1
|
Miyamoto J, Ando Y, Yamano M, Nishida A, Murakami K, Kimura I. Acidipropionibacterium acidipropionici, a propionate-producing bacterium, contributes to GPR41 signaling and metabolic regulation in high-fat diet-induced obesity in mice. Front Nutr 2025; 12:1542196. [PMID: 40248033 PMCID: PMC12003125 DOI: 10.3389/fnut.2025.1542196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Obesity is a major healthcare problem worldwide and is induced by excess energy intake, resulting in gut microbial composition and microbial diversity changes. Through fermentation of dietary fibers, short-chain fatty acids (SCFAs) act as host energy sources and signaling molecules via G protein-coupled receptors such as GPR41. Acidipropionibacterium acidipropionici is widely used in many applications; however, in vivo studies on the beneficial effect of A. acidipropionici via propionate production and host energy homeostasis are unclear. Therefore, this study aimed to investigate the beneficial metabolic effects of A. acidipropionici by focusing on GPR41 signaling in a high-fat diet (HFD)-induced obesity mouse model. Here, we demonstrated that A. acidipropionici OB7439 improved host metabolism in HFD-induced obesity in mice. The intake of A. acidipropionici OB7439 improved metabolism in HFD-induced obese mice by increasing propionate production, regulating glucose tolerance, and inhibiting hepatic inflammation via GPR41 signaling. Our findings shed light on the potential of using A. acidipropionici OB7439 as an SCFA producer for the prevention and treatment of metabolic disorders. Based on these results, we suggest that A. acidipropionici may be a potential therapeutic bacterium that inhibits obesity and modulates the gut microbial community.
Collapse
Affiliation(s)
- Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Yuna Ando
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Mayu Yamano
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akari Nishida
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kota Murakami
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Department of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Lee SB, Yoo B, Baeg C, Yun J, Ryu DW, Kim G, Kim S, Shin H, Lee JH. A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Efficacy and Safety of Lactobacillus plantarum LMT1-48 on Body Fat Loss. Nutrients 2025; 17:1191. [PMID: 40218949 PMCID: PMC11990557 DOI: 10.3390/nu17071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVES This study aims to evaluate the efficacy and safety of probiotics for body fat reduction in obese individuals. METHODS A total of 106 participants with a body mass index between 25 and 30 kg/m2 were randomly assigned to either the experimental group treating with Lactobacillus plantarum LMT1-48 or the placebo group in the placebo-controlled clinical trial. Body composition was assessed by dual-energy X-ray absorptiometry and computed tomography. Fecal samples between the groups were contrasted via DNA sequencing for evaluation of the microbiota and its diversity. RESULTS After 12 weeks of follow-up period, the body fat mass decreased significantly, from 30.0 ± 4.4 to 28.3 ± 4.1 kg in the experimental group (p = 0.009). The percentage of body fat in the two groups showed a similar trend (p = 0.004). CONCLUSIONS LMT1-48 also positively influenced the microbial taxa linked to obesity analyzed by gut microbiome sequencing. LMT1-48 is a safe and collaborative agent to reduce obesity.
Collapse
Affiliation(s)
- Sung-Bum Lee
- Department of Family Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 22972, Republic of Korea;
| | - Byungwook Yoo
- Department of Family Medicine, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea;
| | - Chaemin Baeg
- Global Medical Research Center, Seoul 06526, Republic of Korea
| | - Jiae Yun
- Gwanggyo R&D Center, Medytox Inc., Suwon 16506, Republic of Korea; (J.Y.); (D.-w.R.)
| | - Dong-wook Ryu
- Gwanggyo R&D Center, Medytox Inc., Suwon 16506, Republic of Korea; (J.Y.); (D.-w.R.)
| | - Gyungcheon Kim
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.K.); (S.K.); (H.S.)
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Seongok Kim
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.K.); (S.K.); (H.S.)
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Hakdong Shin
- Department of Food Science & Biotechnology, College of Life Science, Sejong University, Seoul 05006, Republic of Korea; (G.K.); (S.K.); (H.S.)
- Carbohydrate Bioproduct Research Center, College of Life Science, Sejong University, Seoul 05006, Republic of Korea
| | - Ju Hee Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Kunasol C, Chattipakorn N, Chattipakorn SC. Impact of calcineurin inhibitors on gut microbiota: Focus on tacrolimus with evidence from in vivo and clinical studies. Eur J Pharmacol 2025; 987:177176. [PMID: 39637933 DOI: 10.1016/j.ejphar.2024.177176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Calcineurin Inhibitors (CNIs), including tacrolimus and cyclosporine A, are the most widely used immunosuppressive drugs in solid organ transplantation. Those drugs play a pivotal role in preventing graft rejection and reducing autoimmunity. However, recent studies indicate that CNIs can disrupt the composition of gut microbiota or result in "gut dysbiosis". This dysbiosis has been shown to be a significant factor in reducing host immunity by decreasing innate immune cells and impairing metabolic regulation, leading to lipid and glucose accumulation. Several in vivo and clinical studies have demonstrated a mechanistic link between gut dysbiosis and the side effects of CNI. Those studies have unveiled that gut dysbiosis induced by CNIs contributes to adverse effects such as hyperglycemia, nephrotoxicity, and diarrhea. These adverse effects of the induced gut dysbiosis require interventions to restore microbial balance. Probiotics and dietary supplements have emerged as potential interventions to mitigate the side effects of gut dysbiosis caused by CNIs. In this complex relationship between CNI treatment, gut dysbiosis, and interventions, several types of gut microbiota and host immunity are involved. However, the mechanisms underlying these relationships remain elusive. Therefore, the aim of this review is to comprehensively summarize and discuss the major findings from in vivo and clinical data regarding the impact of treatment with CNIs on gut microbiota. This review also explores interventions to mitigate dysbiosis for therapeutic approaches of the side effects of CNIs. The possible underlying mechanisms of CNIs-induced gut dysbiosis with or without interventions are also presented and discussed.
Collapse
Affiliation(s)
- Chanon Kunasol
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Cardiac Electrophysiology Research Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
4
|
Yang B, Wang W, Jian C, Lv B, He H, Wang M, Li S, Guo Y. Screening of the Lipid-Lowering Probiotic Lactiplantibacillus Plantarum SDJ09 and its Anti-Obesity Mechanism. Appl Biochem Biotechnol 2025; 197:35-54. [PMID: 39093349 DOI: 10.1007/s12010-024-05034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
In this study, 39 strains of lactic acid bacteria were screened from several fermented foods. Based on the evaluation of functional and prebiotic properties, Lactiplantibacillus plantarum SDJ09 was selected as a promising candidate. It gave a 48.16% cholesterol reduction and 33.73% pancreatic lipase inhibition in cells; exhibited high resistance to acid, bile salts, and gastrointestinal fluid; and had strong antibacterial activity and high adhesion capabilities. More importantly, the lipid-lowering effect of L. plantarum SDJ09 was also investigated using 3T3-L1 mature adipocytes and HepG2 nonalcoholic fatty liver disease models. L. plantarum SDJ09 effectively decreased triglyceride accumulation by more than 50% in both cell models, in which the expression of PPARγ, C/EBPα, aP2, and LPL in 3T3-L1 cells was significantly downregulated by L. plantarum SDJ09. L. plantarum SDJ09 also improved lipid metabolism by downregulating the expression of HMGCR, SREBP-1c, ACC, and FAS and upregulating the expression of CYP7A1 in HepG2 nonalcoholic steatohepatitis cells. Therefore, L. plantarum SDJ09 has the potential to effectively decrease obesity and non-alcoholic fatty liver disease (NAFLD) by inhibiting lipid accumulation, providing a prospective probiotic agent for anti-obesity.
Collapse
Affiliation(s)
- Baoxin Yang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Wenxuan Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Cuiwen Jian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Beibei Lv
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Hailin He
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning, 530004, China.
| |
Collapse
|
5
|
Liu Q, Ding P, Zhu Y, Wang C, Yin L, Zhu J, Nie S, Wang S, Zheng C, Shen H, Mo F. Super Astragalus polysaccharide in specific gut microbiota metabolism alleviates chronic unpredictable mild stress-induced cognitive deficits mice. Int J Biol Macromol 2024; 283:137394. [PMID: 39521210 DOI: 10.1016/j.ijbiomac.2024.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Chronic stress affects intestinal microbiota. Astragaloside IV (AS), called super Astragalus polysaccharide, is a monomer component of traditional herbs Astragalus membranaceus which belongs to medicinal food homology (MFH), exerts a neuroprotection effect, but the underlying mechanism has not yet been elucidated. Intestinal flora is also involved in the biotransformation of the active ingredients of MFH species, thus affecting their physiological and pharmacological properties. In this study, we found that AS improved CUMS-induced cognitive impairment, inhibited neuroinflammation, and restored intestinal barrier damage, but the improvement was suppressed by the elimination of gut microbiota, suggesting a key regulatory role for the microbiota. The results of 16S rDNA sequencing showed that AS treatment significantly increased the relative abundance of Lactobacillus reuteri (L. reuteri) and Bacteroides acidifaciens. Furthermore, supplementation of L. reuteri rather than Lactobacillus plantarum restored the effect of AS-supplied dysbiosis mice via inhibition of inflammatory repose and the maintenance of the intestinal epithelial barrier, indicating that dietary AS requires L. reuteri to ameliorate cognitive injury. These findings provide evidence for new therapeutic strategies to treat chronic stress and support the role of specific bacteria in the intestinal environment that metabolizes the AS.
