP100, derived from the highly active BP100, holding an additional tryptophan at the N-terminus. W-BP100 showed a broader antibacterial activity, demonstrating a potent activity against Gram-positive strains. Revealing a high partition constant towards anionic over zwitterionic large unilamellar vesicles and inducing membrane saturation at a high peptide/lipid ratio, W-BP100 has a preferential location for hydrophobic environments. Contrary to BP100, almost no aggregation of anionic vesicles is observed around saturation conditions and at higher concentrations no aggregation is observed. With these results, it is possible to state that with the incorporation of a single tryptophan to the N-terminus, a highly active peptide was obtained due to the π-electron system of tryptophan, resulting in negatively charged clouds, that participate in cation-π interactions with lysine residues. Furthermore, we propose that W-BP100 action can be achieved by electrostatic interactions followed by peptide translocation.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Carla F. Sousa
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
- Helmholtz Institute for Pharmaceutical Sciences Campus E8 1, 66123 Saarbrücken, Germany
| | - Lucinda J. Bessa
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Paula Gomes
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
| | - Paula Gameiro
- Laboratório Associado para a Química Verde da Rede de Química e Tecnologia (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (A.R.F.); (C.T.); or (L.J.B.); (P.G.)
- Correspondence:
| |
Collapse
|
25
|
Zhong C, Zhang F, Zhu N, Zhu Y, Yao J, Gou S, Xie J, Ni J. Ultra-short lipopeptides against gram-positive bacteria while alleviating antimicrobial resistance. Eur J Med Chem 2020; 212:113138. [PMID: 33422980 DOI: 10.1016/j.ejmech.2020.113138] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 01/05/2023]
Abstract
Facing the continuously urgent demands for novel antimicrobial agents since the growing emergence of bacterial resistance, a series of new ultra-short lipopeptides, composed of tryptophan and arginine and fatty acids, were de novo designed and synthesized in this study. Most of the new lipopeptides exhibited preferable antimicrobial potential against gram-positive bacteria, including MRSA clinical isolates. Among them, the new lipopeptides C14-R1 (C14-RWW-NH2) and C12-R2 (C12-RRW-NH2) presented higher selectivity to bacterial membranes over mammalian membranes and low cytotoxicity, which also maintained better antimicrobial activity in the presence of physiological salts or serum. Most importantly, C14-R1 and C12-R2 not only expressed low tendency of bacterial resistance, but also displayed synergistic antimicrobial activity against antibiotics-resistant bacteria when be used in combination with antibiotics. Especially, they could alleviate or reverse the ciprofloxacin resistance, implying an ideal anti-resistance function. Moreover, the new lipopeptides showed rapid killing kinetics, obvious effectiveness for persistent cells that escaped from antibiotics, and strong anti-biofilm ability, which further indicated a preferable anti-resistance ability. The typical non-receptor-mediated membrane mechanisms were characterized by LPS/LTA competitive inhibition, cytoplasmic membrane depolarization, PI uptake assay and scanning electron microscopy analyses systematically. Reactive oxygen species (ROS) generation assays supplemented their intracellular targets in the meanwhile. In addition to the remarkable antimicrobial activity in vivo, the new lipopeptides also displayed significant anti-inflammatory effect in vivo. To sum up, the new lipopeptides C14-R1 and C12-R2 viewed as novel antimicrobial alternatives for tackling the impending crisis of antimicrobial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Fangyan Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao 999078, China.
