1
|
Coleman M, Khan PY, Linde L, Williams PCM, Marais BJ. Transgression of planetary boundaries and the effects on child health through an infectious diseases lens. Curr Opin Pediatr 2025; 37:124-136. [PMID: 39882682 DOI: 10.1097/mop.0000000000001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
PURPOSE OF REVIEW Life on earth, as we know it, is changing. The likelihood of more frequent pandemics and disease outbreaks is something that current global healthcare infrastructure is ill equipped to navigate. Human activity is forcing our planet into a new geologic epoch, the Anthropocene, which is typified by increased uncertainty resulting from human disruption of earth's life-giving ecosystems. Plagues and pandemics have always been unfortunate partners to periods of disruption, as they will be again if the frequency and severity of climate and conflict-mediated disasters increase in coming years. If we continue to exceed and degrade the planetary boundaries that protect human health, our children and their children will reap the consequences. RECENT FINDINGS Scientists have defined nine 'safe operating' planetary boundaries for life in all its glorious diversity to thrive on planet earth. Recent evidence suggests that six of these nine boundaries have already been transgressed, but the potential implications for these transgressions upon child health is not well articulated. We highlight how contravention of these boundaries will impact infectious disease risk and humans' ability to survive and thrive. We reflect specifically on how paediatricians are called upon to speak up for the most vulnerable members of our species, young children and as yet unborn future generations. SUMMARY Post COVID-19 initiatives to improve pandemic preparedness and response are certainly warranted, but pandemic prevention should include committed efforts not to exceed safe planetary boundaries. Willingly exceeding these boundaries has deep moral consequences that are poorly articulated by current ethical frameworks. Paediatricians are best placed to develop and champion the neglected 'third dimension' of medical ethics, recognizing the moral imperative to protect the long-term best interests of children and future generations.
Collapse
Affiliation(s)
- Mikaela Coleman
- Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia
- Institute of Infectious Diseases and Tropical Medicine, Ludwig Maximilian University, Munich, Germany
| | - Palwasha Y Khan
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Lauren Linde
- Boston University School of Public Health, Boston, Massachusetts, USA
| | - Phoebe C M Williams
- Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia
- Department of Infectious Diseases, Sydney Children's Hospital
- School of Public Health, Faculty of Medicine, University of Sydney
- Discipline of Paediatrics, School of Clinical Medicine, Faculty of Medicine and Health, UNSW
| | - Ben J Marais
- Sydney Infectious Diseases Institute (Sydney ID), University of Sydney, Sydney, New South Wales, Australia
- WHO Collaborating Centre for Tuberculosis, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Rahman MS, Anika AA, Raka RA, Muratovic AK. Impact of Climate Change on Emerging Infectious Diseases and Human Physical and Mental Health in Bangladesh. HEALTH CARE SCIENCE 2025; 4:62-65. [PMID: 40026640 PMCID: PMC11869368 DOI: 10.1002/hcs2.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 03/05/2025]
Abstract
This study aims to give possible solutions to the impact of climate change on the nation's physical and mental health and emerging infectious diseases. Improving Bangladesh's healthcare, response, and data collection systems is a public health emergency.
Collapse
Affiliation(s)
| | | | - Rafia Amin Raka
- Department of StatisticsBegum Rokeya UniversityRangpurBangladesh
| | | |
Collapse
|
3
|
Chowdhury AH, Rahman MS. Machine learning and spatio-temporal analysis of meteorological factors on waterborne diseases in Bangladesh. PLoS Negl Trop Dis 2025; 19:e0012800. [PMID: 39820842 PMCID: PMC11737758 DOI: 10.1371/journal.pntd.0012800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Bangladesh is facing a formidable challenge in mitigating waterborne diseases risk exacerbated by climate change. However, a comprehensive understanding of the spatio-temporal dynamics of these diseases at the district level remains elusive. Therefore, this study aimed to fill this gap by investigating the spatio-temporal pattern and identifying the best tree-based ML models for determining the meteorological factors associated with waterborne diseases in Bangladesh. METHODS This study used district-level reported cases of waterborne diseases (cholera, amoebiasis, typhoid and hepatitis A) obtained from the Bangladesh Bureau of Statistics (BBS) and meteorological data (temperature, relative humidity, wind speed, and precipitation) sourced from NASA for the period spanning 2017 to 2020. Exploratory spatial analysis, spatial regression and tree-based machine learning models were utilized to analyze the data. RESULTS From 2017 and 2020, Bangladesh reported 73, 606 cholera, 38, 472 typhoid, 2, 510 hepatitis A and 1, 643 amoebiasis disease cases. Among the waterborne diseases cholera showed higher incidence rates in Chapai-Nawabganj (456.23), Brahmanbaria (417.44), Faridpur (225.07), Nilphamari (188.62) and Pirojpur (171.62) districts. The spatial regression model identified mean temperature (β = 12.16, s.e: 3.91) as the significant risk factor of waterborne diseases. The optimal XGBoost model highlighted mean and minimum temperature, relative humidity and precipitation as determinants associated with waterborne diseases in Bangladesh from 2017 to 2020. CONCLUSIONS The findings from the study, incorporating the One Health perspective, provide insights for planning early warning, prevention, and control strategies to combat waterborne diseases in Bangladesh and similar endemic countries. Precautionary measures and intensified surveillance need to be implemented in certain high-risk districts for waterborne diseases across the country.
