1
|
Guan M, Xie Y, Wang Z, Miao Y, Li X, Yu S, Wang HN. Brain connectivity and transcriptional changes induced by rTMS in first-episode major depressive disorder. Transl Psychiatry 2025; 15:159. [PMID: 40274783 PMCID: PMC12022310 DOI: 10.1038/s41398-025-03376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely utilized non-invasive brain stimulation technique with demonstrated efficacy in treating major depressive disorder (MDD). However, the mechanisms underlying its therapeutic effects, particularly in modulating neural connectivity and influencing gene expression, remain incompletely understood. In this study, we investigated the voxel-wise degree centrality (DC) induced by 10 Hz rTMS targeting the left dorsolateral prefrontal cortex, as well as their associations with transcriptomic data from the Allen Human Brain Atlas. The results indicated that the active treatment significantly reduced clinical symptoms and increased DC in the left superior medial frontal gyrus, left middle occipital gyrus, and right anterior cingulate cortex. Partial least squares regression analysis revealed that genes associated with DC alternations were enriched biological processes related to neural plasticity and synaptic connectivity. Furthermore, protein-protein interaction (PPI) analysis identified key hub genes, including SCN1A, SNAP25, and PVALB, whose expression levels were positively correlated with DC changes. Notably, SCN1A emerged as a significant predictor on DC changes. These findings suggest that rTMS may exert its therapeutic effects in MDD by modulating specific molecular pathways and neural networks, providing valuable insights into its mechanisms of action.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China.
| | - Yuanjun Xie
- Medical Innovation Center, Sichuan University of Science and Engineering, Zigong, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ye Miao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, China
| | - Xiaosa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shoufen Yu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Feng Z, Hou Y, Yu C, Li T, Fu H, Lv F, Li P. Mitophagy in perioperative neurocognitive disorder: mechanisms and therapeutic strategies. Eur J Med Res 2025; 30:270. [PMID: 40211418 PMCID: PMC11987364 DOI: 10.1186/s40001-025-02400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/20/2025] [Indexed: 04/13/2025] Open
Abstract
Perioperative neurocognitive disorder (PND) is a common neurological complication after surgery/anesthesia in elderly patients that affect postoperative outcome and long-term quality of life, which increases the cost of family and social resources. The pathological mechanism of PND is complex and not fully understood, and the methods of prevention and treatment of PND are very limited, so it is particularly important to analyze the mechanism of PND. Research indicates that mitochondrial dysfunction is pivotal in the initiation and progression of PND, although the precise mechanisms remain elusive and could involve disrupted mitophagy. We reviewed recent studies on the link between mitophagy and PND, highlighting the role of key proteins in abnormal mitophagy and discussing therapeutic strategies aimed at mitophagy regulation. This provides insights into the mechanisms underlying PND and potential therapeutic targets.
Collapse
Affiliation(s)
- Zhen Feng
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 301 Nancheng Avenue, Nan'an District, Chongqing, Chongqing, 400000, People's Republic of China
| | - Yan Hou
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, 301 Nancheng Avenue, Nan'an District, Chongqing, Chongqing, 400000, People's Republic of China
| | - Chang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Ting Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Haoyang Fu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China.
| | - Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, 1 Yuanjiagang Youyi Road, Yuzhong District, Chongqing, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
3
|
Vingan I, Phatarpekar S, Tung VSK, Hernández AI, Evgrafov OV, Alarcon JM. Spatially resolved transcriptomic signatures of hippocampal subregions and Arc-expressing ensembles in active place avoidance memory. Front Mol Neurosci 2024; 17:1386239. [PMID: 39544521 PMCID: PMC11560897 DOI: 10.3389/fnmol.2024.1386239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024] Open
Abstract
The rodent hippocampus is a spatially organized neuronal network that supports the formation of spatial and episodic memories. We conducted bulk RNA sequencing and spatial transcriptomics experiments to measure gene expression changes in the dorsal hippocampus following the recall of active place avoidance (APA) memory. Through bulk RNA sequencing, we examined the gene expression changes following memory recall across the functionally distinct subregions of the dorsal hippocampus. We found that recall induced differentially expressed genes (DEGs) in the CA1 and CA3 hippocampal subregions were enriched with genes involved in synaptic transmission and synaptic plasticity, while DEGs in the dentate gyrus (DG) were enriched with genes involved in energy balance and ribosomal function. Through spatial transcriptomics, we examined gene expression changes following memory recall across an array of spots encompassing putative memory-associated neuronal ensembles marked by the expression of the IEGs Arc, Egr1, and c-Jun. Within samples from both trained and untrained mice, the subpopulations of spatial transcriptomic spots marked by these IEGs were transcriptomically and spatially distinct from one another. DEGs detected between Arc + and Arc- spots exclusively in the trained mouse were enriched in several memory-related gene ontology terms, including "regulation of synaptic plasticity" and "memory." Our results suggest that APA memory recall is supported by regionalized transcriptomic profiles separating the CA1 and CA3 from the DG, transcriptionally and spatially distinct IEG expressing spatial transcriptomic spots, and biological processes related to synaptic plasticity as a defining the difference between Arc + and Arc- spatial transcriptomic spots.
Collapse
Affiliation(s)
- Isaac Vingan
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Shwetha Phatarpekar
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Victoria Sook Keng Tung
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Alejandro Iván Hernández
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| | - Oleg V. Evgrafov
- Institute for Genomics in Health, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- School of Graduate Studies, Program in Molecular and Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Cell Biology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, United States
| | - Juan Marcos Alarcon
- School of Graduates Studies, Program in Neural and Behavioral Sciences, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- Department of Pathology, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
- The Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Health Sciences University, Brooklyn, NY, United States
| |
Collapse
|
4
|
Zhang L, Zhou Y, Xie Y, Ying Y, Li Y, Ye S, Wang Z. Adjunctive clozapine with bright light mitigates cognitive deficits by synaptic plasticity and neurogenesis in sub-chronic MK-801 treated mice. Pharmacol Biochem Behav 2024; 243:173821. [PMID: 39002805 DOI: 10.1016/j.pbb.2024.173821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Schizophrenia impacts about 1 % of the global population, with clozapine (CLZ) being a critical treatment for refractory cases despite its limitations in effectiveness and adverse effects. Therefore, the search for more effective treatments remains urgent. Light treatment (LT) recognized for enhancing cognition and mood, presents a promising complementary approach. This study investigated the effects of CLZ and LT on cognitive impairments in a sub-chronic MK-801 induced schizophrenia mouse model. Results showed that both CLZ and CLZ + LT treatment elevate cognitive performance of sub-chronic MK-801 treated mice in serial behavioral tests over two months. Histological analysis revealed increased dendritic spine density and branching, and synaptic repair in the hippocampus with CLZ and CLZ + LT interventions. Furthermore, both treatments increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, likely contributing to cognitive amelioration in MK-801 treated mice. Additionally, BrdU labeling revealed that CLZ + LT further enhances neurogenesis in the dentate gyrus (DG) and lateral ventricle (LV) of sub-chronic MK-801 treated mice. These findings may have implications for the development of noninvasive and adjunctive treatment strategies aimed at alleviating cognitive impairments and improving functional outcomes in individuals with schizophrenia.
Collapse
Affiliation(s)
- Lizhi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yiying Zhou
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yanhong Xie
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yudong Ying
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Yan Li
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Sen Ye
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China
| | - Zhengchun Wang
- Zhejiang Key Laboratory of Pathophysiology, Basic Medical Sciences, Health Science Center, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, China; The Affiliated People's Hospital of Ningbo University, Ningbo 315100, China; Key Laboratory of Addiction Research of Zhejiang Province, Kang Ning Hospital, Ningbo 315010, China.
| |
Collapse
|
5
|
Song Y, Parada G, Lee JTH, Hemberg M. Mining alternative splicing patterns in scRNA-seq data using scASfind. Genome Biol 2024; 25:197. [PMID: 39075577 PMCID: PMC11285346 DOI: 10.1186/s13059-024-03323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/26/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell RNA-seq (scRNA-seq) is widely used for transcriptome profiling, but most analyses focus on gene-level events, with less attention devoted to alternative splicing. Here, we present scASfind, a novel computational method to allow for quantitative analysis of cell type-specific splicing events using full-length scRNA-seq data. ScASfind utilizes an efficient data structure to store the percent spliced-in value for each splicing event. This makes it possible to exhaustively search for patterns among all differential splicing events, allowing us to identify marker events, mutually exclusive events, and events involving large blocks of exons that are specific to one or more cell types.