Collapse
Affiliation(s)
- Qing Liu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Peng Ding
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; Department of Anesthesiology, PLA 983 Hospital, Tianjin 300143, China
| | - Ying Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Chenxu Wang
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Lifeng Yin
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhu
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shi Wang
- Department of Neurology, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Chengjian Zheng
- Faculty of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
6
|
Jang AR, Jung DH, Lee TS, Kim JK, Lee YB, Lee JY, Kim SY, Yoo YC, Ahn JH, Hong EH, Kim CW, Kim SM, Yoo HH, Huh JY, Ko HJ, Park JH. Lactobacillus plantarum NCHBL-004 modulates high-fat diet-induced weight gain and enhances GLP-1 production for blood glucose regulation. Nutrition 2024; 128:112565. [PMID: 39326237 DOI: 10.1016/j.nut.2024.112565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES This study investigated the therapeutic potential of Lactobacillus plantarum NCHBL-004 (NCHBL-004) in the treatment of obesity and associated metabolic disorders. METHODS Mice were fed either a normal diet (ND) or a high-fat diet (HFD) with oral administration of NCHBL-004. After euthanasia, blood, liver and adipose tissue were collected. Furthermore, the microbiome and short-chain fatty acids (SCFAs) were analyzed from feces. RESULTS Oral administration of live NCHBL-004 to mice fed a HFD resulted in notable reductions in weight gain, improvements in glucose metabolism, and maintenance of balanced lipid levels. A comparative analysis with other Lactobacillus strains highlighted the superior efficacy of NCHBL-004. Moreover, heat-killed NCHBL-004 demonstrated beneficial effects similar to those of live NCHBL-004. Additionally, administration of live NCHBL-004 induced glucagon-like peptide 1 (GLP-1) production and increased the levels of short-chain fatty acids (SCFAs), including acetate and propionate, in feces, positively influencing liver lipid metabolism and mitigating inflammation. Consistent with this, analysis of the gut microbiome following NCHBL-004 administration showed increases in SCFA-producing microbes with increased proportions of Lactobacillus spp. and a significant increase in the proportion of microbes capable of promoting GLP-1 secretion. CONCLUSIONS These findings underscore the potential of both live and inactivated NCHBL-004 as potential therapeutic approaches to managing obesity and metabolic disorders, suggesting avenues for further investigation and clinical applications.
Collapse
Affiliation(s)
- Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Yu-Bin Lee
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Young Lee
- Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - So-Yeon Kim
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Yung-Choon Yoo
- Department of Microbiology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eun-Hye Hong
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chae-Won Kim
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Su Min Kim
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hye Hyun Yoo
- Pharmacomicrobiomics Research Center, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; KNU Researcher training program for Innovative Drug Development Research Team for Intractable Diseases (BK21 plus), Kangwon National University, Chuncheon 24341, Republic of Korea; Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Animal Medical Institute, Chonnam National University, Gwangju 61186, Republic of Korea; Nodcure, INC., 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea.
| |
Collapse
|
7
|
Islam MM, Mahbub NU, Hong ST, Chung HJ. Gut bacteria: an etiological agent in human pathological conditions. Front Cell Infect Microbiol 2024; 14:1291148. [PMID: 39439902 PMCID: PMC11493637 DOI: 10.3389/fcimb.2024.1291148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Through complex interactions with the host's immune and physiological systems, gut bacteria play a critical role as etiological agents in a variety of human diseases, having an impact that extends beyond their mere presence and affects the onset, progression, and severity of the disease. Gaining a comprehensive understanding of these microbial interactions is crucial to improving our understanding of disease pathogenesis and creating tailored treatment methods. Correcting microbial imbalances may open new avenues for disease prevention and treatment approaches, according to preliminary data. The gut microbiota exerts an integral part in the pathogenesis of numerous health conditions, including metabolic, neurological, renal, cardiovascular, and gastrointestinal problems as well as COVID-19, according to recent studies. The crucial significance of the microbiome in disease pathogenesis is highlighted by this role, which is comparable to that of hereditary variables. This review investigates the etiological contributions of the gut microbiome to human diseases, its interactions with the host, and the development of prospective therapeutic approaches. To fully harness the benefits of gut microbiome dynamics for improving human health, future research should address existing methodological challenges and deepen our knowledge of microbial interactions.
Collapse
Affiliation(s)
- Md Minarul Islam
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Nasir Uddin Mahbub
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Hea-Jong Chung
- Gwangju Center, Korea Basic Science Institute, Gwangju, Republic of Korea
| |
Collapse
|
8
|
Qiu Y, Wu L, Zhou W, Wang F, Li N, Wang H, He R, Tian Y, Liu Z. Day and Night Reversed Feeding Aggravates High-Fat Diet-Induced Abnormalities in Intestinal Flora and Lipid Metabolism in Adipose Tissue of Mice. J Nutr 2024; 154:2772-2783. [PMID: 38880175 DOI: 10.1016/j.tjnut.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND The incongruity between dietary patterns and the circadian clock poses an elevated risk for metabolic health issues, particularly obesity and associated metabolic disorders. The intestinal microflora engages in regulating various physiological functions of the host through its metabolites. OBJECTIVES This study aimed to investigate the impact of reversed feeding schedules during the day and night on intestinal flora and lipid metabolism in high-fat diet-induced obese mice. METHODS Mice aged 8-10 wk were subjected to either daytime or nighttime feeding and were administered a control or high-fat diet for 18 wk. At the end of the experiment, various assessments were conducted, including analysis of serum biochemic indices, histologic examination, evaluation of gene and protein expression in adipose tissue, and scrutiny of changes in intestinal microbial composition. RESULTS The results showed that day-night reversed feeding caused an increase in fasting blood glucose and exacerbated the high-fat diet-induced weight gain and lipid abnormalities. The mRNA expression levels of Leptin and Dgat1 were increased by day-night reversed feeding, which also reduced the expression level of adiponectin under the high-fat diet. Additionally, there was a significant increase in the protein concentrations of PPARγ, SREBP1c, and CD36. Inverted feeding schedules led to a reduction in intestinal microbial diversity, an increase in the abundance of inflammation-related bacteria, such as Coriobacteriaceae_UCG-002, and a suppression of beneficial bacteria, including Akkermansia, Candidatus_Saccharimonas, Anaeroplasma, Bifidobacterium, Carnobacterium, and Odoribacter. Acinetobacter exhibited a significant negative correlation with Leptin and Fasn, suggesting potential involvement in the regulation of lipid metabolism. CONCLUSIONS The results elucidated the abnormalities of lipid metabolism and intestinal flora caused by day-night reversed feeding, which exacerbates the adverse effects of a high-fat diet on lipid metabolism and intestinal microflora. This reversal in feeding patterns may disrupt both intestinal and lipid metabolism homeostasis by altering the composition and abundance of intestinal microflora in mice.
Collapse
Affiliation(s)
- Yi Qiu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Libang Wu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Wenting Zhou
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Fangyi Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Na Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Hualin Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Yu Tian
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| | - Zhiguo Liu
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
9
|
Lee K, Kim HJ, Kim JY, Shim JJ, Lee JH. A Mixture of Lactobacillus HY7601 and KY1032 Regulates Energy Metabolism in Adipose Tissue and Improves Cholesterol Disposal in High-Fat-Diet-Fed Mice. Nutrients 2024; 16:2570. [PMID: 39125449 PMCID: PMC11314552 DOI: 10.3390/nu16152570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024] Open
Abstract
We aimed to characterize the anti-obesity and anti-atherosclerosis effects of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 using high-fat diet (HFD)-fed obese C57BL/6 mice. We divided the mice into control (CON), HFD, HFD with 108 CFU/kg/day probiotics (HFD + KL, HY7301:KY1032 = 1:1), and HFD with 109 CFU/kg/day probiotics (HFD + KH, HY7301:KY1032 = 1:1) groups and fed/treated them during 7 weeks. The body mass, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), and epididymal white adipose tissue (eWAT) masses and the total cholesterol and triglyceride concentrations were remarkably lower in probiotic-treated groups than in the HFD group in a dose-dependent manner. In addition, the expression of uncoupling protein 1 in the BAT, iWAT, and eWAT was significantly higher in probiotic-treated HFD mice than in the HFD mice, as demonstrated by immunofluorescence staining and Western blotting. We also measured the expression of cholesterol transport genes in the liver and jejunum and found that the expression of those encoding liver-X-receptor α, ATP-binding cassette transporters G5 and G8, and cholesterol 7α-hydroxylase were significantly higher in the HFD + KH mice than in the HFD mice. Thus, a Lactobacillus HY7601 and KY1032 mixture with 109 CFU/kg/day concentration can assist with body weight regulation through the management of lipid metabolism and thermogenesis.
