1
|
Cao Y, Yan R, Sun M, Guo J, Zhang S. Effects of exogenous chitosan concentrations on photosynthesis and functional physiological traits of hibiscus under salt stress. BMC PLANT BIOLOGY 2025; 25:419. [PMID: 40181276 PMCID: PMC11967025 DOI: 10.1186/s12870-025-06424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Soil salinity is a major barrier to plant growth and yield improvement. Chitosan, a versatile biomaterial, has shown potential in enhancing plant stress tolerance. This study evaluated the effectiveness of chitosan pretreatment in mitigating salt stress hibiscus (Hibiscus syriacus L.). Two-year-old hibiscus cuttings were treated with varying concentrations of chitosan (10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L) via root irrigation and foliar spray in a 6‰ saline environment. Growth parameters, gas exchange rates, antioxidant enzyme activities, and osmotic regulatory compounds were analyzed. RESULTS The results showed that chitosan at 25 mg/L and 50 mg/L significantly improved physiological and ecological traits. These concentrations enhanced photosynthetic performance, protected photosynthetic electron transport chain, and reduced malondialdehyde (MDA) content and relative conductivity, thereby limiting cell membrane damage. Additionally, the accumulation of soluble proteins, soluble sugars, and proline increased, improving the plants' ability to cope with salt stress. Antioxidant enzyme activities, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), were notably elevated, while levels of hydrogen peroxide (H₂O₂) and superoxide anion (O₂-) decreased. CONCLUSIONS The 25 mg/L and 50 mg/L treatments had the most pronounced effects, confirming that moderate chitosan concentrations effectively alleviate salt stress in hibiscus. This study underscores the role of chitosan in enhancing salt stress adaptability, offering insights for plant protection and greening efforts.
Collapse
Affiliation(s)
- Yangfan Cao
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Ruiyang Yan
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Mingcong Sun
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Jing Guo
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuyong Zhang
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Soostani SB, Ranjbar M, Memarian A, Mohammadi M, Yaghini Z. Investigating the effect of chitosan on the expression of P5CS, PIP, and PAL genes in rapeseed (Brassica napus L.) under salt stress. BMC PLANT BIOLOGY 2025; 25:215. [PMID: 39966771 PMCID: PMC11834301 DOI: 10.1186/s12870-025-06187-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025]
Abstract
Chitosan, a non-toxic and biodegradable compound, enhances plant growth and secondary metabolite production, presenting innovative approaches to mitigating plant stress. Salinity, a common abiotic stress, significantly impairs plant growth and development. This study investigates the effects of chitosan on the physiological, biochemical, and gene expression responses of salt-stressed Brassica napus L. exposed to NaCl concentrations of 0, 50, 100, and 150 mM. Chitosan was applied as a foliar spray at concentrations of 0, 5 and 10 mg/L. The research focuses on gene expression changes in P5CS, PIP, and PAL genes in the roots and shoots of Brassica napus, revealing notable alterations, particularly in PIP expression under saline conditions. The study also observed enhanced PAL enzyme activity, increased chlorophyll and proline levels, and changes in iron, potassium, and nitrogen content. These findings demonstrate chitosan's potential to improve plant resilience to salt stress. By modulating gene expression and enhancing physiological responses, chitosan presents a promising solution for enhancing plant tolerance to salinity, with valuable implications for agricultural practices.
Collapse
Affiliation(s)
| | - Monireh Ranjbar
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Amir Memarian
- Department of Biotechnology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mehrnoosh Mohammadi
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Zahra Yaghini
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
3
|
Govêa KP, França YS, da Costa WC, Bressanin LA, de Souza KRD, da Silva AB, da Silva GA, Magalhães PC, de Souza TC. Effect of two compost teas as inducers of tolerance to lead and aluminum on the initial growth of maize and sorghum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6053-6070. [PMID: 39969711 DOI: 10.1007/s11356-025-36075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Compost teas have been reported to be inducers of tolerance to biotic and abiotic stresses in plants, but few studies have investigated heavy metal stress. We hypothesize that compost teas can mitigate the harmful effects of heavy metals in maize and sorghum. The objective of this work was to verify the effects of two compost teas, plant compost tea (PCT) and cattle manure compost tea (CMCT), as inducers of tolerance to lead (Pb) and aluminum (Al) in maize and sorghum. We produced and chemically analyzed the two compost teas and applied them to maize and sorghum exposed to Pb or Al to evaluate their effects on germination, initial growth, root morphology/architecture, antioxidant enzyme activity, and lipid peroxidation. In addition to stimulating and improving initial growth and root morphology/architecture, the two composts mitigated or nullified Pb and Al damage to several of the analyzed parameters, demonstrating biostimulant action. The effects observed are related to the chemical and microbiological composition of the compost teas, in addition to the increase in the enzymatic antioxidant metabolism of maize and sorghum.
Collapse
Affiliation(s)
- Kamilla Pacheco Govêa
- Present Address: Environmental Biotechnology & Genotoxicity Laboratory (BIOGEN), Nature Sciences Institute (ICN), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-001, Brazil
| | - Yamka Sousa França
- Present Address: Environmental Biotechnology & Genotoxicity Laboratory (BIOGEN), Nature Sciences Institute (ICN), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-001, Brazil
| | - Wesley Cleber da Costa
- Present Address: Environmental Biotechnology & Genotoxicity Laboratory (BIOGEN), Nature Sciences Institute (ICN), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-001, Brazil
| | - Leticia Aparecida Bressanin
- Present Address: Environmental Biotechnology & Genotoxicity Laboratory (BIOGEN), Nature Sciences Institute (ICN), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-001, Brazil
| | - Kamila Rezende Dázio de Souza
- Present Address: Environmental Biotechnology & Genotoxicity Laboratory (BIOGEN), Nature Sciences Institute (ICN), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-001, Brazil
| | - Adriano Bortolotti da Silva
- Section of Agricultural Sciences, University Professor Edson Antônio Velano (UNIFENAS), Rod. MG 39 Km 0, Alfenas, MG, 37130-000, Brazil
| | - Geraldo Alves da Silva
- Medicinal Plants and Herbal Medicines Laboratory (LPMF), Faculty of Pharmaceutical Sciences (FCF), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-000, Brazil
| | - Paulo César Magalhães
- Maize and Sorghum National Research Center, P. O. Box 151, Sete Lagoas, MG, 35701-970, Brazil
| | - Thiago Corrêa de Souza
- Present Address: Environmental Biotechnology & Genotoxicity Laboratory (BIOGEN), Nature Sciences Institute (ICN), Federal University of Alfenas (UNIFAL-MG), Street Gabriel Monteiro da Silva, P. O. Box 700, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
4
|
Ros M, Lidon P, Carrascosa A, Muñoz M, Navarro MV, Orts JM, Pascual JA. Polyurethane foam degradation combining ozonization and mealworm biodegradation and its exploitation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5332-5346. [PMID: 39921778 PMCID: PMC11868246 DOI: 10.1007/s11356-025-36029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025]
Abstract
The biodegradation of polyurethane foam (PU foam) using a combination of oxidative pre-treatment (ozonization) and Tenebrio molitor (T. molitor) mealworms was conducted in this study. Different degrees of ozone oxidation (0%, 25%, and 50%) were applied to PU foam, which was subsequently fed to mealworms. The mealworms' survival and growth were then compared to mealworms receiving a normal diet (bran). Results showed that mealworms fed with non-oxidized PU foam (PUF0) exhibited a higher consumption rate (11.8%) than those fed with 25% (PUF25) and 50% (PUF50) oxidized PU foam (7.7% and 5.7%, respectively). The survival rate was similar across all the PU foam diets and the bran diet. Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analyses revealed minor structural changes in the PU foam. The gut microbiota analysis showed a significant correlation between the PU foam and bran diets. Among the different oxidized PU, distinct microbial community profiles were also observed, with the genus Klebsiella consistently present across the PU foam diets. The ozone pre-treatment altered the palatability and degradation of the PU foam by mealworms, while the mealworm frass and chitin obtained could potentially be used as resources for agricultural and industrial applications that would close the circular bio-economy cycle.
Collapse
Affiliation(s)
- Margarita Ros
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain.
| | - Paula Lidon
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| | - Angel Carrascosa
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| | - Marta Muñoz
- CETEM, Materials, Adhesion and Polymers, C/ Perales S/N, Yecla, Murcia, Spain
| | | | - Jose Maria Orts
- Department of Biochemistry and Molecular Biology, Facultad de Farmacia, C/Prof., Universidad de Sevilla, García Gonzalez 2, 41012, Seville, Spain
| | - Jose Antonio Pascual
- Department of Soil and Water Conservation and OrganicWaste Management, Centro de Edafologia y Biología Aplicada del Segura (CEBAS-CSIC), University Campus of Espinardo, 30100, Murcia, Spain
| |
Collapse
|
5
|
Rahman A, Ahammed R, Roy J, Mia ML, Kader MA, Khan MA, Rashid MH, Sarker UK, Uddin MR, Islam MS. Investigating the impact of oligo-chitosan on the growth dynamics and yield traits of Oryza sativa L. 'BRRI dhan29' under subtropical conditions. Heliyon 2025; 11:e41552. [PMID: 39844997 PMCID: PMC11751532 DOI: 10.1016/j.heliyon.2024.e41552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Reducing the harmful chemical use along with obtaining potential yield in field is a worth exploring practice in rice cultivation. To mitigate the prevailing yield gap, the current study was designed to evaluate the effect of chitosan in improving growth, yield contributing characters and yield of rice. The experiment comprised eight different treatments viz. control (no fertilizer and Chitosan) (T0), conventional method (with fertilizers) (T1), conventional method with foliar spray of 100 ppm chitosan solution (T2), conventional method with foliar spray of 300 ppm chitosan solution (T3), conventional method with foliar spray of 500 ppm chitosan solution (T4), only foliar spray of 100 ppm chitosan solution (T5), only foliar spray of 300 ppm chitosan solution (T6), and only foliar spray of 500 ppm chitosan solution (T7). The experiment was laid out in a completely randomized block design containing three replications. Data on different vegetative and yield contributing characters were recorded to evaluate the treatments effectiveness in improving rice yield. Different growth and yield contributing characters showed significant improvement after applying chitosan in addition to the conventional production system. The conventional method with foliar spray of 500 ppm chitosan solution had a greater positive effect on yield contributing characters and yield. In vegetative characters, the highest plant height became (87.3 cm), number of tiller hill-1 (13.7), Total dry matter (12.9), leaf area index (1.35), and chlorophyll content (57.73). On the basis of assessed treatments in yield contributing characters and yield, the highest plant height was (91.8 cm), no. of grains panicle-1 (145.29), grain yield (6.37 t ha-1), straw yield (6.47 t ha-1). Results showed that the conventional method with foliar spray of different concentration of chitosan solution was able to increase yield up to 26 % in comparison to the conventional method. Overall, our findings suggest that additional foliar spray of chitosan with previously recommended cultivation practice can increase the yield per unit area and offers promising technology to achieve potential yield in farmer's field.