| |
Collapse
|
26
|
González García M, Rodríguez A, Alba A, Vázquez AA, Morales Vicente FE, Pérez-Erviti J, Spellerberg B, Stenger S, Grieshober M, Conzelmann C, Münch J, Raber H, Kubiczek D, Rosenau F, Wiese S, Ständker L, Otero-González A. New Antibacterial Peptides from the Freshwater Mollusk Pomacea poeyana (Pilsbry, 1927). Biomolecules 2020; 10:biom10111473. [PMID: 33113998 PMCID: PMC7690686 DOI: 10.3390/biom10111473] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/04/2023] Open
Abstract
Antimicrobial peptides (AMPs) are biomolecules with antimicrobial activity against a broad group of pathogens. In the past few decades, AMPs have represented an important alternative for the treatment of infectious diseases. Their isolation from natural sources has been widely investigated. In this sense, mollusks are promising organisms for the identification of AMPs given that their immune system mainly relies on innate response. In this report, we characterized the peptide fraction of the Cuban freshwater snail Pomacea poeyana (Pilsbry, 1927) and identified 37 different peptides by nanoLC-ESI-MS-MS technology. From these peptide sequences, using bioinformatic prediction tools, we discovered two potential antimicrobial peptides named Pom-1 (KCAGSIAWAIGSGLFGGAKLIKIKKYIAELGGLQ) and Pom-2 (KEIERAGQRIRDAIISAAPAVETLAQAQKIIKGG). Database search revealed that Pom-1 is a fragment of Closticin 574 previously isolated from the bacteria Clostridium tyrobutyrium, and Pom-2 is a fragment of cecropin D-like peptide first isolated from Galleria mellonella hemolymph. These sequences were chemically synthesized and evaluated against different human pathogens. Interestingly, structural predictions of both peptides in the presence of micelles showed models that comprise two alpha helices joined by a short loop. The CD spectra analysis of Pom-1 and Pom-2 in water showed for both structures a high random coil content, a certain content of α-helix and a low β-sheet content. Like other described AMPs displaying a disordered structure in water, the peptides may adopt a helical conformation in presence of bacterial membranes. In antimicrobial assays, Pom-1 demonstrated high activity against the Gram-negative bacteria Pseudomonas aeruginosa and moderate activity against Klebsiella pneumoniae and Listeria monocytogenes. Neither of the two peptides showed antifungal action. Pom-1 moderately inhibits Zika Virus infection but slightly enhances HIV-1 infectivion in vitro. The evaluation of cell toxicity on primary human macrophages did not show toxicity on THP-1 cells, although slight overall toxicity was observed in high concentrations of Pom-1. We assume that both peptides may play a key role in innate defense of P. poeyana and represent promising antimicrobial candidates for humans.
Collapse
Affiliation(s)
- Melaine González García
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 street, 10400 Havana, Cuba; (M.G.G.); (J.P.-E.)
| | - Armando Rodríguez
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
| | - Annia Alba
- Reference Center for Research and Diagnosis, Pedro Kourí Institute for Tropical Medicine, 11400 Havana, Cuba; (A.A.); (A.A.V.)
| | - Antonio A. Vázquez
- Reference Center for Research and Diagnosis, Pedro Kourí Institute for Tropical Medicine, 11400 Havana, Cuba; (A.A.); (A.A.V.)
| | - Fidel E. Morales Vicente
- General Chemistry Department, Faculty of Chemistry, University of Havana, Zapata y G, 10400 Havana, Cuba;
- Synthetic Peptides Group, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, 10600 Havana, Cuba
| | - Julio Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 street, 10400 Havana, Cuba; (M.G.G.); (J.P.-E.)
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (B.S.); (S.S.); (M.G.)
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (B.S.); (S.S.); (M.G.)
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (B.S.); (S.S.); (M.G.)
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University, Meyerhofstrasse 1, 89081 Ulm, Germany; (C.C.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University, Meyerhofstrasse 1, 89081 Ulm, Germany; (C.C.); (J.M.)
| | - Heinz Raber
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (H.R.); (D.K.); (F.R.)
| | - Dennis Kubiczek
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (H.R.); (D.K.); (F.R.)
| | - Frank Rosenau
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany; (H.R.); (D.K.); (F.R.)
| | - Sebastian Wiese
- Core Unit of Mass Spectrometry and Proteomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Faculty of Medicine, Ulm University, 89081 Ulm, Germany;
- Correspondence: (L.S.); (A.O.-G.)
| | - Anselmo Otero-González
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 street, 10400 Havana, Cuba; (M.G.G.); (J.P.-E.)