Collapse
Affiliation(s)
| | | | - Joo-Yun Kim
- R&BD Center, Hy Co., Ltd., 22 Giheungdanji-ro 24 Beon-gil, Giheung-gu, Yongin-si 17086, Republic of Korea; (K.L.); (H.-J.K.); (J.-J.S.); (J.-H.L.)
| | | | | |
Collapse
|
10
|
Ho PY, Chou YC, Koh YC, Lin WS, Chen WJ, Tseng AL, Gung CL, Wei YS, Pan MH. Lactobacillus rhamnosus 069 and Lactobacillus brevis 031: Unraveling Strain-Specific Pathways for Modulating Lipid Metabolism and Attenuating High-Fat-Diet-Induced Obesity in Mice. ACS OMEGA 2024; 9:28520-28533. [PMID: 38973907 PMCID: PMC11223209 DOI: 10.1021/acsomega.4c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 07/09/2024]
Abstract
Obesity is a global health crisis, marked by excessive fat in tissues that function as immune organs, linked to microbiota dysregulation and adipose inflammation. Investigating the effects of Lactobacillus rhamnosus SG069 (LR069) and Lactobacillus brevis SG031 (LB031) on obesity and lipid metabolism, this research highlights adipose tissue's critical immune-metabolic role and the probiotics' potential against diet-induced obesity. Mice fed a high-fat diet were treated with either LR069 or LB031 for 12 weeks. Administration of LB031 boosted lipid metabolism, indicated by higher AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) phosphorylation, and increased the M2/M1 macrophage ratio, indicating LB031's anti-inflammatory effect. Meanwhile, LR069 administration not only led to significant weight loss by enhancing lipolysis which evidenced by increased phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) but also elevated Akkermansia and fecal acetic acid levels, showing the gut microbiota's pivotal role in its antiobesity effects. LR069 and LB031 exhibit distinct effects on lipid metabolism and obesity, underscoring their potential for precise interventions. This research elucidates the unique impacts of these strains on metabolic health and highlights the intricate relationship between gut microbiota and obesity, advancing our knowledge of probiotics' therapeutic potential.
Collapse
Affiliation(s)
- Pin-Yu Ho
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Ya-Chun Chou
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Yen-Chun Koh
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
| | - Wei-Sheng Lin
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Food Science, National Quemoy University, Quemoy County 89250, Taiwan, ROC
| | - Wei-Jen Chen
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Ai-Lun Tseng
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Chiau-Ling Gung
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Yu-Shan Wei
- Syngen
Biotech Co., Ltd., Building
A, No. 154, Kaiyuan Rd., Sinying, Tainan 73055, Taiwan
| | - Min-Hsiung Pan
- Institute
of Food Science and Technology, National
Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan, ROC
- Department
of Public Health, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC
- Department
of Food Nutrition and Health Biotechnology, Asia University, 500,
Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| |
Collapse
|
11
|
Huff LK, Amurgis CM, Kokai LE, Abbott RD. Optimization and validation of a fat-on-a-chip model for non-invasive therapeutic drug discovery. Front Bioeng Biotechnol 2024; 12:1404327. [PMID: 38988864 PMCID: PMC11235003 DOI: 10.3389/fbioe.2024.1404327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/24/2024] [Indexed: 07/12/2024] Open
Abstract
Obesity is a significant public health concern that is closely associated with various comorbidities such as heart disease, stroke, type II diabetes (T2D), and certain cancers. Due to the central role of adipose tissue in many disease etiologies and the pervasive nature in the body, engineered adipose tissue models are essential for drug discovery and studying disease progression. This study validates a fat-on-a-chip (FOAC) model derived from primary mature adipocytes. Our FOAC model uses a Micronit perfusion device and introduces a novel approach for collecting continuous data by using two non-invasive readout techniques, resazurin and glucose uptake. The Micronit platform proved to be a reproducible model that can effectively maintain adipocyte viability, metabolic activity, and basic functionality, and is capable of mimicking physiologically relevant responses such as adipocyte hypertrophy and insulin-mediated glucose uptake. Importantly, we demonstrate that adipocyte size is highly dependent on extracellular matrix properties, as adipocytes derived from different patients with variable starting lipid areas equilibrate to the same size in the hyaluronic acid hydrogel. This model can be used to study T2D and monitor adipocyte responses to insulin for longitudinally tracking therapeutic efficacy of novel drugs or drug combinations.
Collapse
Affiliation(s)
- Lindsey K. Huff
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Charles M. Amurgis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren E. Kokai
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
12
|
Tan CY, Jiang D, Theriot BS, Rao MV, Surana NK. A commensal-derived sugar protects against metabolic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598703. [PMID: 38915674 PMCID: PMC11195190 DOI: 10.1101/2024.06.12.598703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Obesity is a worsening global epidemic that is regulated by the microbiota through unknown bacterial factors. We discovered a human-derived commensal bacterium, Clostridium immunis , that protects against metabolic disease by secreting a phosphocholine-modified exopolysaccharide. Genetic interruption of the phosphocholine biosynthesis locus ( licABC ) results in a functionally inactive exopolysaccharide, which demonstrates the critical requirement for this phosphocholine moiety. This C. immunis exopolysaccharide acts via group 3 innate lymphoid cells and modulating IL-22 levels, which results in a reduction in serum triglycerides, body weight, and visceral adiposity. Importantly, phosphocholine biosynthesis genes are less abundant in humans with obesity or hypertriglyceridemia, findings that suggest the role of bacterial phosphocholine is conserved across mice and humans. These results define a bacterial molecule-and its key structural motif-that regulates host metabolism. More broadly, they highlight how small molecules, such as phosphocholine, may help fine-tune microbiome- immune-metabolism interactions.
Collapse
|
13
|
Murali SK, Mansell TJ. Next generation probiotics: Engineering live biotherapeutics. Biotechnol Adv 2024; 72:108336. [PMID: 38432422 DOI: 10.1016/j.biotechadv.2024.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The population dynamics of the human microbiome have been associated with inflammatory bowel disease, cancer, obesity, autoimmune diseases, and many other human disease states. An emerging paradigm in treatment is the administration of live engineered organisms, also called next-generation probiotics. However, the efficacy of these microbial therapies can be limited by the organism's overall performance in the harsh and nutrient-limited environment of the gut. In this review, we summarize the current state of the art use of bacterial and yeast strains as probiotics, highlight the recent development of genetic tools for engineering new therapeutic functions in these organisms, and report on the latest therapeutic applications of engineered probiotics, including recent clinical trials. We also discuss the supplementation of prebiotics as a method of manipulating the microbiome and improving the overall performance of engineered live biotherapeutics.
Collapse
Affiliation(s)
- Sanjeeva Kumar Murali
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Thomas J Mansell
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA; Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Kober AKMH, Saha S, Ayyash M, Namai F, Nishiyama K, Yoda K, Villena J, Kitazawa H. Insights into the Anti-Adipogenic and Anti-Inflammatory Potentialities of Probiotics against Obesity. Nutrients 2024; 16:1373. [PMID: 38732619 PMCID: PMC11085650 DOI: 10.3390/nu16091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Functional foods with probiotics are safe and effective dietary supplements to improve overweight and obesity. Thus, altering the intestinal microflora may be an effective approach for controlling or preventing obesity. This review aims to summarize the experimental method used to study probiotics and obesity, and recent advances in probiotics against obesity. In particular, we focused on studies (in vitro and in vivo) that used probiotics to treat obesity and its associated comorbidities. Several in vitro and in vivo (animal and human clinical) studies conducted with different bacterial species/strains have reported that probiotics promote anti-obesity effects by suppressing the differentiation of pre-adipocytes through immune cell activation, maintaining the Th1/Th2 cytokine balance, altering the intestinal microbiota composition, reducing the lipid profile, and regulating energy metabolism. Most studies on probiotics and obesity have shown that probiotics are responsible for a notable reduction in weight gain and body mass index. It also increases the levels of anti-inflammatory adipokines and decreases those of pro-inflammatory adipokines in the blood, which are responsible for the regulation of glucose and fatty acid breakdown. Furthermore, probiotics effectively increase insulin sensitivity and decrease systemic inflammation. Taken together, the intestinal microbiota profile found in overweight individuals can be modified by probiotic supplementation which can create a promising environment for weight loss along enhancing levels of adiponectin and decreasing leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, and transforming growth factor (TGF)-β on human health.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh;
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan;
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| |
Collapse
|
15
|
Das TK, Kar P, Panchali T, Khatun A, Dutta A, Ghosh S, Chakrabarti S, Pradhan S, Mondal KC, Ghosh K. Anti-obesity potentiality of Lactiplantibacillus plantarum E2_MCCKT isolated from a fermented beverage, haria: a high fat diet-induced obese mice model study. World J Microbiol Biotechnol 2024; 40:168. [PMID: 38630156 DOI: 10.1007/s11274-024-03983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Obesity is a growing epidemic worldwide. Several pharmacologic drugs are being used to treat obesity but these medicines exhibit side effects. To find out the alternatives of these drugs, we aimed to assess the probiotic properties and anti-obesity potentiality of a lactic acid bacterium E2_MCCKT, isolated from a traditional fermented rice beverage, haria. Based on the 16S rRNA sequencing, the bacterium was identified as Lactiplantibacillus plantarum E2_MCCKT. The bacterium exhibited in vitro probiotic activity in terms of high survivability in an acidic environment and 2% bile salt, moderate auto-aggregation, and hydrophobicity. Later, E2_MCCKT was applied to obese mice to prove its anti-obesity potentiality. Adult male mice (15.39 ± 0.19 g) were randomly divided into three groups (n = 5) according to the type of diet: normal diet (ND), high-fat diet (HFD), and HFD supplemented with E2_MCCKT (HFT). After four weeks of bacterial treatment on the obese mice, a significant reduction of body weight, triglyceride, and cholesterol levels, whereas, improvements in serum glucose levels were observed. The bacterial therapy led to mRNA up-regulation of lipolytic transcription factors such as peroxisome proliferator-activated receptor-α which may increase the expression of fatty acid oxidation-related genes such as acyl-CoA oxidase and carnitine palmitoyl-transferase-1. Concomitantly, both adipocytogenesis and fatty acid synthesis were arrested as reflected by the down-regulation of sterol-regulatory element-binding protein-1c, acetyl-CoA carboxylase, and fatty acid synthase genes. In protein expression study, E2_MCCKT significantly increased IL-10 expression while decreasing pro-inflammatory cytokine (IL-1Ra and TNF-α) expression. In conclusion, the probiotic Lp. plantarum E2_MCCKT might have significant anti-obesity effects on mice.
