1
|
Mori A, Vermeer M, van den Broek LJ, Heijmans J, Nicolas A, Bouwhuis J, Burton T, Matsumura K, Ohashi K, Ito S, Kramer B. High-throughput Bronchus-on-a-Chip system for modeling the human bronchus. Sci Rep 2024; 14:26248. [PMID: 39482373 PMCID: PMC11528030 DOI: 10.1038/s41598-024-77665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Airway inflammation, a protective response in the human body, can disrupt normal organ function when chronic, as seen in chronic obstructive pulmonary disease (COPD) and asthma. Chronic bronchitis induces goblet cell hyperplasia and metaplasia, obstructing airflow. Traditional animal testing is often replaced by in vitro three-dimensional cultures of human epithelial cells to assess chronic cell responses. However, these cells are cultured horizontally, differing from the tubular structure of the human airway and failing to accurately reproduce airway stenosis. To address this, we developed the Bronchus-on-a-Chip (BoC) system. The BoC uses a novel microfluidic design in a standard laboratory plate, embedding 62 chips in one plate. Human bronchial epithelial cells were cultured against a collagen extracellular matrix for up to 35 days. Characterization included barrier integrity assays, microscopy, and histological examination. Cells successfully cultured in a tubular structure, with the apical side air-lifted. Epithelial cells differentiated into basal, ciliated, and secretory cells, mimicking human bronchial epithelium. Upon exposure to inducers of goblet cell hyperplasia and metaplasia, the BoC system showed mucus hyperproduction, replicating chronic epithelial responses. This BoC system enhances in vitro testing for bronchial inflammation, providing a more human-relevant and high-throughput method.
Collapse
Affiliation(s)
- Akina Mori
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | | | | | | | - Arnaud Nicolas
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Josse Bouwhuis
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Todd Burton
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| | - Kazushi Matsumura
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Kazuhiro Ohashi
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan
| | - Shigeaki Ito
- Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.
| | - Bart Kramer
- Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands
| |
Collapse
|
2
|
Lagowala DA, Wally A, Wilmsen K, Kim B, Yeung-Luk B, Choi J, Swaby C, Luk M, Feller L, Ghosh B, Niedrkofler A, Tieng E, Sherman E, Chen D, Upadya N, Zhang R, Kim DH, Sidhaye V. Microphysiological Models of Lung Epithelium-Alveolar Macrophage Co-Cultures to Study Chronic Lung Disease. Adv Biol (Weinh) 2024; 8:e2300165. [PMID: 37840439 PMCID: PMC11995713 DOI: 10.1002/adbi.202300165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Indexed: 10/17/2023]
Abstract
The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co-culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision-cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung-on-a-chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.
Collapse
Affiliation(s)
- Dave A. Lagowala
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arabelis Wally
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Byunggik Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jeongseob Choi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Matthew Luk
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Laine Feller
- Department of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Austin Niedrkofler
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ethan Tieng
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ethan Sherman
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Daniel Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nisha Upadya
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Venkataramana Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Yeung-Luk BH, Wally A, Swaby C, Jauregui S, Lee E, Zhang R, Chen D, Luk SH, Upadya N, Tieng E, Wilmsen K, Sherman E, Sudhakar D, Luk M, Shrivastav AK, Cao S, Ghosh B, Christenson SA, Huang YJ, Ortega VE, Biswal S, Tang WY, Sidhaye VK. Epigenetic Reprogramming Drives Epithelial Disruption in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:165-177. [PMID: 37976469 PMCID: PMC10914773 DOI: 10.1165/rcmb.2023-0147oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.