- Correspondence: (L.S.); (A.O.-G.)
| |
Collapse
|
27
|
Kim SR, Choi KH, Kim KY, Kwon HY, Park SW. Development of a Novel Short Synthetic Antibacterial Peptide Derived from the Swallowtail Butterfly Papilio xuthus Larvae. J Microbiol Biotechnol 2020; 30:1305-1309. [PMID: 32627752 PMCID: PMC9728235 DOI: 10.4014/jmb.2003.03009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022]
Abstract
Insects possess biological defense systems that can effectively combat the invasion of external microorganisms and viruses, thereby supporting their survival in diverse environments. Antimicrobial peptides (AMPs) represent a fast-acting weapon against invading pathogens, including various bacterial or fungal strains. A 37-residue antimicrobial peptide, papiliocin, derived from the swallowtail butterfly Papilio xuthus larvae, showed significant antimicrobial activities against several human pathogenic bacterial and fungal strains. Jelleines, isolated as novel antibacterial peptides from the Royal Jelly (RJ) of bees, exhibit broad-spectrum protection against microbial infections. In this study, we developed a novel antimicrobial peptide, PAJE (RWKIFKKPFKISIHL-NH2), which is a hybrid peptide prepared by combining 1-7 amino acid residues (RWKIFKK-NH2) of papiliocin and 1-8 amino acid residues (PFKISIHL-NH2) of Jelleine-1 to alter length, charge distribution, net charge, volume, amphipaticity, and improve bacterial membrane interactions. This novel peptide exhibited increased hydrophobicity and net positive charge for binding effectively to the negatively charged membrane. PAJE demonstrated antimicrobial activity against both gram-negative and gram-positive bacteria, with very low toxicity to eukaryotic cells and an inexpensive process of synthesis. Collectively, these findings suggest that this novel peptide possesses great potential as an antimicrobial agent.
Collapse
Affiliation(s)
- Seong Ryul Kim
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Kwang-Ho Choi
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Kee-Young Kim
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Hye-Yong Kwon
- Sericultural and Apicultural Materials Division, National Academy of Agricultural Science, RDA, Wanju 55365, Republic of Korea
| | - Seung-Won Park
- Department of Biomedical Science, Daegu Catholic University, Gyeongsan 38430, Republic of Korea,Corresponding author Phone: +82-53-850-3176 Fax: +82-53-359-6846 E-mail:
| |
Collapse
|
28
|
Krishnan M, Choi J, Jang A, Kim Y. A Novel Peptide Antibiotic, Pro10-1D, Designed from Insect Defensin Shows Antibacterial and Anti-Inflammatory Activities in Sepsis Models. Int J Mol Sci 2020; 21:ijms21176216. [PMID: 32867384 PMCID: PMC7504360 DOI: 10.3390/ijms21176216] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023] Open
Abstract
Owing to the challenges faced by conventional therapeutics, novel peptide antibiotics against multidrug-resistant (MDR) gram-negative bacteria need to be urgently developed. We had previously designed Pro9-3 and Pro9-3D from the defensin of beetle Protaetia brevitarsis; they showed high antimicrobial activity with cytotoxicity. Here, we aimed to develop peptide antibiotics with bacterial cell selectivity and potent antibacterial activity against gram-negative bacteria. We designed 10-meric peptides with increased cationicity by adding Arg to the N-terminus of Pro9-3 (Pro10-1) and its D-enantiomeric alteration (Pro10-1D). Among all tested peptides, the newly designed Pro10-1D showed the strongest antibacterial activity against Escherichia coli, Acinetobacter baumannii, and MDR strains with resistance against protease digestion. Pro10-1D can act as a novel potent peptide antibiotic owing to its outstanding inhibitory activities against bacterial film formation with high bacterial cell selectivity. Dye leakage and scanning electron microscopy revealed that Pro10-1D targets the bacterial membrane. Pro10-1D inhibited inflammation via Toll Like Receptor 4 (TLR4)/Nuclear factor-κB (NF-κB) signaling pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Furthermore, Pro10-1D ameliorated multiple-organ damage and attenuated systemic infection-associated inflammation in an E. coli K1-induced sepsis mouse model. Overall, our results suggest that Pro10-1D can potentially serve as a novel peptide antibiotic for the treatment of gram-negative sepsis.
