1
|
Zhang J, Wang Q, Gao H, Qi Q, He W, Li J, Yao S, Li W. Ecological suitability distribution of hop based on MaxEnt modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:346. [PMID: 40029426 DOI: 10.1007/s10661-025-13787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Hop has been widely utilized in both food production and traditional medicine owing to their distinctive flavor and various pharmacological effects. In recent years, the increasing demand for hop has led to their cultivation in many regions across China. However, hops require specific ecological conditions, including climate, soil, precipitation, and temperature, which significantly affect their distribution and growth. To facilitate the standardization and scientific cultivation of hops, it is essential to clarify the distribution of their ecological suitability. In this study, we collected data from 95 hops distribution locations and 115 ecological factors to determine the areas suitable for hops cultivation using the Maximum Entropy (MaxEnt) model and Geographic Information System (GIS). The highly suitable areas are primarily located in the northwestern part of the Xinjiang Uygur Autonomous Region, the eastern part of Gansu Province, Shaanxi Province, the southwestern part of Shanxi Province, and parts of Ningxia Hui Autonomous Region and Yunnan Province. These findings provide valuable guidance for the scientific cultivation of hops, ensuring the efficient use of ecological resources and promoting sustainable cultivation practices.
Collapse
Affiliation(s)
- Jingyue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Qian Wang
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Huijuan Gao
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uighur Autonomous Region, 830017, China
| | - Qiangli Qi
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Wenjing He
- Institute of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi, Xinjiang Uighur Autonomous Region, 830017, China
| | - Jianyin Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China.
| | - Shixia Yao
- Gansu Institute for Drug Control, Lanzhou, Gansu, 730000, China.
| | - Wen Li
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
2
|
Eghlima G, Tafreshi YM, Aghamir F, Ahadi H, Hatami M. Regional environmental impacts on growth traits and phytochemical profiles of Glycyrrhiza glabra L. for enhanced medicinal and industrial use. BMC PLANT BIOLOGY 2025; 25:116. [PMID: 39865228 PMCID: PMC11770907 DOI: 10.1186/s12870-025-06147-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Identifying the optimal cultivation regions and evaluating the impact of environmental factors are crucial for selecting the best conditions for the commercial production of important medicinal and industrial plants. This study examined the effects of different cultivation areas-Rayen, Eghlid, Kalat, and Zanjan-on the agro-morphological and phytochemical traits of Glycyrrhiza glabra. The findings revealed that the location where the plants were grown significantly influenced their physical and chemical characteristics. The Kalat region produced the tallest plants, measuring 96.86 cm, along with the highest shoot dry weight at 205.17 g, root dry weight of 318.00 g, root yield of 1590.12 g/m², and glabridin content of 2.92 mg/g dry weight (DW). Conversely, samples from the Rayen region had the highest glycyrhizic acid content at 17.92 mg/g DW and liquritigenin content at 1.22 mg/g DW. The Eghlid region showcased the highest total phenol content and antioxidant activity. Additionally, the study found a negative and significant correlation between altitude and glabridin content, indicating that glabridin levels decrease with increasing altitude. Based on the needs of the food and pharmaceutical industries, the study recommends the Rayen region for the production of glycyrhizic acid, the Kalat region for glabridin, and the Eghlid region for phenolic compounds.
Collapse
Affiliation(s)
- Ghasem Eghlima
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Yasaman Mashhadi Tafreshi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Fateme Aghamir
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Hamid Ahadi
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
3
|
Li X, Wu T, Kang C, Zhang X, Zhang J, Yang C, Yuan Q, Zhou T, Xiao C. Simulation of Pseudostellaria heterophylla distribution in China: assessing habitat suitability and bioactive component abundance under future climate change scenariosplant components. FRONTIERS IN PLANT SCIENCE 2024; 15:1498229. [PMID: 39698452 PMCID: PMC11653070 DOI: 10.3389/fpls.2024.1498229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Background Pseudostellaria heterophylla is used in traditional Chinese medicine, so ensuring an adequate supply of plant material with high levels of bioactive components is important. Methods Using an optimized maximum entropy niche model and assays of bioactive components from cultivation samples, this study started from the plant's natural distribution area and estimated correlations of ecological factors with not only abundance of the plant but also abundance of polysaccharides and heterophyllin B. These correlations were combined with the spatial analysis function in ArcGIS to generate maps of the suitability of different habitats in China for cultivating P. heterophylla under current climate conditions and different models of climate change. Results The following ecological factors emerged as particularly important for habitat suitability: precipitation of driest month and driest quarter, annual precipitation, annual mean temperature, temperature seasonality, and mean temperature of coldest quarter, contributing to a cumulative total of 87%. Under current climate conditions, optimum habitats of P. heterophylla were mainly distributed in the southwestern region (Guizhou) and eastern regions (Anhui, Zhejiang, Fujian, Jiangsu) of China, and only 0.197×106 km2 of these areas were optimum habitat. In future climate change scenarios, the optimal habitat area of P. heterophylla exhibited an increase across different time periods under the SSP5-8.5 climate scenario. By the 2090s, distribution area of high heterophyllin B content under SSP5-8.5 climate scenarios will increase significantly, distribution area of high polysaccharide content had little change under all three climate scenarios (SSP 1-2.6, 2-4.5, 5-8.5). The center of mass of suitable habitat migrates southwestward under scenario SSP 1-2.6 and SSP 2-4.5, while it migrates northward under scenario SSP 5-8.5. Under the three climate scenarios, the center of mass of suitable habitat migrated consistently with that of high polysaccharide content but differed from that of high heterophyllin B content. Conclusion These findings provide a crucial foundation for cultivating P. heterophylla with superior medicinal properties, developing adaptive management strategies to enhance conservation efforts, and ensuring sustainable utilization in the face of global climate change.