Collapse
Affiliation(s)
| | - Ara Wally
- Department of Environmental Health and Engineering and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sofia Jauregui
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Esther Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean H Luk
- Department of Environmental Health and Engineering and
| | - Nisha Upadya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ethan Tieng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Kai Wilmsen
- Department of Environmental Health and Engineering and
| | - Ethan Sherman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dheeksha Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Luk
- Department of Environmental Health and Engineering and
| | - Abhishek Kumar Shrivastav
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shuo Cao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | | | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Yvonne J Huang
- Department of Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Victor E Ortega
- Department of Pulmonary Medicine, Mayo Clinic, Phoenix, Arizona
| | - Shyam Biswal
- Department of Environmental Health and Engineering and
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering and
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering and
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Ghosh B, Chengala PP, Shah S, Chen D, Karnam V, Wilmsen K, Yeung-Luk B, Sidhaye VK. Cigarette smoke-induced injury induces distinct sex-specific transcriptional signatures in mice tracheal epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L467-L476. [PMID: 37605829 PMCID: PMC10639008 DOI: 10.1152/ajplung.00104.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sonya Shah
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Chen
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Vaishnavi Karnam
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Venkataramana K Sidhaye
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
5
|
Kohl Y, Müller M, Fink M, Mamier M, Fürtauer S, Drexel R, Herrmann C, Dähnhardt-Pfeiffer S, Hornberger R, Arz MI, Metzger C, Wagner S, Sängerlaub S, Briesen H, Meier F, Krebs T. Development and Characterization of a 96-Well Exposure System for Safety Assessment of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207207. [PMID: 36922728 DOI: 10.1002/smll.202207207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
In this study, a 96-well exposure system for safety assessment of nanomaterials is developed and characterized using an air-liquid interface lung epithelial model. This system is designed for sequential nebulization. Distribution studies verify the reproducible distribution over all 96 wells, with lower insert-to-insert variability compared to non-sequential application. With a first set of chemicals (TritonX), drugs (Bortezomib), and nanomaterials (silver nanoparticles and (non-)fluorescent crystalline nanocellulose), sequential exposure studies are performed with human lung epithelial cells followed by quantification of the deposited mass and of cell viability. The developed exposure system offers for the first time the possibility of exposing an air-liquid interface model in a 96-well format, resulting in high-throughput rates, combined with the feature for sequential dosing. This exposure system allows the possibility of creating dose-response curves resulting in the generation of more reliable cell-based assay data for many types of applications, such as safety analysis. In addition to chemicals and drugs, nanomaterials with spherical shapes, but also morphologically more complex nanostructures can be exposed sequentially with high efficiency. This allows new perspectives on in vivo-like and animal-free approaches for chemical and pharmaceutical safety assessment, in line with the 3R principle of replacing and reducing animal experiments.
Collapse
Affiliation(s)
- Yvonne Kohl
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Michelle Müller
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Marielle Fink
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Marc Mamier
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| | - Siegfried Fürtauer
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Roland Drexel
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Christine Herrmann
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | | | - Ramona Hornberger
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Marius I Arz
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Christoph Metzger
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Sylvia Wagner
- Bioprocessing & Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Sven Sängerlaub
- Materials Development, Fraunhofer Institute for Process Engineering & Packaging IVV, Giggenhauser Str. 35, 85354, Freising, Germany
| | - Heiko Briesen
- Process Systems Engineering, School of Life Sciences, Technical University Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Florian Meier
- Postnova Analytics GmbH, 86899, Landsberg am Lech, Germany
| | - Tobias Krebs
- VITROCELL Systems GmbH, Fabrik Sonntag 3, 79183, Waldkirch, Germany
| |
Collapse
|
6
|
Ghosh B, Loube J, Thapa S, Ryan H, Capodanno E, Chen D, Swaby C, Chen S, Mahmud S, Girgis M, Nishida K, Ying L, Chengala PP, Tieng E, Burnim M, Wally A, Bhowmik D, Zaykaner M, Yeung-Luk B, Mitzner W, Biswal S, Sidhaye VK. Loss of E-cadherin is causal to pathologic changes in chronic lung disease. Commun Biol 2022; 5:1149. [PMID: 36309587 PMCID: PMC9617938 DOI: 10.1038/s42003-022-04150-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Epithelial cells line the lung mucosal surface and are the first line of defense against toxic exposures to environmental insults, and their integrity is critical to lung health. An early finding in the lung epithelium of patients with chronic obstructive pulmonary disease (COPD) is the loss of a key component of the adherens junction protein called E-cadherin. The cause of this decrease is not known and could be due to luminal insults or structural changes in the small airways. Irrespective, it is unknown whether the loss of E-cadherin is a marker or a driver of disease. Here we report that loss of E-cadherin is causal to the development of chronic lung disease. Using cell-type-specific promoters, we find that knockout of E-cadherin in alveolar epithelial type II but not type 1 cells in adult mouse models results in airspace enlargement. Furthermore, the knockout of E-cadherin in airway ciliated cells, but not club cells, increase airway hyperreactivity. We demonstrate that strategies to upregulate E-cadherin rescue monolayer integrity and serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jeffrey Loube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hurley Ryan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Daniel Chen
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Linyan Ying
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Respiration, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ethan Tieng
- Johns Hopkins University, Baltimore, MD, USA
| | - Michael Burnim
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ara Wally
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Debarshi Bhowmik