Collapse
Affiliation(s)
- Afrina Rahman
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Rayhan Ahammed
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jayanta Roy
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Liton Mia
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Abdul Kader
- Department of Arts & Sciences, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
| | - Mubarak A. Khan
- Former Director General, Bangladesh Atomic Energy Commission and Scientific Advisor, BJMC, Ministry of Jute and Textile, Dhaka, 1000, Bangladesh
| | - Md Harun Rashid
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Uttam Kumer Sarker
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Romij Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Shafiqul Islam
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
6
|
Rojas-Pirela M, Carillo P, Lárez-Velásquez C, Romanazzi G. Effects of chitosan on plant growth under stress conditions: similarities with plant growth promoting bacteria. FRONTIERS IN PLANT SCIENCE 2024; 15:1423949. [PMID: 39582624 PMCID: PMC11581901 DOI: 10.3389/fpls.2024.1423949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024]
Abstract
The agricultural use of synthetic pesticides, fertilizers, and growth regulators may represent a serious public health and environmental problem worldwide. All this has prompted the exploration of alternative chemical compounds, leading to exploring the potential of chitosan and PGPB in agricultural systems as a potential biotechnological solution to establish novel agricultural production practices that not only result in fewer adverse impacts on health and the environment but also improve the resilience and growth of the plants. In this work, an analysis of the impact of plant growth-promoting bacteria (PGPB) and chitosan on plant growth and protection has been conducted, emphasizing the crucial bioactivities of the resistance of the plants to both biotic and abiotic stressors. These include inducing phytohormone production, mobilization of insoluble soil nutrients, biological nitrogen fixation, ethylene level regulation, controlling soil phytopathogens, etc. Moreover, some relevant aspects of chitin and chitosan are discussed, including their chemical structures, sources, and how their physical properties are related to beneficial effects on agricultural applications and mechanisms of action. The effects of PGPB and chitosan on photosynthesis, germination, root development, and protection against plant diseases have been compared, emphasizing the intriguing similarities and synergistic effects observed in some of these aspects. Although currently there are limited studies focused on the combined application of PGPB and chitosan, it would be important to consider the similarities highlighted in this work, and those that may emerge in future studies or through well-designed investigations, because these could permit advancing towards a greater knowledge of these systems and to obtain better formulations by combining these bioproducts, especially for use in the new contexts of sustainable agriculture. Thus, it seems feasible to augur a promising near future for these combinations, considering the wide range of possibilities offered by chitinous biomaterials for the development of innovative formulations, as well as allowing different application methods. Likewise, the studies related to the PGPB effects on plant growth appear to be expanding due to ongoing research to test on plants the impacts of microorganisms derived from different environments, whether known or recently discovered, making it a very exciting field of research.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Petronia Carillo
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, Università degli Studi della Campania, Caserta, Italy
| | | | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
7
|
Obeng SK, Kulhánek M, Balík J, Černý J, Sedlář O. Manganese: From Soil to Human Health-A Comprehensive Overview of Its Biological and Environmental Significance. Nutrients 2024; 16:3455. [PMID: 39458451 PMCID: PMC11510450 DOI: 10.3390/nu16203455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Manganese is an essential micronutrient that plays a pivotal role in environmental systems, plant physiology, and human health. This review comprehensively examines the manganese cycle in the environment, its absorption and transport mechanisms in plants, and the implications of manganese exposure to human health. Objectives: The objectives of this review are to (i) analyze the environmental cycling of manganese and its bioavailability, (ii) evaluate the role of manganese in plant metabolism and disease resistance, and (iii) assess the impact of manganese toxicity and deficiency on human health. Conclusion: This review highlights that while manganese is crucial for photosynthesis, enzyme activation, and resistance to plant diseases, both its deficiency and toxicity can have severe consequences. In plants, manganese deficiency can lead to impaired growth and reduced crop yields, while toxicity, particularly in acidic soils, can inhibit photosynthesis and stunt development. In humans, manganese is necessary for various physiological processes, but overexposure, especially in occupational settings, can result in neurodegenerative conditions such as manganism. The conclusion emphasizes the importance of managing manganese levels in agriculture and industry to optimize its benefits while minimizing health risks. A multidisciplinary approach is advocated to enhance agricultural productivity and ensure public health safety.
Collapse
Affiliation(s)
| | - Martin Kulhánek
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic; (S.K.O.); (J.B.); (J.Č.); (O.S.)
| | | | | | | |
Collapse
|
8
|
Wu H, Du PR, Miao XR, Hou RQ, Li SN, Zeeshan M, Liu JC, Huang SQ, Cheng DM, Xu HH, Zhang ZX. O-Carboxymethyl chitosan nanoparticles: A novel approach to enhance water stress tolerance in maize seedlings. Int J Biol Macromol 2024; 277:134459. [PMID: 39111471 DOI: 10.1016/j.ijbiomac.2024.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Water stress, a significant abiotic stressor, significantly hampers crop growth and yield, posing threat to food security. Despite the promising potential of nanoparticles (NPs) in enhancing plant stress tolerance, the precise mechanisms underlying the alleviation of water stress using O-Carboxymethyl chitosan nanoparticles (O-CMC-NPs) in maize remain elusive. In this study, we synthesized O-CMC-NPs and delved into their capacity to mitigate water stress (waterlogging and drought) in maize seedlings. Structural characterization revealed spherical O-CMC-NPs with a size of approximately 200 nm. These NPs accumulated near the seed embryo and root tip, resulting in a substantial increase in fresh and dry weights. The application of O-CMC-NPs to water-stressed maize seedlings remarkedly elevated the chlorophyll content and activity of various antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO). The malondialdehyde (MDA) content was significantly reduced compared to the untreated control. Additionally, the expression of stress-responsive genes, such as ZmSOD, ZmCAT, ZmPOD, ZmTIFY, ZmACO, ZmPYL2, ZmNF-YC12, and ZmEREB180, were significantly upregulated in the O-CMC-NPs treated seedlings. These findings unveil the novel role of O-CMC-NPs in enhancing plant stress tolerance, suggesting their potential application in safeguarding maize seedlings under water stress conditions and facilitating the recovery from oxidative damage.
Collapse
Affiliation(s)
- Hao Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peng-Rui Du
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Quan Hou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Sheng-Nan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Zeeshan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Cheng Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Su-Qing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dong-Mei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Han-Hong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Xiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
9
|
Brown A, Al-Azawi TNI, Methela NJ, Rolly NK, Khan M, Faluku M, Huy VN, Lee DS, Mun BG, Hussian A, Yun BW. Chitosan-fulvic acid nanoparticles enhance drought tolerance in maize via antioxidant defense and transcriptional reprogramming. PHYSIOLOGIA PLANTARUM 2024; 176:e14455. [PMID: 39073158 DOI: 10.1111/ppl.14455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Nanoparticles are promising alternatives to synthetic fertilizers in the context of climate change and sustainable agriculture. Maize plants were grown under gradient concentrations (50 μM, 100 μM, 200 μM, 500 μM, and 1 mM) of chitosan (Ch), fulvic acid (FA) or chitosan-fulvic acid nanoparticles (Ch-FANPs). Based on the overall phenotypic assessment, 100 μM was selected for downstream experiments. Maize plants grown under this optimized concentration were thereafter subjected to drought stress by water withholding for 14 days. Compared to the individual performances, the combined treatment of Ch-FANPs supported the best plant growth over chitosan, fulvic acid, or sole watered plants and alleviated the adverse effects of drought by enhancing root and shoot growth, and biomass by an average 20%. In addition, Ch-FANPs-treated plants exhibited a significant reduction in hydrogen peroxide (H2O2) content (~10%), with a concomitant increase in ascorbate peroxidase (APX) activity (>100%) while showing a reduced lipid peroxidation level observed by the decrease in malondialdehyde (MDA) content (~100%) and low electrolyte leakage level. Furthermore, chlorophyll content increased significantly (>100%) in maize plants treated with Ch-FANPs compared to Ch or FA and control in response to drought. The expression of drought-induced transcription factors, ZmDREB1A, ZmbZIP1, and ZmNAC28, and the ABA-dependent ZmCIPK3 was upregulated by Ch-FANPs. Owing to the above, Ch-FANPs are proposed as a growth-promoting agent and elicitor of drought tolerance in maize via activation of antioxidant machinery and transcriptional reprogramming of drought-related genes.