Collapse
Affiliation(s)
- Tridip Kumar Das
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Priyanka Kar
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Titli Panchali
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Amina Khatun
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Ananya Dutta
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Smita Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
- Biodiversity and Environmental Studies Research Center, Midnapore City College Affiliated to Vidyasagar University, Midnapore, West Bengal, India
| | - Sudipta Chakrabarti
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Shrabani Pradhan
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Kuntal Ghosh
- Department of Biological Sciences, Midnapore City College, Midnapore, 721129, West Bengal, India.
| |
Collapse
|
16
|
Moreira ALG, Silva GA, Silva PHF, Salvador SL, Vicente RM, Ferreira GC, Tanus-Santos JE, Mayer MPA, Ishikawa KH, de Souza SLS, Furlaneto FAC, Messora MR. Bifidobacterium animalis subspecies lactis HN019 can reduce the sequelae of experimental periodontitis in rats modulating intestinal parameters, expression of lipogenic genes, and levels of hepatic steatosis. J Periodontal Res 2023; 58:1006-1019. [PMID: 37482954 DOI: 10.1111/jre.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Giselle A Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raphael M Vicente
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
YAMASAKI M, MIYAMOTO Y, OGAWA K, NISHIYAMA K, TSEND-AYUSH C, LI Y, MATSUSAKI T, NAKANO T, TAKESHITA M, ARIMA Y. Lactiplantibacillus plantarum 06CC2 upregulates intestinal ZO-1 protein and bile acid metabolism in Balb/c mice fed high-fat diet. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:13-22. [PMID: 38188659 PMCID: PMC10767321 DOI: 10.12938/bmfh.2023-002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/11/2023] [Indexed: 01/09/2024]
Abstract
The effects of Lactiplantibacillus plantarum 06CC2 (LP06CC2), which was isolated from a Mongolian dairy product, on lipid metabolism and intestinal tight junction-related proteins in Balb/c mice fed a high-fat diet (HFD) were evaluated. The mice were fed the HFD for eight weeks, and the plasma and hepatic lipid parameters, as well as the intestinal tight junction-related factors, were evaluated. LP06CC2 slightly reduced the adipose tissue mass. Further, it dose-dependently decreased plasma total cholesterol (TC). The HFD tended to increase the plasma level of endotoxin and suppressed intestinal ZO-1 expression, whereas a low LP06CC2 dose increased ZO-1 expression and tended to reduce the plasma lipopolysaccharide level. Furthermore, a low LP06CC2 dose facilitated a moderate accumulation of Lactobacillales, a significant decrease in Clostridium cluster IV, and an increase in Clostridium cluster XVIII. The results obtained from analyzing the bile acids (BAs) in feces and cecum contents exhibited a decreasing trend for secondary and conjugated BAs in the low LP06CC2-dose group. Moreover, a high LP06CC2 dose caused excess accumulation of Lactobacillales and failed to increase intestinal ZO-1 and occludin expression, while the fecal butyrate level increased dose dependently in the LP06CC2-fed mice. Finally, an appropriate LP06CC2 dose protected the intestinal barrier function from the HFD and modulated BA metabolism.
Collapse
Affiliation(s)
- Masao YAMASAKI
- Graduate School of Agriculture, University of Miyazaki, 1-1
Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Yuko MIYAMOTO
- Graduate School of Agriculture, University of Miyazaki, 1-1
Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Kenjirou OGAWA
- Organization for Promotion of Tenure Track, University of
Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Kazuo NISHIYAMA
- Graduate School of Agriculture, University of Miyazaki, 1-1
Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Chuluunbat TSEND-AYUSH
- School of Industrial Technology, Mongolian University of
Science and Technology, P.O. Box-46/520, Baga Toiruu, Sukhbaatar district, Ulaanbaatar-46,
Mongolia
| | - Yiran LI
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Tatsuya MATSUSAKI
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Tomoki NAKANO
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Masahiko TAKESHITA
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| | - Yuo ARIMA
- Research and Development Division, Minami Nihon Rakuno Kyodo
Co., Ltd., 5282 Takagi, Miyakonojo, Miyazaki 885-0003, Japan
| |
Collapse
|
18
|
Oh SJ, Cho YG, Kim DH, Hwang YH. Effect of Lactobacillus sakei OK67 in Reducing Body and Visceral Fat in Lifestyle-Modified Overweight Individuals: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:3074. [PMID: 37447399 DOI: 10.3390/nu15133074] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity is a global health problem that affects the quality of life. It is a multidimensional chronic risk factor for major medical conditions, such as cardiovascular diseases, diabetes, and cancer. This clinical trial evaluated the efficacy of Lactobacillus sakei OK67 (DW2010), a lactic acid bacterium, in reducing body and visceral fat in overweight individuals (body mass index ≥25 kg/m2 and <30 kg/m2), aged 20-60 years. A total of 100 subjects placed in a lifestyle modification program were randomly assigned to receive either DW2010 (2.0 g/day, 1.0 × 1010 CFU) or a placebo for 12 weeks. The efficacy of DW2010 was evaluated by measuring body fat mass using dual-energy X-ray absorptiometry and visceral fat area using computed tomography. After 12 weeks, the change in body fat in the DW2010 group was not markedly different from that in the placebo group. However, visceral fat area decreased more in the DW2010 group than in the placebo group (p = 0.035). During the clinical trial, no major adverse events were reported. Moreover, no statistical differences were observed in the biochemical parameters of the DW2010 and placebo groups. Overall, we concluded that the intake of DW2010 for 12 weeks is safe and potentially reduces visceral fat in lifestyle-modified overweight subjects.