Collapse
|
4
|
Liyew AM, Clements ACA, Akalu TY, Gilmour B, Alene KA. Ecological-level factors associated with tuberculosis incidence and mortality: A systematic review and meta-analysis. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003425. [PMID: 39405319 PMCID: PMC11478872 DOI: 10.1371/journal.pgph.0003425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
Globally, tuberculosis (TB) is the leading infectious cause of morbidity and mortality, with the risk of infection affected by both individual and ecological-level factors. While systematic reviews on individual-level factors exist, there are currently limited studies examining ecological-level factors associated with TB incidence and mortality. This study was conducted to identify ecological factors associated with TB incidence and mortality. A systematic search for analytical studies reporting ecological factors associated with TB incidence or mortality was conducted across electronic databases such as PubMed, Embase, Scopus, and Web of Science, from each database's inception to October 30, 2023. A narrative synthesis of evidence on factors associated with TB incidence and mortality from all included studies, alongside random-effects meta-analysis where applicable, estimated the effects of each factor on TB incidence. A total of 52 articles were included in the analysis, and one study analysed two outcomes, giving 53 studies. Narrative synthesis revealed predominantly positive associations between TB incidence and factors such as temperature (10/18 studies), precipitation (4/6), nitrogen dioxide (6/9), poverty (4/4), immigrant population (3/4), urban population (3/8), and male population (2/4). Conversely, air pressure (3/5), sunshine duration (3/8), altitude (2/4), gross domestic product (4/9), wealth index (2/8), and TB treatment success rate (2/2) mostly showed negative associations. Particulate matter (1/1), social deprivation (1/1), and population density (1/1) were positively associated with TB mortality, while household income (2/2) exhibited a negative association. In the meta-analysis, higher relative humidity (%) (relative risk (RR) = 1.45, 95%CI:1.12, 1.77), greater rainfall (mm) (RR = 1.56, 95%CI: 1.11, 2.02), elevated sulphur dioxide (μg m-3) (RR = 1.04, 95% CI:1.01, 1.08), increased fine particulate matter concentration (PM2.5) (μg/ m3) (RR = 1.33, 95% CI: 1.18, 1.49), and higher population density (people/km2) (RR = 1.01,95%CI:1.01-1.02) were associated with increased TB incidence. Conversely, higher average wind speed (m/s) (RR = 0.89, 95%CI: 0.82,0.96) was associated with decreased TB incidence. TB incidence and mortality rates were significantly associated with various climatic, socioeconomic, and air quality-related factors. Intersectoral collaboration across health, environment, housing, social welfare and economic sectors is imperative for developing integrated approaches that address the risk factors associated with TB incidence and mortality.
Collapse
Affiliation(s)
- Alemneh Mekuriaw Liyew
- Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, Australia
- Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands, Australia
| | - Archie C. A. Clements
- Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands, Australia
- Research and Enterprise, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Temesgen Yihunie Akalu
- Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, Australia
- Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands, Australia
| | - Beth Gilmour
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, Australia
- Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands, Australia
| | - Kefyalew Addis Alene
- Faculty of Health Sciences, School of Population Health, Curtin University, Perth, Australia
- Geospatial and Tuberculosis Research Team, Telethon Kids Institute, Nedlands, Australia
| |
Collapse
|
5
|
Chowdhury AH, Rahman MS. Spatio-temporal pattern and associate meteorological factors of airborne diseases in Bangladesh using geospatial mapping and spatial regression model. Health Sci Rep 2024; 7:e2176. [PMID: 38899002 PMCID: PMC11186039 DOI: 10.1002/hsr2.2176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Background and Aims Airborne diseases due to climate change pose significant public health challenges in Bangladesh. Little was known about the spatio-temporal pattern of airborne diseases at the district level in the country. Therefore, this study aimed to investigate the spatio-temporal pattern and associated meteorological factors of airborne diseases in Bangladesh using exploratory analysis and spatial regression models. Methods This study used district-level reported cases of airborne diseases (meningococcal, measles, mumps, influenza, tuberculosis, and encephalitis) and meteorological data (temperature, relative humidity, wind speed, and precipitation) from 2017 to 2020. Geospatial mapping and spatial error regression models were utilized to analyze the data. Results From 2017 to 2020, a total of 315 meningococcal, 5159 measles, 1341 mumps, 346 influenza, 4664 tuberculosis, and 229 encephalitis cases were reported in Bangladesh. Among airborne diseases, measles demonstrated the highest prevalence, featuring a higher incidence rate in the coastal Bangladeshi districts of Lakshmipur, Patuakhali, and Cox's Bazar, as well as in Maulvibazar and Bandarban districts from 2017 to 2020. In contrast, tuberculosis (TB) emerged as the second most prevalent disease, with a higher incidence rate observed in districts such as Khagrachhari, Rajshahi, Tangail, Bogra, and Sherpur. The spatial error regression model revealed that among climate variables, mean (β = 9.56, standard error [SE]: 3.48) and maximum temperature (β = 1.19, SE: 0.40) were significant risk factors for airborne diseases in Bangladesh. Maximum temperature positively influenced measles (β = 2.74, SE: 1.39), whereas mean temperature positively influenced both meningococcal (β = 5.57, SE: 2.50) and mumps (β = 11.99, SE: 3.13) diseases. Conclusion The findings from the study provide insights for planning early warning, prevention, and control strategies to combat airborne diseases in Bangladesh and similar endemic countries. Preventive measures and enhanced monitoring should be taken in some high-risk districts for airborne diseases in the country.