Collapse
Affiliation(s)
| | | | | | - Yangmee Kim
- Correspondence: ; Tel.: +82-2-450-3421; Fax: +82-2-447-5987
| |
Collapse
|
29
|
Tan A, Suzuki R, Yokoyama C, Yano S, Konno H. Antimicrobial activity and secondary structure of a novel peptide derived from ovalbumin. J Pept Sci 2020; 26:e3276. [DOI: 10.1002/psc.3276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ao Tan
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yonezawa Japan
| | - Rio Suzuki
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yonezawa Japan
| | - Chikako Yokoyama
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yonezawa Japan
| | - Shigekazu Yano
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yonezawa Japan
| | - Hiroyuki Konno
- Department of Biochemical Engineering, Graduate School of Science and EngineeringYamagata University Yonezawa Japan
| |
Collapse
|
30
|
Heitz M, Zamolo S, Javor S, Reymond JL. Fluorescent Peptide Dendrimers for siRNA Transfection: Tracking pH Responsive Aggregation, siRNA Binding, and Cell Penetration. Bioconjug Chem 2020; 31:1671-1684. [PMID: 32421327 DOI: 10.1021/acs.bioconjchem.0c00231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transfecting nucleic acids into various cells is a key procedure in biological research also envisioned for therapeutic applications. In our effort to obtain simple reagents that would be readily accessible from commercial building blocks, we recently reported peptide dendrimers as single component siRNA transfection reagents accessible in pure form by solid-phase peptide synthesis. Here, we extend our studies of these dendrimers by identifying analogs bearing a coumarin or BODIPY fluorescent label in their core and displaying comparable siRNA transfection efficiencies, pH dependent aggregation, siRNA binding, and secondary structures. Fluorescence resonance energy transfer (FRET) studies show that the dendrimers are tightly associated with siRNA within the formed nanoparticles at pH 7.4 but are released into solution at pH 5.0 and can participate in endosome escape by destabilizing the membrane at this pH value. Colocalization studies furthermore suggest that peptide dendrimers and siRNA remain tightly associated throughout the transfection process.
Collapse
Affiliation(s)
- Marc Heitz
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Sacha Javor
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
31
|
Gong Z, Pei X, Ren S, Chen X, Wang L, Ma C, Xi X, Chen T, Shaw C, Zhou M. Identification and Rational Design of a Novel Antibacterial Peptide Dermaseptin-AC from the Skin Secretion of the Red-Eyed Tree Frog Agalychnis callidryas. Antibiotics (Basel) 2020; 9:antibiotics9050243. [PMID: 32397600 PMCID: PMC7277532 DOI: 10.3390/antibiotics9050243] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance represents a tremendous contemporary clinical challenge. Given this challenge, antimicrobial peptides (AMPs) are regarded as one of the most promising new options for next-generation lead antibiotics. Here, we describe the antibacterial activities of a cationic peptide named DRP-AC4, obtained from frog skin secretion using shotgun cloning. Two modified peptides were derived by substituting the sequence of amino acids to complete the hydrophobic face (DRP-AC4b) and increase net charge (DRP-AC4a), respectively. The activity and cytotoxicity of these two peptides were compared. DRP-AC4a displayed significantly increased potency against bacteria compared to the natural peptide. It should be noted, however, that both analogue peptides demonstrated higher lytic ability than the natural peptide against the membranes of mammalian erythrocytes. At the same time, all three peptides displayed lower hemolytic activity compared to their antibacterial activity. Here, we demonstrate that AMPs have more complex activity mechanisms and faster bactericidal rates than traditional antibiotics, which may be one of the reasons why bacteria do not develop resistance to them. These discoveries provide interesting insights into the discovery and development of novel drugs from natural sources.
Collapse
Affiliation(s)
- Zijian Gong
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| | - Xinjie Pei
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China;
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
- Correspondence: (X.C.); (L.W.); Tel.: +44-28-9097-2200 (X.C.); Fax: +44-28-9024-7794 (L.W.)
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
- Correspondence: (X.C.); (L.W.); Tel.: +44-28-9097-2200 (X.C.); Fax: +44-28-9024-7794 (L.W.)