Collapse
Affiliation(s)
- Alexander Brown
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Tiba Nazar Ibrahim Al-Azawi
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Nkulu Kabange Rolly
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Murtaza Khan
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Mwondha Faluku
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Vu Ngoc Huy
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| | - Bong-Gyu Mun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Adil Hussian
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Byung-Wook Yun
- Institute of International Research and Development, Kyungpook National University, Republic of Korea
- Department of Food Security and Agricultural Development, Kyungpook National University, Republic of Korea
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Republic of Korea
| |
Collapse
|
10
|
Chandrasekaran M, Paramasivan M. Chitosan derivatives act as a bio-stimulants in plants: A review. Int J Biol Macromol 2024; 271:132720. [PMID: 38845257 DOI: 10.1016/j.ijbiomac.2024.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Chitosan has been considered an eco-friendly biopolymer. Chitosan is a natural polycationic linear polysaccharide composed of D-glucosamine and N-acetyl-D-glucosamine linked by β-1,4-glycosidic bonds. Chitosan has been used as an eco-friendly biopolymer for so many agricultural applications. Unfortunately, the relatively poor solubility and poor antimicrobial properties limit its widespread applications in agriculture sciences. Hence, chitosan derivatives are produced via various chemical approaches such as cross-linking, carboxylation, ionic binding, and so on. As an alternative to chemical fertilizers, chitosan derivatives, chitosan conjugates, nanostructures, semisynthetic derivatives, oligo mixes, chitosan nanoparticles, and chitosan nano-carriers are synthesized for various agricultural applications. Its several chemical and physical properties such as biocompatibility, biodegradability, permeability, cost-effectiveness, low toxicity, and environmental friendliness make it useful for many agricultural applications. Hence, popularizing its use as an elicitor molecule for different host-pathogen interaction studies. Thus, the versatile and plethora of chitosan derivatives are gaining momentum in agricultural sciences. Bio-stimulant properties and multifunctional benefits are associated with further prospective research. Therefore, in the present review, we decipher the potential pros and cons of chitosan derivatives in plants.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, 209, Neundong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | | |
Collapse
|
11
|
Demehin O, Attjioui M, Goñi O, O’Connell S. Chitosan from Mushroom Improves Drought Stress Tolerance in Tomatoes. PLANTS (BASEL, SWITZERLAND) 2024; 13:1038. [PMID: 38611567 PMCID: PMC11013739 DOI: 10.3390/plants13071038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Chitosan is a derivative of chitin that is one of the most abundant biopolymers in nature, found in crustacean shells as well as in fungi cell walls. Most of the commercially available chitosans are produced from the exoskeletons of crustaceans. The extraction process involves harsh chemicals, has limited potential due to the seasonal and limited supply and could cause allergic reactions. However, chitosan has been shown to alleviate the negative effect of environmental stressors in plants, but there is sparse evidence of how chitosan source affects this bioactivity. The aim of this study was to investigate the ability of chitosan from mushroom in comparison to crustacean chitosan in enhancing drought stress tolerance in tomato plants (cv. MicroTom). Chitosan treatment was applied through foliar application and plants were exposed to two 14-day drought stress periods at vegetative and fruit set growth stages. Phenotypic (e.g., fruit number and weight), physiological (RWC) and biochemical-stress-related markers (osmolytes, photosynthetic pigments and malondialdehyde) were analyzed at different time points during the crop growth cycle. Our hypothesis was that this drought stress model will negatively impact tomato plants while the foliar application of chitosan extracted from either crustacean or mushroom will alleviate this effect. Our findings indicate that drought stress markedly decreased the leaf relative water content (RWC) and chlorophyll content, increased lipid peroxidation, and significantly reduced the average fruit number. Chitosan application, regardless of the source, improved these parameters and enhanced plant tolerance to drought stress. It provides a comparative study of the biostimulant activity of chitosan from diverse sources and suggests that chitosan sourced from fungi could serve as a more sustainable and environmentally friendly alternative to the current chitosan from crustaceans.
Collapse
Affiliation(s)
- Olusoji Demehin
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Maha Attjioui
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Oscar Goñi
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| | - Shane O’Connell
- Plant Biostimulant Group, Shannon Applied Biotechnology Centre, Munster Technological University-Tralee (South Campus), Clash, V92CX88 Tralee, Co. Kerry, Ireland; (O.D.); (M.A.); (S.O.)
- Marigot Ltd., Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
- Brandon Bioscience, Marigot Research Center, Sycamore Court, V92N6C8 Tralee, Co. Kerry, Ireland
| |
Collapse
|
12
|
Elshamly AMS, Iqbal R, Elshikh MS, Alwasel YA, Chaudhary T. Chitosan combined with humic applications during sensitive growth stages to drought improves nutritional status and water relations of sweet potato. Sci Rep 2024; 14:6351. [PMID: 38491017 PMCID: PMC10943102 DOI: 10.1038/s41598-024-55904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
The current decline in freshwater resources presents a significant global challenge to crop production, a situation expected to intensify with ongoing climate change. This underscores the need for extensive research to enhance crop yields under drought conditions, a priority for scientists given its vital role in global food security. Our study explores the effects of using humic and chitosan treatments to alleviate drought stress during critical growth phases and their impact on crop yield and water efficiency. We employed four different irrigation strategies: full irrigation, 70% irrigation at the early vine development stage, 70% irrigation during the storage root bulking stage, and 85% irrigation across both stages, complemented by full irrigation in other periods. The plants received either humic treatments through foliar spray or soil application, or chitosan foliar applications, with tap water serving as a control. Our findings highlight that the early vine development stage is particularly vulnerable to drought, with a 42.0% decrease in yield observed under such conditions. In normal growth scenarios, foliar application of humic substances significantly improved growth parameters, resulting in a substantial increase in yield and water efficiency by 66.9% and 68.4%, respectively, compared to the control treatment under full irrigation. For sweet potatoes irrigated with 70% water at the storage root bulking stage, ground application of humic substances outperformed both foliar applications of chitosan and humic in terms of yield results. The highest tuber yield and water efficiency were attained by combining chitosan and humic ground applications, regardless of whether 70% irrigation was used at the storage root bulking stage or 85% irrigation during both the early vine development and storage root bulking stages.
Collapse
Affiliation(s)
- Ayman M S Elshamly
- Water Studies and Research Complex, National Water Research Center, Cairo, Egypt.
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yasmeen A Alwasel
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Talha Chaudhary
- Faculty of Agricultural and Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary.
| |
Collapse
|
13
|
Lingait D, Rahagude R, Gaharwar SS, Das RS, Verma MG, Srivastava N, Kumar A, Mandavgane S. A review on versatile applications of biomaterial/polycationic chitosan: An insight into the structure-property relationship. Int J Biol Macromol 2024; 257:128676. [PMID: 38096942 DOI: 10.1016/j.ijbiomac.2023.128676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
Chitosan is a versatile and generous biopolymer obtained by alkaline deacetylation of naturally occurring chitin, the second most abundant biopolymer after cellulose. The excellent physicochemical properties of polycationic chitosan are attributed to the presence of varied functional groups such as amino, hydroxyl, and acetamido groups enabling researchers to tailor the structure and properties of chitosan by different methods such as crosslinking, grafting, copolymerization, composites, and molecular imprinting techniques. The prepared derivatives have diverse applications in the food industry, water treatment, cosmetics, pharmaceuticals, agriculture, textiles, and biomedical applications. In this review, numerous applications of chitosan and its derivatives in various fields have been discussed in detail with an insight into their structure-property relationship. This review article concludes and explains the chitosan's biocompatibility and efficiency that has been done so far with future usage and applications as well. Moreover, the possible mechanism of chitosan's activity towards several emerging fields such as energy storage, biodegradable packaging, photocatalysis, biorefinery, and environmental bioremediation are also discussed. Overall, this comprehensive review discusses the science and complete information behind chitosan's wonder function to improve our understanding which is much needful as well as will pave the way towards a sustainable future.
Collapse
Affiliation(s)
- Diksha Lingait
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Rashmi Rahagude
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Shivali Singh Gaharwar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Ranjita S Das
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Manisha G Verma
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| | - Nupur Srivastava
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Anupama Kumar
- Department of Chemistry, Visvesvaraya National Institute of Technology, Nagpur 440010, India.
| | - Sachin Mandavgane
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, India
| |
Collapse
|
14
|
Bhatla SC, Ranjan P, Singh N, Gogna M. Pure biochemicals and nanomaterials as next generation biostimulants for sustainable agriculture under abiotic stress - recent advances and future scope. PLANT SIGNALING & BEHAVIOR 2023; 18:2290336. [PMID: 38050377 PMCID: PMC10732687 DOI: 10.1080/15592324.2023.2290336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 12/06/2023]
Abstract
Sustainable agriculture faces major challenges under abiotic stress conditions owing to extensive application of chemical fertilizers which pollute water, soil and atmosphere. Biostimulants (BSs), comprising of naturally derived complex mixtures of uncharacterized biomolecules, pure biochemicals and nanomaterials, enhance nutrient use efficiency (NUE) and trigger crop's natural defense mechanisms. While it is difficult to specify the metabolic effects of uncharacterized natural mixtures (seaweed extract, protein hydrolyzates, etc.), exogenous application of pure biochemicals and nanomaterials offers an edge as BSs since their physiological roles and mechanisms of action are decipherable. Foliar application or seed treatment of some amino acids, polyamines and biopolymers (chitosan, lipochitin oligosaccharides and thuricin 17) enable plants to overcome drought and salinity stress via activation of mechanisms for reactive oxygen species (ROS) scavenging, osmolyte regulation and chlorophyll accumulation. Interaction of nitric oxide (NO) with some vitamins and melatonin exhibits potential significance as BSs for mitigating stress by ROS scavenging and maintenance of intracellular ionic balance and membrane integrity. Near future is likely to see wide applications of nanoparticles (NPs) and nanomaterials (NMs) as BSs in view of their biphasic mode of action (bio-physical activation of membrane receptors followed by gradual release of BS into the plant cells).
Collapse
Affiliation(s)
| | - Priya Ranjan
- Department of Agriculture & Farmers Welfare, Ministry of Agriculture, Krishi Bhawan, New Delhi, India
| | - Neha Singh
- Department of Botany, Gargi College, University of Delhi, New Delhi, India
| | - Mansi Gogna
- Department of Botany, Maitreyi College, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Methela NJ, Pande A, Islam MS, Rahim W, Hussain A, Lee DS, Mun BG, Maria Joseph Raj NP, Kim SJ, Kim Y, Yun BW. Chitosan-GSNO nanoparticles: a positive modulator of drought stress tolerance in soybean. BMC PLANT BIOLOGY 2023; 23:639. [PMID: 38082263 PMCID: PMC10712192 DOI: 10.1186/s12870-023-04640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Chitosan biopolymer is an emerging non-toxic and biodegradable plant elicitor or bio-stimulant. Chitosan nanoparticles (CSNPs) have been used for the enhancement of plant growth and development. On the other hand, NO is an important signaling molecule that regulates several aspects of plant physiology under normal and stress conditions. Here we report the synthesis, characterization, and use of chitosan-GSNO nanoparticles for improving drought stress tolerance in soybean. RESULTS The CSGSNONPs released NO gas for a significantly longer period and at a much lower rate as compared to free GSNO indicating that incorporation of GSNO in CSNPs can protect the NO-donor from rapid decomposition and ensure optimal NO release. CS-GSNONPs improved drought tolerance in soybean plants reflected by a significant increase in plant height, biomass, root length, root volume, root surface area, number of root tips, forks, and nodules. Further analyses indicated significantly lower electrolyte leakage, higher proline content, higher catalase, and ascorbate peroxidase activity, and reduction in MDA and H2O2 contents after treatment with 50 μM CS-GSNONPs under drought stress conditions. Quantitative real-time PCR analysis indicated that CS-GSNONPs protected against drought-induced stress by regulating the expression of drought stress-related marker genes such as GmDREB1a, GmP5CS, GmDEFENSIN, and NO-related genes GmGSNOR1 and GmNOX1. CONCLUSIONS This study highlights the potential of nano-technology-based delivery systems for nitric oxide donors to improve plant growth, and development and protect against stresses.