Collapse
|
6
|
Wang F, Yuan Z, Qin S, Qin F, Zhang J, Mo C, Kang Y, Huang S, Qin F, Jiang J, Liu A, Liang H, Ye L. The effects of meteorological factors and air pollutants on the incidence of tuberculosis in people living with HIV/AIDS in subtropical Guangxi, China. BMC Public Health 2024; 24:1333. [PMID: 38760740 PMCID: PMC11100081 DOI: 10.1186/s12889-024-18475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/28/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Previous studies have shown the association between tuberculosis (TB) and meteorological factors/air pollutants. However, little information is available for people living with HIV/AIDS (PLWHA), who are highly susceptible to TB. METHOD Data regarding TB cases in PLWHA from 2014 to2020 were collected from the HIV antiviral therapy cohort in Guangxi, China. Meteorological and air pollutants data for the same period were obtained from the China Meteorological Science Data Sharing Service Network and Department of Ecology and Environment of Guangxi. A distribution lag non-linear model (DLNM) was used to evaluate the effects of meteorological factors and air pollutant exposure on the risk of TB in PLWHA. RESULTS A total of 2087 new or re-active TB cases were collected, which had a significant seasonal and periodic distribution. Compared with the median values, the maximum cumulative relative risk (RR) for TB in PLWHA was 0.663 (95% confidence interval [CI]: 0.507-0.866, lag 4 weeks) for a 5-unit increase in temperature, and 1.478 (95% CI: 1.116-1.957, lag 4 weeks) for a 2-unit increase in precipitation. However, neither wind speed nor PM10 had a significant cumulative lag effect. Extreme analysis demonstrated that the hot effect (RR = 0.638, 95%CI: 0.425-0.958, lag 4 weeks), the rainy effect (RR = 0.285, 95%CI: 0.135-0.599, lag 4 weeks), and the rainless effect (RR = 0.552, 95%CI: 0.322-0.947, lag 4 weeks) reduced the risk of TB. Furthermore, in the CD4(+) T cells < 200 cells/µL subgroup, temperature, precipitation, and PM10 had a significant hysteretic effect on TB incidence, while temperature and precipitation had a significant cumulative lag effect. However, these effects were not observed in the CD4(+) T cells ≥ 200 cells/µL subgroup. CONCLUSION For PLWHA in subtropical Guangxi, temperature and precipitation had a significant cumulative effect on TB incidence among PLWHA, while air pollutants had little effect. Moreover, the influence of meteorological factors on the incidence of TB also depends on the immune status of PLWHA.
Collapse
Affiliation(s)
- Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Shanfang Qin
- Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Fengxiang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| | - Aimei Liu
- Chest Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
- Joint Laboratory for Emerging Infectious Diseases in China (Guangxi)-ASEAN, Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
7
|
Khursheed S, Wazir S, Saleem MK, Majeed AI, Ahmad M, Khan QU, Jadoon A, Akbar A, Jadoon SK, Tasneem S, Saleem H, Khan MS, Alvi S. Tuberculosis prevalence and demographic characteristics of population in Azad Jammu and Kashmir (Pakistan): A retrospective study. Medicine (Baltimore) 2024; 103:e37787. [PMID: 38608068 PMCID: PMC11018243 DOI: 10.1097/md.0000000000037787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Tuberculosis (TB) remains a serious problem for public health and a leading cause of death after COVID-19 and superior to even HIV/AIDS. It is a social health issue and can cause stigma and economic loss as the person cannot perform professionally due to lethargy caused by disease. It is a retrospective study done on data from National TB program Muzaffarabad chapter. The details were noted on SPSS and analysis was done to find important demographic characteristics. The total number of patients was 3441; among which 48.76% were males. Most of them (81.11%) belonged to the Muzaffarabad division of Azad Jammu and Kahmir (AJK). The microbiologically or culture positive cases were 440. Rifampicin resistance was present in 147 cases, further categorized as high (n = 143), very high (n = 3), or true positive (n = 1) resistance. Muti drug resistance was found in 19 cases. The microscopy culture is more sensitive (AUC = 0.511) than MTB/RIF or serology (AUC = 0.502) according to ROC. The rate of positive smear results is not very satisfactory in the present study as it cannot detect dormant or latent cases. There is a need to establish more sensitive tests for detection of cases and more research to combat the disease.