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK; (Z.G.); (X.P.); (C.M.); (X.X.); (T.C.); (C.S.); (M.Z.)
| |
Collapse
|
32
|
Chauhan AK, Jang M, Kim Y. Phloretin Protects Macrophages from E. coli-Induced Inflammation through the TLR4 Signaling Pathway. J Microbiol Biotechnol 2020; 30:333-340. [PMID: 31893612 PMCID: PMC9728332 DOI: 10.4014/jmb.1910.10063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Macrophages are the cells of the first-line defense system, which protect the body from foreign invaders such as bacteria. However, Gram-negative bacteria have always been the major challenge for macrophages due to the presence of lipopolysaccharides on their outer cell membrane. In the present study, we evaluated the effect of phloretin, a flavonoid commonly found in apple, on the protection of macrophages from Escherichia coli infection. RAW 264.7 cells infected with standard E. coli, or virulent E. coli K1 strain were treated with phloretin in a dose-dependent manner to examine its efficacy in protection of macrophages. Our results revealed that phloretin treatment reduced the production of nitric oxide (NO) and generation of reactive oxygen species along with reducing the secretion of proinflammatory cytokines induced by the E. coli and E. coli K1 strains in a concentration-dependent manner. Additionally, treatment of phloretin downregulated the expression of E. coli-induced major inflammatory markers i.e. cyclooxygenase-2 (COX-2) and hemeoxygenase-1 (HO-1), in a concentration dependent manner. Moreover, the TLR4-mediated NF-κB pathway was activated in E. coli-infected macrophages but was potentially downregulated by phloretin at the transcriptional and translational levels. Collectively, our data suggest that phloretin treatment protects macrophages from infection of virulent E. coli K1 strain by downregulating the TLR4-mediated signaling pathway and inhibiting NO and cytokine production, eventually protecting macrophages from E. coli-induced inflammation.
Collapse
Affiliation(s)
- Anil Kumar Chauhan
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Mihee Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-450-3421 Fax: +82-2-447-5987 E-mail:
| |
Collapse
|
33
|
Brady D, Grapputo A, Romoli O, Sandrelli F. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications. Int J Mol Sci 2019; 20:E5862. [PMID: 31766730 PMCID: PMC6929098 DOI: 10.3390/ijms20235862] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/06/2023] Open
Abstract
The alarming escalation of infectious diseases resistant to conventional antibiotics requires urgent global actions, including the development of new therapeutics. Antimicrobial peptides (AMPs) represent potential alternatives in the treatment of multi-drug resistant (MDR) infections. Here, we focus on Cecropins (Cecs), a group of naturally occurring AMPs in insects, and on synthetic Cec-analogs. We describe their action mechanisms and antimicrobial activity against MDR bacteria and other pathogens. We report several data suggesting that Cec and Cec-analog peptides are promising antibacterial therapeutic candidates, including their low toxicity against mammalian cells, and anti-inflammatory activity. We highlight limitations linked to the use of peptides as therapeutics and discuss methods overcoming these constraints, particularly regarding the introduction of nanotechnologies. New formulations based on natural Cecs would allow the development of drugs active against Gram-negative bacteria, and those based on Cec-analogs would give rise to therapeutics effective against both Gram-positive and Gram-negative pathogens. Cecs and Cec-analogs might be also employed to coat biomaterials for medical devices as an approach to prevent biomaterial-associated infections. The cost of large-scale production is discussed in comparison with the economic and social burden resulting from the progressive diffusion of MDR infectious diseases.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| | - Alessandro Grapputo
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| | - Ottavia Romoli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
- Institut Pasteur de la Guyane, 23 Avenue Pasteur, 97306 Cayenne, French Guiana, France
| | - Federica Sandrelli
- Department of Biology, University of Padova, via U. Bassi 58/B, 35131 Padova, Italy; (D.B.); (A.G.); (O.R.)