Collapse
Affiliation(s)
- Nusrat Jahan Methela
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Anjali Pande
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Mohammad Shafiqul Islam
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
- Department of Agriculture, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Waqas Rahim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Adil Hussain
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
- Department of Agriculture, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Mardan, 23200, Pakistan.
| | - Da-Sol Lee
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Nirmal Prashanth Maria Joseph Raj
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
- Energy Harvesting Research Group, School of Physics & Astronomy, SUPA, University of St Andrews, St. Andrews, Fife, KY16 9SS, UK
| | - Sang-Jae Kim
- Nanomaterials and Systems Lab, Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, South Korea
| | - Yoonha Kim
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
16
|
Ilyas MZ, Park H, Baek YS, Sa KJ, Kim MJ, Lee JK. Efficacy of Carbon Nanodots and Manganese Ferrite (MnFe 2O 4) Nanoparticles in Stimulating Growth and Antioxidant Activity in Drought-Stressed Maize Inbred Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2922. [PMID: 37631134 PMCID: PMC10458536 DOI: 10.3390/plants12162922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Despite being the third most-consumed crop, maize (Zea mays L.) is highly vulnerable to drought stress. The predominant secondary metabolite in plants is phenolic acids, which scavenge reactive oxygen species to minimize oxidative stress under drought stress. Herein, the effect of carbon nanodots (CND) and manganese ferrite (MnFe2O4) nanoparticles (NP) on the drought stress tolerance of maize has been studied. The experimental results revealed that the highest leaf blade length (54.0 cm) and width (3.9 cm), root length (45.2 cm), stem diameter (11.1 mm), root fresh weight (7.0 g), leaf relative water content (84.8%) and chlorogenic (8.7 µg/mL), caffeic (3.0 µg/mL) and syringic acid (1.0 µg/mL) contents were demonstrated by CND-treated (10 mg L-1) inbred lines (GP5, HW19, HCW2, 17YS6032, HCW3, HCW4, HW7, HCW2, and 16S8068-9, respectively). However, the highest shoot length (71.5 cm), leaf moisture content (83.9%), shoot fresh weight (12.5 g), chlorophyll content (47.3), and DPPH free radical scavenging activity (34.1%) were observed in MnFe2O4 NP-treated (300 mg L-1) HF12, HW15, 11BS8016-7, HW15, HW12, and KW7 lines, respectively. The results indicate that CND and MnFe2O4 NP can mitigate drought stress effects on different accessions of the given population, as corroborated by improvements in growth and physio-biochemical traits among several inbred lines of maize.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
| | - Hyeon Park
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Young Sun Baek
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Kyu Jin Sa
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
| | - Myong Jo Kim
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; (M.Z.I.); (H.P.); (K.J.S.); (M.J.K.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea;
| |
Collapse
|
17
|
García-García AL, Matos AR, Feijão E, Cruz de Carvalho R, Boto A, Marques da Silva J, Jiménez-Arias D. The use of chitosan oligosaccharide to improve artemisinin yield in well-watered and drought-stressed plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1200898. [PMID: 37332721 PMCID: PMC10272596 DOI: 10.3389/fpls.2023.1200898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Artemisinin is a secondary metabolite well-known for its use in the treatment of malaria. It also displays other antimicrobial activities which further increase its interest. At present, Artemisia annua is the sole commercial source of the substance, and its production is limited, leading to a global deficit in supply. Furthermore, the cultivation of A. annua is being threatened by climate change. Specifically, drought stress is a major concern for plant development and productivity, but, on the other hand, moderate stress levels can elicit the production of secondary metabolites, with a putative synergistic interaction with elicitors such as chitosan oligosaccharides (COS). Therefore, the development of strategies to increase yield has prompted much interest. With this aim, the effects on artemisinin production under drought stress and treatment with COS, as well as physiological changes in A. annua plants are presented in this study. Methods Plants were separated into two groups, well-watered (WW) and drought-stressed (DS) plants, and in each group, four concentrations of COS were applied (0, 50,100 and 200 mg•L-1). Afterwards, water stress was imposed by withholding irrigation for 9 days. Results Therefore, when A. annua was well watered, COS did not improve plant growth, and the upregulation of antioxidant enzymes hindered the production of artemisinin. On the other hand, during drought stress, COS treatment did not alleviate the decline in growth at any concentration tested. However, higher doses improved the water status since leaf water potential (YL) improved by 50.64% and relative water content (RWC) by 33.84% compared to DS plants without COS treatment. Moreover, the combination of COS and drought stress caused damage to the plant's antioxidant enzyme defence, particularly APX and GR, and reduced the amount of phenols and flavonoids. This resulted in increased ROS production and enhanced artemisinin content by 34.40% in DS plants treated with 200 mg•L-1 COS, compared to control plants. Conclusion These findings underscore the critical role of ROS in artemisinin biosynthesis and suggest that COS treatment may boost artemisinin yield in crop production, even under drought conditions.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Ana Rita Matos
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo Feijão
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Ricardo Cruz de Carvalho
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- MARE - Marine and Environmental Sciences Centre and ARNET – Aquatic Research Infrastructure Network Associate Laboratory, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Alicia Boto
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Jorge Marques da Silva
- BioISI - Biosystems and Integrative Sciences Institute, Plant Functional Genomics Group, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - David Jiménez-Arias
- ISOPlexis—Center for Sustainable Agriculture and Food Technology, Madeira University, Funchal, Portugal
| |
Collapse
|
18
|
Mukarram M, Khan MMA, Kurjak D, Corpas FJ. Chitosan oligomers (COS) trigger a coordinated biochemical response of lemongrass (Cymbopogon flexuosus) plants to palliate salinity-induced oxidative stress. Sci Rep 2023; 13:8636. [PMID: 37244976 DOI: 10.1038/s41598-023-35931-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023] Open
Abstract
Plant susceptibility to salt depends on several factors from its genetic makeup to modifiable physiological and biochemical status. We used lemongrass (Cymbopogon flexuosus) plants as a relevant medicinal and aromatic cash crop to assess the potential benefits of chitosan oligomers (COS) on plant growth and essential oil productivity during salinity stress (160 and 240 mM NaCl). Five foliar sprays of 120 mg L-1 of COS were applied weekly. Several aspects of photosynthesis, gas exchange, cellular defence, and essential oil productivity of lemongrass were traced. The obtained data indicated that 120 mg L-1 COS alleviated photosynthetic constraints and raised the enzymatic antioxidant defence including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) activities that minimised salt-induced oxidative damage. Further, stomatal conductance (gs) and photosynthetic CO2 assimilation (A) were improved to support overall plant development. The same treatment increased geraniol dehydrogenase (GeDH) activity and lemongrass essential oil production. COS-induced salt resilience suggests that COS could become a useful biotechnological tool in reclaiming saline soil for improved crop productivity, especially when such soil is unfit for leading food crops. Considering its additional economic value in the essential oil industry, we propose COS-treated lemongrass as an excellent alternative crop for saline lands.
Collapse
Affiliation(s)
- Mohammad Mukarram
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
- Department of Phytology, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia.
| | - M Masroor A Khan
- Advance Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Daniel Kurjak
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, T. G. Masaryka 24, 96001, Zvolen, Slovakia
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
19
|
Muthuramalingam P, Muthamil S, Shilpha J, Venkatramanan V, Priya A, Kim J, Shin Y, Chen JT, Baskar V, Park K, Shin H. Molecular Insights into Abiotic Stresses in Mango. PLANTS (BASEL, SWITZERLAND) 2023; 12:1939. [PMID: 37653856 PMCID: PMC10224100 DOI: 10.3390/plants12101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Mango (Mangifera indica L.) is one of the most economically important fruit crops across the world, mainly in the tropics and subtropics of Asia, Africa, and Central and South America. Abiotic stresses are the prominent hindrance that can adversely affect the growth, development, and significant yield loss of mango trees. Understanding the molecular physiological mechanisms underlying abiotic stress responses in mango is highly intricate. Therefore, to gain insights into the molecular basis and to alleviate the abiotic stress responses to enhance the yield in the mere future, the use of high-throughput frontier approaches should be tied along with the baseline investigations. Taking these gaps into account, this comprehensive review mainly speculates to provide detailed mechanisms and impacts on physiological and biochemical alterations in mango under abiotic stress responses. In addition, the review emphasizes the promising omics approaches in unraveling the candidate genes and transcription factors (TFs) responsible for abiotic stresses. Furthermore, this review also summarizes the role of different types of biostimulants in improving the abiotic stress responses in mango. These studies can be undertaken to recognize the roadblocks and avenues for enhancing abiotic stress tolerance in mango cultivars. Potential investigations pointed out the implementation of powerful and essential tools to uncover novel insights and approaches to integrate the existing literature and advancements to decipher the abiotic stress mechanisms in mango. Furthermore, this review serves as a notable pioneer for researchers working on mango stress physiology using integrative approaches.
Collapse
Affiliation(s)
- Pandiyan Muthuramalingam
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea;
| | - Jayabalan Shilpha
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
| | | | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA;
| | - Jinwook Kim
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Yunji Shin
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| | - Jen-Tsung Chen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung 811, Taiwan
| | - Venkidasamy Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Kyoungmi Park
- Department of Horticulture Research, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 52733, Republic of Korea;
| | - Hyunsuk Shin
- Division of Horticultural Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (P.M.); (J.S.)
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea; (J.K.); (Y.S.)
| |
Collapse
|
20
|
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. Chitosan as an Outstanding Polysaccharide Improving Health-Commodities of Humans and Environmental Protection. Polymers (Basel) 2023; 15:526. [PMID: 36771826 PMCID: PMC9920095 DOI: 10.3390/polym15030526] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Public health, production and preservation of food, development of environmentally friendly (cosmeto-)textiles and plastics, synthesis processes using green technology, and improvement of water quality, among other domains, can be controlled with the help of chitosan. It has been demonstrated that this biopolymer exhibits advantageous properties, such as biocompatibility, biodegradability, antimicrobial effect, mucoadhesive properties, film-forming capacity, elicitor of plant defenses, coagulant-flocculant ability, synergistic effect and adjuvant along with other substances and materials. In part, its versatility is attributed to the presence of ionizable and reactive primary amino groups that provide strong chemical interactions with small inorganic and organic substances, macromolecules, ions, and cell membranes/walls. Hence, chitosan has been used either to create new materials or to modify the properties of conventional materials applied on an industrial scale. Considering the relevance of strategic topics around the world, this review integrates recent studies and key background information constructed by different researchers designing chitosan-based materials with potential applications in the aforementioned concerns.