Collapse
Affiliation(s)
- Xu Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Taosheng Wu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chuangzhi Kang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaobo Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinqiang Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Changgui Yang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qingsong Yuan
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chenghong Xiao
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Gao X, Lin F, Li M, Mei Y, Li Y, Bai Y, He X, Zheng Y. Prediction of the potential distribution of a raspberry (Rubus idaeus) in China based on MaxEnt model. Sci Rep 2024; 14:24438. [PMID: 39424891 PMCID: PMC11489761 DOI: 10.1038/s41598-024-75559-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Rubus idaeus is a pivotal cultivated species of raspberry known for its attractive color, distinct flavor, and numerous health benefits. It can be used in pharmaceutical, cosmetics, agriculture and food industries not only as fresh but also as a processed product. Nowadays due to climatic changes, genetic diversity of cultivars has decreased dramatically. However, until now, the status of wild R. idaeus resources in China have not been exploited. In this study, we investigated the resources of wild R. idaeus in China to secure its future potential and sustainability. The MaxEnt model was used to predict R. idaeus suitable habitats and spatial distribution patterns for current and future climate scenarios, based on wild domestic geographic distribution data, current and future climate variables, and topographic variables. The results showed that, mean temperature of the coldest quarter (bio11), precipitation of the coldest quarter (bio19), precipitation of the warmest quarter (bio18), and temperature seasonality (bio4) were crucial factors affecting the distribution of R. idaeus. Presently, the suitable habitats were mainly distributed in the north of China including Xinjiang, Inner Mongolia, Gansu, Ningxia, Shaanxi, Shanxi, Hebei, Beijing, Liaoning, Jilin, Heilongjiang. According to our results, in 2050s, the total suitable habitat area of R. idaeus will increase under SSP1-2.6 and then will be decreased with climate change, while in the 2090s, the total suitable habitat area will continue to decrease. From the present to the 2090s, the centroid distribution of R. idaeus in China will shift towards the east and the species will always be present in Inner Mongolia. Our results provide wild resource information and theoretical reference for the protection and rational utilization of R. idaeus.
Collapse
Affiliation(s)
- Xiangqian Gao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Furong Lin
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yujie Mei
- College of Horticultural Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, Hebei, China
| | - Yongxiang Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanlin Bai
- Shanxi State-Owned Forest Farm and Seedling Station, Taiyuan, 030000, Shanxi, China
| | - Xiaolong He
- Shanxi State-Owned Forest Farm and Seedling Station, Taiyuan, 030000, Shanxi, China
| | - Yongqi Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Forest Silviculture and Tree Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
5
|
Cheng J, Guo F, Wang L, Li Z, Zhou C, Wang H, Liang W, Jiang X, Chen Y, Dong P. Evaluating the impact of ecological factors on the quality and habitat distribution of Lonicera japonica Flos using HPLC and the MaxEnt model. FRONTIERS IN PLANT SCIENCE 2024; 15:1397939. [PMID: 39166244 PMCID: PMC11333331 DOI: 10.3389/fpls.2024.1397939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024]
Abstract
Introduction The quality of traditional Chinese medicine is based on the content of their secondary metabolites, which vary with habitat adaptation and ecological factors. This study focuses on Lonicera japonica Flos (LJF), a key traditional herbal medicine, and aims to evaluate how ecological factors impact its quality. Methods We developed a new evaluation method combining high-performance liquid chromatography (HPLC) fingerprinting technology and MaxEnt models to assess the effects of ecological factors on LJF quality. The MaxEnt model was used to predict suitable habitats for current and future scenarios, while HPLC was employed to analyze the contents of key compounds. We also used ArcGIS for spatial analysis to create a quality zoning map. Results The analysis identified 21 common chromatographic peaks, with significant variations in the contents of Hyperoside, Rutin, Chlorogenic acid, Cynaroside, and Isochlorogenic acid A across different habitats. Key environmental variables influencing LJF distribution were identified, including temperature, precipitation, and elevation. The current suitable habitats primarily include regions south of the Yangtze River. Under future climate scenarios, suitable areas are expected to shift, with notable expansions in southern Gansu, southeastern Tibet, and southern Liaoning. The spatial distribution maps revealed that high-quality LJF is predominantly found in central and southern Hebei, northern Henan, central Shandong, central Sichuan, southern Guangdong, and Taiwan. Discussion The study indicates that suitable growth areas can promote the accumulation of certain secondary metabolites in plants, as the accumulation of these metabolites varies. The results underscore the necessity of optimizing quality based on cultivation practices. The integration of HPLC fingerprinting technology and the MaxEnt model provides valuable insights for the conservation and cultivation of herbal resources, offering a new perspective on evaluating the impact of ecological factors on the quality of traditional Chinese medicines.
Collapse
Affiliation(s)
- Jiali Cheng
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Liyang Wang
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Zhigang Li
- Longxi County Agricultural Technology Extension Center, Dingxi, Gansu, China
| | - Chunyan Zhou
- School of Economics and Management, Hexi University, Zhangye, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Xiaofeng Jiang
- Dryland Agriculture Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Pengbin Dong
- College of Agronomy, College of Life Science and Technology, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Provincial Key Lab of Arid Land Crop Science, Gansu Key Lab of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Dong P, Wang L, Qiu D, Liang W, Cheng J, Wang H, Guo F, Chen Y. Evaluation of the environmental factors influencing the quality of Astragalus membranaceus var. mongholicus based on HPLC and the Maxent model. BMC PLANT BIOLOGY 2024; 24:697. [PMID: 39044138 PMCID: PMC11264576 DOI: 10.1186/s12870-024-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND In recent years, global climate change in tandem with increased human activity has resulted in habitat degradation or the migration of rare medicinal plants, potentially impacting the quality of medicinal herbs. Astragalus membranaceus var. mongholicus is a valuable bulk medicinal material in Northwest China. As the demand for this medicinal herb continues to increase in both domestic and international markets, ensuring the sustainable development of high-quality Astragali Radix is important. In this study, the maximum entropy (Maxent) model was applied, thereby incorporating 136 distribution records, along with 39 environmental factors of A. membranaceus var. mongholicus, to assess the quality zonation and potential distribution of this species in China under climate change. RESULTS The results showed that the elevation, annual mean temperature, precipitation of wettest month, solar radiation in June, and mean temperature of warmest quarter were the critical environmental factors influencing the accumulation of astragaloside IV and Astragalus polysaccharide in A. membranaceus var. mongholicus. Among the twelve main environmental variables, annual mean temperature, elevation, precipitation of the wettest month, and solar radiation in November were the four most important factors influencing the distribution of A. membranaceus var. mongholicus. In addition, ecological niche modelling revealed that highly suitable habitats were mainly located in central and western Gansu, eastern Qinghai, northern Shaanxi, southern Ningxia, central Inner Mongolia, central Shanxi, and northern Hebei. However, the future projections under climate change suggested a contraction of these suitable areas, shifting towards northeastern high-latitude and high-elevation mountains. CONCLUSIONS The findings provide essential insights for developing adaptive strategies for A. membranaceus var. mongholicus cultivation in response to climate change and can inform future research on this species. By considering the identified environmental factors and the potential impacts of the predicted climate changes, we can visualize the regional distribution of high-quality Radix Astragali and develop conservation strategies to protect and restore its suitable habitats.