Collapse
Affiliation(s)
- Yuyao Song
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton, CB10 1SD, UK
| | - Guillermo Parada
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
- Donnelly Centre, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | | | - Martin Hemberg
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK.
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Sadri I, Nikookheslat SD, Karimi P, Khani M, Nadimi S. Aerobic exercise training improves memory function through modulation of brain-derived neurotrophic factor and synaptic proteins in the hippocampus and prefrontal cortex of type 2 diabetic rats. J Diabetes Metab Disord 2024; 23:849-858. [PMID: 38932906 PMCID: PMC11196465 DOI: 10.1007/s40200-023-01360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/23/2023] [Indexed: 06/28/2024]
Abstract
Aims/Introduction Defective insulin signaling in the brain may disrupt hippocampal neuroplasticity resulting in learning and memory impairments. Thus, this study investigated the effect of aerobic exercise training on cognitive function and synaptic protein markers in diabetic rats. Materials and methods Twenty male Wistar rats (200-250 g), were fed on high-fat diet and received a low dose of streptozotocin (35 mg/kg, i.p) to induce type 2 diabetes. Then diabetic animals were randomly divided into sedentary and training groups. The exercise training program was treadmill running at 27 m/min for 60 min/day for 8 weeks. One day after the last training session, Morris Water Maze (MWM) task was performed to evaluate spatial learning and memory. Then, the hippocamp and prefrontal cortex tissues were instantly dissected for immunoblotting assay of BDNF, GSK-3β, p-GSK-3β, P38, p-P38, ERK1/2, p-ERK1/2, heat shock protein-27 (HSP27), SNAP-25, synaptophysin, and PSD-95. Independent t-test analysis and two-way ANOVA was used to determine the differences under significance level of 0.05 using the 26th version of IBM SPSS statistical software. Results The results showed that aerobic exercise improved memory as assessed in the MWM task. Moreover, aerobic exercise up-regulated HSP27 and BDNF protein levels in the prefrontal cortex, and hippocampus coincided with robust elevations in SNAP25 and PSD-95 levels. Moreover, exercise reduced phosphorylated P38, while increased p-ERK1/2 and p-GSK-3β (p). Conclusion Our findings suggest that aerobic exercise may debilitate the harmful effects of diabetes on the cognitive function possibly through enhancing synaptic protein markers.
Collapse
Affiliation(s)
- Iraj Sadri
- Department of Physical Education and Sports Sciences, Islamic Azad University, Shabestar Branch, Shabestar, 5381637181 Iran
| | - Saeid Dabbagh Nikookheslat
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471 Iran
| | - Pouran Karimi
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471 Iran
| | - Sanaz Nadimi
- Department of Chemistry and Biochemistry, Faculty of Science, University of Windsor, Windsor, ON Canada
| |
Collapse
|
7
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
8
|
Moss ND, Wells KL, Theis A, Kim YK, Spigelman AF, Liu X, MacDonald PE, Sussel L. Modulation of insulin secretion by RBFOX2-mediated alternative splicing. Nat Commun 2023; 14:7732. [PMID: 38007492 PMCID: PMC10676425 DOI: 10.1038/s41467-023-43605-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Insulin secretion is a tightly regulated process that is vital for maintaining blood glucose homeostasis. Although the molecular components of insulin granule trafficking and secretion are well established, how they are regulated to rapidly fine-tune secretion in response to changing environmental conditions is not well characterized. Recent studies have determined that dysregulation of RNA-binding proteins (RBPs) and aberrant mRNA splicing occurs at the onset of diabetes. We demonstrate that the RBP, RBFOX2, is a critical regulator of insulin secretion through the alternative splicing of genes required for insulin granule docking and exocytosis. Conditional mutation of Rbfox2 in the mouse pancreas results in decreased insulin secretion and impaired blood glucose homeostasis. Consistent with defects in secretion, we observe reduced insulin granule docking and corresponding splicing defects in the SNARE complex components. These findings identify an additional mechanism for modulating insulin secretion in both healthy and dysfunctional pancreatic β cells.
Collapse
Affiliation(s)
- Nicole D Moss
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexandra Theis
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yong-Kyung Kim
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aliya F Spigelman
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Xiong Liu
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Lori Sussel
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
9
|
Saloner R, Paolillo EW, Wojta KJ, Fonseca C, Gontrum EQ, Lario-Lago A, Rabinovici GD, Yokoyama JS, Rexach JE, Kramer JH, Casaletto KB. Sex-specific effects of SNAP-25 genotype on verbal memory and Alzheimer's disease biomarkers in clinically normal older adults. Alzheimers Dement 2023; 19:3448-3457. [PMID: 36807763 PMCID: PMC10435666 DOI: 10.1002/alz.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
INTRODUCTION We tested sex-dependent associations of variation in the SNAP-25 gene, which encodes a presynaptic protein involved in hippocampal plasticity and memory, on cognitive and Alzheimer's disease (AD) neuroimaging outcomes in clinically normal adults. METHODS Participants were genotyped for SNAP-25 rs1051312 (T > C; SNAP-25 expression: C-allele > T/T). In a discovery cohort (N = 311), we tested the sex by SNAP-25 variant interaction on cognition, Aβ-PET positivity, and temporal lobe volumes. Cognitive models were replicated in an independent cohort (N = 82). RESULTS In the discovery cohort, C-allele carriers exhibited better verbal memory and language, lower Aβ-PET positivity rates, and larger temporal volumes than T/T homozygotes among females, but not males. Larger temporal volumes related to better verbal memory only in C-carrier females. The female-specific C-allele verbal memory advantage was evidenced in the replication cohort. CONCLUSIONS In females, genetic variation in SNAP-25 is associated with resistance to amyloid plaque formation and may support verbal memory through fortification of temporal lobe architecture. HIGHLIGHTS The SNAP-25 rs1051312 (T > C) C-allele results in higher basal SNAP-25 expression. C-allele carriers had better verbal memory in clinically normal women, but not men. Female C-carriers had higher temporal lobe volumes, which predicted verbal memory. Female C-carriers also exhibited the lowest rates of amyloid-beta PET positivity. The SNAP-25 gene may influence female-specific resistance to Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Rowan Saloner
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Emily W. Paolillo
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Kevin J. Wojta
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, USA
| | - Corrina Fonseca
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Eva Q. Gontrum
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Argentina Lario-Lago
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Gil D. Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - Jessica E. Rexach
- Neurogenetics Program, Department of Neurology, University of California, Los Angeles, California, USA
| | - Joel H. Kramer
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Kaitlin B. Casaletto
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| |
Collapse
|
10
|
Colavitta MF, Barrantes FJ. Therapeutic Strategies Aimed at Improving Neuroplasticity in Alzheimer Disease. Pharmaceutics 2023; 15:2052. [PMID: 37631266 PMCID: PMC10459958 DOI: 10.3390/pharmaceutics15082052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia among elderly people. Owing to its varied and multicausal etiopathology, intervention strategies have been highly diverse. Despite ongoing advances in the field, efficient therapies to mitigate AD symptoms or delay their progression are still of limited scope. Neuroplasticity, in broad terms the ability of the brain to modify its structure in response to external stimulation or damage, has received growing attention as a possible therapeutic target, since the disruption of plastic mechanisms in the brain appear to correlate with various forms of cognitive impairment present in AD patients. Several pre-clinical and clinical studies have attempted to enhance neuroplasticity via different mechanisms, for example, regulating glucose or lipid metabolism, targeting the activity of neurotransmitter systems, or addressing neuroinflammation. In this review, we first describe several structural and functional aspects of neuroplasticity. We then focus on the current status of pharmacological approaches to AD stemming from clinical trials targeting neuroplastic mechanisms in AD patients. This is followed by an analysis of analogous pharmacological interventions in animal models, according to their mechanisms of action.