Collapse
Affiliation(s)
- Lorenzo A. Picos-Corrales
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ana M. Morales-Burgos
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Jose P. Ruelas-Leyva
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Grégorio Crini
- Laboratoire Chrono-Environnement, UMR 6249, UFR Sciences et Techniques, Université de Franche-Comté, 16 Route de Gray, 25000 Besançon, France
| | - Evangelina García-Armenta
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Sergio A. Jimenez-Lam
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Lidia E. Ayón-Reyna
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Fernando Rocha-Alonzo
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Sonora, Mexico
| | - Loranda Calderón-Zamora
- Facultad de Biología, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Ulises Osuna-Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Abraham Calderón-Castro
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Gonzalo De-Paz-Arroyo
- Facultad de Ingeniería Culiacán, Universidad Autónoma de Sinaloa, Ciudad Universitaria, Culiacán 80013, Sinaloa, Mexico
| | - Levy N. Inzunza-Camacho
- Unidad Académica Preparatoria Hermanos Flores Magón, Universidad Autónoma de Sinaloa, Culiacán 80000, Sinaloa, Mexico
| |
Collapse
|
21
|
Aazami MA, Maleki M, Rasouli F, Gohari G. Protective effects of chitosan based salicylic acid nanocomposite (CS-SA NCs) in grape (Vitis vinifera cv. 'Sultana') under salinity stress. Sci Rep 2023; 13:883. [PMID: 36650251 PMCID: PMC9845209 DOI: 10.1038/s41598-023-27618-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Salinity is one of the most important abiotic stresses that reduce plant growth and performance by changing physiological and biochemical processes. In addition to improving the crop, using nanomaterials in agriculture can reduce the harmful effects of environmental stresses, particularly salinity. A factorial experiment was conducted in the form of a completely randomized design with two factors including salt stress at three levels (0, 50, and 100 mM NaCl) and chitosan-salicylic acid nanocomposite at three levels (0, 0.1, and 0.5 mM). The results showed reductions in chlorophylls (a, b, and total), carotenoids, and nutrient elements (excluding sodium) while proline, hydrogen peroxide, malondialdehyde, total soluble protein, soluble carbohydrate, total antioxidant, and antioxidant enzymes activity increased with treatment chitosan-salicylic acid nanocomposite (CS-SA NCs) under different level NaCl. Salinity stress reduced Fm', Fm, and Fv/Fm by damage to photosynthetic systems, but treatment with CS-SA NCs improved these indices during salinity stress. In stress-free conditions, applying the CS-SA NCs improved the grapes' physiological, biochemical, and nutrient elemental balance traits. CS-SA NCs at 0.5 mM had a better effect on the studied traits of grapes under salinity stress. The CS-SA nanoparticle is a biostimulant that can be effectively used to improve the grape plant yield under salinity stress.
Collapse
Affiliation(s)
- Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Maryam Maleki
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Farzad Rasouli
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Gholamreza Gohari
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
22
|
Overexpression of ZmSRG7 Improves Drought and Salt Tolerance in Maize (Zea mays L.). Int J Mol Sci 2022; 23:ijms232113349. [PMID: 36362140 PMCID: PMC9654355 DOI: 10.3390/ijms232113349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Osmotic stress caused by drought and high salinity is the key factor limiting plant growth. However, its underlying molecular regulatory mechanism remains unclear. In this study, we found the stress-related gene Zm00001d019704 (ZmSRG7) based on transcriptome sequencing results previously obtained in the laboratory and determined its biological function in maize. We found that ZmSRG7 was significantly expressed in both roots and leaves under 10% PEG6000 or 150 mM NaCl. Subcellular localization showed that the gene was localized in the nucleus. The germination rate and root length of the ZmSRG7 overexpressing lines were significantly increased under drought or salt stress compared with the control. However, after drought stress, the survival rate and relative water content of maize were increased, while the water loss rate was slowed down. Under salt stress, the Na+ concentration and Na+: K+ ratio of maize was increased. In addition, the contents of antioxidant enzymes and proline in maize under drought or salt stress were higher than those in the control, while the contents of MDA, H2O2 and O2− were lower than those in the control. The results showed that the ZmSRG7 gene played its biological function by regulating the ROS signaling pathway. An interaction between ZmSRG7 and the Zmdhn1 protein was found using a yeast two-hybrid experiment. These results suggest that the ZmSRG7 gene can improve maize tolerance to drought or salt by regulating hydrogen peroxide homeostasis.
Collapse
|
23
|
Attaran Dowom S, Karimian Z, Mostafaei Dehnavi M, Samiei L. Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC PLANT BIOLOGY 2022; 22:364. [PMID: 35869431 PMCID: PMC9308334 DOI: 10.1186/s12870-022-03689-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/10/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND The use of organic nanoparticles to improve drought resistance and water demand characteristics in plants seems to be a promising eco-friendly strategy for water resource management in arid and semi-arid areas. This study aimed to investigate the effect of chitosan nanoparticles (CNPs) (0, 30, 60 and 90 ppm) on some physiological, biochemical, and anatomical responses of Salvia abrotanoides under multiple irrigation regimes (30% (severe), 50% (medium) and 100% (control) field capacity). RESULTS The results showed that drought stress decreases almost all biochemical parameters. However, foliar application of CNPs mitigated the effects caused by drought stress. This elicitor decreased electrolyte conductivity (35%), but improved relative water content (12.65%), total chlorophyll (63%), carotenoids (68%), phenol (23.1%), flavonoid (36.4%), soluble sugar (58%), proline (49%), protein (45.2%) in S. abrotanoides plants compared to the control (CNPs = 0). Furthermore, the activity of antioxidant enzymes superoxide dismutase (86%), polyphenol oxidase (72.8%), and guaiacol peroxidase (75.7%) were enhanced after CNPs treatment to reduce the effects of water deficit. Also, the CNPs led to an increase in stomatal density (5.2 and 6.6%) while decreasing stomatal aperture size (50 and 25%) and semi-closed stomata (26 and 53%) in leaves. CONCLUSION The findings show that CNPs not only can considerably reduce water requirement of S. abrotanoides but also are able to enhance the drought tolerance ability of this plant particularly in drought-prone areas.
Collapse
Affiliation(s)
- Samaneh Attaran Dowom
- Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zahra Karimian
- Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | | - Leila Samiei
- Department of Ornamental plants, Research center for plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
24
|
Jia-Yi Y, Meng-Qiang S, Zhi-Liang C, Yu-Tang X, Hang W, Jian-Qiang Z, Ling H, Qi Z. Effect of foliage applied chitosan-based silicon nanoparticles on arsenic uptake and translocation in rice (Oryza sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128781. [PMID: 35405587 DOI: 10.1016/j.jhazmat.2022.128781] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In this study, chitosan-based silicon nanoparticles (Chsi-NPs) are prepared that primarily consists of C (57.9%), O (31.3%), N (5.6%), and Si (3.5%) and are 10-180 nm in size. We then explore the effect on the foliage applied on rice planted on soil contaminated with 104 mg·kg-1 arsenic (As); low (3 mg·L-1)and high (15 mg·L-1) doses of the foliar Chsi-NPs are administered during the rice grain filling stage. The results showed that the higher dose foliar Chsi-NPs treatment reduced the As concentration in the grain by 61.2% but increased As concentration in the leaves by 47.1% compared to the control treatment. The foliar spraying of the Chsi-NPs inhibited As transport to the grain by facilitating the attachment of As to the cell wall, with higher doses of the foliar Chsi-NPs treatment increased by 8.7%. The foliar spraying of Chsi-NPs increased the malondialdehyde levels by 18.4%, the catalase activity by 49.0%, and the glutathione activity by 99.0%. These results indicated that the foliar Chsi-NPs application was effective for alleviating As toxicity and accumulation in rice. This study provides a novel method for effectively alleviating As accumulation in rice.
Collapse
Affiliation(s)
- Yang Jia-Yi
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China; School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Sun Meng-Qiang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Chen Zhi-Liang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China.
| | - Xiao Yu-Tang
- School of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Wei Hang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Zhang Jian-Qiang
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Huang Ling
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| | - Zou Qi
- Guangdong Engineering Technology Research Center of Heavy Metal Pollution Control and Restoration in Farmland Soil, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, Guangzhou 510275, PR China
| |
Collapse
|
25
|
Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L, Mijakovic I, Perumalsamy H. Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydr Polym 2022; 284:119189. [DOI: 10.1016/j.carbpol.2022.119189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/02/2022]
|
26
|
Adamczuk A, Jozefaciuk G. Impact of Chitosan on the Mechanical Stability of Soils. Molecules 2022; 27:molecules27072273. [PMID: 35408671 PMCID: PMC9000621 DOI: 10.3390/molecules27072273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Chitosan is becoming increasingly applied in agriculture, mostly as a powder, however little is known about its effect on soil mechanical properties. Uniaxial compression test was performed for cylindrical soil aggregates prepared from four soils of various properties (very acidic Podzol, acidic Arenosol, neutral Fluvisol and alkaline Umbrisol) containing different proportions of two kinds of chitosan (CS1 of higher molecular mass and lower deacetylation degree, and CS2 of lower molecular mass and higher deacetylation degree), pretreated with 1 and 10 wetting–drying cycles. In most cases increasing chitosan rates successively decreased the mechanical stability of soils that was accompanied by a tendential increase in soil porosity. In one case (Fluvisol treated with CS2) the porosity decreased and mechanical stability increased with increasing chitosan dose. The behavior of acidic soils (Podzol and Arenosol) treated with CS2, differed from the other soils: after an initial decrease, the strength of aggregates increased with increasing chitosan amendment, despite the porosity consequently decreasing. After 10 wetting–drying cycles, the strength of the aggregates of acidic soils appeared to increase while it decreased for neutral and alkaline soils. Possible mechanisms of soil–chitosan interactions affecting mechanical strength are discussed and linked with soil water stability and wettability.