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michael Zaykaner
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Horndahl J, Svärd R, Berntsson P, Wingren C, Li J, Abdillahi SM, Ghosh B, Capodanno E, Chan J, Ripa L, Åstrand A, Sidhaye VK, Collins M. HDAC6 inhibitor ACY-1083 shows lung epithelial protective features in COPD. PLoS One 2022; 17:e0266310. [PMID: 36223404 PMCID: PMC9555642 DOI: 10.1371/journal.pone.0266310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Airway epithelial damage is a common feature in respiratory diseases such as COPD and has been suggested to drive inflammation and progression of disease. These features manifest as remodeling and destruction of lung epithelial characteristics including loss of small airways which contributes to chronic airway inflammation. Histone deacetylase 6 (HDAC6) has been shown to play a role in epithelial function and dysregulation, such as in cilia disassembly, epithelial to mesenchymal transition (EMT) and oxidative stress responses, and has been implicated in several diseases. We thus used ACY-1083, an inhibitor with high selectivity for HDAC6, and characterized its effects on epithelial function including epithelial disruption, cytokine production, remodeling, mucociliary clearance and cell characteristics. Primary lung epithelial air-liquid interface cultures from COPD patients were used and the impacts of TNF, TGF-β, cigarette smoke and bacterial challenges on epithelial function in the presence and absence of ACY-1083 were tested. Each challenge increased the permeability of the epithelial barrier whilst ACY-1083 blocked this effect and even decreased permeability in the absence of challenge. TNF was also shown to increase production of cytokines and mucins, with ACY-1083 reducing the effect. We observed that COPD-relevant stimulations created damage to the epithelium as seen on immunohistochemistry sections and that treatment with ACY-1083 maintained an intact cell layer and preserved mucociliary function. Interestingly, there was no direct effect on ciliary beat frequency or tight junction proteins indicating other mechanisms for the protected epithelium. In summary, ACY-1083 shows protection of the respiratory epithelium during COPD-relevant challenges which indicates a future potential to restore epithelial structure and function to halt disease progression in clinical practice.
Collapse
Affiliation(s)
- Jenny Horndahl
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Rebecka Svärd
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pia Berntsson
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Wingren
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jingjing Li
- Bioscience Asthma, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Suado M. Abdillahi
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erin Capodanno
- Department of Biology, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Justin Chan
- Department of Public Health Studies, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lena Ripa
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Åstrand
- Project Leader Department, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Venkataramana K. Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mia Collins
- Bioscience COPD/IPF, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
8
|
Ghosh B, Nishida K, Chandrala L, Mahmud S, Thapa S, Swaby C, Chen S, Khosla AA, Katz J, Sidhaye VK. Epithelial plasticity in COPD results in cellular unjamming due to an increase in polymerized actin. J Cell Sci 2022; 135:jcs258513. [PMID: 35118497 PMCID: PMC8919336 DOI: 10.1242/jcs.258513] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 01/04/2022] [Indexed: 11/20/2022] Open
Abstract
The airway epithelium is subjected to insults such as cigarette smoke (CS), a primary cause of chronic obstructive pulmonary disease (COPD) and serves as an excellent model to study cell plasticity. Here, we show that both CS-exposed and COPD-patient derived epithelia (CHBE) display quantitative evidence of cellular plasticity, with loss of specialized apical features and a transcriptional profile suggestive of partial epithelial-to-mesenchymal transition (pEMT), albeit with distinct cell motion indicative of cellular unjamming. These injured/diseased cells have an increased fraction of polymerized actin, due to loss of the actin-severing protein cofilin-1. We observed that decreasing polymerized actin restores the jammed state in both CHBE and CS-exposed epithelia, indicating that the fraction of polymerized actin is critical in unjamming the epithelia. Our kinetic energy spectral analysis suggests that loss of cofilin-1 results in unjamming, similar to that seen with both CS exposure and in CHBE cells. The findings suggest that in response to chronic injury, although epithelial cells display evidence of pEMT, their movement is more consistent with cellular unjamming. Inhibitors of actin polymerization rectify the unjamming features of the monolayer. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
| | - Kristine Nishida
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Saborny Mahmud
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Shreeti Thapa
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Carter Swaby
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Si Chen
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Atulya Aman Khosla
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| | - Joseph Katz
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Venkataramana K. Sidhaye
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Baltimore, Maryland, 21205, USA
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21224, USA
| |
Collapse
|
9
|
Lagowala DA, Kwon S, Sidhaye VK, Kim DH. Human microphysiological models of airway and alveolar epithelia. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1072-L1088. [PMID: 34612064 PMCID: PMC8715018 DOI: 10.1152/ajplung.00103.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 11/22/2022] Open
Abstract
Human organ-on-a-chip models are powerful tools for preclinical research that can be used to study the mechanisms of disease and evaluate new targets for therapeutic intervention. Lung-on-a-chip models have been one of the most well-characterized designs in this field and can be altered to evaluate various types of respiratory disease and to assess treatment candidates prior to clinical testing. These systems are capable of overcoming the flaws of conventional two-dimensional (2-D) cell culture and in vivo animal testing due to their ability to accurately recapitulate the in vivo microenvironment of human tissue with tunable material properties, microfluidic integration, delivery of precise mechanical and biochemical cues, and designs with organ-specific architecture. In this review, we first describe an overview of currently available lung-on-a-chip designs. We then present how recent innovations in human stem cell biology, tissue engineering, and microfabrication can be used to create more predictive human lung-on-a-chip models for studying respiratory disease. Finally, we discuss the current challenges and future directions of lung-on-a-chip designs for in vitro disease modeling with a particular focus on immune and multiorgan interactions.