Collapse
Affiliation(s)
- María F. Colavitta
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP-UCA), Facultad de Psicología, Av. Alicia Moreau de Justo, Buenos Aires C1107AAZ, Argentina;
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), Universidad Católica Argentina (UCA)—National Scientific and Technical Research Council (CONICET), Buenos Aires C1107AAZ, Argentina
| |
Collapse
|
11
|
Mukhamedyarov MA, Khabibrakhmanov AN, Khuzakhmetova VF, Giniatullin AR, Zakirjanova GF, Zhilyakov NV, Mukhutdinova KA, Samigullin DV, Grigoryev PN, Zakharov AV, Zefirov AL, Petrov AM. Early Alterations in Structural and Functional Properties in the Neuromuscular Junctions of Mutant FUS Mice. Int J Mol Sci 2023; 24:9022. [PMID: 37240370 PMCID: PMC10218837 DOI: 10.3390/ijms24109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.
Collapse
Affiliation(s)
- Marat A. Mukhamedyarov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Aydar N. Khabibrakhmanov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Venera F. Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Arthur R. Giniatullin
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Guzalia F. Zakirjanova
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Nikita V. Zhilyakov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Kamilla A. Mukhutdinova
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University, 10 K. Marx St., Kazan 420111, Russia
| | - Pavel N. Grigoryev
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Andrey V. Zakharov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - Andrey L. Zefirov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Alexey M. Petrov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| |
Collapse
|
12
|
Lebrigand K, Bergenstråhle J, Thrane K, Mollbrink A, Meletis K, Barbry P, Waldmann R, Lundeberg J. The spatial landscape of gene expression isoforms in tissue sections. Nucleic Acids Res 2023; 51:e47. [PMID: 36928528 PMCID: PMC10164556 DOI: 10.1093/nar/gkad169] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/06/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
In situ capturing technologies add tissue context to gene expression data, with the potential of providing a greater understanding of complex biological systems. However, splicing variants and full-length sequence heterogeneity cannot be characterized at spatial resolution with current transcriptome profiling methods. To that end, we introduce spatial isoform transcriptomics (SiT), an explorative method for characterizing spatial isoform variation and sequence heterogeneity using long-read sequencing. We show in mouse brain how SiT can be used to profile isoform expression and sequence heterogeneity in different areas of the tissue. SiT reveals regional isoform switching of Plp1 gene between different layers of the olfactory bulb, and the use of external single-cell data allows the nomination of cell types expressing each isoform. Furthermore, SiT identifies differential isoform usage for several major genes implicated in brain function (Snap25, Bin1, Gnas) that are independently validated by in situ sequencing. SiT also provides for the first time an in-depth A-to-I RNA editing map of the adult mouse brain. Data exploration can be performed through an online resource (https://www.isomics.eu), where isoform expression and RNA editing can be visualized in a spatial context.
Collapse
Affiliation(s)
- Kevin Lebrigand
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, F06560 Sophia Antipolis, France
| | - Joseph Bergenstråhle
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Kim Thrane
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Annelie Mollbrink
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | | | - Pascal Barbry
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, F06560 Sophia Antipolis, France
| | - Rainer Waldmann
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, F06560 Sophia Antipolis, France
| | - Joakim Lundeberg
- Department of Gene Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| |
Collapse
|
13
|
Brocato ER, Wolstenholme JT. Adolescent binge ethanol impacts H3K36me3 regulation of synaptic genes. Front Mol Neurosci 2023; 16:1082104. [PMID: 36937047 PMCID: PMC10020663 DOI: 10.3389/fnmol.2023.1082104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Adolescence is marked in part by the ongoing development of the prefrontal cortex (PFC). Binge ethanol use during this critical stage in neurodevelopment induces significant structural changes to the PFC, as well as cognitive and behavioral deficits that can last into adulthood. Previous studies showed that adolescent binge ethanol causes lasting deficits in working memory, decreases in the expression of chromatin remodeling genes responsible for the methylation of histone 3 lysine 36 (H3K36), and global decreases in H3K36 in the PFC. H3K36me3 is present within the coding region of actively-transcribed genes, and safeguards against aberrant, cryptic transcription by RNA Polymerase II. We hypothesize that altered methylation of H3K36 could play a role in adolescent binge ethanol-induced memory deficits. To investigate this at the molecular level, ethanol (4 g/kg, i.g.) or water was administered intermittently to adolescent mice. RNA-and ChIP-sequencing were then performed within the same tissue to determine gene expression changes and identify genes and loci where H3K36me3 was disrupted by ethanol. We further assessed ethanol-induced changes at the transcription level with differential exon-use and cryptic transcription analysis - a hallmark of decreased H3K36me3. Here, we found ethanol-induced changes to the gene expression and H3K36me3-regulation of synaptic-related genes in all our analyses. Notably, H3K36me3 was differentially trimethylated between ethanol and control conditions at synaptic-related genes, and Snap25 and Cplx1 showed evidence of cryptic transcription in males and females treated with ethanol during adolescence. Our results provide preliminary evidence that ethanol-induced changes to H3K36me3 during adolescent neurodevelopment may be linked to synaptic dysregulation at the transcriptional level, which may explain the reported ethanol-induced changes to PFC synaptic function.
Collapse
Affiliation(s)
- Emily R. Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
14
|
Long KLP, Muroy SE, Sorooshyari SK, Ko MJ, Jaques Y, Sudmant P, Kaufer D. Transcriptomic profiles of stress susceptibility and resilience in the amygdala and hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527777. [PMID: 36798395 PMCID: PMC9934702 DOI: 10.1101/2023.02.08.527777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
A single, severe episode of stress can bring about myriad responses amongst individuals, ranging from cognitive enhancement to debilitating and persistent anxiety; however, the biological mechanisms that contribute to resilience versus susceptibility to stress are poorly understood. The dentate gyrus (DG) of the hippocampus and the basolateral nucleus of the amygdala (BLA) are key limbic regions that are susceptible to the neural and hormonal effects of stress. Previous work has also shown that these regions contribute to individual variability in stress responses; however, the molecular mechanisms underlying the role of these regions in susceptibility and resilience are unknown. In this study, we profiled the transcriptomic signatures of the DG and BLA of rats with divergent behavioral outcomes after a single, severe stressor. We subjected rats to three hours of immobilization with exposure to fox urine and conducted a behavioral battery one week after stress to identify animals that showed persistent, high anxiety-like behavior. We then conducted bulk RNA sequencing of the DG and BLA from susceptible, resilient, and unexposed control rats. Differential gene expression analyses revealed that the molecular signatures separating each of the three groups were distinct and non-overlapping between the DG and BLA. In the amygdala, key genes associated with insulin and hormonal signaling corresponded with vulnerability. Specifically, Inhbb, Rab31 , and Ncoa3 were upregulated in the amygdala of stress-susceptible animals compared to resilient animals. In the hippocampus, increased expression of Cartpt - which encodes a key neuropeptide involved in reward, reinforcement, and stress responses - was strongly correlated with vulnerability to anxiety-like behavior. However, few other genes distinguished stress-susceptible animals from control animals, while a larger number of genes separated stress-resilient animals from control and stress-susceptible animals. Of these, Rnf112, Tbx19 , and UBALD1 distinguished resilient animals from both control and susceptible animals and were downregulated in resilience, suggesting that an active molecular response in the hippocampus facilitates protection from the long-term consequences of severe stress. These results provide novel insight into the mechanisms that bring about individual variability in the behavioral responses to stress and provide new targets for the advancement of therapies for stress-induced neuropsychiatric disorders.