Collapse
|
27
|
Bhupenchandra I, Chongtham SK, Devi EL, R. R, Choudhary AK, Salam MD, Sahoo MR, Bhutia TL, Devi SH, Thounaojam AS, Behera C, M. N. H, Kumar A, Dasgupta M, Devi YP, Singh D, Bhagowati S, Devi CP, Singh HR, Khaba CI. Role of biostimulants in mitigating the effects of climate change on crop performance. FRONTIERS IN PLANT SCIENCE 2022; 13:967665. [PMID: 36340395 PMCID: PMC9634556 DOI: 10.3389/fpls.2022.967665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/12/2022] [Indexed: 05/13/2023]
Abstract
Climate change is a critical yield-limiting factor that has threatened the entire global crop production system in the present scenario. The use of biostimulants in agriculture has shown tremendous potential in combating climate change-induced stresses such as drought, salinity, temperature stress, etc. Biostimulants are organic compounds, microbes, or amalgamation of both that could regulate plant growth behavior through molecular alteration and physiological, biochemical, and anatomical modulations. Their nature is diverse due to the varying composition of bioactive compounds, and they function through various modes of action. To generate a successful biostimulatory action on crops under different parameters, a multi-omics approach would be beneficial to identify or predict its outcome comprehensively. The 'omics' approach has greatly helped us to understand the mode of action of biostimulants on plants at cellular levels. Biostimulants acting as a messenger in signal transduction resembling phytohormones and other chemical compounds and their cross-talk in various abiotic stresses help us design future crop management under changing climate, thus, sustaining food security with finite natural resources. This review article elucidates the strategic potential and prospects of biostimulants in mitigating the adverse impacts of harsh environmental conditions on plants.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- Indian Council of Agricultural Research (ICAR)–Krishi Vigyan Kendra Tamenglong, Indian Council of Agricultural Research (ICAR) Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
- *Correspondence: Anil Kumar Choudhary, ; Harish. M. N., ; Ingudam Bhupenchandra,
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Agricultural Engineering and Post Harvest Technology (CAEPHT), Central Agricultural University (CAU), Ranipool, Sikkim, India
| | - Elangbam Lamalakshmi Devi
- Indian Council of Agricultural Research (ICAR)-Research Complex (RC) for North Eastern Hill (NEH) Region, Sikkim Centre, Tadong, Sikkim, India
| | - Ramesh R.
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)–Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar Choudhary
- Division of Agronomy, Indian Council of Agricultural Research - Indian Agricultural Research Institute, New Delhi, India
- Division of Crop Production, Indian Council of Agricultural Research - Central Potato Research Institute, Shimla, India
- *Correspondence: Anil Kumar Choudhary, ; Harish. M. N., ; Ingudam Bhupenchandra,
| | | | - Manas Ranjan Sahoo
- Central Horticultural Experiment Station, Indian Council of Agricultural Research (ICAR)–Indian Institute of Horticultural Research, Bhubaneswar, Odisha, India
| | - Tshering Lhamu Bhutia
- Indian Council of Agricultural Research (ICAR)-Research Complex (RC) for North Eastern Hill (NEH) Region, Sikkim Centre, Tadong, Sikkim, India
| | - Soibam Helena Devi
- Department of Crop Physiology, Assam Agricultural University, Jorhat, Assam, India
| | - Amarjit Singh Thounaojam
- Medicinal and Aromatic Plants Research Station, Anand Agricultural University, Anand, Gujarat, India
| | - Chandana Behera
- Department of Plant Breeding and Genetics, College of Agriculture, OUAT, Bhawanipatna, India
| | - Harish. M. N.
- Indian Council of Agricultural Research (ICAR)–Indian Institute of Horticultural Research, Farm Science Centre, Gonikoppal, Karnataka, India
- *Correspondence: Anil Kumar Choudhary, ; Harish. M. N., ; Ingudam Bhupenchandra,
| | - Adarsh Kumar
- Indian Council of Agricultural Research: National Bureau of Agriculturally Important Microorganism, Mau, India
| | - Madhumita Dasgupta
- Indian Council of Agricultural Research (ICAR)–Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
| | - Yumnam Prabhabati Devi
- Indian Council of Agricultural Research (ICAR)-Krishi Vigyan Kendra, Chandel, Indian Council of Agricultural Research (ICAR) Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
| | - Deepak Singh
- Krishi Vigyan Kendra Bhopal, Indian Council of Agricultural Research (ICAR) Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh, India
| | - Seema Bhagowati
- Department of Soil Science, Assam Agricultural University, Jorhat, Assam, India
| | - Chingakham Premabati Devi
- Indian Council of Agricultural Research (ICAR)–Research Complex for NorthEastern Hill (NEH) Region, Manipur Centre, Imphal, Manipur, India
| | | | | |
Collapse
|
28
|
Gaikwad HD, Dalvi SG, Hasabnis S, Suprasanna P. Electron Beam Irradiated Chitosan elicits enhanced antioxidant properties combating resistance to Purple Blotch Disease ( Alternaria porri) in Onion ( Allium cepa). Int J Radiat Biol 2021; 98:100-108. [PMID: 34587466 DOI: 10.1080/09553002.2021.1987569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This study was carried out to assess the effect of irradiated chitosan as an elicitor on the biochemical traits associated with resistance to purple blotch disease in onion. MATERIALS AND METHODS Chitosan was electron beam irradiated at 100 kGy dose to obtain low molecular weight chitosan. Irradiated chitosan at 20 and 0.04% concentration and different time intervals was used as a biological elicitor cum antimicrobial agent against purple blotch disease in onion. Field grown onion (Variety Basanvant 780) plants were foliar sprayed with irradiated chitosan and the biochemical responses were monitored using parameters namely chlorophylls, carotenoids, antioxidant enzymes, phenols, and antifungal enzyme β-1,3 Glucanase using standard methods. RESULTS Compared to control treatment, a positive correlation with irradiated chitosan treatment was observed for an increase in β-1,3-glucanase, peroxidase activity, and contents of total phenolics, chlorophylls, and carotenoids, which cumulatively contributed to resistance response against the purple blotch disease. Irradiated chitosan (0.04%) treated onion plants at 30, 45, and 60 DAT showed a higher total phenolics, β-1,3-glucanase activity, and peroxidase activity besides enhanced antioxidant properties. CONCLUSION The results suggest that irradiated chitosan has elicited resistance responses against purple blotch disease in onion. The increased production of antioxidant metabolites may provide value addition to onion as a food commodity.
Collapse
Affiliation(s)
| | - Sunil Govind Dalvi
- Department of Agricultural Sciences and Technology Vasantdada Sugar Institute, Manjari (Bk), Pune, India
| | | | - Penna Suprasanna
- Nuclear Agricultural Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
29
|
Rezaei-Chiyaneh E, Mahdavikia H, Hadi H, Alipour H, Kulak M, Caruso G, Siddique KHM. The effect of exogenously applied plant growth regulators and zinc on some physiological characteristics and essential oil constituents of Moldavian balm ( Dracocephalum moldavica L.) under water stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2201-2214. [PMID: 34744361 PMCID: PMC8526650 DOI: 10.1007/s12298-021-01084-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Cost-effective exogenous application of some antioxidant, viz. salicylic acid (SA) and ascorbic acid (AA), and essential micronutrient elements like Zn might alleviate the harmful impacts of drought stress. Here, we evaluated the interaction of foliar-sprayed SA (1 mM), AA (10 mM), and Zn (3 g L-1) and irrigation regime (normal irrigation, moderate water stress, and severe water stress) by assaying an array of agronomic, physiological, analytical and biochemical parameters of Moldavian balm (Dracocephalum moldavica L.). Accordingly, the SA and AA treatments reduced the harmful effects of moderate and severe drought stress. Well-watered plants applied with Zn had the highest biomass yield (4642.5 kg ha-1). Severe water stress decreased plant biomass, essential oil (EO) content, EO yield, relative water content, and chlorophyll a content by 37.6%, 23.3%, 47.5%, 35.3%, and 53%, respectively, relative to normal irrigation. Plants treated with Zn under moderate drought stress had the highest EO content. Moderate and severe water stress increased enzymatic antioxidant (catalase, superoxide dismutase, and peroxidase) activities and total soluble sugars and proline contents. In terms of EO composition, SA-treated plants under moderate water stress contained the most geraniol (22.8%) and geranial (26.3%), while Zn-treated plants under severe water stress contained the most geranyl acetate (48.2%). This study demonstrated that foliar application of Zn and SA significantly improves EO productivity and quality in Moldavian balm under moderate water stress. The relevant findings were supported by heatmap clustering, revealing that irrigation regime had main effect on the essential oil compounds and biochemical and physiological parameters. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01084-1.
Collapse
Affiliation(s)
- Esmaeil Rezaei-Chiyaneh
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Hassan Mahdavikia
- Department of Medicinal Plants, Shahid Bakeri Higher Education Center of Miandoab, Urmia University, Urmia, Iran
| | - Hashem Hadi
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Faculty of Agriculture and Natural Resources, Urmia University, Urmia, Iran
| | - Muhittin Kulak
- Department of Herbal and Animal Production, Vocational School of Technical Sciences, Igdir University, 76000 Igdir, Turkey
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009 Australia
| |
Collapse
|
30
|
Chaves-Gómez JL, Chávez-Arias CC, Prado AMC, Gómez-Caro S, Restrepo-Díaz H. Mixtures of Biological Control Agents and Organic Additives Improve Physiological Behavior in Cape Gooseberry Plants under Vascular Wilt Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:2059. [PMID: 34685868 PMCID: PMC8537006 DOI: 10.3390/plants10102059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to assess the soil application of mixtures of biological control agents (BCAs) (Trichoderma virens and Bacillus velezensis) and organic additives (chitosan and burnt rice husk) on the physiological and biochemical behavior of cape gooseberry plants exposed to Fusarium oxysporum f. sp. physali (Foph) inoculum. The treatments with inoculated and non-inoculated plants were: (i) T. virens + B. velezensis (Mix), (ii) T. virens + B. velezensis + burnt rice husk (MixRh), (iii) T. virens + B. velezensis + chitosan (MixChi), and (iv) controls (plants without any mixtures). Plants inoculated and treated with Mix or MixChi reduced the area under the disease progress curve (AUDPC) (57.1) and disease severity index (DSI) (2.97) compared to inoculated plants without any treatment (69.3 for AUDPC and 3.2 for DSI). Additionally, these groups of plants (Mix or MixChi) obtained greater leaf water potential (~-0.5 Mpa) and a lower MDA production (~12.5 µmol g-2 FW) than plants with Foph and without mixtures (-0.61 Mpa and 18.2 µmol g-2 FW, respectively). The results suggest that MixChi treatments may be a promising alternative for vascular wilt management in cape gooseberry crops affected by this disease.