| |
Collapse
|
34
|
Chauhan AK, Kim J, Lee Y, Balasubramanian PK, Kim Y. Isorhamnetin Has Potential for the Treatment of Escherichia coli-Induced Sepsis. Molecules 2019; 24:molecules24213984. [PMID: 31689976 PMCID: PMC6864442 DOI: 10.3390/molecules24213984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Isorhamnetin is a flavonoid that is abundant in the fruit of Hippophae rhamnoides L. It is widely studied for its ability to modulate inflammatory responses. In this study, we evaluated the potential of isorhamnetin to prevent gram-negative sepsis. We investigated its efficacy using an Escherichia coli-induced sepsis model. Our study reveals that isorhamnetin treatment significantly enhances survival and reduces proinflammatory cytokine levels in the serum and lung tissue of E. coli-infected mice. Further, isorhamnetin treatment also significantly reduces the levels of aspartate aminotransferase, alanine amino transferase and blood urea nitrogen, suggesting that it can improve liver and kidney function in infected mice. Docking studies reveal that isorhamnetin binds deep in the hydrophobic binding pocket of MD-2 via extensive hydrophobic interactions and hydrogen bonding with Tyr102, preventing TLR4/MD-2 dimerization. Notably, binding and secreted alkaline phosphatase reporter gene assays show that isorhamnetin can interact directly with the TLR4/MD-2 complex, thus inhibiting the TLR4 cascade, which eventually causes systemic inflammation, resulting in death due to cytokine storms. We therefore presume that isorhamnetin could be a suitable therapeutic candidate to treat bacterial sepsis.
Collapse
Affiliation(s)
- Anil Kumar Chauhan
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Jieun Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Yeongjoon Lee
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Pavithra K Balasubramanian
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
35
|
Rajasekaran G, Kumar SD, Yang S, Shin SY. The design of a cell-selective fowlicidin-1-derived peptide with both antimicrobial and anti-inflammatory activities. Eur J Med Chem 2019; 182:111623. [DOI: 10.1016/j.ejmech.2019.111623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/24/2019] [Accepted: 08/12/2019] [Indexed: 10/26/2022]
|
36
|
Zhong C, Zhu N, Zhu Y, Liu T, Gou S, Xie J, Yao J, Ni J. Antimicrobial peptides conjugated with fatty acids on the side chain of D-amino acid promises antimicrobial potency against multidrug-resistant bacteria. Eur J Pharm Sci 2019; 141:105123. [PMID: 31676352 DOI: 10.1016/j.ejps.2019.105123] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
With the alarming burden of antibiotic resistance, antimicrobial peptides (AMPs) seem to be novel antimicrobial alternatives for infection treatment due to their rapid broad-spectrum antimicrobial activity and low tendency for bacterial resistance. To obtain promising AMPs, a series of new peptides were designed and synthesized by conjugating various lengths of fatty acid chains onto the side chain of the position 4 or 7 D-amino acid of Ano-D4,7 (analogue of anoplin with D-amino acid substitutions at positions 4 and 7). The new peptides exhibited excellent antimicrobial activity against a range of bacteria, especially multidrug-resistant bacteria in contrast to conventional antibiotics. Moreover, the new peptides conjugated with fatty acid chains ranging from 8 to 12 carbons in length presented preferable antimicrobial selectivity and anti-biofilm activity. Additionally, the new peptides also exerted high stability to trypsin, serum, salts and different pH environments. Most notably, the new peptides showed a low tendency to develop bacterial resistance and they displayed optimal antimicrobial activity against the obtained resistant strains. Furthermore, the results from the outer/inner membrane permeabilization and cytoplasmic membrane depolarization assays and flow cytometry and scanning electron microscopy analyses demonstrated that the new peptides exert antimicrobial effects by typical non-receptor-mediated membrane mechanisms, as well as intracellular targets characterized by gel retardation and reactive oxygen species (ROS) generation assays. Furthermore, the new peptides presented remarkable in vivo antimicrobial potency, anti-inflammatory activity, and endotoxin neutralization. Collectively, the conjugation of fatty acids to the side chains of D-amino acids is a potential strategy for designing hopeful antimicrobial alternatives to tackle the risk of bacterial resistance.