Collapse
Affiliation(s)
- Seong-Jun Oh
- DONGWHA Pharm Research Institute, 35-71, Topsil-ro, Giheung-gu, Yongin-si 17084, Republic of Korea
| | - Young-Gyu Cho
- Department of Family Medicine, Seoul Paik Hospital, College of Medicine, Inje University, 9, Mareunnae-ro, Jung-gu, Seoul 04551, Republic of Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yun-Ha Hwang
- DONGWHA Pharm Research Institute, 35-71, Topsil-ro, Giheung-gu, Yongin-si 17084, Republic of Korea
| |
Collapse
|
19
|
Modulatory effects of Lactiplantibacillus plantarum on chronic metabolic diseases. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Han HS, Soundharrajan I, Valan Arasu M, Kim D, Choi KC. Leuconostoc Citreum Inhibits Adipogenesis and Lipogenesis by Inhibiting p38 MAPK/Erk 44/42 and Stimulating AMPKα Signaling Pathways. Int J Mol Sci 2023; 24:7367. [PMID: 37108530 PMCID: PMC10138540 DOI: 10.3390/ijms24087367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics provide a range of health benefits. Several studies have shown that using probiotics in obesity treatment can reduce bodyweight. However, such treatments are still restricted. Leuconostoc citreum, an epiphytic bacterium, is widely used in a variety of biological applications. However, few studies have investigated the role of Leuconostoc spp. in adipocyte differentiation and its molecular mechanisms. Therefore, the objective of this study was to determine the effects of cell-free metabolites of L. citreum (LSC) on adipogenesis, lipogenesis, and lipolysis in 3T3-L1 adipocytes. The results showed that LSC treatment reduced the accumulation of lipid droplets and expression levels of CCAAT/ enhancer-binding protein-α & β (C/EBP-α & β), peroxisome proliferator-activated receptor-γ (PPAR-γ), serum regulatory binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), resistin, pp38MAPK, and pErk 44/42. However, compared to control cells, adiponectin, an insulin sensitizer, was elevated in adipocytes treated with LSC. In addition, LSC treatment increased lipolysis by increasing pAMPK-α and suppressing FAS, ACC, and PPAR-γ expression, similarly to the effects of AICAR, an AMPK agonist. In conclusion, L. citreum is a novel probiotic strain that can be used to treat obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Hyo-Shim Han
- Department of Biotechnology, Sunchon University, Suncheon 57922, Republic of Korea;
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Jeonju 55365, Republic of Korea
| | - Ki-Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| |
Collapse
|
21
|
Lee JH, Woo KJ, Hong J, Han KI, Kim HS, Kim TJ. Heat-Killed Enterococcus faecalis Inhibit FL83B Hepatic Lipid Accumulation and High Fat Diet-Induced Fatty Liver Damage in Rats by Activating Lipolysis through the Regulation the AMPK Signaling Pathway. Int J Mol Sci 2023; 24:ijms24054486. [PMID: 36901915 PMCID: PMC10002555 DOI: 10.3390/ijms24054486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Continuous consumption of high-calorie meals causes lipid accumulation in the liver and liver damage, leading to non-alcoholic fatty liver disease (NAFLD). A case study of the hepatic lipid accumulation model is needed to identify the mechanisms underlying lipid metabolism in the liver. In this study, the prevention mechanism of lipid accumulation in the liver of Enterococcus faecalis 2001 (EF-2001) was extended using FL83B cells (FL83Bs) and high-fat diet (HFD)-induced hepatic steatosis. EF-2001 treatment inhibited the oleic acid (OA) lipid accumulation in FL83B liver cells. Furthermore, we performed lipid reduction analysis to confirm the underlying mechanism of lipolysis. The results showed that EF-2001 downregulated proteins and upregulated AMP-activated protein kinase (AMPK) phosphorylation in the sterol regulatory element-binding protein 1c (SREBP-1c) and AMPK signaling pathways, respectively. The effect of EF-2001 on OA-induced hepatic lipid accumulation in FL83Bs enhanced the phosphorylation of acetyl-CoA carboxylase and reduced the levels of lipid accumulation proteins SREBP-1c and fatty acid synthase. EF-2001 treatment increased the levels of adipose triglyceride lipase and monoacylglycerol during lipase enzyme activation, which, when increased, contributed to increased liver lipolysis. In conclusion, EF-2001 inhibits OA-induced FL83B hepatic lipid accumulation and HFD-induced hepatic steatosis in rats through the AMPK signaling pathway.
Collapse
Affiliation(s)
- Jin-Ho Lee
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Keun-Jung Woo
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Joonpyo Hong
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Kwon-Il Han
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
- Research & Development Center, Bereum Co., Ltd., Wonju 26361, Republic of Korea
| | - Han Sung Kim
- Department of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
- Research & Development Center, Doctor TJ Co., Ltd., Wonju 26493, Republic of Korea
- Correspondence: ; Tel.: +82-33-760-224
| |
Collapse
|
22
|
Choi MJ, Yu H, Kim JI, Seo H, Kim JG, Kim SK, Lee HS, Cheon HG. Anti-obesity effects of Lactiplantibacillus plantarum SKO-001 in high-fat diet-induced obese mice. Eur J Nutr 2023; 62:1611-1622. [PMID: 36729332 DOI: 10.1007/s00394-023-03096-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
PURPOSE Previous reports showed that some probiotics provide beneficial effects on various diseases including metabolic disorders. This study aimed to investigate the anti-obesity effects of Lactiplantibacillus (L.) plantarum SKO-001 (SKO-001), a probiotic strain newly isolated from Angelica gigas. METHODS C57BL/6J mice were fed with high-fat diet (HFD, 60% fat) for four weeks, and then different doses of SKO-001 (n = 10 each group) were orally given for 12 weeks. Following treatment, body weight, fat weight, serum parameters and adipose and liver tissues were analyzed. RESULTS SKO-001 (2 × 1010 CFU/day, per os) reduced body weight gain after 10th week of administration, accompanied by a reduction in body fat mass of mice. In the SKO-001-fed group, increased serum adiponectin, decreased leptin, insulin, total cholesterol, low-density lipoprotein cholesterol, free fatty acids, and triglyceride levels were observed. Hematoxylin and eosin staining of various fat depots showed that increased adipocyte size caused by HFD intake was markedly reduced and correlated with reduced mRNA levels of lipogenesis genes, including sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor gamma, and CCAAT/enhancer binding protein alpha, and increased uncoupling protein 1 levels. Similarly, SKO-001 reduced lipid accumulation, decreased the mRNA levels of lipogenic genes, and reduced α-smooth muscle actin and collagen type 1 alpha 1 levels in the liver. CONCLUSIONS SKO-001 ameliorates obesity and related metabolic abnormalities in adipose and liver tissues, possibly via the regulation of lipid metabolism. Based on the results of the present study, SKO-001 may be applicable as an anti-obesity therapeutic or functional food.
Collapse
Affiliation(s)
- Mi Jin Choi
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Hana Yu
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea
| | - Jea Il Kim
- Department of Health Sciences and Technology, GAIHST, Incheon, 21999, Republic of Korea
| | - Hee Seo
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Ju Gyeong Kim
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Seul-Ki Kim
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Hak Sung Lee
- Food Science R&D Center, Kolmar BNH CO., LTD, 61, Heolleung-ro 8-gil, Seocho-gu, Seoul, 06800, Republic of Korea
| | - Hyae Gyeong Cheon
- Department of Pharmacology, Gachon University School of Medicine, Incheon, 21999, Republic of Korea.
- Department of Health Sciences and Technology, GAIHST, Incheon, 21999, Republic of Korea.
| |
Collapse
|
23
|
Ban OH, Lee M, Bang WY, Nam EH, Jeon HJ, Shin M, Yang J, Jung YH. Bifidobacterium lactis IDCC 4301 Exerts Anti-Obesity Effects in High-Fat Diet-Fed Mice Model by Regulating Lipid Metabolism. Mol Nutr Food Res 2023; 67:e2200385. [PMID: 36517937 DOI: 10.1002/mnfr.202200385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SCOPE Chronic hypernutrition promotes lipid accumulation in the body and excessive lipid accumulation leads to obesity. An increase in the number and size of adipocytes, a characteristic of obesity is closely associated with adipose dysfunction. Recent in vitro and in vivo studies have shown that probiotics may prevent this dysfunction by regulating lipid metabolism. However, the mechanisms of action of probiotics in obesity are not fully understood and their usage for treating obesity remains limited. METHODS AND RESULTS Bifidobacterium lactis IDCC 4301 is selected for its anti-obesity potential after evaluating inhibitory activity of pancreatic lipase and cholesterol reducing activity. Next, this study investigates the roles of B. lactis IDCC 4301 on lipid metabolism in 3T3-L1 preadipocytes and high-fat diet (HFD)-fed mice. B. lactis IDCC 4301 inhibits cell differentiation and lipid accumulation by suppressing the expression of adipogenic enzymes in 3T3-L1 cells. Moreover, the administration of B. lactis IDCC 4301 decreases body and adipose tissue weight, improves serum lipid levels, and downregulates adipogenic mRNA expression in HFD-fed mice. Additionally, metabolomic analysis suggests that 2-ketobutyrate should be a possible target compound against obesity. CONCLUSIONS B. lactis IDCC 4301 may be used as an alternative treatment for obesity.
Collapse
Affiliation(s)
- O-Hyun Ban
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea.,School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Eoun Ho Nam
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Hyeon Ji Jeon
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Minhye Shin
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Republic of Korea
| | - Jungwoo Yang
- Ildong Bioscience, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
24
|
Anti-obesity potential of heat-killed Lactiplantibacillus plantarum K8 in 3T3-L1 cells and high-fat diet mice. Heliyon 2023; 9:e12926. [PMID: 36699277 PMCID: PMC9868538 DOI: 10.1016/j.heliyon.2023.e12926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Probiotics exert anti-obesity effects in high-fat diet (HFD) obese mice, but there are few studies on anti-obesity using heat-killed probiotics. Here, we investigated the effect of heat-killed Lactiplantibacillus plantarum K8 (K8HK) on the anti-differentiation of 3T3-L1 preadipocytes and on anti-obesity in HFD mice. K8HK decreased triglyceride (TG) accumulation in 3T3-L1 cells. Specifically, 1 × 109 CFU/mL K8HK showed the greatest anti-obesity effect, while the same concentration of live L. plantarum K8 (K8 Live) showed cytotoxicity. K8HK increased suppressor of cytokine signaling (SOCS)-1, which might affect the JAK2-STAT3 signaling pathway activated during differentiation. As a result, the levels of transcription factors of adipogenesis such as Peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) decreased in K8HK-treated cells. We also observed a decrease in the lipogenic enzymes and fatty acid binding protein 4 (FABP4). In the mouse study, oral ingestion of K8 Live and K8HK showed weight reduction and decrease in blood TG content at 12 weeks of feeding. In addition, TG synthesis was suppressed in liver and adipose tissues, and genes related to fat metabolism were suppressed. This study suggests that K8HK could be a good material to prevent obesity by inhibiting adipogenesis genes related to fat metabolism.