Collapse
Affiliation(s)
| | - Samia Wazir
- Pakistan Institute of Medical Science, Islamabad, Pakistan
| | - Muhammad Khurram Saleem
- University Hospital, Bristol and Weston NHS Foundation Trust, Royal College of Physicians and Surgeons of Glasgow, Glasgow, UK
| | | | - Mumtaz Ahmad
- Abbas Institute of Medical Sciences, Muzaffarabad, AJK, Pakistan
| | | | - Arzu Jadoon
- Ziauddin University Hospital Karachi, Karachi, Pakistan
| | - Amna Akbar
- CHPE Health Services Academy, Islamabad, Pakistan
| | | | | | | | - Mohammad Saleem Khan
- Chief Consultant Physician/Head of Department of Medicine DHQ Teaching, Hospital Kotli AJK, Kotli, Pakistan
| | - Sarosh Alvi
- Teaching Faculty, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
8
|
Singh S, Sharma P, Pal N, Sarma DK, Tiwari R, Kumar M. Holistic One Health Surveillance Framework: Synergizing Environmental, Animal, and Human Determinants for Enhanced Infectious Disease Management. ACS Infect Dis 2024; 10:808-826. [PMID: 38415654 DOI: 10.1021/acsinfecdis.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Recent pandemics, including the COVID-19 outbreak, have brought up growing concerns about transmission of zoonotic diseases from animals to humans. This highlights the requirement for a novel approach to discern and address the escalating health threats. The One Health paradigm has been developed as a responsive strategy to confront forthcoming outbreaks through early warning, highlighting the interconnectedness of humans, animals, and their environment. The system employs several innovative methods such as the use of advanced technology, global collaboration, and data-driven decision-making to come up with an extraordinary solution for improving worldwide disease responses. This Review deliberates environmental, animal, and human factors that influence disease risk, analyzes the challenges and advantages inherent in using the One Health surveillance system, and demonstrates how these can be empowered by Big Data and Artificial Intelligence. The Holistic One Health Surveillance Framework presented herein holds the potential to revolutionize our capacity to monitor, understand, and mitigate the impact of infectious diseases on global populations.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Poonam Sharma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Namrata Pal
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Rajnarayan Tiwari
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| | - Manoj Kumar
- ICMR - National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal-462030, Madhya Pradesh, India
| |
Collapse
|
9
|
Adegboye OA, Alele FO, Castellanos ME, Pak A, Emeto TI. Editorial: Environmental stressors, multi-hazards and their impact on health. Front Public Health 2023; 11:1231955. [PMID: 37497031 PMCID: PMC10368457 DOI: 10.3389/fpubh.2023.1231955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 07/28/2023] Open
Affiliation(s)
- Oyelola A. Adegboye
- Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Faith O. Alele
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Maru E. Castellanos
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Anton Pak
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Centre for the Business and Economics of Health, The University of Queensland, Brisbane, QLD, Australia
| | - Theophilus I. Emeto
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
10
|
Zhao H, Lin T, Yang Y, Feng C, Wang W, Gong L. The effect of short-term air pollutants exposure on outpatient admission for blepharitis in Shanghai, China: a hospital-based study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47655-47669. [PMID: 36745352 DOI: 10.1007/s11356-023-25605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/24/2023] [Indexed: 02/07/2023]
Abstract
Blepharitis is a very common ophthalmologic disease, and few studies have examined if air pollutants contribute to the risk of blepharitis. We investigated the presence of any potential correlation between exposure to air pollution and outpatient admission for blepharitis in Shanghai, China. Data on daily outpatient admission for blepharitis were collected from January 2017 to July 2022. Air pollution and meteorological data were acquired from the Shanghai Environmental Protection Agency. Using the distributed lag non-linear model (DLNM) we investigated the relationship between air pollutants and blepharitis. Seasonal stratified analysis was carried out. In total, 10,681 blepharitis patients were recruited. In the single-pollutant model, a 10 μg/m3 increase in particulate matter with < 2.5 μm PM2.5 and 10 μm PM10 along with sulfur dioxide (SO2) and 100 μg/m3 increase in carbon monoxide (CO) was significantly associated with outpatient visits for blepharitis. In the multi-pollutant model, a 10 μg/m3 increase in ozone (O3) and nitrogen dioxide (NO2) and a 100 μg/m3 increase in carbon monoxide (CO) was significantly associated with outpatient visits for blepharitis. Moreover, there was an obvious relationship between blepharitis and PM2.5 and O3 in the summers and blepharitis and PM10, NO2, and SO2 during the winters. Exposure to short-term air pollution increases the risk of blepharitis outpatient visits in Shanghai, China.
Collapse
Affiliation(s)
- Han Zhao
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, No.83, Fenyang Road, Xuhui District, Shanghai, 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Tong Lin
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, No.83, Fenyang Road, Xuhui District, Shanghai, 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Yun Yang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, No.83, Fenyang Road, Xuhui District, Shanghai, 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Changming Feng
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, No.83, Fenyang Road, Xuhui District, Shanghai, 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Wushuang Wang
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, No.83, Fenyang Road, Xuhui District, Shanghai, 200000, China
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China
| | - Lan Gong
- Department of Ophthalmology, Eye, Ear, Nose, and Throat Hospital of Fudan University, No.83, Fenyang Road, Xuhui District, Shanghai, 200000, China.
- Laboratory of Myopia, NHC Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, Shanghai, 200000, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
11
|
Qin T, Hao Y, Wu Y, Chen X, Zhang S, Wang M, Xiong W, He J. Association between averaged meteorological factors and tuberculosis risk: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 212:113279. [PMID: 35561834 DOI: 10.1016/j.envres.2022.113279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Inconsistencies were discovered in the findings regarding the effects of meteorological factors on tuberculosis (TB). This study conducted a systematic review of published studies on the relationship between TB and meteorological factors and used a meta-analysis to investigate the pooled effects in order to provide evidence for future research and policymakers. The literature search was completed by August 3rd, 2021, using three databases: PubMed, Web of Science and Embase. Relative risks (RRs) in included studies were extracted and all effect estimates were combined together using meta-analysis. Subgroup analyses were carried out based on the resolution of exposure time, regional climate, and national income level. A total of eight studies were included after screening for inclusion and exclusion criteria. Our results show that TB risk was positively correlated with precipitation (RR = 1.32, 95% CI: 1.14, 1.51), while temperature (RR = 1.15, 95% CI: 1.00, 1.32), humidity (RR = 1.05, 95% CI: 0.99, 1.10), air pressure (RR = 0.89, 95% CI: 0.69, 1.14) and sunshine duration (RR = 0.95, 95% CI: 0.80, 1.13) all had no statistically significant correlation. Subgroup analysis shows that quarterly measure resolution, low and middle Human Development Index (HDI) level and subtropical climate increase TB risk not only in precipitation, but also in temperature and humidity. Moreover, less heterogeneity was observed in "high and extremely high" HDI areas and subtropical areas than that in other subgroups (I2 = 0%). Precipitation, a subtropical climate, and a low HDI level are all positive influence factors to tuberculosis. Therefore, residents and public health managers should take precautionary measures ahead of time, especially in extreme weather conditions.