Collapse
Affiliation(s)
- Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lingjuan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Daiyu Qiu
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
7
|
Huang G, Miao H, Chen Y, Wang K, Zhang Q, Yang Z. Spraying humic acid regulator on cultivated Codonopsis pilosula (Franch.) Nannf. to improve yield of active constituents. FRONTIERS IN PLANT SCIENCE 2024; 15:1381182. [PMID: 38872877 PMCID: PMC11169936 DOI: 10.3389/fpls.2024.1381182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024]
Abstract
Plant growth regulators have been used in the cultivation of medicinal plants to increase yield, but the existing regulators decreased the content of active constituents which benefit human health. Therefore, it is necessary to find a new growth regulator to achieve the win-win goal of increasing yield and improving active constituents' accumulation. The potential of replacing chlorocholine chloride with a new humic acid-based growth regulator was evaluated by measuring the yield and active constituents' accumulation of Codonopsis pilosula. Three treatments including water (CK), chlorocholine chloride (T1) and humic acid regulator (T2) were applied by foliar spraying. Among them, both chlorocholine chloride and humic acid regulator belong to biostimulant. The result showed that the root yield in T1 and T2 were significantly increased by 59.1% and 54.9% compared with CK, respectively, and there was no significant difference between T1 and T2. Compared with CK, the yields of lobetyolin, syringin and atractylenolide III of Codonopsis pilosula were significantly decreased by 6.3%, 7.3% and 13.0% in T1, but were significantly increased by 22.8%, 14.8% and 32.0% in T2, respectively. Redundancy analyses showed that photosynthetic rate, sucrose phosphoric acid synthetase and phosphomannomutase had higher degree of explanation for yield and quality. Linear regression results indicated that photosynthetic rate and phosphomannomutase were the main factors to affect yield and active constituents yields, respectively. In addition, the output-input ratios based on the yields of polysaccharides, lobetyolin, syringin and atractylenolide III of Codonopsis pilosula in T2 was significantly increased by 6.5%, 15.2%, 8.7% and 31.2% respectively as compared with T1. Overall, compared with water treatment, both chlorocholine chloride and humic acid regulator treatments can increase the root yield of Codonopsis pilosula. Compared with chlorocholine chloride, humic acid regulator can improve the yield of active constituents and economic benefits of Codonopsis pilosula. This study indicated that reasonable selection of plant growth regulators is of great significance for achieving a win-win goal of increasing the root yield and active constituents of medicinal plants.
Collapse
Affiliation(s)
- Gaojian Huang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Huifeng Miao
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Yaqian Chen
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Ke Wang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| | - Qiang Zhang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
| | - Zhiping Yang
- College of Resource & Environment, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, Shanxi, China
- Nitrate Fertilizer Technology Innovation Center of Shanxi Province, Shanxi Knlan Chemical Co., Ltd., Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Wang Z, Jia Y, Li P, Tang Z, Guo Y, Wen L, Yu H, Cui F, Hu F. Study on environmental factors affecting the quality of codonopsis radix based on MaxEnt model and all-in-one functional factor. Sci Rep 2023; 13:20726. [PMID: 38007505 PMCID: PMC10676394 DOI: 10.1038/s41598-023-46546-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023] Open
Abstract
Owing to the increasing market demand of Codonopsis Radix, the cropper blindly cultivates to expand planting area for economic benefits, which seriously affects the quality of Codonopsis Radix. Therefore, this study synthesized 207 batches of Codonopsis Radix and 115 ecological factors, and analyzed the suitable planting areas of Codonopsis pilosula under current and future climate change based on Geographic Information System (GIS) and MaxEnt model. Secondly, we evaluated the quality of Codonopsis Radix based on the all-in-one functional factor including chromatographic fingerprint, the index components, the effective compounds groups, the nutritional components, and the nutritional elements, and the quality regionalization of Codonopsis Radix was analyzed. Finally, the ecological factors affecting the accumulation of effective components of Codonopsis Radix were analyzed. This study found for the first time that the highly suitable area of Codonopsis pilosula was mainly distributed in the Weihe River system and the Bailongjiang River system in Gansu Province. There were differences in the quality of Codonopsis Radix from different ecologically suitable areas based on the all-in-one functional factors, and the comprehensive high-quality area of Codonopsis Radix was mainly distributed in Longnan and Longxi district of Gansu Province. The precipitation, temperature and altitude play a key role in the accumulation of chemical components in the 10 ecological factors affecting the distribution of Codonopsis pilosula. Under future climatic conditions, the highly suitable area of Codonopsis pilosula is decreased.
Collapse
Affiliation(s)
- Zixia Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yanjun Jia
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Pengpeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zhuoshi Tang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yina Guo
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Longxia Wen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huaqiao Yu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Fang Cui
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Codonopsis Radix Research Institute, Lanzhou, 730000, Gansu Province, China
- Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou, 730000, Gansu Province, China
| | - Fangdi Hu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China.
- Codonopsis Radix Research Institute, Lanzhou, 730000, Gansu Province, China.
- Codonopsis Radix Industrial Technology Engineering Research Center, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
9
|
Qiu J, Gu X, Li X, Bi J, Liu Y, Zheng K, Zhao Y. Identification of potentially suitable areas for nucleosides of Pinellia Ternata (Thunb.) Breit using ecological niche modeling. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1479. [PMID: 37966553 DOI: 10.1007/s10661-023-12065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/28/2023] [Indexed: 11/16/2023]
Abstract
Pinellia ternata, a traditional Chinese medicine, is well-renowned for its effectiveness in treating sickness such as coughs with excessive phlegm, vomiting, and nausea. The nucleoside components of P. ternata have been shown to have antitumor activity. Identifying potential growth areas of high-quality P. ternata based on the content of five nucleoside components and the identification of climatic features suitable for the growth of P. ternata will help to conserve P. ternata resources with targeted bioactive compounds. Using high-performance liquid chromatography (HPLC), we determined five nucleoside components, uridine, guanosine, adenosine, inosine, and thymidine, at 27 sampling points of P. ternata collected from 21 municipalities of 11 provinces in China. We used ecological niche modeling to identify the major environmental factors associated with the high metabolite content of P. ternata, including precipitation of the warmest quarter, annual mean temperature, annual precipitation, and isothermality. Areas with high suitability for the five nucleosides were found in Hebei, Shandong, Shanxi, Gansu, Sichuan, Guizhou, and Hubei Provinces. Under the RCP 2.6, RCP 4.5, and RCP 8.5 scenarios, the areas with a suitable distribution decreased and some areas with high suitability became areas with low suitability. Overall, our findings advance our knowledge of the ecological impacts of climate change and provide a valuable reference for conserving and sustainably developing high-quality P. ternata resources in the future.