Collapse
Affiliation(s)
- José Luis Chaves-Gómez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Cristian Camilo Chávez-Arias
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Alba Marina Cotes Prado
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Tibaitatá, Km 14 vía Bogotá a Mosquera, Mosquera 250047, Colombia;
| | - Sandra Gómez-Caro
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| | - Hermann Restrepo-Díaz
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No. 45-03, Bogotá 111321, Colombia; (J.L.C.-G.); (C.C.C.-A.); (S.G.-C.)
| |
Collapse
|
31
|
Mukarram M, Khan MMA, Corpas FJ. Silicon nanoparticles elicit an increase in lemongrass (Cymbopogon flexuosus (Steud.) Wats) agronomic parameters with a higher essential oil yield. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125254. [PMID: 33550131 DOI: 10.1016/j.jhazmat.2021.125254] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/26/2020] [Accepted: 01/26/2021] [Indexed: 05/22/2023]
Abstract
Lemongrass (Cymbopogon flexuosus (Steud.) Wats) is an aromatic grass with great industrial potential. It is cultivated for its essential oil (EO) which has great economical value due to its numerous medicinal, cosmetic and culinary applications. The present study was conducted on silicon nanoparticles (SiNPs) application to lemongrass with the objective of overall agronomic enhancements. Graded concentrations (50-200 mg L-1) of SiNPs were exogenously applied to lemongrass leaves. The physiological and biochemical analyses revealed that 150 mg L-1 SiNPs is the optimum concentration for lemongrass plants. This concentration triggered photosynthetic variables, gas exchange modules and activities of enzymes involved in EO (geraniol dehydrogenase) and nitrogen (nitrate reductase) metabolism as well as in the antioxidant system (catalase, peroxidase and superoxide dismutase). These SiNPs-induced metabolic changes altogether significantly (p ≤ 0.05) enhanced overall plant growth and yield. Moreover, SiNPs treatments assisted in palliating lipid peroxidation and H2O2 content in lemongrass leaves which added further advantage to plant metabolism. Overall, data indicates SiNPs elicit beneficial effects on lemongrass growth and yield through inducing various physiological and biochemical responses. This renders high possibility that similar objectives could be achieved with SiNPs biotechnological application on further related agronomic crops as well as in diverse industries.
Collapse
Affiliation(s)
| | | | - Francisco J Corpas
- Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture Group, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| |
Collapse
|
32
|
Kocięcka J, Liberacki D. The Potential of Using Chitosan on Cereal Crops in the Face of Climate Change. PLANTS 2021; 10:plants10061160. [PMID: 34200489 PMCID: PMC8229082 DOI: 10.3390/plants10061160] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
This review presents the main findings from measurements carried out on cereals using chitosan, its derivatives, and nanoparticles. Research into the use of chitosan in agriculture is growing in popularity. Since 2000, 188 original scientific articles indexed in Web of Science, Scopus, and Google Scholar databases have been published on this topic. These have focused mainly on wheat (34.3%), maize (26.3%), and rice (24.2%). It was shown that research on other cereals such as millets and sorghum is scarce and should be expanded to better understand the impact of chitosan use. This review demonstrates that this chitosan is highly effective against the most dangerous diseases and pathogens for cereals. Furthermore, it also contributes to improving yield and chlorophyll content, as well as some plant growth parameters. Additionally, it induces excellent resistance to drought, salt, and low temperature stress and reduces their negative impact on cereals. However, further studies are needed to demonstrate the full field efficacy of chitosan.
Collapse
|
33
|
Impact of Foliar Application of Chitosan Dissolved in Different Organic Acids on Isozymes, Protein Patterns and Physio-Biochemical Characteristics of Tomato Grown under Salinity Stress. PLANTS 2021; 10:plants10020388. [PMID: 33670511 PMCID: PMC7922210 DOI: 10.3390/plants10020388] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 12/15/2022]
Abstract
In this study, the anti-stress capabilities of the foliar application of chitosan, dissolved in four different organic acids (acetic acid, ascorbic acid, citric acid and malic acid) have been investigated on tomato (Solanum lycopersicum L.) plants under salinity stress (100 mM NaCl). Morphological traits, photosynthetic pigments, osmolytes, secondary metabolites, oxidative stress, minerals, antioxidant enzymes activity, isozymes and protein patterns were tested for potential tolerance of tomato plants growing under salinity stress. Salinity stress was caused a reduction in growth parameters, photosynthetic pigments, soluble sugars, soluble proteins and potassium (K+) content. However, the contents of proline, ascorbic acid, total phenol, malondialdehyde (MDA), hydrogen peroxide (H2O2), sodium (Na+) and antioxidant enzyme activity were increased in tomato plants grown under saline conditions. Chitosan treatments in any of the non-stressed plants showed improvements in morphological traits, photosynthetic pigments, osmolytes, total phenol and antioxidant enzymes activity. Besides, the harmful impacts of salinity on tomato plants have also been reduced by lowering MDA, H2O2 and Na+ levels. Chitosan treatments in either non-stressed or stressed plants showed different responses in number and density of peroxidase (POD), polyphenol oxidase (PPO) and superoxide dismutase (SOD) isozymes. NaCl stress led to the diminishing of protein bands with different molecular weights, while they were produced again in response to chitosan foliar application. These responses were varied according to the type of solvent acid. It could be suggested that foliar application of chitosan, especially that dissolved in ascorbic or citric acid, could be commercially used for the stimulation of tomato plants grown under salinity stress.
Collapse
|
34
|
Panichikkal J, Puthiyattil N, Raveendran A, Nair RA, Krishnankutty RE. Application of Encapsulated Bacillus licheniformis Supplemented with Chitosan Nanoparticles and Rice Starch for the Control of Sclerotium rolfsii in Capsicum annuum (L.) Seedlings. Curr Microbiol 2021; 78:911-919. [PMID: 33580333 DOI: 10.1007/s00284-021-02361-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Rhizosphere encourages the survival and functioning of diverse microbial communities through the influence of plant roots. Likewise, the rhizobacterial functioning contribute to the growth and productivity of crop plants significantly. With the advancement of nanotechnology, the nanoparticles can expect to augment the performance of plant beneficial microorganisms including the rhizobacteria and hence have the promise to boost sustainable agricultural practices. In the present study, Bacillus licheniformis encapsulated in alginate-chitosan nanoparticles (CNPs) beads supplemented with rice starch (RS) has been evaluated for its plant growth enhancement and disease control properties. The encapsulated Bacillus licheniformis was initially characterized for indole-3-acetic acid (IAA) production, nitrogen fixing capacity, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase production and antifungal activity against Sclerotium rolfsii. In addition to this, the plant growth promoting and biocontrol properties of the encapsulated Bacillus licheniformis were also evaluated using Capsicum annuum (L.) (chilli) seedlings. From the results, the plants treated with encapsulated Bacillus licheniformis supplemented with CNPs were found to have maximum growth enhancement. At the same time, plants treated with encapsulated Bacillus licheniformis supplemented with CNPs and RS were found to have enhanced disease suppression. This revealed the application of encapsulated Bacillus licheniformis supplemented with CNPs and RS as a promising delivery system for agricultural applications.
Collapse
|
35
|
Computational Analysis of Thermal Adaptation in Extremophilic Chitinases: The Achilles' Heel in Protein Structure and Industrial Utilization. Molecules 2021; 26:molecules26030707. [PMID: 33572971 PMCID: PMC7866400 DOI: 10.3390/molecules26030707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 11/28/2022] Open
Abstract
Understanding protein stability is critical for the application of enzymes in biotechnological processes. The structural basis for the stability of thermally adapted chitinases has not yet been examined. In this study, the amino acid sequences and X-ray structures of psychrophilic, mesophilic, and hyperthermophilic chitinases were analyzed using computational and molecular dynamics (MD) simulation methods. From the findings, the key features associated with higher stability in mesophilic and thermophilic chitinases were fewer and/or shorter loops, oligomerization, and less flexible surface regions. No consistent trends were observed between stability and amino acid composition, structural features, or electrostatic interactions. Instead, unique elements affecting stability were identified in different chitinases. Notably, hyperthermostable chitinase had a much shorter surface loop compared to psychrophilic and mesophilic homologs, implying that the extended floppy surface region in cold-adapted and mesophilic chitinases may have acted as a “weak link” from where unfolding was initiated. MD simulations confirmed that the prevalence and flexibility of the loops adjacent to the active site were greater in low-temperature-adapted chitinases and may have led to the occlusion of the active site at higher temperatures compared to their thermostable homologs. Following this, loop “hot spots” for stabilizing and destabilizing mutations were also identified. This information is not only useful for the elucidation of the structure–stability relationship, but will be crucial for designing and engineering chitinases to have enhanced thermoactivity and to withstand harsh industrial processing conditions
Collapse
|
36
|
García-García AL, García-Machado FJ, Borges AA, Morales-Sierra S, Boto A, Jiménez-Arias D. Pure Organic Active Compounds Against Abiotic Stress: A Biostimulant Overview. FRONTIERS IN PLANT SCIENCE 2020; 11:575829. [PMID: 33424879 PMCID: PMC7785943 DOI: 10.3389/fpls.2020.575829] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/30/2020] [Indexed: 05/21/2023]
Abstract
Biostimulants (BSs) are probably one of the most promising alternatives nowadays to cope with yield losses caused by plant stress, which are intensified by climate change. Biostimulants comprise many different compounds with positive effects on plants, excluding pesticides and chemical fertilisers. Usually mixtures such as lixiviates from proteins or algal extracts have been used, but currently companies are interested in more specific compounds that are capable of increasing tolerance against abiotic stress. Individual application of a pure active compound offers researchers the opportunity to better standarise formulations, learn more about the plant defence process itself and assist the agrochemical industry in the development of new products. This review attempts to summarise the state of the art regarding various families of organic compounds and their mode/mechanism of action as BSs, and how they can help maximise agricultural yields under stress conditions aggravated by climate change.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo de Agrobiotecnología, Departamento de Ciencias de la Vida y de la Tierra, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Francisco J. García-Machado
- Grupo de Agrobiotecnología, Departamento de Ciencias de la Vida y de la Tierra, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Andrés A. Borges
- Grupo de Agrobiotecnología, Departamento de Ciencias de la Vida y de la Tierra, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
| | | | - Alicia Boto
- Grupo Síntesis de Fármacos y Compuestos Bioactivos, Departamento de Química de Productos Naturales y Sintéticos Bioactivos, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
| | - David Jiménez-Arias
- Grupo de Agrobiotecnología, Departamento de Ciencias de la Vida y de la Tierra, Instituto de Productos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, San Cristobal de La Laguna, Spain
| |
Collapse
|
37
|
Acemi A. Polymerization degree of chitosan affects structural and compositional changes in the cell walls, membrane lipids, and proteins in the leaves of Ipomoea purpurea: An FT-IR spectroscopy study. Int J Biol Macromol 2020; 162:715-722. [PMID: 32569684 DOI: 10.1016/j.ijbiomac.2020.06.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/15/2022]
Abstract
This research aimed to investigate the polymerization degree (DP) -dependent effects of chitosan treatments on structural and compositional changes in certain cell wall polysaccharides (mainly lignin), membrane lipids, and proteins of in vitro-propagated Ipomoea purpurea leaves through FT-IR spectroscopy. The chitosan oligomer mixture (DP 2-15; CHI-OM) and chitosan polymer (DP 70; CHI-P) applied at 5, 10, and 20 mg L-1 concentrations induced different patterns of biomolecular changes in I. purpurea leaves. The chitosan variants enhanced the destabilization of cell membrane structures. CHI-P treatments increased the lipid structure and protein content of the membranes more than CHI-OM treatments. CHI-OM treatment was found to have the ability to induce the formation of β-sheet structures with a low number of strands, whereas CHI-P treatment was found to have the ability to trigger the formation of more extended α-helix structures in the secondary structure of proteins. CHI-P treatments increased lignin synthesis more than CHI-OM treatments. However, CHI-OM at 10 mg L-1 concentration was more effective than CHI-P treatments in the induction of cell wall polysaccharide synthesis. These findings suggest that the polymerization degree of chitosan plays a role in changing structures and compositions of the biomolecules present in the leaves of I. purpurea.