Collapse
Affiliation(s)
- Tianyu Qin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Hao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - You Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinli Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuwen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengqi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Weifeng Xiong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan He
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
12
|
Association between climate variables and pulmonary tuberculosis incidence in Brunei Darussalam. Sci Rep 2022; 12:8775. [PMID: 35610355 PMCID: PMC9130123 DOI: 10.1038/s41598-022-12796-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 05/13/2022] [Indexed: 12/20/2022] Open
Abstract
We investigated the association between climate variables and pulmonary tuberculosis (PTB) incidence in Brunei-Muara district, Brunei Darussalam. Weekly PTB case counts and climate variables from January 2001 to December 2018 were analysed using distributed lag non-linear model framework. After adjusting for long-term trend and seasonality, we observed positive but delayed relationship between PTB incidence and minimum temperature, with significant adjusted relative risk (adj.RR) at 25.1 °C (95th percentile) when compared to the median, from lag 30 onwards (adj.RR = 1.17 [95% Confidence Interval (95% CI): 1.01, 1.36]), suggesting effect of minimum temperature on PTB incidence after 30 weeks. Similar results were observed from a sub-analysis on smear-positive PTB case counts from lag 29 onwards (adj.RR = 1.21 [95% CI: 1.01, 1.45]), along with positive and delayed association with total rainfall at 160.7 mm (95th percentile) when compared to the median, from lag 42 onwards (adj.RR = 1.23 [95% CI: 1.01, 1.49]). Our findings reveal evidence of delayed effects of climate on PTB incidence in Brunei, but with varying degrees of magnitude, direction and timing. Though explainable by environmental and social factors, further studies on the relative contribution of recent (through primary human-to-human transmission) and remote (through reactivation of latent TB) TB infection in equatorial settings is warranted.
Collapse
|
13
|
An influence of dew point temperature on the occurrence of Mycobacterium tuberculosis disease in Chennai, India. Sci Rep 2022; 12:6147. [PMID: 35413979 PMCID: PMC9005621 DOI: 10.1038/s41598-022-10111-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/21/2022] [Indexed: 11/28/2022] Open
Abstract
Climate factors such as dew point temperature, relative humidity and atmospheric temperature may be crucial for the spread of tuberculosis. This study was conducted for the first time to investigate the relationship of climatic factors with TB occurrence in an Indian setting. Daily tuberculosis notification data during 2008–2015 were generated from the National Treatment Elimination Program, and analogous daily climatic data were obtained from the Regional Meteorological Centre at Chennai city, Tamil Nadu, India. The decomposition method was adopted to split the series into deterministic and non-deterministic components, such as seasonal, non-seasonal, trend and cyclical, and non-deterministic climate factors. A generalized linear model was used to assess the relation independently. TB disease progression from latent stage infection to active was supported by higher dew point temperature and moderate temperature. It had a significant association with TB progression in the summer and monsoon seasons. The relative humidity may be favored in the winter and post-monsoon. The water tiny dew droplets may support the TB bacterium to recuperate in the environment.
Collapse
|
14
|
Mohidem NA, Osman M, Muharam FM, Elias SM, Shaharudin R, Hashim Z. Prediction of tuberculosis cases based on sociodemographic and environmental factors in gombak, Selangor, Malaysia: A comparative assessment of multiple linear regression and artificial neural network models. Int J Mycobacteriol 2021; 10:442-456. [PMID: 34916466 DOI: 10.4103/ijmy.ijmy_182_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Early prediction of tuberculosis (TB) cases is very crucial for its prevention and control. This study aims to predict the number of TB cases in Gombak based on sociodemographic and environmental factors. Methods The sociodemographic data of 3325 TB cases from January 2013 to December 2017 in Gombak district were collected from the MyTB web and TB Information System database. Environmental data were obtained from the Department of Environment, Malaysia; Department of Irrigation and Drainage, Malaysia; and Malaysian Metrological Department from July 2012 to December 2017. Multiple linear regression (MLR) and artificial neural network (ANN) were used to develop the prediction model of TB cases. The models that used sociodemographic variables as the input datasets were referred as MLR1 and ANN1, whereas environmental variables were represented as MLR2 and ANN2 and both sociodemographic and environmental variables together were indicated as MLR3 and ANN3. Results The ANN was found to be superior to MLR with higher adjusted coefficient of determination (R2) values in predicting TB cases; the ranges were from 0.35 to 0.47 compared to 0.07 to 0.14, respectively. The best TB prediction model, that is, ANN3 was derived from nationality, residency, income status, CO, NO2, SO2, PM10, rainfall, temperature, and atmospheric pressure, with the highest adjusted R2 value of 0.47, errors below 6, and accuracies above 96%. Conclusions It is envisaged that the application of the ANN algorithm based on both sociodemographic and environmental factors may enable a more accurate modeling for predicting TB cases.