Collapse
Affiliation(s)
- Jinmiao Qiu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China
| | - Xiaowei Li
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Jingyi Bi
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yang Liu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Kaiyan Zheng
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| | - Yunsheng Zhao
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang, 050200, China.
| |
Collapse
|
10
|
Zhang M, Miao Y, Zhang X, Sun X, Li M, Huang L. Revealing ecotype influences on Cistanche sinensis: from the perspective of endophytes to metabolites characteristics. Front Microbiol 2023; 14:1154688. [PMID: 37538848 PMCID: PMC10394521 DOI: 10.3389/fmicb.2023.1154688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/17/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Plant microorganism is critical to plant health, adaptability, and productive forces. Intriguingly, the metabolites and microorganisms can act upon each other in a plant. The union of metabolomics and microbiome may uncover the crucial connections of the plant to its microbiome. It has important benefits for the agricultural industry and human being health, particularly for Chinese medical science investigation. Methods In this last 2 years study, on the strength of the UPLC-MS/MS detection platform, we accurately qualitatively, and quantitatively measured the Cistanche sinensis fleshy stems of two ecotypes. Thereafter, through high-throughput amplicon sequencing 16S/ITS sequences were procured. Results PhGs metabolites including echinacoside, isoacteoside, and cistanoside A were significantly downregulated at two ecotypes of C. sinensis. Add up to 876 metabolites were monitored and 231 differential metabolites were analyzed. Further analysis of 34 core differential metabolites showed that 15 compounds with up-regulated belonged to phenolic acids, flavonoids, and organic acids, while 19 compounds with down-regulated belonged to phenolic acids, flavonoids, alkaloids, amino acids, lipids, and nucleotides. There was no noteworthy discrepancy in the endophytic bacteria's α and β diversity between sandy and loam ecotypes. By comparison, the α and β diversity of endophytic fungi was notably distinct. The fungal community of the loam ecotype is more abundant than the sandy ecotype. However, there were few such differences in bacteria. Most abundant genera included typical endophytes such as Phyllobacterium, Mycobacterium, Cistanche, Geosmithia, and Fusarium. LEfSe results revealed there were 11 and 20 biomarkers of endophytic bacteria and fungi in C. sinensis at two ecotypes, respectively. The combination parsing of microflora and metabolites indicated noteworthy relativity between the endophytic fungal communities and metabolite output. Key correlation results that Anseongella was positive relation with Syringin, Arsenicitalea is negative relation with 7-methylxanthine and Pseudogymnoascus is completely positively correlated with nepetin-7-O-alloside. Discussion The aim of this research is: (1) to explore firstly the influence of ecotype on C. sinensis from the perspective of endophytes and metabolites; (2) to investigate the relationship between endophytes and metabolites. This discovery advances our understanding of the interaction between endophytes and plants and provides a theoretical basis for cultivation of C. sinensis in future.
Collapse
Affiliation(s)
- Min Zhang
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, College of Pharmacy, Baotou Medical College, Baotou, China
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinke Zhang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minhui Li
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, College of Pharmacy, Baotou Medical College, Baotou, China
- Inner Mongolia Hospital of Traditional Chinese Medicine, Hohhot, China
- Inner Mongolia Traditional Chinese and Mongolian Medical Research Institute, Hohhot, China
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Albanova IA, Zagorchev LI, Teofanova DR, Odjakova MK, Kutueva LI, Ashapkin VV. Host Resistance to Parasitic Plants-Current Knowledge and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 12:1447. [PMID: 37050073 PMCID: PMC10096732 DOI: 10.3390/plants12071447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Parasitic flowering plants represent a diverse group of angiosperms, ranging from exotic species with limited distribution to prominent weeds, causing significant yield losses in agricultural crops. The major damage caused by them is related to the extraction of water and nutrients from the host, thus decreasing vegetative growth, flowering, and seed production. Members of the root parasites of the Orobanchaceae family and stem parasites of the genus Cuscuta are among the most aggressive and damaging weeds, affecting both monocotyledonous and dicotyledonous crops worldwide. Their control and eradication are hampered by the extreme seed longevity and persistence in soil, as well as their taxonomic position, which makes it difficult to apply selective herbicides not damaging to the hosts. The selection of resistant cultivars is among the most promising approaches to deal with this matter, although still not widely employed due to limited knowledge of the molecular mechanisms of host resistance and inheritance. The current review aims to summarize the available information on host resistance with a focus on agriculturally important parasitic plants and to outline the future perspectives of resistant crop cultivar selection to battle the global threat of parasitic plants.
Collapse
Affiliation(s)
- Ivanela A. Albanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyuben I. Zagorchev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Denitsa R. Teofanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Mariela K. Odjakova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Lyudmila I. Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Vasily V. Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
12
|
Liu L, Shi B, Li J, Wen J, Zhou L, He Y. Assessing environmental suitability of Ligusticum chuanxiong based on ecological analyses with chemical and molecular verification. Heliyon 2023; 9:e14629. [PMID: 36967894 PMCID: PMC10033745 DOI: 10.1016/j.heliyon.2023.e14629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Ligusticum chuanxiong Hort. as an important Chinese medicinal herb clinically used as anti-inflammatory, antioxidant, and hepatoprotective agents, is widely planted in China. However, related studies on L. chuanxiong's distribution and significant environmental factors that affect its growth are insufficient. Based on climatic, topographic and soil factors, this study predicted current and future distributions of L. chuanxiong and analyzed the distribution transformation under different scenarios. Moreover, the most important environmental factors for modeling were explored using maximum entropy models, chemical analysis and molecular analysis. Results suggested that the predicted distribution of L. chuanxiong was wider than previously reported. Among these environmental variables, climate factors, especially the minimum temperature of the coldest month (Bio6, 46.7%) and solar radiation (SRAD, 43.4%) contributed more than others to L. chuanxiong's distribution with optimum values of 0-1.5 °C and 5000-11,000 kJ/m2 per day. Total and highly suitable areas respectively increased by 26,788-943,820 km2 and 34,757-340,417 km2 in the future (2061-2080, 2081-2100). The distribution centers of suitable zones were predicted to migrate north in the future, and the migration distance was 135.74-479.77 km from current center. Results of chemical content determination suggested that L. chuanxiong should be cultivated in high-suitable places to improve medicinal quality by evaluating contents of ferulic acids and Z-ligustilide. Correlation analysis suggested that both chemical contents and gene expression levels decreased with decreasing habitat suitability, suggesting a strong link between environments, chemical constituents, and gene expression. These findings improve the comprehension of the effects of environments on the distribution patterns of L. chuanxiong, as well the relation between environmental suitability and medicinal quality. These findings provide a useful foundation for the planting, cultivation and conservation of L. chuanxiong.