Collapse
|
15
|
Warpechowski M, Warpechowski J, Kulczyńska-Przybik A, Mroczko B. Biomarkers of Activity-Dependent Plasticity and Persistent Enhancement of Synaptic Transmission in Alzheimer Disease: A Review of the Current Status. Med Sci Monit 2023; 29:e938826. [PMID: 36600577 PMCID: PMC9832729 DOI: 10.12659/msm.938826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Alzheimer disease (AD) is a chronic and heterogeneous neurodegenerative disorder characterized by complex pathological processes involving neuroinflammation, neurodegeneration, and synaptic dysfunction. Understanding the exact neurobiological mechanisms underlying AD pathology may help to provide a biomarker for early diagnosis or at least for assessment of vulnerability to dementia development. Neural plasticity is defined as a capability of the brain to respond to alterations including aging, injury, or learning, with a crucial role of synaptic elements. Long-term potentiation (LTP) and long-term depression (LTD) are important in regulating synaptic connections between neural cells in functional plasticity. Synaptic loss and impairment of the brain's plasticity in AD leads to cognitive impairment, and one of important roles of synaptic biomarkers is monitoring synaptic dysfunction, response to treatment, and predicting future development of AD. Synaptic biomarkers are undoubtedly very promising in developing novel approach to AD treatment and control, especially in the era of aging of societies, which is one of the most common risk factor of AD. Implementing a widespread measurement of synaptic biomarkers of AD will probably be crucial in early diagnosis of AD, early therapeutic intervention, monitoring progression of the disease, or response to treatment. One of the most important challenges is finding a biomarker whose blood concentration correlates with its level in the central nervous system (CNS). This review aims to present the current status of biomarkers of activity-dependent plasticity and persistent enhancement of synaptic transmission in Alzheimer disease.
Collapse
Affiliation(s)
- Marcin Warpechowski
- Department of Statistics and Medical Informatics, Medical University of Białystok, Białystok, Poland
| | | | | | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, Białystok, Poland,Department of Biochemical Diagnostics, University Hospital of Białystok, Białystok, Poland
| |
Collapse
|
16
|
Li D, Qin Q, Xia Y, Cheng S, Zhang J, Duan X, Qin X, Tian X, Mao L, Qiu J, Jiang X, Zou Z, Chen C. Heterozygous disruption of beclin 1 alleviates neurotoxicity induced by sub-chronic exposure of arsenite in mice. Neurotoxicology 2023; 94:11-23. [PMID: 36374725 DOI: 10.1016/j.neuro.2022.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Arsenite is a well-documented neurotoxicant that widely exists in the environment. However, the detailed mechanisms of arsenite neurotoxicity are not fully clarified. Autophagy has been reported to be involved in many neurological problems induced by arsenite. Since beclin 1 is an essential mediator of autophagy, we herein used both adult wild-type (beclin 1+/+) and heterozygous disruption of beclin 1 (beclin 1+/-) mice for chronic administration of 50 mg/L arsenite via drinking water for 3 months. Our results demonstrated that exposure of arsenite caused the working memory deficit, anxiety-like behavior and motor coordination disorder in beclin 1+/+ mice, accompanied with pathological changes in morphology and electrophysiology in the cortical tissues. This treatment of arsenite significantly reduced the number of neuronal cells and induced microglia activation and synaptic transmission disorders in the wild-type mice as compared with vehicle controls. Intriguingly, by using beclin 1+/- mice, we found that heterozygous disruption of beclin 1 profoundly attenuated these neurotoxic effects induced by arsenite, mainly manifested by improvements in the neurobehavioral impairments, abnormal electrophysiologic alterations as well as dysregulation of synaptic transmission. These findings together indicate that regulation of autophagy via beclin 1 would be a potential strategy for treatment against arsenite neurotoxicity.
Collapse
Affiliation(s)
- Danyang Li
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qizhong Qin
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jun Zhang
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Disease, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
17
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
18
|
Choquet D, Opazo P. The role of AMPAR lateral diffusion in memory. Semin Cell Dev Biol 2022; 125:76-83. [PMID: 35123863 DOI: 10.1016/j.semcdb.2022.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
The accumulation of AMPARs to synapses is a fundamental step in Long-term potentiation (LTP) of synaptic transmission, a well-established cellular correlate of learning and memory. The discovery of a sizeable and highly mobile population of extrasynaptic AMPARs - randomly scanning the synaptic surface under basal conditions - provided a conceptual framework for a simplified model: LTP can be induced by the capture, and hence accumulation, of laterally diffusing extrasynaptic AMPARs. Here, we review the evidence supporting a rate-limiting role of AMPAR lateral diffusion in LTP and as consequence, in learning and memory. We propose that there are "multiple solutions" for achieving the diffusional trapping of AMPAR during LTP, mainly mediated by the interaction between interchangeable AMPAR auxiliary subunits and cell-adhesion molecules containing PDZ-binding domains and synaptic scaffolds containing PDZ-domains. We believe that this molecular degeneracy in the diffusional trapping of AMPAR during LTP serve to ensure the robustness of this crucial step in the making of memories. All in all, the role of AMPAR lateral diffusion in LTP is not only a conceptual leap in our understanding of memory, but it might also hold the keys for the development of therapeutics against disorders associated with memory deficits such as Alzheimer's disease.
Collapse
Affiliation(s)
- Daniel Choquet
- Interdisciplinary Institute for Neuroscience, CNRS, Univ. Bordeaux, IINS, UMR 5297, Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, Bordeaux, France.
| | - Patricio Opazo
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK; Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
19
|
Serrano ME, Kim E, Petrinovic MM, Turkheimer F, Cash D. Imaging Synaptic Density: The Next Holy Grail of Neuroscience? Front Neurosci 2022; 16:796129. [PMID: 35401097 PMCID: PMC8990757 DOI: 10.3389/fnins.2022.796129] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The brain is the central and most complex organ in the nervous system, comprising billions of neurons that constantly communicate through trillions of connections called synapses. Despite being formed mainly during prenatal and early postnatal development, synapses are continually refined and eliminated throughout life via complicated and hitherto incompletely understood mechanisms. Failure to correctly regulate the numbers and distribution of synapses has been associated with many neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease, and schizophrenia. Therefore, measurements of brain synaptic density, as well as early detection of synaptic dysfunction, are essential for understanding normal and abnormal brain development. To date, multiple synaptic density markers have been proposed and investigated in experimental models of brain disorders. The majority of the gold standard methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive nature of these classic methodologies precludes their use in living organisms. The recent development of positron emission tomography (PET) tracers [such as (18F)UCB-H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle 2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations in patients. Despite their limited specificity, novel, non-invasive magnetic resonance (MR)-based methods also show promise in inferring synaptic information by linking to glutamate neurotransmission. Although promising, all these methods entail various advantages and limitations that must be addressed before becoming part of routine clinical practice. In this review, we summarize and discuss current ex vivo and in vivo methods of quantifying synaptic density, including an evaluation of their reliability and experimental utility. We conclude with a critical assessment of challenges that need to be overcome before successfully employing synaptic density biomarkers as diagnostic and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Elisa Serrano
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Eugene Kim
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Marija M Petrinovic
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, The BRAIN Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, United Kingdom
| |
Collapse
|
20
|
Hao X, Zhu B, Yang P, Dong D, Sahbaie P, Oliver PL, Shen WJ, Azhar S, Kraemer FB. SNAP25 mutation disrupts metabolic homeostasis, steroid hormone production and central neurobehavior. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166304. [PMID: 34826585 PMCID: PMC8759409 DOI: 10.1016/j.bbadis.2021.166304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE SNAP-25 is one of the key proteins involved in formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes that are at the core of hormonal secretion and synaptic transmission. Altered expression or function of SNAP-25 can contribute to the development of neuropsychiatric and metabolic disease. A dominant negative (DN) I67T missense mutation in the b-isoform of SNAP-25 (DN-SNAP25mut) mice leads to abnormal interactions within the SNARE complex and impaired exocytotic vesicle recycling, yet the significance of this mutation to any association between the central nervous system and metabolic homeostasis is unknown. METHODS Here we explored aspects of metabolism, steroid hormone production and neurobehavior of DN-SNAP25mut mice. RESULTS DN-SNAP25mut mice displayed enhanced insulin function through increased Akt phosphorylation, alongside increased adrenal and gonadal hormone production. In addition, increased anxiety behavior and beigeing of white adipose tissue with increased energy expenditure were observed in mutants. CONCLUSIONS Our results show that SNAP25 plays an important role in bridging central neurological systems with peripheral metabolic homeostasis, and provide potential insights between metabolic disease and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Xiao Hao
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology, First Affiliated Hospital of the Medical College of Zhengzhou University, Zhengzhou, China
| | - Bing Zhu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Pinglin Yang
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Orthopedics, Second Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, Shaanxi, China
| | - Dachuan Dong
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Peyman Sahbaie
- Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, United States
| | - Peter L Oliver
- Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, United Kingdom
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| | - Salman Azhar
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States
| | - Fredric B Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Geriatric Research, Education, and Clinical Center, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States.