Collapse
Affiliation(s)
- Nur Adibah Mohidem
- Department of Environmental and Occupational Health, Universiti Putra Malaysia, Selangor, Malaysia
| | - Malina Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Farrah Melissa Muharam
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Saliza Mohd Elias
- Department of Environmental and Occupational Health, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rafiza Shaharudin
- Institute for Medical Research, National Institutes of Health, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
15
|
Lau LHW, Wong NS, Leung CC, Chan CK, Lau AKH, Tian L, Lee SS. Seasonality of tuberculosis in intermediate endemicity setting dominated by reactivation diseases in Hong Kong. Sci Rep 2021; 11:20259. [PMID: 34642391 PMCID: PMC8511215 DOI: 10.1038/s41598-021-99651-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Summer-spring predominance of tuberculosis (TB) has been widely reported. The relative contributions of exogenous recent infection versus endogenous reactivation to such seasonality remains poorly understood. Monthly TB notifications data between 2005 and 2017 in Hong Kong involving 64,386 cases (41% aged ≥ 65; male-to-female ratio 1.74:1) were examined for the timing, amplitude, and predictability of variation of seasonality. The observed seasonal variabilities were correlated with demographics and clinical presentations, using wavelet analysis coupled with dynamic generalised linear regression models. Overall, TB notifications peaked annually in June and July. No significant annual seasonality was demonstrated for children aged ≤ 14 irrespective of gender. The strongest seasonality was detected in the elderly (≥ 65) among males, while seasonal pattern was more prominent in the middle-aged (45–64) and adults (30–44) among females. The stronger TB seasonality among older adults in Hong Kong suggested that the pattern has been contributed largely by reactivation diseases precipitated by defective immunity whereas seasonal variation of recent infection was uncommon.
Collapse
Affiliation(s)
- Leonia Hiu Wan Lau
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong , China
| | - Ngai Sze Wong
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chiu Leung
- Hong Kong Tuberculosis, Chest and Heart Disease Association, Hong Kong, China
| | - Chi Kuen Chan
- Tuberculosis and Chest Service, Centre for Health Protection, Department of Health, Hong Kong, China
| | - Alexis K H Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Linwei Tian
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shui Shan Lee
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Mohidem NA, Osman M, Hashim Z, Muharam FM, Mohd Elias S, Shaharudin R. Association of sociodemographic and environmental factors with spatial distribution of tuberculosis cases in Gombak, Selangor, Malaysia. PLoS One 2021; 16:e0252146. [PMID: 34138899 PMCID: PMC8211220 DOI: 10.1371/journal.pone.0252146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 05/11/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) cases have increased drastically over the last two decades and it remains as one of the deadliest infectious diseases in Malaysia. This cross-sectional study aimed to establish the spatial distribution of TB cases and its association with the sociodemographic and environmental factors in the Gombak district. The sociodemographic data of 3325 TB cases such as age, gender, race, nationality, country of origin, educational level, employment status, health care worker status, income status, residency, and smoking status from 1st January 2013 to 31st December 2017 in Gombak district were collected from the MyTB web and Tuberculosis Information System (TBIS) database at the Gombak District Health Office and Rawang Health Clinic. Environmental data consisting of air pollution such as air quality index (AQI), carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2), and particulate matter 10 (PM10,) were obtained from the Department of Environment Malaysia from 1st July 2012 to 31st December 2017; whereas weather data such as rainfall were obtained from the Department of Irrigation and Drainage Malaysia and relative humidity, temperature, wind speed, and atmospheric pressure were obtained from the Malaysia Meteorological Department in the same period. Global Moran's I, kernel density estimation, Getis-Ord Gi* statistics, and heat maps were applied to identify the spatial pattern of TB cases. Ordinary least squares (OLS) and geographically weighted regression (GWR) models were used to determine the spatial association of sociodemographic and environmental factors with the TB cases. Spatial autocorrelation analysis indicated that the cases was clustered (p<0.05) over the five-year period and year 2016 and 2017 while random pattern (p>0.05) was observed from year 2013 to 2015. Kernel density estimation identified the high-density regions while Getis-Ord Gi* statistics observed hotspot locations, whereby consistently located in the southwestern part of the study area. This could be attributed to the overcrowding of inmates in the Sungai Buloh prison located there. Sociodemographic factors such as gender, nationality, employment status, health care worker status, income status, residency, and smoking status as well as; environmental factors such as AQI (lag 1), CO (lag 2), NO2 (lag 2), SO2 (lag 1), PM10 (lag 5), rainfall (lag 2), relative humidity (lag 4), temperature (lag 2), wind speed (lag 4), and atmospheric pressure (lag 6) were associated with TB cases (p<0.05). The GWR model based on the environmental factors i.e. GWR2 was the best model to determine the spatial distribution of TB cases based on the highest R2 value i.e. 0.98. The maps of estimated local coefficients in GWR models confirmed that the effects of sociodemographic and environmental factors on TB cases spatially varied. This study highlighted the importance of spatial analysis to identify areas with a high TB burden based on its associated factors, which further helps in improving targeted surveillance.
Collapse
Affiliation(s)
- Nur Adibah Mohidem
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Malina Osman
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Farrah Melissa Muharam
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saliza Mohd Elias
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Rafiza Shaharudin
- Institute for Medical Research, National Institutes of Health, Shah Alam, Selangor, Malaysia
| |
Collapse
|
17
|
Chen D, Lu H, Zhang S, Yin J, Liu X, Zhang Y, Dai B, Li X, Ding G. The association between extreme temperature and pulmonary tuberculosis in Shandong Province, China, 2005-2016: a mixed method evaluation. BMC Infect Dis 2021; 21:402. [PMID: 33933024 PMCID: PMC8088045 DOI: 10.1186/s12879-021-06116-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The effects of extreme temperature on infectious diseases are complex and far-reaching. There are few studies to access the relationship of pulmonary tuberculosis (PTB) with extreme temperature. The study aimed to identify whether there was association between extreme temperature and the reported morbidity of PTB in Shandong Province, China, from 2005 to 2016. METHODS A generalized additive model (GAM) was firstly conducted to evaluate the relationship between daily reported incidence rate of PTB and extreme temperature events in the prefecture-level cities. Then, the effect estimates were pooled using meta-analysis at the provincial level. The fixed-effect model or random-effect model was selected based on the result of heterogeneity test. RESULTS Among the 446,016 PTB reported cases, the majority of reported cases occurred in spring. The higher reported incidence rate areas were located in Liaocheng, Taian, Linyi and Heze. Extreme low temperature had an impact on the reported incidence of PTB in only one prefecture-level city, i.e., Binzhou (RR = 0.903, 95% CI: 0.817-0.999). While, extreme high temperature was found to have a positive effect on reported morbidity of PTB in Binzhou (RR = 0.924, 95% CI: 0.856-0.997) and Weihai (RR = 0.910, 95% CI: 0.843-0.982). Meta-analysis showed that extreme high temperature was associated with a decreased risk of PTB (RR = 0.982, 95% CI: 0.966-0.998). However, extreme low temperature was no relationship with the reported incidence of PTB. CONCLUSION Our findings are suggested that extreme high temperature has significantly decreased the risk of PTB at the provincial levels. The findings have implications for developing strategies to response to climate change.