Collapse
Affiliation(s)
- Linqiu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Bo Shi
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, 610057, China
| | - Junjun Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiawei Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lili Zhou
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, China
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| |
Collapse
|
13
|
Delicato A, Masi M, de Lara F, Rubiales D, Paolillo I, Lucci V, Falco G, Calabrò V, Evidente A. In vitro characterization of iridoid and phenylethanoid glycosides from Cistanche phelypaea for nutraceutical and pharmacological applications. Phytother Res 2022; 36:4155-4166. [PMID: 35781895 PMCID: PMC9796874 DOI: 10.1002/ptr.7548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 01/07/2023]
Abstract
"Desert hyacinths" are a remarkable group of parasitic plants belonging to genus Cistanche, including more than 20 accepted species typically occurring in deserts or coastal dunes parasitizing roots of shrubs. Several Cistanche species have long been a source of traditional herbal medicine or food, being C. deserticola and C. tubulosa the most used in China. This manuscript reports the isolation and identification of some phenylethanoid and iridoid glycosides, obtained from the hydroalcoholic extract of C. phelypaea collected in Spain. The present study aims to characterize the antioxidant activity of C. phelypaea metabolites in the light of their application in nutraceutical and cosmeceutical industries and the effect of acetoside, the most abundant metabolite in C. phelypaea extract, on human keratinocyte and pluripotent stem cell proliferation and differentiation. Our study demonstrated that acetoside, besides its strong antioxidant potential, can preserve the proliferative potential of human basal keratinocytes and the stemness of mesenchymal progenitors necessary for tissue morphogenesis and renewal. Therefore, acetoside can be of practical relevance for the clinical application of human stem cell cultures in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Antonella Delicato
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | | | | | - Ida Paolillo
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Valeria Lucci
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Geppino Falco
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Viola Calabrò
- Dipartimento di Biologia, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico IIComplesso Universitario Monte Sant’AngeloNaplesItaly
| |
Collapse
|
14
|
Miao Y, Chen H, Xu W, Yang Q, Liu C, Huang L. Structural mutations of small single copy (SSC) region in the plastid genomes of five Cistanche species and inter-species identification. BMC PLANT BIOLOGY 2022; 22:412. [PMID: 36008757 PMCID: PMC9404617 DOI: 10.1186/s12870-022-03682-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cistanche is an important genus of Orobanchaceae, with critical medicinal, economic, and desertification control values. However, the phylogenetic relationships of Cistanche genus remained obscure. To date, no effective molecular markers have been reported to discriminate effectively the Cistanche closely related species reported here. In this study, we obtained and characterized the plastomes of four Cistanche species from China, to clarify the phylogenetic relationship within the genus, and to develop molecular markers for species discrimination. RESULTS: Four Cistanche species (Cistanche deserticola, Cistanche salsa, Cistanche tubulosa and Cistanche sinensis), were deep-sequenced with Illumina. Their plastomes were assembled using SPAdes and annotated using CPGAVAS2. The plastic genomes were analyzed in detail, finding that all showed the conserved quadripartite structure (LSC-IR-SSC-IR) and with full sizes ranging from 75 to 111 Kbp. We observed a significant contraction of small single copy region (SSC, ranging from 0.4-29 Kbp) and expansion of inverted repeat region (IR, ranging from 6-30 Kbp), with C. deserticola and C. salsa showing the smallest SSCs with only one gene (rpl32). Compared with other Orobanchaceae species, Cistanche species showed extremely high rates of gene loss and pseudogenization, as reported for other parasitic Orobanchaceae species. Furthermore, analysis of sequence divergence on protein-coding genes showed the three genes (rpl22, clpP and ycf2) had undergone positive selection in the Cistanche species under study. In addition, by comparison of all available Cistanche plastomes we found 25 highly divergent intergenic spacer (IGS) regions that were used to predict two DNA barcode markers (Cis-mk01 and Cis-mk02 based on IGS region trnR-ACG-trnN-GUU) and eleven specific DNA barcode markers using Ecoprimer software. Experimental validation showed 100% species discrimination success rate with both type of markers. CONCLUSION Our findings have shown that Cistanche species are an ideal model to investigate the structure variation, gene loss and pseudogenization during the process of plastome evolution in parasitic species, providing new insights into the evolutionary relationships among the Cistanche species. In addition, the developed DNA barcodes markers allow the proper species identification, ensuring the effective and safe use of Cistanche species as medicinal products.