Collapse
|
25
|
Sohn M, Jung H, Lee WS, Kim TH, Lim S. Effect of Lactobacillus plantarum LMT1-48 on Body Fat in Overweight Subjects: A Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes Metab J 2023; 47:92-103. [PMID: 35487505 PMCID: PMC9925147 DOI: 10.4093/dmj.2021.0370] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We investigated whether Lactobacillus plantarum strain LMT1-48, isolated from Korean fermented foods and newborn feces, is a suitable probiotic supplement to treat overweight subjects. METHODS In this randomized, double-blind, placebo-controlled clinical trial, 100 volunteers with a body mass index of 25 to 30 kg/m2 were assigned randomly (1:1) to receive 2×1010 colony forming units of LMT1-48 or to a placebo treatment group. Body composition was measured by dual-energy X-ray absorptiometry, and abdominal visceral fat area (VFA) and subcutaneous fat area were measured by computed tomography scanning. Changes in body fat, VFA, anthropometric parameters, and biomarkers were compared between the two treatment groups (ClinicalTrials.gov number: NCT03759743). RESULTS After 12 weeks of treatment, the body weight decreased significantly from 76.6±9.4 to 75.7±9.2 kg in the LMT1-48 group but did not change in the placebo group (P=0.022 between groups). A similar pattern was found in abdominal VFA between the two groups (P=0.041). Serum insulin levels, the corresponding homeostasis model assessment of insulin resistance, and leptin levels decreased in the LMT1-48 group but increased in the placebo group (all P<0.05). Decrease in body weight and body mass index by treatment with LMT1-48 was correlated with increase in Lactobacillus levels significantly. LMT1-48 also increased Oscillibacter levels significantly, which were negatively correlated with triglyceride and alanine transaminase levels. CONCLUSION Administration of LMT1-48 decreased body weight, abdominal VFA, insulin resistance, and leptin levels in these subjects with overweight, suggesting its anti-obesogenic therapeutic potential.
Collapse
Affiliation(s)
- Minji Sohn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Hyeyoung Jung
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | | | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Corresponding author: Soo Lim https://orcid.org/0000-0002-4137-1671 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea E-mail:
| |
Collapse
|
26
|
Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol 2022; 13:1042189. [PMID: 36353491 PMCID: PMC9638459 DOI: 10.3389/fphar.2022.1042189] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
The highest density of microbes resides in human gastrointestinal tract, known as “Gut microbiome”. Of note, the members of the genus Lactobacillus that belong to phyla Firmicutes are the most important probiotic bacteria of the gut microbiome. These gut-residing Lactobacillus species not only communicate with each other but also with the gut epithelial lining to balance the gut barrier integrity, mucosal barrier defence and ameliorate the host immune responses. The human body suffers from several inflammatory diseases affecting the gut, lungs, heart, bone or neural tissues. Mounting evidence supports the significant role of Lactobacillus spp. and their components (such as metabolites, peptidoglycans, and/or surface proteins) in modulatingimmune responses, primarily through exchange of immunological signals between gastrointestinal tract and distant organs. This bidirectional crosstalk which is mediated by Lactobacillus spp. promotes anti-inflammatory response, thereby supporting the improvement of symptoms pertaining to asthma, chronic obstructive pulmonary disease (COPD), neuroinflammatory diseases (such as multiple sclerosis, alzheimer’s disease, parkinson’s disease), cardiovascular diseases, inflammatory bowel disease (IBD) and chronic infections in patients. The metabolic disorders, obesity and diabetes are characterized by a low-grade inflammation. Genus Lactobacillus alleviates metabolic disorders by regulating the oxidative stress response and inflammatory pathways. Osteoporosis is also associated with bone inflammation and resorption. The Lactobacillus spp. and their metabolites act as powerful immune cell controllers and exhibit a regulatory role in bone resorption and formation, supporting bone health. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus spp. in alleviating inflammatory diseases pertaining to different organs from animal and clinical trials. The present narrative review explores in detail the complex interactions between the gut-dwelling Lactobacillus spp. and the immune components in distant organs to promote host’s health.
Collapse
|
27
|
Dietary carbohydrate-to-protein ratio influences growth performance, hepatic health and dynamic of gut microbiota in atlantic salmon (Salmo salar). ANIMAL NUTRITION 2022; 10:261-279. [PMID: 35785253 PMCID: PMC9234083 DOI: 10.1016/j.aninu.2022.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/11/2022] [Accepted: 04/10/2022] [Indexed: 11/24/2022]
Abstract
Atlantic salmon (Salmo salar) fed a carbohydrate-rich diet exhibit suboptimal growth performance, along with other metabolic disturbances. It is well known that gut microbes play a pivotal role in influencing metabolism of the host, and these microbes can be modified by the diet. The main goal of the present study was to determine the effect of feeding graded levels of digestible carbohydrates to Atlantic salmon on the distal intestine digesta microbiota at 3 sampling times (i.e., weeks 4, 8 and 12), during a 12-week trial. A low carbohydrate-to-high protein diet (LC/HP, 0% wheat starch), a medium carbohydrate-to-medium protein diet (MC/MP, 15% wheat starch) or a high carbohydrate-to-low protein diet (HC/LP, 30% wheat starch) was fed to triplicate fish tanks (27 to 28 fish per tank). We performed an in-depth characterization of the distal intestine digesta microbiota. Further, growth parameters, liver histology and the expression of genes involved in hepatic neolipogenesis in fish were measured. Fish fed a HC/LP diet showed greater hepatosomatic and viscerosomatic indexes (P = 0.026 and P = 0.018, respectively), lower final weight (P = 0.005), weight gain (P = 0.003), feed efficiency (P = 0.033) and growth rate (P = 0.003) compared with fish fed the LC/HP diet. Further, feeding salmon a high digestible carbohydrate diet caused greater lipid vacuolization, steatosis index (P = 0.007) and expression of fatty acid synthase (fas) and delta-6 fatty acyl desaturase (d6fad) (P = 0.001 and P = 0.001, respectively) in the liver compared with fish fed the LC/HP diet. Although, the major impact of feeding a carbohydrate-rich diet to Atlantic salmon in beta diversity of distal intestine digesta microbiota was observed at week 4 (HC/LP vs MC/MP and HC/LP vs LC/HP; P = 0.007 and P = 0.008, respectively) and week 8 (HC/LP vs MC/MP; P = 0.04), no differences between experimental groups were detected after 12 weeks of feeding. Finally, at the end of the trial, there was a negative correlation between lactic acid bacteria (LAB) members, including Leuconostoc and Lactobacillus, with hepatic steatosis level, the hepatosomatic and viscerosomatic indexes as well as the expression of fas and d6fad. Weissella showed negative correlation with hepatic steatosis level and the hepatosomatic index. Finally, further research to explore the potential use of LAB as probiotics to improve liver health in carnivorous fish fed fatty liver-induced diet is warranted.
Collapse
|
28
|
Mi W, Hu Z, Xu L, Bian X, Lian W, Yin S, Zhao S, Gao W, Guo C, Shi T. Quercetin positively affects gene expression profiles and metabolic pathway of antibiotic-treated mouse gut microbiota. Front Microbiol 2022; 13:983358. [PMID: 36090094 PMCID: PMC9453598 DOI: 10.3389/fmicb.2022.983358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Quercetin has a wide range of biological properties that can be used to prevent or decrease particular inflammatory diseases. In this study, we aimed to investigate the gene expression profile and metabolic pathway of the gut microbiota of an antibiotic-treated mouse model administered quercetin. Blood, feces, and intestinal tissue samples were collected and metagenomic sequencing, enzyme-linked immunosorbent assay, and western blot analysis were used to detect variations. The results showed that the quercetin-treated group exhibited increased levels of health beneficial bacterial species, including Faecalibaculum rodentium (103.13%), Enterorhabdus caecimuris (4.13%), Eggerthella lenta (4%), Roseburia hominis (1.33%), and Enterorhabdus mucosicola (1.79%), compared with the model group. These bacterial species were positively related to butyrate, propionate, and intestinal tight junction proteins (zonula occludens-1 and occludin) expression, but negatively related to serum lipopolysaccharide and tumor necrosis factor-α level. In addition, the metabolic pathway analysis showed that dietary quercetin significantly enhanced spliceosomes (111.11%), tight junctions (62.96%), the citrate cycle (10.41%), pyruvate metabolism (6.95%), and lysine biosynthesis (5.06%), but decreasing fatty acid biosynthesis (23.91%) and N-glycan (7.37%) biosynthesis. Furthermore, these metabolic pathway changes were related to relative changes in the abundance of 10 Kyoto Encyclopedia of Genes and Genomes genes (K00244, K00341, K02946, K03737, K01885, k10352, k11717, k10532, K02078, K01191). In conclusion, dietary quercetin increased butyrate-producing bacterial species, and the acetyl-CoA-mediated increased butyrate accelerated carbohydrate, energy metabolism, reduced cell motility and endotoxemia, and increased the gut barrier function, thereby leading to healthy colonic conditions for the host.