| |
Collapse
|
21
|
Elevated hippocampal mGlut2 receptors in rats with metabolic syndrome-induced-memory impairment, possible protection by vitamin D. Brain Res Bull 2022; 180:108-117. [DOI: 10.1016/j.brainresbull.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/21/2021] [Accepted: 01/05/2022] [Indexed: 12/29/2022]
|
22
|
Booeshaghi AS, Yao Z, van Velthoven C, Smith K, Tasic B, Zeng H, Pachter L. Isoform cell-type specificity in the mouse primary motor cortex. Nature 2021; 598:195-199. [PMID: 34616073 PMCID: PMC8494650 DOI: 10.1038/s41586-021-03969-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/27/2021] [Indexed: 12/17/2022]
Abstract
Full-length SMART-seq1 single-cell RNA sequencing can be used to measure gene expression at isoform resolution, making possible the identification of specific isoform markers for different cell types. Used in conjunction with spatial RNA capture and gene-tagging methods, this enables the inference of spatially resolved isoform expression for different cell types. Here, in a comprehensive analysis of 6,160 mouse primary motor cortex cells assayed with SMART-seq, 280,327 cells assayed with MERFISH2 and 94,162 cells assayed with 10x Genomics sequencing3, we find examples of isoform specificity in cell types-including isoform shifts between cell types that are masked in gene-level analysis-as well as examples of transcriptional regulation. Additionally, we show that isoform specificity helps to refine cell types, and that a multi-platform analysis of single-cell transcriptomic data leveraging multiple measurements provides a comprehensive atlas of transcription in the mouse primary motor cortex that improves on the possibilities offered by any single technology.
Collapse
Affiliation(s)
- A Sina Booeshaghi
- Department of Mechanical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
23
|
Gkanatsiou E, Nilsson J, Toomey CE, Vrillon A, Kvartsberg H, Portelius E, Zetterberg H, Blennow K, Brinkmalm A, Lashley T, Brinkmalm G. Amyloid pathology and synaptic loss in pathological aging. J Neurochem 2021; 159:258-272. [PMID: 34473357 DOI: 10.1111/jnc.15487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory dysfunction and cognitive decline. Pathological aging (PA) describes patients who are amyloid-positive but cognitively unimpaired at time of death. Both AD and PA contain amyloid plaques dominated by amyloid β (Aβ) peptides. In this study, we investigated and compared synaptic protein levels, amyloid plaque load, and Aβ peptide patterns between AD and PA. Two cohorts of post-mortem brain tissue were investigated. In the first, consisting of controls, PA, AD, and familial AD (FAD) individuals, synaptic proteins extracted with tris(hydroxymethyl)aminomethane-buffered saline (TBS) were analyzed. In the second, consisting of tissue from AD and PA patients from three different regions (occipital lobe, frontal lobe, and cerebellum), a two-step extraction was performed. Five synaptic proteins were extracted using TBS, and from the remaining portion Aβ peptides were extracted using formic acid. Subsequently, immunoprecipitation with several antibodies targeting different proteins/peptides was performed for both fractions, which were subsequently analyzed by mass spectrometry. The levels of synaptic proteins were lower in AD (and FAD) compared with PA (and controls), confirming synaptic loss in AD patients. The amyloid plaque load was increased in AD compared with PA, and the relative amount of Aβ40 was higher in AD while for Aβ42 it was higher in PA. In AD loss of synaptic function was associated with increased plaque load and increased amounts of Aβ40 compared with PA cases, suggesting that synaptic function is preserved in PA cases even in the presence of Aβ.
Collapse
Affiliation(s)
- Eleni Gkanatsiou
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Christina E Toomey
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Agathe Vrillon
- Center of Cognitive Neurology, Lariboisière Fernand-Widal Hospital, APHP, University of Paris Diderot, Paris, France
| | - Hlin Kvartsberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
24
|
Dudek KD, Osipovich AB, Cartailler JP, Gu G, Magnuson MA. Insm1, Neurod1, and Pax6 promote murine pancreatic endocrine cell development through overlapping yet distinct RNA transcription and splicing programs. G3-GENES GENOMES GENETICS 2021; 11:6358139. [PMID: 34534285 PMCID: PMC8527475 DOI: 10.1093/g3journal/jkab303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022]
Abstract
Insm1, Neurod1, and Pax6 are essential for the formation and function of pancreatic endocrine cells. Here, we report comparative immunohistochemical, transcriptomic, functional enrichment, and RNA splicing analyses of these genes using gene knock-out mice. Quantitative immunohistochemical analysis confirmed that elimination of each of these three factors variably impairs the proliferation, survival, and differentiation of endocrine cells. Transcriptomic analysis revealed that each factor contributes uniquely to the transcriptome although their effects were overlapping. Functional enrichment analysis revealed that genes downregulated by the elimination of Insm1, Neurod1, and Pax6 are commonly involved in mRNA metabolism, chromatin organization, secretion, and cell cycle regulation, and upregulated genes are associated with protein degradation, autophagy, and apoptotic process. Elimination of Insm1, Neurod1, and Pax6 impaired expression of many RNA-binding proteins thereby altering RNA splicing events, including for Syt14 and Snap25, two genes required for insulin secretion. All three factors are necessary for normal splicing of Syt14, and both Insm1 and Pax6 are necessary for the processing of Snap25. Collectively, these data provide new insights into how Insm1, Neurod1, and Pax6 contribute to the formation of functional pancreatic endocrine cells.
Collapse
Affiliation(s)
- Karrie D Dudek
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | | | - Guoquing Gu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA.,Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
25
|
Integrated Bioinformatics Analysis to Identify Alternative Therapeutic Targets for Alzheimer's Disease: Insights from a Synaptic Machinery Perspective. J Mol Neurosci 2021; 72:273-286. [PMID: 34414562 DOI: 10.1007/s12031-021-01893-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD), the most common type of dementia, is a serious neurodegenerative disease that has no cure yet, but whose symptoms can be alleviated with available medications. Therefore, early and accurate diagnosis of the disease and elucidation of the molecular mechanisms involved in the progression of pathogenesis are critically important. This study aimed to identify dysregulated miRNAs and their target mRNAs through the integrated analysis of miRNA and mRNA expression profiling in AD patients versus unaffected controls. Expression profiles in postmortem brain samples from AD patients and healthy individuals were extracted from the Gene Expression Omnibus database and were analyzed using bioinformatics approaches to identify gene ontologies, pathways, and networks. Finally, the module analysis of the PPI network and hub gene selection was carried out. A total of five differentially expressed miRNAs were extracted from the miRNA dataset, and 4312 differentially expressed mRNAs were obtained from the mRNA dataset. By comparing the DEGs and the putative targets of the altered miRNAs, 116 (3 upregulated and 113 downregulated) coordinated genes were determined. Also, six hub genes (SNAP25, GRIN2A, GRIN2B, DLG2, ATP2B2, and SCN2A) were identified by constructing a PPI network. The results of the present study provide insight into mechanisms such as synaptic machinery and neuronal communication underlying AD pathogenesis, specifically concerning miRNAs.