Collapse
Affiliation(s)
- Arda Acemi
- Department of Biology, Faculty of Arts and Sciences, Kocaeli University, 41001, İzmit, Kocaeli, Turkey.
| |
Collapse
|
38
|
Agricultural and Biomedical Applications of Chitosan-Based Nanomaterials. NANOMATERIALS 2020; 10:nano10101903. [PMID: 32987697 PMCID: PMC7598667 DOI: 10.3390/nano10101903] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Chitosan has emerged as a biodegradable, nontoxic polymer with multiple beneficial applications in the agricultural and biomedical sectors. As nanotechnology has evolved as a promising field, researchers have incorporated chitosan-based nanomaterials in a variety of products to enhance their efficacy and biocompatibility. Moreover, due to its inherent antimicrobial and chelating properties, and the availability of modifiable functional groups, chitosan nanoparticles were also directly used in a variety of applications. In this review, the use of chitosan-based nanomaterials in agricultural and biomedical fields related to the management of abiotic stress in plants, water availability for crops, controlling foodborne pathogens, and cancer photothermal therapy is discussed, with some insights into the possible mechanisms of action. Additionally, the toxicity arising from the accumulation of these nanomaterials in biological systems and future research avenues that had gained limited attention from the scientific community are discussed here. Overall, chitosan-based nanomaterials show promising characteristics for sustainable agricultural practices and effective healthcare in an eco-friendly manner.
Collapse
|
39
|
Xu D, Li H, Lin L, Liao M, Deng Q, Wang J, Lv X, Deng H, Liang D, Xia H. Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:661-668. [PMID: 32255930 PMCID: PMC7113348 DOI: 10.1007/s12298-020-00791-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 05/08/2023]
Abstract
To determine the effects of carboxymethyl chitosan on plant growth and nutrient uptake, Prunus davidiana seedlings were treated with various concentrations of carboxymethyl chitosan. The biomass, physiological characteristics, and nutrient uptake of the treated P. davidiana seedlings were then examined. Compared with the control seedlings, the carboxymethyl chitosan-treated seedlings had a higher biomass and a greater abundance of photosynthetic pigments (i.e., chlorophyll a, chlorophyll b, total chlorophyll, and carotenoid), with the best concentration as 2 g/L carboxymethyl chitosan, which increased the shoot biomass and total chlorophyll content by 26.75% and 24.64%, respectively. Moreover, the application of carboxymethyl chitosan enhanced superoxide dismutase and catalase activities, increased the soluble protein content, and decreased the malondialdehyde and proline contents of the P. davidiana seedlings to some extent. Additionally, the carboxymethyl chitosan treatments decreased the total nitrogen content, but increased the total phosphorus and potassium contents in P. davidiana seedlings to some extent. The minimum of total nitrogen content and the maximum of total phosphorus and potassium contents in shoots of P. davidiana seedlings were the concentration of 2 g/L carboxymethyl chitosan, which was decreased by 12.96% and increased by 15.45% and 22.53%, respectively, compared with the control. Therefore, the application of a carboxymethyl chitosan solution may promote the growth, enhance the stress resistance, and alter the nutrient uptake of P. davidiana seedlings, especially at 2 g/L carboxymethyl chitosan.
Collapse
Affiliation(s)
- Dandi Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Hongyan Li
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Lijin Lin
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Ming’an Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Jin Wang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Xiulan Lv
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Honghong Deng
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Dong Liang
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| | - Hui Xia
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan China
| |
Collapse
|
40
|
Singh RK, Soares B, Goufo P, Castro I, Cosme F, Pinto-Sintra AL, Inês A, Oliveira AA, Falco V. Chitosan Upregulates the Genes of the ROS Pathway and Enhances the Antioxidant Potential of Grape ( Vitis vinifera L. 'Touriga Franca' and 'Tinto Cão') Tissues. Antioxidants (Basel) 2019; 8:E525. [PMID: 31684175 PMCID: PMC6912504 DOI: 10.3390/antiox8110525] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Chitosan is an environmentally-friendly active molecule that has been explored for numerous agricultural uses. Its use in crop protection is well-known, however, other properties, such as bioactivity, deserve attention. Moreover, the modes of actions of chitosan remain to be elucidated. The present study assessed the levels of total phenolic compounds, the antioxidant potential, and the expression of reactive oxygen species (ROS) scavenging genes in the berries (skins and seeds), leaves, cluster stems, and shoots upon chitosan application on two red grapevine varieties (Touriga Franca and Tinto Cão). The application of chitosan on the whole vine before and after veraison led to the increased levels of polyphenols, anthocyanins, and tannins in Tinto Cão berries, and polyphenols and tannins in Touriga Franca berries, respectively. CUPric Reducing Antioxidant Capacity (CUPRAC) and Ferric Reducing Antioxidant Power (FRAP) assays indicated an increase in the antioxidant potential of berries. With the exception of ascorbate peroxidase (APX), all the ROS pathway genes tested, i.e., iron-superoxide dismutase (Fe-SOD), copper-zinc-superoxide dismutase (Cu/Zn-SOD), catalase (CAT), glutathione reductase (GR), glutaredoxin (Grx), respiratory burst oxidase (Rboh), amine oxidase (AO), peroxidase (POD) and polyphenol oxidase (PPO), were found up-regulated in chitosan-treated berries. Results from the analyses of leaves, stems, and shoots revealed that chitosan not only induced the synthesis of phenolic compounds but also acted as a facilitator for the transfer of polyphenols from the leaves to the berries.
Collapse
Affiliation(s)
- Rupesh K Singh
- Centro de Química de Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Bruno Soares
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- CoLAB Vines&Wines, Associação para o Desenvolvimento da Viticultura Duriense (ADVID), Régia Douro Park, 5000-033, Vila Real, Portugal.
| | - Piebiep Goufo
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Isaura Castro
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Fernanda Cosme
- Centro de Química de Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Ana L Pinto-Sintra
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - António Inês
- Centro de Química de Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Ana A Oliveira
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centro de Investigação e Tecnologias Agroambientais e Biológicas (CITAB), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Virgílio Falco
- Centro de Química de Vila Real (CQ-VR), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Departamento de Agronomia, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
| |
Collapse
|
41
|
Mirajkar SJ, Dalvi SG, Ramteke SD, Suprasanna P. Foliar application of gamma radiation processed chitosan triggered distinctive biological responses in sugarcane under water deficit stress conditions. Int J Biol Macromol 2019; 139:1212-1223. [DOI: 10.1016/j.ijbiomac.2019.08.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 12/24/2022]
|
42
|
Biostimulation of Maize (Zea mays) and Irrigation Management Improved Crop Growth and Water Use under Controlled Environment. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water deficits during the growing season are a major factor limiting crop production. Therefore, reducing water use during crop production by the application of regulated deficit irrigation (RDI) is crucially important in water resources. There are few reports on the biostimulants used for growth and water use efficiency (WUE) in maize (Zea mays Linn.) under RDI. Therefore, the influence of betaine and chitin treatments, alone and in combination, on maize cultivar ‘White Pearl’ was assessed by observing changes in the physiology and morphology of plants exposed to RDI. Plants were grown in plastic pots in greenhouses and maintained under full irrigation (FI) for 1 week until imposing RDI and biostimulants. Plants were then subjected to FI (no water deficiency treatment, field capacity >70%) and RDI (field capacity <50%) conditions until the end of each experiment. Plant agronomic performance, photosynthesis parameters, and WUE values were recorded weekly for 8 weeks and three individual experiments were carried out to assess the efficacy of biostimulants and irrigation treatments. Betaine (0, 50, and 100 mM/plant) was foliage-treated every 2 weeks during Experiment 1, but chitin (0, 2, and 4 g/kg) was applied to the soil at the beginning of Experiment 2. The optimal concentration of each chemical alone or in combination was then applied to the plants as Experiment 3. A factorial experiment design of two factors with different levels under a completely randomized arrangement was used in this investigation. Betaine (50 mM) or chitin (2 g/kg) treatments alone significantly elevated total fresh weight (63.03 or 124.07 g/plant), dry weight (18.00 or 22.34 g/plant), and cob weight (3.15 or 6.04 g/plant) and boosted the water-stress tolerance of the maize under RDI compared to controls. However, a combination treatment of 50 mM betaine and 2 g/kg chitin did not increase plant height, fresh shoot and root weights, dry cob weight, and total dry weight under RDI compared to controls. Soil-plant analysis development (SPAD) values (>30) were effective in detecting plant growth performance and WUE values under RDI. These findings may have greater significance for farming in dry lands and offer information for further physiological studies on maize WUE and water stress tolerance
Collapse
|