Collapse
Affiliation(s)
- Dave Anuj Lagowala
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Seoyoung Kwon
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Venkataramana K Sidhaye
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Primavessy D, Metz J, Schnur S, Schneider M, Lehr CM, Hittinger M. Pulmonary in vitro instruments for the replacement of animal experiments. Eur J Pharm Biopharm 2021; 168:62-75. [PMID: 34438019 DOI: 10.1016/j.ejpb.2021.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/19/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Advanced in vitro systems often combine a mechanical-physical instrument with a biological component e.g. cell culture models. For testing of aerosols, it is of advantage to consider aerosol behavior, particle deposition and lung region specific cell lines. Although there are many good reviews on the selection of cell cultures, articles on instruments are rare. This article focuses on the development of in vitro instruments targeting the exposure of aerosols on cell cultures. In this context, guidelines for toxicity investigation are taken into account as the aim of new methods must be the prediction of human relevant data and the replacement of existing animal experiments. We provide an overview on development history of research-based instruments from a pharmaceutical point of view. The standardized commercial devices resulting from the research-based instruments are presented and the future perspectives on pulmonary in vitro devices are discussed.
Collapse
Affiliation(s)
- Daniel Primavessy
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany.
| | - Julia Metz
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany
| | - Sabrina Schnur
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Marius Hittinger
- Department of Drug Delivery, PharmBioTec Research and Development GmbH, Saarbrücken, Germany; 3RProducts Marius Hittinger, Blieskastel, Germany
| |
Collapse
|
11
|
Ghosh B, Reyes-Caballero H, Akgün-Ölmez SG, Nishida K, Chandrala L, Smirnova L, Biswal S, Sidhaye VK. Effect of sub-chronic exposure to cigarette smoke, electronic cigarette and waterpipe on human lung epithelial barrier function. BMC Pulm Med 2020; 20:216. [PMID: 32787821 PMCID: PMC7425557 DOI: 10.1186/s12890-020-01255-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Taking into consideration a recent surge of a lung injury condition associated with electronic cigarette use, we devised an in vitro model of sub-chronic exposure of human bronchial epithelial cells (HBECs) in air-liquid interface, to determine deterioration of epithelial cell barrier from sub-chronic exposure to cigarette smoke (CS), e-cigarette aerosol (EC), and tobacco waterpipe exposures (TW). METHODS Products analyzed include commercially available e-liquid, with 0% or 1.2% concentration of nicotine, tobacco blend (shisha), and reference-grade cigarette (3R4F). In one set of experiments, HBECs were exposed to EC (0 and 1.2%), CS or control air for 10 days using 1 cigarette/day. In the second set of experiments, exposure of pseudostratified primary epithelial tissue to TW or control air exposure was performed 1-h/day, every other day, until 3 exposures were performed. After 16-18 h of last exposure, we investigated barrier function/structural integrity of the epithelial monolayer with fluorescein isothiocyanate-dextran flux assay (FITC-Dextran), measurements of trans-electrical epithelial resistance (TEER), assessment of the percentage of moving cilia, cilia beat frequency (CBF), cell motion, and quantification of E-cadherin gene expression by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS When compared to air control, CS increased fluorescence (FITC-Dextran assay) by 5.6 times, whereby CS and EC (1.2%) reduced TEER to 49 and 60% respectively. CS and EC (1.2%) exposure reduced CBF to 62 and 59%, and cilia moving to 47 and 52%, respectively, when compared to control air. CS and EC (1.2%) increased cell velocity compared to air control by 2.5 and 2.6 times, respectively. The expression of E-cadherin reduced to 39% of control air levels by CS exposure shows an insight into a plausible molecular mechanism. Altogether, EC (0%) and TW exposures resulted in more moderate decreases in epithelial integrity, while EC (1.2%) substantially decreased airway epithelial barrier function comparable with CS exposure. CONCLUSIONS The results support a toxic effect of sub-chronic exposure to EC (1.2%) as evident by disruption of the bronchial epithelial cell barrier integrity, whereas further research is needed to address the molecular mechanism of this observation as well as TW and EC (0%) toxicity in chronic exposures.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hermes Reyes-Caballero
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Sevcan Gül Akgün-Ölmez
- Department of Environmental Health and Engineering, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Present Address: Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Kristine Nishida
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmana Chandrala
- Department of Mechanical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Lena Smirnova
- Department of Environmental Health and Engineering, Center for Alternatives to Animal Testing, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shyam Biswal
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|