Collapse
Affiliation(s)
- Chao Zhong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ningyi Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yuewen Zhu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Tianqi Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Sanhu Gou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
37
|
Jang M, Kim J, Choi Y, Bang J, Kim Y. Antiseptic Effect of Ps-K18: Mechanism of Its Antibacterial and Anti-Inflammatory Activities. Int J Mol Sci 2019; 20:E4895. [PMID: 31581682 PMCID: PMC6801626 DOI: 10.3390/ijms20194895] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Recently, bioactive peptides have attracted attention for their therapeutic applications in the pharmaceutical industry. Among them, antimicrobial peptides are candidates for new antibiotic drugs. Since pseudin-2 (Ps), isolated from the skin of the paradoxical frog Pseudis paradoxa, shows broad-spectrum antibacterial activity with high cytotoxicity, we previously designed Ps-K18 with a Lys substitution for Leu18 in Ps, which showed high antibacterial activity and low toxicity. Here, we examined the potency of Ps-K18, aiming to develop antibiotics derived from bioactive peptides for the treatment of Gram-negative sepsis. We first investigated the antibacterial mechanism of Ps-K18 based on confocal micrographs and field emission scanning electron microscopy, confirming that Ps-K18 targets the bacterial membrane. Anti-inflammatory mechanism of Ps-K18 was investigated by secreted alkaline phosphatase reporter gene assays and RT-PCR, which revealed that Ps-K18 activates innate defense via Toll-like receptor 4-mediated nuclear factor-kappa B signaling pathways. Moreover, we investigated the antiseptic effect of Ps-K18 using a lipopolysaccharide or Escherichia coli K1-induced septic shock mouse model. Ps-K18 significantly reduced bacterial growth and inflammatory responses in the septic shock model. Ps-K18 showed low renal and liver toxicity and attenuated lung damage effectively. This study suggests that Ps-K18 is a potent peptide antibiotic that could be applied therapeutically to Gram-negative sepsis.
Collapse
Affiliation(s)
- Mihee Jang
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Jieun Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| | - Yujin Choi
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, Korea.
| | - JeongKyu Bang
- Protein Structure Group, Korea Basic Science Institute, Ochang, Cheongju, Chung-Buk 28199, Korea.
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
38
|
Target Proteins of Phloretin for Its Anti-Inflammatory and Antibacterial Activities Against Propionibacterium acnes-Induced Skin Infection. Molecules 2019; 24:molecules24071319. [PMID: 30987239 PMCID: PMC6479541 DOI: 10.3390/molecules24071319] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Phloretin is a natural chalcone with antibacterial and anti-inflammatory effects. This study investigated the anti-acne activity of phloretin against Propionibacterium acnes-induced skin infection and the potential target proteins of its anti-inflammatory and antibacterial effects. Phloretin potently inhibited the growth of P. acnes and P. acnes-induced Toll-like receptor (TLR) 2-mediated inflammatory signaling in human keratinocytes. Secreted embryonic alkaline phosphatase assay confirmed that the anti-inflammatory activity of phloretin is associated with the P. acnes-stimulated TLR2-mediated NF-κB signaling pathway. Phloretin significantly decreased the level of phosphorylated c-Jun N-terminal kinase (JNK), showing a binding affinity of 1.184 × 10−5 M−1. We also found that phloretin binds with micromolar affinity to P. acnes β-ketoacyl acyl carrier protein (ACP) synthase III (KAS III), an enzyme involved in fatty acid synthesis. Conformation-sensitive native polyacrylamide gel electrophoresis showed that phloretin reduced KAS III-mediated 3-ketoacyl ACP production by over 66%. A docking study revealed that phloretin interacts with the active sites of JNK1 and KAS III, suggesting their involvement in P. acnes-induced inflammation and their potential as targets for the antibacterial activity of phloretin. These results demonstrate that phloretin may be useful in the prevention or treatment of P. acnes infection.
Collapse
|
39
|
Varon J, Baron RM. A current appraisal of evidence for the approach to sepsis and septic shock. Ther Adv Infect Dis 2019; 6:2049936119856517. [PMID: 31308945 PMCID: PMC6613063 DOI: 10.1177/2049936119856517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/15/2019] [Indexed: 12/16/2022] Open
Abstract
Sepsis is a life-threatening syndrome of a dysregulated host response to infection. Despite advances in diagnosis and treatment, sepsis remains a significant cause of morbidity and mortality. Many aspects of the diagnosis and clinical management of sepsis require further study and remain controversial. This review aims to summarize relevant literature and controversies regarding the evaluation and management of sepsis and septic shock.
Collapse
Affiliation(s)
- Jack Varon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Rebecca M. Baron
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, 75 Francis St, Boston, MA 02115, USA
| |
Collapse
|