Collapse
Affiliation(s)
- Yujing Miao
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haimei Chen
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Wanqi Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Qiaoqiao Yang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Chang Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Linfang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
15
|
Xu H, Li X, Hao Y, Xu X, Zhang Y, Zhang J. Polyethyleneimine modified heterostructure porous polymer microspheres for efficient adsorption of acteoside. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Chen T, Gao F, Luo D, Wang S, Zhao Y, Liu S, Huang J, Lin Y, Zhang Z, Huang H, Wan L. Cistanoside A promotes osteogenesis of primary osteoblasts by alleviating apoptosis and activating autophagy through involvement of the Wnt/β-catenin signal pathway. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:64. [PMID: 35282110 PMCID: PMC8848445 DOI: 10.21037/atm-21-6742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/07/2022] [Indexed: 11/22/2022]
Abstract
Background As a phenylethanoid glycoside extracted from Cistanche deserticola, cistanoside A has been shown to have antioxidative effects. In recent years, it has been found to play an important role in osteoporosis. Methods Primary osteoblasts were randomly divided into a cistanoside A (Cis A)-1 group (5 µM), a Cis A-2 group (10 µM), and a Cis A-3 group (20 µM) to screen the optimal dose. Then, cells were treated with Rapamycin (Rapa), 3-MA, Dickkopf-1 (DKK-1), 3MA + Cis A (10 µM), and DKK-1 + Cis A (10 µM). After a certain period of routine culture, Alkaline Phosphatase (ALP) and Alizarin Red S Staining were performed again and the cells were collected for subsequent experiments including immunofluorescence staining, western blotting, transmission electron microscopy, mitochondrial membrane measurement, and Annexin-V-Fluorescein isothiocyanate (Annexin-V-FITC). Results The optimal Cis A dose that preserved osteoblast viability and activated osteogenesis was 10 µM. It appeared that Cis A (10 µM) decreased apoptosis and augmented autophagy via increasing microtubule-associated protein light chain 3 (LC3)-I/II expressions as well as raising Wnt/β-catenin signal pathway activity. The addition of 3-MA further inhibited osteogenic differentiation and suppressed Wnt/β-catenin signal pathway activity to increase apoptosis while reducing autophagy levels. A combination of Cis A and DKK-1 resulted in higher levels of apoptosis but lower levels of autophagy. Conclusions Cis A appears to be a potent inducer of autophagy and inhibitor of apoptosis in primary osteoblasts by working through the Wnt/β-catenin signal pathway, thereby resulting in enhanced osteogenic differentiation.
Collapse
Affiliation(s)
- Tongying Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fenghe Gao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shihao Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhua Liu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiachun Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanping Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhihai Zhang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongxing Huang
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Wan
- Department of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
17
|
Sun X, Pei J, Zhao L, Ahmad B, Huang LF. Fighting climate change: soil bacteria communities and topography play a role in plant colonization of desert areas. Environ Microbiol 2021; 23:6876-6894. [PMID: 34693620 DOI: 10.1111/1462-2920.15799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022]
Abstract
Global warming has exacerbated desertification in arid regions. Exploring the environmental variables and microbial communities that drive the dynamics of geographic patterns of desert crops is important for large-scale standardization of crops that can control desertification. Here, predictions based on future climate data from CMIP6 show that a steady expand in the suitable production areas for three desert plants (Cistanche deserticola, Cynomorium songaricum and Cistanche salsa) under global warming, demonstrating their high adaptability to future climate change. We examined the biogeography of three desert plant soil bacteria communities and assessed the environmental factors affecting the community assembly process. The α-diversity significantly decreased along elevated latitudes, indicating that the soil bacterial communities of the three species have latitude diversity patterns. The neutral community model evaluated 66.6% of the explained variance of the bacterial community in the soil of desert plants and Modified Stochasticity Ratio <0.5, suggesting that deterministic processes dominate the assembly of bacterial communities in three desert plants. Moreover, topography (longitude, elevation) and precipitation as well as key OTUs (OTU4911: Streptomyces eurythermus and OTU4672: Streptomyces flaveus) drive the colonization of three desert plants. This research offers a promising solution for desert management in arid areas under global warming.
Collapse
Affiliation(s)
- Xiao Sun
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, 611137, China.,Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Lei Zhao
- Central Medical District of Chinese PLA General Hospital, Beijing, 100193, China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar, Peshawar, 25000, Pakistan
| | - Lin-Fang Huang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
18
|
Predicting the Potential Distribution of Hylomecon japonica in China under Current and Future Climate Change Based on Maxent Model. SUSTAINABILITY 2021. [DOI: 10.3390/su132011253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hylomecon japonica is considered a natural medicinal plant with anti-inflammatory, anticancer and antibacterial activity. The assessment of climate change impact on its habitat suitability is important for the wild cultivation and standardized planting of H. japonica. In this study, the maximum entropy model (Maxent) and geographic information system (ArcGIS) were applied to predict the current and future distribution of H. japonica species, and the contributions of variables were evaluated by using the jackknife test. The area under the receiver operating characteristic curve (AUC) value confirmed the accuracy of the model prediction based on 102 occurrence records. The predicted potential distributions of H. japonica were mainly concentrated in Jilin, Liaoning, Shaanxi, Chongqing, Henan, Heilongjiang and other provinces (adaptability index > 0.6). The jackknife experiment showed that the precipitation of driest month (40.5%), mean annual temperature (12.4%), the precipitation of wettest quarter (11.6%) and the subclass of soil (9.7%) were the most important factors affecting the potential distribution of H. japonica. In the future, only under the shared socioeconomic Pathway 245 (SSP 245) scenario model in 2061–2080, the suitable habitat area for H. japonica is expected to show a significant upward trend. The area under other scenarios may not increase or decrease significantly.
Collapse
|
19
|
Piwowarczyk R, Ochmian I, Lachowicz S, Kapusta I, Malinowska K, Ruraż K. Correlational nutritional relationships and interactions between expansive holoparasite Orobanche laxissima and woody hosts on metal-rich soils. PHYTOCHEMISTRY 2021; 190:112844. [PMID: 34311276 DOI: 10.1016/j.phytochem.2021.112844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Plant parasitism by other plants, combined with abiotic environmental stress, offers a unique opportunity to study correlational nutritional relationships in terms of parasite-host interactions and their functional roles in nutrient cycling in ecosystems. Our study analysed the transfer of selected mineral elements, including heavy metals, from soil to different organs in hosts (Punica granatum and Fraxinus angustifolia) and from hosts to the expansive holoparasite (Orobanche laxissima) in cinnamonic soil habitats in Georgia (Caucasus). We also identified other correlated trophic and bioactive effects in the parasite-host relationship. O. laxissima was characterized by a high accumulation tendency for micro- and macroelements, such as K and Ca, and heavy metals, such as Zn, Ni, and Cd. Parasites can reduce the concentration of heavy metals in host tissues owing to this high accumulation tendency. In total, 85 compounds were identified in the examined parasite and its hosts. Despite the distinct phytochemical content of species of the infected host, the parasite produced specific metabolites with dominant phenylethanoid glycosides (PhGs), with acteoside and crenatoside being the primary dominant compounds - ca. 98% of all polyphenols. Polyphenols in parasite specimens that are correlated with Cu and Zn are antagonistic to polyphenols correlated with Fe, Pb, Cr, and Ni. The profile of polyphenols in the host species was both qualitatively and quantitatively distinct from the profile of the compounds in the parasite and between hosts (only acteoside in group PhGs was common between the parasite and Fraxinus host), which indicates the existence of a unique compound biosynthesis pathway in the parasite. Our results demonstrated that the parasite, particularly in its flowers, exhibited higher polyphenol content, antioxidative effects (ABTS-+, DPPH, and FRAP), and inhibitory effects.