Collapse
Affiliation(s)
- Wei Mi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Zhiyong Hu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Lanlan Xu
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Xiangyu Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Wu Lian
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Yin
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Zhao
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Weina Gao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- *Correspondence: Weina Gao,
| | - Changjiang Guo
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Changjiang Guo,
| | - Tala Shi
- Department of Nutrition and Food Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
- Tala Shi,
| |
Collapse
|
29
|
Metabolomic Characteristics of Liver and Cecum Contents in High-Fat-Diet-Induced Obese Mice Intervened with Lactobacillus plantarum FRT10. Foods 2022; 11:foods11162491. [PMID: 36010491 PMCID: PMC9407591 DOI: 10.3390/foods11162491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Obesity has become a major social problem related to health and quality of life. Our previous work demonstrated that Lactobacillus plantarum FRT10 alleviated obesity in high-fat diet (HFD)-fed mice by alleviating gut dysbiosis. However, the underlying functions of FRT10 in regulating liver and cecum contents metabolism remain unknown. Liver and cecum contents metabonomics combined with pathway analysis based on ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) were performed to evaluate the alterations of metabolic profiles between obese control mice and obese mice in FRT10-treated groups. The orthogonal partial least squares discriminant analysis (OPLS-DA) score plots showed that there were significant differences in cecum contents and liver markers between experimental groups. In total, 26 potential biomarkers were identified in the liver and 15 in cecum contents that could explain the effect of FRT10 addition in HFD-fed mice. In addition, gut–liver axis analysis indicated that there was a strong correlation between cecum contents metabolites and hepatic metabolites. The mechanism of FRT10 against obesity might be related to the alterations in glycerophospholipid metabolism, primary bile acid biosynthesis, amino metabolism, and purine and pyrimidine metabolism. Studies on these metabolites could help us better understand the role of FRT10 in obesity induced by HFD.
Collapse
|
30
|
Dibakoane SR, Du Plessis B, Silva LD, Anyasi TA, Emmambux M, Mlambo V, Wokadala OC. Nutraceutical Properties of Unripe Banana Flour Resistant Starch: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Siphosethu Richard Dibakoane
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
- Agro‐Processing and Postharvest Technologies Division Agricultural Research Council – Tropical and Subtropical Crops Nelspruit 1200 South Africa
| | - Belinda Du Plessis
- Tshwane University of Technology Department of Biotechnology and Food Technology Private Bag X680 Pretoria 0083 South Africa
| | - Laura Da Silva
- Tshwane University of Technology Department of Biotechnology and Food Technology Private Bag X680 Pretoria 0083 South Africa
| | - Tonna A. Anyasi
- Agro‐Processing and Postharvest Technologies Division Agricultural Research Council – Tropical and Subtropical Crops Nelspruit 1200 South Africa
| | - Mohammad Emmambux
- Department of Consumer and Food Sciences University of Pretoria Private Bag X20 Hatfield 0028 South Africa
| | - Victor Mlambo
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
| | - Obiro Cuthbert Wokadala
- School of Agricultural and Natural Sciences University of Mpumalanga Corner R40 and D725 Road Nelspruit 1200 South Africa
| |
Collapse
|
31
|
Soundharrajan I, Karnan M, Jung JS, Lee KD, Lee JC, Ramesh T, Kim D, Choi KC. A Transcriptomic Response to Lactiplantibacillus plantarum-KCC48 against High-Fat Diet-Induced Fatty Liver Diseases in Mice. Int J Mol Sci 2022; 23:6750. [PMID: 35743193 PMCID: PMC9224190 DOI: 10.3390/ijms23126750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
The most prevalent chronic liver disorder in the world is fatty liver disease caused by a high-fat diet. We examined the effects of Lactiplantibacillus plantarum-KCC48 on high-fat diet-induced (HFD) fatty liver disease in mice. We used the transcriptome tool to perform a systematic evaluation of hepatic mRNA transcripts changes in high-fat diet (HFD)-fed animals and high-fat diet with L. plantarum (HFLPD)-fed animals. HFD causes fatty liver diseases in animals, as evidenced by an increase in TG content in liver tissues compared to control animals. Based on transcriptome data, 145 differentially expressed genes (DEGs) were identified in the liver of HFD-fed mice compared to control mice. Moreover, 61 genes were differentially expressed in the liver of mice fed the HFLPD compared to mice fed the HFD. Additionally, 43 common DEGs were identified between HFD and HFLPD. These genes were enriched in metabolic processes, retinol metabolism, the PPAR signaling pathway, fatty acid degradation, arachidonic metabolism, and steroid hormone synthesis. Taking these data into consideration, it can be concluded that L. plantarum-KCC48 treatment significantly regulates the expression of genes involved in hepatosteatosis caused by HFD, which may prevent fatty liver disease.
Collapse
Affiliation(s)
- Ilavenil Soundharrajan
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| | - Muthusamy Karnan
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| | - Jeong-Sung Jung
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| | - Kyung-Dong Lee
- Department of Companion Animals, Dongsin University, Naju 58245, Korea;
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea;
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Wanju 55365, Korea
| | - Ki-Choon Choi
- Grassland and Forage Division, Rural Development Administration, National Institute of Animal Science, Cheonan 31000, Korea; (I.S.); (M.K.); (J.-S.J.)
| |
Collapse
|
32
|
Zhao Q, Liu Z, Zhu Y, Wang H, Dai Z, Yang X, Ren X, Xue Y, Shen Q. Cooked Adzuki Bean Reduces High-Fat Diet-Induced Body Weight Gain, Ameliorates Inflammation, and Modulates Intestinal Homeostasis in Mice. Front Nutr 2022; 9:918696. [PMID: 35782919 PMCID: PMC9241564 DOI: 10.3389/fnut.2022.918696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
Adzuki bean is widely consumed in East Asia. Although the positive effects of its biologically active ingredients on obesity have been confirmed, the role of whole cooked adzuki bean in preventing obesity and the relationship between the effects and gut microbiota remain unclear. Mice were fed either a low-fat diet (LFD) or high-fat diet (HFD) with or without 15% cooked adzuki bean for 12 weeks. Cooked adzuki bean significantly inhibited weight gain and hepatic steatosis, reduced high levels of serum triacylglycerol (TG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), and alleviated systemic inflammation and metabolic endotoxemia in mice fed a HFD. Importantly, cooked adzuki bean regulated gut microbiota composition, decreased the abundance of lipopolysaccharide (LPS)-producing bacteria (Desulfovibrionaceae,Helicobacter,and Bilophila), and HFD-dependent taxa (Deferribacteraceae, Ruminiclostridium_9, Ruminiclostridium, Mucispirillum, Oscillibacter, Enterorhabdus, Tyzzerella, Anaerotruncus, Intestinimonas, unclassified_f_Ruminococcaceae, Ruminiclostridium_5, and Ruminococcaceae), and enriched Muribaculaceae, norank_f_Muribaculaceae, Anaeroplasma, Lachnospiraceae_NK4A136_group, and Lachnospiraceae to alleviate inflammation and metabolic disorders induced by HFD. These findings provide new evidence for understanding the anti-obesity effect of cooked adzuki bean.
Collapse
Affiliation(s)
- Qingyu Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zhenyu Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Yiqing Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Han Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Zijian Dai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Xuehao Yang
- Cofco Nutrition and Health Research Institute Co., LTD., Beijing, China
| | - Xin Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Yong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing, China
- National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China
- *Correspondence: Qun Shen,
| |
Collapse
|
33
|
Harutyunyan N, Kushugulova A, Hovhannisyan N, Pepoyan A. One Health Probiotics as Biocontrol Agents: One Health Tomato Probiotics. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11101334. [PMID: 35631758 PMCID: PMC9145216 DOI: 10.3390/plants11101334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 05/06/2023]
Abstract
Tomato (Lycopersicon esculentum) is one of the most popular and valuable vegetables in the world. The most common products of its industrial processing in the food industry are juice, tomato paste, various sauces, canned or sun-dried fruits and powdered products. Tomato fruits are susceptible to bacterial diseases, and bacterial contamination can be a risk factor for the safety of processed tomato products. Developments in bioinformatics allow researchers to discuss target probiotic strains from an existing large number of probiotic strains for any link in the soil-plant-animal-human chain. Based on the literature and knowledge on the "One Health" concept, this study relates to the suggestion of a new term for probiotics: "One Health probiotics", beneficial for the unity of people, animals, and the environment. Strains of Lactiplantibacillus plantarum, having an ability to ferment a broad spectrum of plant carbohydrates, probiotic effects in human, and animal health, as well as being found in dairy products, vegetables, sauerkraut, pickles, some cheeses, fermented sausages, fish products, and rhizospheric soil, might be suggested as one of the probable candidates for "One Health" probiotics (also, for "One Health-tomato" probiotics) for the utilization in agriculture, food processing, and healthcare.