Collapse
|
26
|
Sahadevan S, Hembach KM, Tantardini E, Pérez-Berlanga M, Hruska-Plochan M, Megat S, Weber J, Schwarz P, Dupuis L, Robinson MD, De Rossi P, Polymenidou M. Synaptic FUS accumulation triggers early misregulation of synaptic RNAs in a mouse model of ALS. Nat Commun 2021; 12:3027. [PMID: 34021139 PMCID: PMC8140117 DOI: 10.1038/s41467-021-23188-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Mutations disrupting the nuclear localization of the RNA-binding protein FUS characterize a subset of amyotrophic lateral sclerosis patients (ALS-FUS). FUS regulates nuclear RNAs, but its role at the synapse is poorly understood. Using super-resolution imaging we determined that the localization of FUS within synapses occurs predominantly near the vesicle reserve pool of presynaptic sites. Using CLIP-seq on synaptoneurosomes, we identified synaptic FUS RNA targets, encoding proteins associated with synapse organization and plasticity. Significant increase of synaptic FUS during early disease in a mouse model of ALS was accompanied by alterations in density and size of GABAergic synapses. mRNAs abnormally accumulated at the synapses of 6-month-old ALS-FUS mice were enriched for FUS targets and correlated with those depicting increased short-term mRNA stability via binding primarily on multiple exonic sites. Our study indicates that synaptic FUS accumulation in early disease leads to synaptic impairment, potentially representing an initial trigger of neurodegeneration.
Collapse
Affiliation(s)
- Sonu Sahadevan
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Katharina M Hembach
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Elena Tantardini
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | | | | - Salim Megat
- Inserm, University of Strasbourg, Strasbourg, France
| | - Julien Weber
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, Zürich, Switzerland
| | - Luc Dupuis
- Inserm, University of Strasbourg, Strasbourg, France
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Pierre De Rossi
- Department of Quantitative Biomedicine, University of Zurich, Zürich, Switzerland
| | | |
Collapse
|
27
|
Sena RM, Twiss JL, Gardiner AS, Dell’Orco M, Linsenbardt DN, Perrone-Bizzozero NI. The RNA-Binding Protein HuD Regulates Alternative Splicing and Alternative Polyadenylation in the Mouse Neocortex. Molecules 2021; 26:2836. [PMID: 34064652 PMCID: PMC8151252 DOI: 10.3390/molecules26102836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/18/2022] Open
Abstract
The neuronal Hu/ELAV-like proteins HuB, HuC and HuD are a class of RNA-binding proteins that are crucial for proper development and maintenance of the nervous system. These proteins bind to AU-rich elements (AREs) in the untranslated regions (3'-UTRs) of target mRNAs regulating mRNA stability, transport and translation. In addition to these cytoplasmic functions, Hu proteins have been implicated in alternative splicing and alternative polyadenylation in the nucleus. The purpose of this study was to identify transcriptome-wide effects of HuD deletion on both of these nuclear events using RNA sequencing data obtained from the neocortex of Elavl4-/- (HuD KO) mice. HuD KO affected alternative splicing of 310 genes, including 17 validated HuD targets such as Cbx3, Cspp1, Snap25 and Gria2. In addition, deletion of HuD affected polyadenylation of 53 genes, with the majority of significantly altered mRNAs shifting towards usage of proximal polyadenylation signals (PAS), resulting in shorter 3'-UTRs. None of these genes overlapped with those showing alternative splicing events. Overall, HuD KO had a greater effect on alternative splicing than polyadenylation, with many of the affected genes implicated in several neuronal functions and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Rebecca M. Sena
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Jeffery L. Twiss
- Department Biological Sciences, University of South Carolina, Columbia, SC 29208, USA;
| | - Amy S. Gardiner
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
- Department Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Michela Dell’Orco
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - David N. Linsenbardt
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| | - Nora I. Perrone-Bizzozero
- Department Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (R.M.S.); (A.S.G.); (M.D.)
| |
Collapse
|
28
|
Tiwari NK, Sathyanesan M, Kumar V, Newton SS. A Comparative Analysis of Erythropoietin and Carbamoylated Erythropoietin Proteome Profiles. Life (Basel) 2021; 11:life11040359. [PMID: 33921564 PMCID: PMC8073529 DOI: 10.3390/life11040359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 01/24/2023] Open
Abstract
In recent years, erythropoietin (EPO) has emerged as a useful neuroprotective and neurotrophic molecule that produces antidepressant and cognitive-enhancing effects in psychiatric disorders. However, EPO robustly induces erythropoiesis and elevates red blood cell counts. Chronic administration is therefore likely to increase blood viscosity and produce adverse effects in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered modification of EPO, is non-erythropoietic but retains the neurotrophic and neurotrophic activity of EPO. Blood profile analysis after EPO and CEPO administration showed that CEPO has no effect on red blood cell or platelet counts. We conducted an unbiased, quantitative, mass spectrometry-based proteomics study to comparatively investigate EPO and CEPO-induced protein profiles in neuronal phenotype PC12 cells. Bioinformatics enrichment analysis of the protein expression profiles revealed the upregulation of protein functions related to memory formation such as synaptic plasticity, long term potentiation (LTP), neurotransmitter transport, synaptic vesicle priming, and dendritic spine development. The regulated proteins, with roles in LTP and synaptic plasticity, include calcium/calmodulin-dependent protein kinase type 1 (Camk1), Synaptosomal-Associated Protein, 25 kDa (SNAP-25), Sectretogranin-1 (Chgb), Cortactin (Cttn), Elongation initiation factor 3a (Eif3a) and 60S acidic ribosomal protein P2 (Rplp2). We examined the expression of a subset of regulated proteins, Cortactin, Grb2 and Pleiotrophin, by immunofluorescence analysis in the rat brain. Grb2 was increased in the dentate gyrus by EPO and CEPO. Cortactin was induced by CEPO in the molecular layer, and pleiotrophin was increased in the vasculature by EPO. The results of our study shed light on potential mechanisms whereby EPO and CEPO produce cognitive-enhancing effects in clinical and preclinical studies.
Collapse
Affiliation(s)
- Neeraj K. Tiwari
- Pediatrics and Rare Disease Group, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Samuel S. Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
- Correspondence: ; Tel.: +1-605-658-6313
| |
Collapse
|
29
|
Hikima T, Lee CR, Witkovsky P, Chesler J, Ichtchenko K, Rice ME. Activity-dependent somatodendritic dopamine release in the substantia nigra autoinhibits the releasing neuron. Cell Rep 2021; 35:108951. [PMID: 33826884 PMCID: PMC8189326 DOI: 10.1016/j.celrep.2021.108951] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Somatodendritic dopamine (DA) release from midbrain DA neurons activates D2 autoreceptors on these cells to regulate their activity. However, the source of autoregulatory DA remains controversial. Here, we test the hypothesis that D2 autoreceptors on a given DA neuron in the substantia nigra pars compacta (SNc) are activated primarily by DA released from that same cell, rather than from its neighbors. Voltage-clamp recording allows monitoring of evoked D2-receptor-mediated inhibitory currents (D2ICs) in SNc DA neurons as an index of DA release. Single-cell application of antibodies to Na+ channels via the recording pipette decreases spontaneous activity of recorded neurons and attenuates evoked D2ICs; antibodies to SNAP-25, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, also decrease D2IC amplitude. Evoked D2ICs are nearly abolished by the light chain of botulinum neurotoxin A, which cleaves SNAP-25, whereas synaptically activated GABAB-receptor-mediated currents are unaffected. Thus, somatodendritic DA release in the SNc autoinhibits the neuron that releases it.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Christian R Lee
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Julia Chesler
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Konstantin Ichtchenko
- Department of Biochemistry & Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
30
|
Upreti C, Woodruff CM, Zhang XL, Yim MJ, Zhou ZY, Pagano AM, Rehanian DS, Yin D, Kandel ER, Stanton PK, Nicholls RE. Loss of retinoid X receptor gamma subunit impairs group 1 mGluR mediated electrophysiological responses and group 1 mGluR dependent behaviors. Sci Rep 2021; 11:5552. [PMID: 33692389 PMCID: PMC7946894 DOI: 10.1038/s41598-021-84943-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Retinoid X receptors are members of the nuclear receptor family that regulate gene expression in response to retinoic acid and related ligands. Group 1 metabotropic glutamate receptors are G-protein coupled transmembrane receptors that activate intracellular signaling cascades in response to the neurotransmitter, glutamate. These two classes of molecules have been studied independently and found to play important roles in regulating neuronal physiology with potential clinical implications for disorders such as depression, schizophrenia, Parkinson's and Alzheimer's disease. Here we show that mice lacking the retinoid X receptor subunit, RXRγ, exhibit impairments in group 1 mGluR-mediated electrophysiological responses at hippocampal Schaffer collateral-CA1 pyramidal cell synapses, including impaired group 1 mGluR-dependent long-term synaptic depression (LTD), reduced group 1 mGluR-induced calcium release, and loss of group 1 mGluR-activated voltage-sensitive currents. These animals also exhibit impairments in a subset of group 1 mGluR-dependent behaviors, including motor performance, spatial object recognition, and prepulse inhibition. Together, these observations demonstrate convergence between the RXRγ and group 1 mGluR signaling pathways that may function to coordinate their regulation of neuronal activity. They also identify RXRγ as a potential target for the treatment of disorders in which group 1 mGluR signaling has been implicated.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Caitlin M Woodruff