Collapse
Affiliation(s)
- Renata Piwowarczyk
- Center for Research and Conservation of Biodiversity, Department of Enviromental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Street, PL-25-406, Kielce, Poland.
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434, Szczecin, Poland.
| | - Sabina Lachowicz
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630, Wrocław, Poland.
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, University of Rzeszów, Zelwerowicza 4 Street, 35-601, Rzeszów, Poland.
| | - Katarzyna Malinowska
- Department of Bioengineering, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434, Szczecin, Poland.
| | - Karolina Ruraż
- Center for Research and Conservation of Biodiversity, Department of Enviromental Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Street, PL-25-406, Kielce, Poland.
| |
Collapse
|
20
|
Song Y, Zeng K, Jiang Y, Tu P. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med Res Rev 2021; 41:1539-1577. [PMID: 33521978 DOI: 10.1002/med.21768] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Cistanches Herba (CH, Chinese name: Roucongrong), is a very precious, tonic Chinese medicine. Cistanche deserticola and Cistanche tubulosa are the two commonly used species and authenticated in Chinese Pharmacopoeia. Due to the parasitic nature of Cistanche plants, the wild source was once endangered and listed in the Appendix II of Convention on International Trade in Endangered Species of Wild Fauna and Flora. However, after continuously struggling in the past decades, CH has grown up to a big brand of Chinese medicine featured with the cultivation area as 1.26 million mu, the annual output as 6000 tons, and the related industrial output value as more than 20 billion China Yuan, attributing to large-scale cultivation and in-depth phytochemical and pharmacological investigations. Noteworthily, great achievements have reached concerning the research and development of relevant products, such as modern drugs, traditional Chinese medicine prescriptions, and dietary supplements. The current review summarizes the research progresses concerning the distribution and cultivation, phytochemistry, pharmacology, metabolism and product development of CH in the past decades, and the emerging challenges and developing prospects are discussed as well.
Collapse
Affiliation(s)
- Yuelin Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Mandakh U, Battseren M, Ganbat D, Ayanga T, Adiya Z, Borjigidai A, Long C. Folk nomenclature of plants in Cistanche deserticola-associated community in South Gobi, Mongolia. PLANT DIVERSITY 2020; 42:434-442. [PMID: 33733011 PMCID: PMC7936101 DOI: 10.1016/j.pld.2020.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/20/2020] [Accepted: 09/26/2020] [Indexed: 05/15/2023]
Abstract
Cistanche deserticola is an important medicinal plant in Mongolia. Despite its significant role in local healing systems, little traditional knowledge had been reported. The present study investigated folk names of C. deserticola and other species of the same community in Umnugobi Province, South Gobi region of Mongolia, based on ethnobotanical approaches. The high correspondence between folk names and scientific names of plant species occurring in Cistanche-associated community shows the scientific meaning of folk nomenclature and classification in Mongolia. The Mongolian and folk names of plants were formed on the basis of observations and understanding of wild plants including their morphology, phenology and traditional uses as well. Results from this study will support the conservation of C. deserticola itself, a rare and endangered plant species listed in the Monglian Red Data Book. Our documentation of folk nomenclature based on 96 plant species in the Cistanche community, as a part of traditional knowledge associated with biodiversity, will be very helpful for making strategy of plant biodiversity conservation in Mongolia.
Collapse
Affiliation(s)
- Urtnasan Mandakh
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
| | - Munkhjargal Battseren
- Botanic Garden and Research Institute, Mongolian Academy of Sciences, Ulaanbaatar, 210351, Mongolia
| | - Danzanchadav Ganbat
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
- College of Geographical Science, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Turuutuvshin Ayanga
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
| | - Zolzaya Adiya
- Institute of Geography and Geoecology, Mongolian Academy of Sciences, Ulaanbaatar, 15170, Mongolia
- Department of Geography, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Almaz Borjigidai
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- School of Pharmacy, Minzu University of China, Beijing, 100081, China
- Corresponding author. Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China.
| | - Chunlin Long
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
- Corresponding author. College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
22
|
Sun X, Pei J, Lin YL, Li BL, Zhang L, Ahmad B, Huang LF. Revealing the Impact of the Environment on Cistanche salsa: From Global Ecological Regionalization to Soil Microbial Community Characteristics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8720-8731. [PMID: 32658471 DOI: 10.1021/acs.jafc.0c01568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To understand the regulatory relationship between the environment and Cistanche salsa, here we integrated the macro- and microdimension methods. From a macroperspective, the MaxEnt model indicated that countries along the Belt and Road Initiative, such as China, Egypt, and Libya, were particularly suitable for growth of C. salsa from ancient times (Last Glacial Maximum and mid-Holocene) to the future (2050 and 2070). The Jackknife test revealed that precipitation is an important ecological factor that affects C. salsa's distribution. From a microperspective, 16S rRNA amplicon sequencing data showed that the soil microbial communities of three ecotypes (desert-steppe, grassland, and gravel-desert) were significantly different (p < 0.001). Core microbiome analysis demonstrated that the bacterial genera Arthrobacter, Sphingomonas, and Bacillus were enriched core taxa of C. salsa. LEfSe and random forest were used to excavate the Gillisia (desert-steppe), Flavisolibacter (grassland), and Variibacter (gravel-desert) as biomarkers that can distinguish among microbial communities from the three ecotypes. The prediction profile showed that the metabolic function of the microbial community was enriched in metabolic pathways and environmental information processing. Correlation analyses revealed that the altitude, precipitation of the warmest quarter (bio18), mean diurnal range (bio2), and mean temperature of the warmest quarter (bio10) were important ecological factors that affect the composition of soil microbial communities. This work provided new insights into the regulatory relationship among the suitable distribution of C. salsa, soil microbial communities, and ecological drivers. Moreover, it deepened the understanding of the interaction between desert plants and ecological factors in arid environments.