Collapse
Affiliation(s)
- Dongzhen Chen
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, No.619 Changcheng Road, Taian, 271016, Shandong Province, China
| | - Hua Lu
- Taian Centers for Diseases Prevention Control, Taian, 271000, Shandong Province, China
| | - Shengyang Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong Province, China
| | - Jia Yin
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, No.619 Changcheng Road, Taian, 271016, Shandong Province, China
| | - Xuena Liu
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, No.619 Changcheng Road, Taian, 271016, Shandong Province, China
| | - Yixin Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong Province, China
| | - Bingqin Dai
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong Province, China
| | - Xiaomei Li
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, No.619 Changcheng Road, Taian, 271016, Shandong Province, China.
| | - Guoyong Ding
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, No.619 Changcheng Road, Taian, 271016, Shandong Province, China.
| |
Collapse
|
18
|
Hall NL, Barnes S, Canuto C, Nona F, Redmond AM. Climate change and infectious diseases in Australia's Torres Strait Islands. Aust N Z J Public Health 2021; 45:122-128. [PMID: 33522674 DOI: 10.1111/1753-6405.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/01/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE This research seeks to identify climate-sensitive infectious diseases of concern with a present and future likelihood of increased occurrence in the geographically vulnerable Torres Strait Islands, Australia. The objective is to contribute evidence to the need for adequate climate change responses. METHODS Case data of infectious diseases with proven, potential and speculative climate sensitivity were compiled. RESULTS Five climate-sensitive diseases in the Torres Strait and Cape York region were identified as of concern: tuberculosis, dengue, Ross River virus, melioidosis and nontuberculous mycobacterial infection. The region constitutes 0.52% of Queensland's population but has a disproportionately high proportion of the state's cases: 20.4% of melioidosis, 2.4% of tuberculosis and 2.1% of dengue. CONCLUSIONS The Indigenous Torres Strait Islander peoples intend to remain living on their traditional country long-term, yet climate change brings risks of both direct and indirect human health impacts. Implications for public health: Climate-sensitive infections pose a disproportionate burden and ongoing risk to Torres Strait Islander peoples. Addressing the causes of climate change is the responsibility of various agencies in parallel with direct action to minimise or prevent infections. All efforts should privilege Torres Strait Islander peoples' voices to self-determine response actions.
Collapse
Affiliation(s)
- Nina L Hall
- School of Public Health, The University of Queensland
| | - Samuel Barnes
- School of Public Health, The University of Queensland
| | - Condy Canuto
- School of Public Health, The University of Queensland
| | - Francis Nona
- School of Public Health, The University of Queensland
| | - Andrew M Redmond
- Faculty of Medicine, The University of Queensland
- Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Queensland
| |
Collapse
|
19
|
Kirolos A, Thindwa D, Khundi M, Burke RM, Henrion MYR, Nakamura I, Divala TH, Nliwasa M, Corbett EL, MacPherson P. Tuberculosis case notifications in Malawi have strong seasonal and weather-related trends. Sci Rep 2021; 11:4621. [PMID: 33633272 PMCID: PMC7907065 DOI: 10.1038/s41598-021-84124-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Seasonal trends in tuberculosis (TB) notifications have been observed in several countries but are poorly understood. Explanatory factors may include weather, indoor crowding, seasonal respiratory infections and migration. Using enhanced citywide TB surveillance data collected over nine years in Blantyre, Malawi, we set out to investigate how weather and seasonality affect temporal trends in TB case notification rates (CNRs) across different demographic groups. We used data from prospective enhanced surveillance between April 2011 and December 2018, which systematically collected age, HIV status, sex and case notification dates for all registering TB cases in Blantyre. We retrieved temperature and rainfall data from the Global Surface Summary of the Day weather station database. We calculated weekly trends in TB CNRs, rainfall and temperature, and calculated 10-week moving averages. To investigate the associations between rainfall, temperature and TB CNRs, we fitted generalized linear models using a distributed lag nonlinear framework. The estimated Blantyre population increased from 1,068,151 in April 2011 to 1,264,304 in December 2018, with 15,908 TB cases recorded. Overall annual TB CNRs declined from 222 to 145 per 100,000 between 2012 and 2018, with the largest declines seen in HIV-positive people and adults aged over 20 years old. TB CNRs peaks occurred with increasing temperature in September and October before the onset of increased rainfall, and later in the rainy season during January-March, after sustained rainfall. When lag between a change in weather and TB case notifications was accounted for, higher average rainfall was associated with an equivalent six weeks of relatively lower TB notification rates, whereas there were no changes in TB CNR associated with change in average temperatures. TB CNRs in Blantyre have a seasonal pattern of two cyclical peaks per year, coinciding with the start and end of the rainy season. These trends may be explained by increased transmission at certain times of the year, by limited healthcare access, by patterns of seasonal respiratory infections precipitating cough and care-seeking, or by migratory patterns related to planting and harvesting during the rainy season.