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Xiao-Lei Zhang
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Michael J Yim
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Zhen-Yu Zhou
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Andrew M Pagano
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Dina S Rehanian
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA
| | - Deqi Yin
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Eric R Kandel
- Department of Neuroscience, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Howard Hughes Medical Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Kavli Institute for Brain Science, Columbia University, 3227 Broadway, New York, NY, 10027, USA.,Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 3227 Broadway, New York, NY, 10027, USA
| | - Patric K Stanton
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, 10595, USA.,Department of Neurology, New York Medical College, Valhalla, NY, 10595, USA
| | - Russell E Nicholls
- Department of Pathology and Cell Biology, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA. .,Taub Institute for Research on Alzheimer's Disease and Aging Brain, Columbia University, 630 West 168thStreet, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Life-long brain compensatory responses to galactic cosmic radiation exposure. Sci Rep 2021; 11:4292. [PMID: 33619310 PMCID: PMC7900210 DOI: 10.1038/s41598-021-83447-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
Galactic cosmic radiation (GCR) composed of high-energy, heavy particles (HZE) poses potentially serious hazards to long-duration crewed missions in deep space beyond earth’s magnetosphere, including planned missions to Mars. Chronic effects of GCR exposure on brain structure and cognitive function are poorly understood, thereby limiting risk reduction and mitigation strategies to protect against sequelae from exposure during and after deep-space travel. Given the selective vulnerability of the hippocampus to neurotoxic insult and the importance of this brain region to learning and memory, we hypothesized that GCR-relevant HZE exposure may induce long-term alterations in adult hippocampal neurogenesis, synaptic plasticity, and hippocampal-dependent learning and memory. To test this hypothesis, we irradiated 3-month-old male and female mice with a single, whole-body dose of 10, 50, or 100 cGy 56Fe ions (600 MeV, 181 keV/μm) at Brookhaven National Laboratory. Our data reveal complex, dynamic, time-dependent effects of HZE exposure on the hippocampus. Two months post exposure, neurogenesis, synaptic plasticity and learning were impaired compared to sham-irradiated, age-matched controls. By six months post-exposure, deficits in spatial learning were absent in irradiated mice, and synaptic potentiation was enhanced. Enhanced performance in spatial learning and facilitation of synaptic plasticity in irradiated mice persisted 12 months post-exposure, concomitant with a dramatic rebound in adult-born neurons. Synaptic plasticity and spatial learning remained enhanced 20 months post-exposure, indicating a life-long influence on plasticity and cognition from a single exposure to HZE in young adulthood. These findings suggest that GCR-exposure can persistently alter brain health and cognitive function during and after long-duration travel in deep space.
Collapse
|
32
|
Reshetnikov VV, Kisaretova PE, Ershov NI, Shulyupova AS, Oshchepkov DY, Klimova NV, Ivanchihina AV, Merkulova TI, Bondar NP. Genes associated with cognitive performance in the Morris water maze: an RNA-seq study. Sci Rep 2020; 10:22078. [PMID: 33328525 PMCID: PMC7744575 DOI: 10.1038/s41598-020-78997-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Learning and memory are among higher-order cognitive functions that are based on numerous molecular processes including changes in the expression of genes. To identify genes associated with learning and memory formation, here, we used the RNA-seq (high-throughput mRNA sequencing) technology to compare hippocampal transcriptomes between mice with high and low Morris water maze (MWM) cognitive performance. We identified 88 differentially expressed genes (DEGs) and 24 differentially alternatively spliced transcripts between the high- and low-MWM-performance mice. Although the sets of DEGs and differentially alternatively spliced transcripts did not overlap, both were found to be enriched with genes related to the same type of biological processes: trans-synaptic signaling, cognition, and glutamatergic transmission. These findings were supported by the results of weighted-gene co-expression network analysis (WGCNA) revealing the enrichment of MWM-cognitive-performance-correlating gene modules with very similar Gene Ontology terms. High-MWM-performance mice manifested mostly higher expression of the genes associated with glutamatergic transmission and long-term potentiation implementation, which are processes necessary for memory acquisition and consolidation. In this set, there were genes participating in the regulation of trans-synaptic signaling, primarily AMPA receptor signaling (Nrn1, Nptx1, Homer3, Prkce, Napa, Camk2b, Syt7, and Nrgn) and calcium turnover (Hpca, Caln1, Orai2, Cpne4, and Cpne9). In high-MWM-performance mice, we also demonstrated significant upregulation of the “flip” splice variant of Gria1 and Gria2 transcripts encoding subunits of AMPA receptor. Altogether, our data helped to identify specific genes in the hippocampus that are associated with learning and long-term memory. We hypothesized that the differences in MWM cognitive performance between the mouse groups are linked with increased long-term potentiation, which is mainly mediated by increased glutamatergic transmission, primarily AMPA receptor signaling.
Collapse
Affiliation(s)
- Vasiliy V Reshetnikov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Polina E Kisaretova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Nikita I Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Anastasia S Shulyupova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Dmitry Yu Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Natalia V Klimova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | | | - Tatiana I Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Natalia P Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia. .,Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
33
|
Yu Y, Shi Z, Xu D, Li Y, Qin J, Zhang Z, Wang H. Prenatal ethanol exposure increases susceptibility to depression- and anxiety-like behavior in adult female offspring and its underlying mechanism. Reprod Toxicol 2020; 96:36-46. [PMID: 32497709 DOI: 10.1016/j.reprotox.2020.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/19/2022]
Abstract
Epidemiological investigations have found that maternal alcohol intake increases the risk of mental illness in offspring. Our study investigated changes of depression- and anxiety-like behaviors in adult offspring caused by prenatal ethanol exposure (PEE) and explored the potential mechanism. After Wistar rats were intragastrically administered ethanol at a dose of 4 g/kg·d on the 9-20 t h days of pregnancy, the offspring were given 21 days of chronic unpredictable mild stress (CUMS) starting from the 9th week after birth. Before CUMS, the behavioral results showed that the PEE offspring appeared excited and anxious. After CUMS, the PEE offspring rats were more sensitive to the same intensity of stimulation, and then the behavioral disorders aggravated. In adult offspring from the PEE group, the intercellular space was enlarged in the hippocampus, and there was a loss of pyramidal cells. The expression of brain-derived neurotrophic factor (BDNF) decreased; the mRNA expression of the glucocorticoid receptor and synaptic plasticity-related genes decreased; the apoptosis-related genes expressed disrupted. In order to determine whether hippocampal injury and dysfunction resulted from ethanol directly or indirectly, we performed in vitro study. The outcome was accompanied by disrupted gene expression related to neurogenesis and synaptic plasticity. PEE increases the susceptibility of adult female offspring to depression- and anxiety-like behaviors, and its mechanism may be related to the toxic effects of ethanol, both directly and indirectly. The latter inhibits the hippocampal BDNF pathway, leading to the disruption of hippocampal neurogenesis, apoptosis and decreased synaptic plasticity.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Zhaokun Shi
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ying Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
34
|
Illiano P, Bigford GE, Gainetdinov RR, Pardo M. Rats Lacking Dopamine Transporter Display Increased Vulnerability and Aberrant Autonomic Response to Acute Stress. Biomolecules 2020; 10:biom10060842. [PMID: 32486390 PMCID: PMC7356162 DOI: 10.3390/biom10060842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
The activity of the hypothalamus–pituitary–adrenal (HPA) axis is pivotal in homeostasis and presides the adaptative response to stress. Dopamine Transporter (DAT) plays a key role in the regulation of the HPA axis. We used young adult female DAT Knockout (KO) rats to assess the effects of DAT ablation (partial, heterozygous DAT+/-, or total, homozygous DAT-/-) on vulnerability to stress. DAT-/- rats show profound dysregulation of pituitary homeostasis, in the presence of elevated peripheral corticosterone, before and after acute restraint stress. During stress, DAT-/- rats show abnormal autonomic response at either respiratory and cardiovascular level, and delayed body temperature increase. DAT+/- rats display minor changes of hypophyseal homeostatic mechanisms. These rats display a similar pituitary activation to that of the control animals, albeit in the presence of higher release of peripheral corticosterone than DAT-/- after stress, and reduced temperature during stress. Our data indicate that DAT regulates the HPA axis at both the central and peripheral level, including autonomic function during stress. In particular, the partial deletion of DAT results in increased vulnerability to stress in female rats, which display central and peripheral alterations that are reminiscent of PTSD, and they might provide new insights in the pathophysiology of this disorder.