Collapse
Affiliation(s)
- Xiao Sun
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jin Pei
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Yu-Lin Lin
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Bao-Li Li
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Li Zhang
- College of Science, Sichuan Agriculture University, Ya'an, Sichuan 625014, China
| | - Bashir Ahmad
- Center for Biotechnology & Microbiology, University of Peshawar, Peshawar 25000, Pakistan
| | - Lin-Fang Huang
- Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
23
|
Yang M, Li Z, Liu L, Bo A, Zhang C, Li M. Ecological niche modeling of Astragalus membranaceus var. mongholicus medicinal plants in Inner Mongolia, China. Sci Rep 2020; 10:12482. [PMID: 32719330 PMCID: PMC7385632 DOI: 10.1038/s41598-020-69391-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023] Open
Abstract
Radix Astragali is commonly used in traditional Chinese medicine, and its quality is closely related to ecological factors, such as climate and soil, in the production area. To provide high-quality Radix Astragali to Chinese and foreign markets, we used maximum entropy model and statistical analysis method, combined with data on ecological factors, Astragalus membranaceus var. mongholicus geographical distribution, and index component content to predict the ecological suitability distribution of A. membranaceus var. mongholicus and establish the relationship between astragaloside IV and calycosin-7-glucoside in this species and ecological factors. Subsequently, we could determine the suitability regionalization of high-quality A. membranaceus var. mongholicus in Inner Mongolia, China. The results showed that the standard deviation of seasonal changes in temperature (40.6%), precipitation in October (15.7%), vegetation type (14.3%), soil type (9.2%), and mean sunshine duration in the growing season (9.1%) were the top five most influential factors out of the 17 main ecological factors affecting the distribution of A. membranaceus var. mongholicus. The standard deviation of seasonal changes in temperature, precipitation in October, precipitation in April, soil pH, and mean sunshine duration in the growing season were found to be the key ecological factors affecting the accumulation of astragaloside IV and calycosin-7-glucoside in A. membranaceus var. mongholicus. The regions with the highest-quality A. membranaceus var. mongholicus were distributed in Baotou (Guyang County), Hohhot (Wuchuan County), and central Wulanchabu (Chahar Right Middle Banner, Chahar Right Back Banner, and Shangdu County) and its surroundings in Inner Mongolia. Baotou, Hohhot, and their surrounding areas were the main traditional production areas of A. membranaceus var. mongholicus, and central Wulanchabu was a potentially suitable distribution area of this species. The main production areas were consistent with the actual production base of A. membranaceus var. mongholicus. This study therefore provides a scientific basis to guide the cultivation of A. membranaceus var. mongholicus.
Collapse
Affiliation(s)
- Min Yang
- Department of Pharmacy, Baotou Medical College, Baotou, 014060, China
| | - Ziyan Li
- Department of Pharmacy, Baotou Medical College, Baotou, 014060, China
| | - Lanbo Liu
- Baotou Meteorological Bureau of Inner Mongolia Autonomous Region, Baotou, 014030, China
| | - Agula Bo
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, 014060, China
| | - Chunhong Zhang
- Department of Pharmacy, Baotou Medical College, Baotou, 014060, China.
- Inner Mongolia Key Laboratory of Chinese Medicinal Materials Resource, Baotou Medical College, Baotou, 014060, China.
| | - Minhui Li
- Department of Pharmacy, Baotou Medical College, Baotou, 014060, China.
- Pharmaceutical Laboratory, Inner Mongolia Institute of Traditional Chinese Medicine, Hohhot, 010020, China.
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
- Inner Mongolia Key Laboratory of Characteristic Geoherbs Resources Protection and Utilization, Baotou Medical College, Baotou, 014060, China.
| |
Collapse
|
24
|
Piwowarczyk R, Ochmian I, Lachowicz S, Kapusta I, Sotek Z, Błaszak M. Phytochemical parasite-host relations and interactions: A Cistanche armena case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137071. [PMID: 32069695 DOI: 10.1016/j.scitotenv.2020.137071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/21/2020] [Accepted: 01/31/2020] [Indexed: 05/20/2023]
Abstract
The holoparasitic genus Cistanche (Orobanchaceae) has been the most widely used and well known genus in traditional Chinese medicine for centuries. This is the first study that reports the phytochemical profile of Cistanche armena - an endemic species from Armenia and evaluates the composition and biological activity in relation to specific organs of the parasite (flowers vs stem with tuber) and its interaction with two host species: Alhagi maurorum (Fabaceae) and Salsola dendroides (Chenopodiaceae). We identified polyphenolic compounds using the UPLC-PDA-MS/MS method and quantified the antioxidative effects; inhibitory activities; polyphenol, nitrate III and nitrate V contents; ABTS+, DPPH, and FRAP activities; and colour parameters. A total of 28 polyphenolic compounds were tentatively identified. In C. armena, 9 compounds belonged to the phenylethanoid glycosides, mainly acteoside, B-hydroxyverbascoside and echinacoside, and in its hosts, 19 compounds belonged mainly to hydroxycinnamic acid and the flavanols. The profile of polyphenols in the host species was qualitatively and quantitatively different than the profile of the compounds in the parasite; this indicates the existence of a unique pathway of compound biosynthesis in the parasite. The colour and the amount and bioactivity of the polyphenolic compounds found in Cistanche were very diverse and depended on both the host plant and their location (organs) in the parasite. The stem and tuber of Cistanche hosted by Salsola had the highest polyphenol content, which was approximately 4 times higher than that in the stem and flowers of Cistanche individuals that parasitized A. maurorum. In addition, the stem and tuber of Cistanche that parasitized S. dendroides was characterized by the highest antioxidant activity (ABTS+, DPPH and FRAP) and high inhibitory activities. Conversely, the amount of polyphenols in the host Alhagi was 12 times higher than that in S. dendroides. These results highlight the importance of C. armena as a promising source of functional and bioactive ingredients (harvested from potential cultivation, not from natural endangered localities) and also draws the attention of future researchers to an important aspect regarding the parasite organ and the host's influence on the harvested material of various parasitic herbs.
Collapse
Affiliation(s)
- Renata Piwowarczyk
- Department of Microbiology and Parasitology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Street, 25-406 Kielce, Poland.
| | - Ireneusz Ochmian
- Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| | - Sabina Lachowicz
- Department of Fermentation and Cereals Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37 Street, 51-630 Wrocław, Poland.
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, Rzeszów University, Zelwerowicza 4 Street, 35-601 Rzeszów, Poland.
| | - Zofia Sotek
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 Street, 70-383 Szczecin, Poland.
| | - Magdalena Błaszak
- West Pomeranian University of Technology Szczecin, Department of Bioengineering, Słowackiego 17 Street, 71-434 Szczecin, Poland.
| |
Collapse
|