Collapse
Affiliation(s)
- Amir Kirolos
- grid.10025.360000 0004 1936 8470Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Deus Thindwa
- grid.8991.90000 0004 0425 469XDepartment of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - McEwen Khundi
- grid.8991.90000 0004 0425 469XDepartment of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK ,grid.415487.b0000 0004 0598 3456Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO30096, Blantyre, Malawi
| | - Rachael M. Burke
- grid.415487.b0000 0004 0598 3456Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO30096, Blantyre, Malawi ,grid.8991.90000 0004 0425 469XClinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Marc Y. R. Henrion
- grid.415487.b0000 0004 0598 3456Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO30096, Blantyre, Malawi ,grid.48004.380000 0004 1936 9764Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Itaru Nakamura
- grid.412781.90000 0004 1775 2495Department of Infectious Diseases, Tokyo Medical University Hospital, Tokyo, Japan
| | - Titus H. Divala
- grid.8991.90000 0004 0425 469XDepartment of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK ,grid.10595.380000 0001 2113 2211Helse Nord TB Initiative, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Marriott Nliwasa
- grid.415487.b0000 0004 0598 3456Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO30096, Blantyre, Malawi ,grid.10595.380000 0001 2113 2211Helse Nord TB Initiative, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Elizabeth L. Corbett
- grid.415487.b0000 0004 0598 3456Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO30096, Blantyre, Malawi ,grid.8991.90000 0004 0425 469XClinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter MacPherson
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Queen Elizabeth Central Hospital, PO30096, Blantyre, Malawi. .,Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK. .,Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
20
|
Temperature and humidity associated with increases in tuberculosis notifications: a time-series study in Hong Kong. Epidemiol Infect 2020; 149:e8. [PMID: 33436107 PMCID: PMC8057503 DOI: 10.1017/s0950268820003040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Previous studies have revealed associations of meteorological factors with tuberculosis (TB) cases. However, few studies have examined their lag effects on TB cases. This study was aimed to analyse nonlinear lag effects of meteorological factors on the number of TB notifications in Hong Kong. Using a 22-year consecutive surveillance data in Hong Kong, we examined the association of monthly average temperature and relative humidity with temporal dynamics of the monthly number of TB notifications using a distributed lag nonlinear models combined with a Poisson regression. The relative risks (RRs) of TB notifications were >1.15 as monthly average temperatures were between 16.3 and 17.3 °C at lagged 13–15 months, reaching the peak risk of 1.18 (95% confidence interval (CI) 1.02–1.35) when it was 16.8 °C at lagged 14 months. The RRs of TB notifications were >1.05 as relative humidities of 60.0–63.6% at lagged 9–11 months expanded to 68.0–71.0% at lagged 12–17 months, reaching the highest risk of 1.06 (95% CI 1.01–1.11) when it was 69.0% at lagged 13 months. The nonlinear and delayed effects of average temperature and relative humidity on TB epidemic were identified, which may provide a practical reference for improving the TB warning system.
Collapse
|
21
|
Emeto TI, Adegboye OA, Rumi RA, Khan MUI, Adegboye M, Khan WA, Rahman M, Streatfield PK, Rahman KM. Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9469. [PMID: 33348771 PMCID: PMC7766360 DOI: 10.3390/ijerph17249469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/04/2022]
Abstract
Malaria occurrence in the Chittagong Hill Tracts in Bangladesh varies by season and year, but this pattern is not well characterized. The role of environmental conditions on the occurrence of this vector-borne parasitic disease in the region is not fully understood. We extracted information on malaria patients recorded in the Upazila (sub-district) Health Complex patient registers of Rajasthali in Rangamati district of Bangladesh from February 2000 to November 2009. Weather data for the study area and period were obtained from the Bangladesh Meteorological Department. Non-linear and delayed effects of meteorological drivers, including temperature, relative humidity, and rainfall on the incidence of malaria, were investigated. We observed significant positive association between temperature and rainfall and malaria occurrence, revealing two peaks at 19 °C (logarithms of relative risks (logRR) = 4.3, 95% CI: 1.1-7.5) and 24.5 °C (logRR = 4.7, 95% CI: 1.8-7.6) for temperature and at 86 mm (logRR = 19.5, 95% CI: 11.7-27.3) and 284 mm (logRR = 17.6, 95% CI: 9.9-25.2) for rainfall. In sub-group analysis, women were at a much higher risk of developing malaria at increased temperatures. People over 50 years and children under 15 years were more susceptible to malaria at increased rainfall. The observed associations have policy implications. Further research is needed to expand these findings and direct resources to the vulnerable populations for malaria prevention and control in the Chittagong Hill Tracts of Bangladesh and the region with similar settings.
Collapse
Affiliation(s)
- Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Oyelola A. Adegboye
- Public Health & Tropical Medicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Reza A. Rumi
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | - Mahboob-Ul I. Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | | | - Wasif A. Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh;
| | - Peter K. Streatfield
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (R.A.R.); (M.-U.I.K.); (W.A.K.); (P.K.S.)
| | - Kazi M. Rahman
- North Coast Public Health Unit, New South Wales Health, Lismore, NSW 2480, Australia;
- The University of Sydney, University Centre for Rural Health, Lismore, NSW 2480, Australia
| |
Collapse
|