Collapse
Affiliation(s)
- Placido Illiano
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Correspondence: (P.I.); (M.P.)
| | - Gregory E. Bigford
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya Emb. 7–9, 199034 St. Petersburg, Russia;
- St. Petersburg University Hospital, St. Petersburg State University, Universitetskaya Emb. 7–9, 199034 St. Petersburg, Russia
| | - Marta Pardo
- Department of Neurology and Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (P.I.); (M.P.)
| |
Collapse
|
35
|
Disabling Gβγ-SNAP-25 interaction in gene-targeted mice results in enhancement of long-term potentiation at Schaffer collateral-CA1 synapses in the hippocampus. Neuroreport 2020; 30:695-699. [PMID: 31095110 DOI: 10.1097/wnr.0000000000001258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three SNARE proteins, SNAP-25, syntaxin 1A, and VAMP2 or synaptobrevin 2, constitute the minimal functional machinery needed for the regulated secretion of neurotransmitters. Dynamic changes in the regulated release of neurotransmitters are associated with the induction of long-term plasticity at central synapses. In-vitro studies have validated the C-terminus of SNAP-25 as a target for inhibitory Gi/o-coupled G-protein coupled receptors at a number of synapses. The physiological consequences of the interaction between Gi/o proteins and SNAP-25 in the context of activity-dependent long-term synaptic plasticity are not well understood. Here, we report direct ex-vivo evidence of the involvement of the C-terminus of SNAP-25 in inducing long-term potentiation of synaptic strength at Schaffer collateral-CA1 synapses using a gene-targeted mouse model with truncated C-terminus (carboxyl terminus) of SNAP-25. It has been shown previously that truncation of the three extreme C-terminal residues in SNAP-25[INCREMENT]3 homozygote mice reduces its interaction with the inhibitory Gβγ subunits two-fold. In in-vitro hippocampal slices, we show that these SNAP-25[INCREMENT]3 mice express significantly larger magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses.
Collapse
|
36
|
Gopaul KR, Irfan M, Miry O, Vose LR, Moghadam A, Subah G, Hökfelt T, Bark C, Stanton PK. Developmental Time Course of SNAP-25 Isoforms Regulate Hippocampal Long-Term Synaptic Plasticity and Hippocampus-Dependent Learning. Int J Mol Sci 2020; 21:ijms21041448. [PMID: 32093363 PMCID: PMC7073020 DOI: 10.3390/ijms21041448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
SNAP-25 is essential to activity-dependent vesicle fusion and neurotransmitter release in the nervous system. During early development and adulthood, SNAP-25 appears to have differential influences on short- and long-term synaptic plasticity. The involvement of SNAP-25 in these processes may be different at hippocampal and neocortical synapses because of the presence of two different splice variants, which are developmentally regulated. We show here that the isoform SNAP-25a, which is expressed first developmentally in rodent brain, contributes to developmental regulation of the expression of both long-term depression (LTD) and long-term potentiation (LTP) at Schaffer collateral-CA1 synapses in the hippocampus. In one month old mice lacking the developmentally later expressed isoform SNAP-25b, Schaffer collateral-CA1 synapses showed faster release kinetics, decreased LTP and enhanced LTD. By four months of age, SNAP-25b-deficient mice appeared to have compensated for the lack of the adult SNAP-25b isoform, now exhibiting larger LTP and no differences in LTD compared to wild type mice. Interestingly, learning a hippocampus-dependent task reversed the reductions in LTP, but not LTD, seen at one month of age. In four month old adult mice, learning prevented the compensatory up-regulation of LTD that we observed prior to training. These findings support the hypothesis that SNAP-25b promotes stronger LTP and weakens LTD at Schaffer collateral-CA1 synapses in young mice, and suggest that compensatory mechanisms can reverse alterations in synaptic plasticity associated with a lack of SNAP-25b, once mice reach adulthood.
Collapse
Affiliation(s)
- Katisha R. Gopaul
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Muhammad Irfan
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Omid Miry
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Linnea R. Vose
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Alexander Moghadam
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Galadu Subah
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
| | - Christina Bark
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden;
- Correspondence: (C.B.); (P.K.S.); Tel. +46-085-248-6984 (C.B.); +1-914-594-4883 (P.K.S.)
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA; (K.R.G.); (M.I.); (O.M.); (L.R.V.); (A.M.); (G.S.)
- Correspondence: (C.B.); (P.K.S.); Tel. +46-085-248-6984 (C.B.); +1-914-594-4883 (P.K.S.)
| |
Collapse
|
37
|
Ruiter M, Houy S, Engholm-Keller K, Graham ME, Sørensen JB. SNAP-25 phosphorylation at Ser187 is not involved in Ca 2+ or phorbolester-dependent potentiation of synaptic release. Mol Cell Neurosci 2019; 102:103452. [PMID: 31794878 DOI: 10.1016/j.mcn.2019.103452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/13/2019] [Accepted: 11/29/2019] [Indexed: 11/25/2022] Open
Abstract
SNAP-25, one of the three SNARE-proteins responsible for synaptic release, can be phosphorylated by Protein Kinase C on Ser-187, close to the fusion pore. In neuroendocrine cells, this phosphorylation event potentiates vesicle recruitment into releasable pools, whereas the consequences of phosphorylation for synaptic release remain unclear. We mutated Ser-187 and expressed two mutants (S187C and S187E) in the context of the SNAP-25B-isoform in SNAP-25 knockout glutamatergic autaptic neurons. Whole-cell patch clamp recordings were performed to assess the effect of Ser-187 phosphorylation on synaptic transmission. Blocking phosphorylation by expressing the S187C mutant did not affect synapse density, basic evoked or spontaneous neurotransmission, the readily-releasable pool size or its Ca2+-independent or Ca2+-dependent replenishment. Furthermore, it did not affect the response to phorbol esters, which activate PKC. Expressing S187C in the context of the SNAP-25A isoform also did not affect synaptic transmission. Strikingly, the - potentially phosphomimetic - mutant S187E reduced spontaneous release and release probability, with the largest effect seen in the SNAP-25B isoform, showing that a negative charge in this position is detrimental for neurotransmission, in agreement with electrostatic fusion triggering. During the course of our experiments, we found that higher SNAP-25B expression levels led to decreased paired pulse potentiation, probably due to higher release probabilities. Under these conditions, the potentiation of evoked EPSCs by phorbol esters was followed by a persistent down-regulation, probably due to a ceiling effect. In conclusion, our results indicate that phosphorylation of Ser-187 in SNAP-25 is not involved in modulation of synaptic release by Ca2+ or phorbol esters.
Collapse
Affiliation(s)
- Marvin Ruiter
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark
| | - Kasper Engholm-Keller
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Mark E Graham
- Synapse Proteomics Group, Children's Medical Research Institute, The University of Sydney, 214 Hawkesbury Road, Westmead NSW 2145, New South Wales, Australia
| | - Jakob B Sørensen
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3C, 2200 Copenhagen N, Denmark.
| |
Collapse
|