Collapse
Affiliation(s)
- Natalya Harutyunyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Almagul Kushugulova
- Laboratory of Human Microbiome and Longevity, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan;
| | - Narine Hovhannisyan
- Plant Origin Raw Material Processing Technology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
| | - Astghik Pepoyan
- Food Safety and Biotechnology Department, Armenian National Agrarian University, 74 Teryan St., Yerevan 0009, Armenia;
- Correspondence: ; Tel.: +374-91-432-493
| |
Collapse
|
34
|
Lactiplantibacillus plantarum K8-based paraprobiotics prevents obesity and obesity-induced inflammatory responses in high fat diet-fed mice. Food Res Int 2022; 155:111066. [DOI: 10.1016/j.foodres.2022.111066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
|
35
|
Yilmaz B, Bangar SP, Echegaray N, Suri S, Tomasevic I, Manuel Lorenzo J, Melekoglu E, Rocha JM, Ozogul F. The Impacts of Lactiplantibacillus plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022; 10:826. [PMID: 35456875 PMCID: PMC9026118 DOI: 10.3390/microorganisms10040826] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
One of the most varied species of lactic acid bacteria is Lactiplantibacillus plantarum (Lb. plantarum), formerly known as Lactobacillus plantarum. It is one of the most common species of bacteria found in foods, probiotics, dairy products, and beverages. Studies related to genomic mapping and gene locations of Lb. plantarum have shown the novel findings of its new strains along with their non-pathogenic or non-antibiotic resistance genes. Safe strains obtained with new technologies are a pioneer in the development of new probiotics and starter cultures for the food industry. However, the safety of Lb. plantarum strains and their bacteriocins should also be confirmed with in vivo studies before being employed as food additives. Many of the Lb. plantarum strains and their bacteriocins are generally safe in terms of antibiotic resistance genes. Thus, they provide a great opportunity for improving the nutritional composition, shelf life, antioxidant activity, flavour properties and antimicrobial activities in the food industry. Moreover, since some Lb. plantarum strains have the ability to reduce undesirable compounds such as aflatoxins, they have potential use in maintaining food safety and preventing food spoilage. This review emphasizes the impacts of Lb. plantarum strains on fermented foods, along with novel approaches to their genomic mapping and safety aspects.
Collapse
Affiliation(s)
- Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey;
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA;
| | - Noemi Echegaray
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (J.M.L.)
| | - Shweta Suri
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat 131028, India;
| | - Igor Tomasevic
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (N.E.); (J.M.L.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey;
| | - João Miguel Rocha
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE–Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330 Adana, Turkey;
| |
Collapse
|
36
|
Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, Azevedo VA, Chatel JM. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders. Front Pharmacol 2021; 12:740636. [PMID: 34925006 PMCID: PMC8677946 DOI: 10.3389/fphar.2021.740636] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/04/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic disorders are an increasing concern in the industrialized world. Current research has shown a direct link between the composition of the gut microbiota and the pathogenesis of obesity and diabetes. In only a few weeks, an obesity-inducing diet can lead to increased gut permeability and microbial dysbiosis, which contributes to chronic inflammation in the gut and adipose tissues, and to the development of insulin resistance. In this review, we examine the interplay between gut inflammation, insulin resistance, and the gut microbiota, and discuss how some probiotic species can be used to modulate gut homeostasis. We focus primarily on Faecalibacterium prausnitzii, a highly abundant butyrate-producing bacterium that has been proposed both as a biomarker for the development of different gut pathologies and as a potential treatment due to its production of anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | | | - Licia Torres
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sara Candida Barbosa
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinicius Dantas Martins
- Programa de Pós-Graduação em Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| | - Vasco Ariston Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jean-Marc Chatel
- Université Paris Saclay, INRAE, AgroParisTech, Micalis, Jouy-en-Josas, France
| |
Collapse
|
37
|
Chen YT, Chiou SY, Hsu AH, Lin YC, Lin JS. Lactobacillus rhamnosus Strain LRH05 Intervention Ameliorated Body Weight Gain and Adipose Inflammation via Modulating the Gut Microbiota in High-Fat Diet-Induced Obese Mice. Mol Nutr Food Res 2021; 66:e2100348. [PMID: 34796638 DOI: 10.1002/mnfr.202100348] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 10/13/2021] [Indexed: 12/21/2022]
Abstract
SCOPE This study aims to investigate the underlying mechanism of a specific probiotic strain on suppression of adipogenesis and inflammatory response in white adipose tissue (WAT) of high-fat diet (HFD)-fed mice. METHODS AND RESULTS Eight strains are screened in vitro for candidates of potential probiotics. Lactobacillus rhamnosus LRH05 (LRH05) and Lactobacillus reuteri LR47 (LR47) are screened out with lower triglyceride expression in vitro. The mice are fed a control diet (CD), HFD, or HFD supplemented with a dose of LRH05 or LR47 at 109 CFU per mouse per day for 10 weeks (n = 8), respectively. The results demonstrate that LRH05, but not LR47, significantly reduce body weight gain and the weight of WAT, as well as improve hepatic steatosis and glucose intolerance. LRH05 regulates the Mogat1, Igf-1, Mcp-1, and F4/80 mRNA expression and decreases macrophage infiltration in WAT. LRH05 shows an increase in butyric and propionic acid-producing bacteria, including Lachnoclostridium, Romboutsia, and Fusobacterium that is coincident with the increased fecal propionic acid and butyric acid levels. CONCLUSION LRH05 shows a strain-specific effect on ameliorating the pro-inflammatory process by reducing inflammatory macrophage infiltration and the expression of inflammation-related genes in mice. Thus, LRH05 can be considered a potential probiotic strain to prevent obesity.
Collapse
Affiliation(s)
- Yung-Tsung Chen
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City, Taiwan
| | - Shiou-Yun Chiou
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City, Taiwan
| | - Ai-Hua Hsu
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City, Taiwan
| | - Yu-Chun Lin
- Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan
| | - Jin-Seng Lin
- Culture Collection & Research Institute, SYNBIO TECH INC., Kaohsiung City, Taiwan
| |
Collapse
|
38
|
Micioni Di Bonaventura MV, Coman MM, Tomassoni D, Micioni Di Bonaventura E, Botticelli L, Gabrielli MG, Rossolini GM, Di Pilato V, Cecchini C, Amedei A, Silvi S, Verdenelli MC, Cifani C. Supplementation with Lactiplantibacillus plantarum IMC 510 Modifies Microbiota Composition and Prevents Body Weight Gain Induced by Cafeteria Diet in Rats. Int J Mol Sci 2021; 22:11171. [PMID: 34681831 PMCID: PMC8540549 DOI: 10.3390/ijms222011171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Changes in functionality and composition of gut microbiota (GM) have been associated and may contribute to the development and maintenance of obesity and related diseases. The aim of our study was to investigate for the first time the impact of Lactiplantibacillus (L.) plantarum IMC 510 in a rat model of diet-induced obesity, specifically in the cafeteria (CAF) diet. This diet provides a strong motivation to voluntary overeat, due to the palatability and variety of selected energy-dense foods. The oral administration for 84 days of this probiotic strain, added to the CAF diet, decreased food intake and body weight gain. Accordingly, it ameliorated body mass index, liver and white adipose tissue weight, hepatic lipid accumulation, adipocyte size, serum parameters, including glycemia and low-density lipoprotein levels, in CAF fed rats, potentially through leptin control. In this scenario, L. plantarum IMC 510 showed also beneficial effects on GM, limiting the microbial imbalance established by long exposure to CAF diet and preserving the proportion of different bacterial taxa. Further research is necessary to better elucidate the relationship between GM and overweight and then the mechanism of action by which L. plantarum IMC 510 modifies weight. However, these promising results prompt a clear advantage of probiotic supplementation and identify a new potential probiotic as a novel and safe therapeutic approach in obesity prevention and management.
Collapse
Affiliation(s)
| | - Maria Magdalena Coman
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Emanuela Micioni Di Bonaventura
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Luca Botticelli
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| | - Maria Gabriella Gabrielli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
- Microbiology and Virology Unit, Florence Careggi University Hospital, 50134 Florence, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genova, Italy;
| | - Cinzia Cecchini
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (G.M.R.); (A.A.)
| | - Stefania Silvi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (D.T.); (M.G.G.)
| | - Maria Cristina Verdenelli
- Synbiotec S.r.l., Spin-off of UNICAM, Via Gentile III Da Varano, 62032 Camerino, Italy; (M.M.C.); (C.C.); (M.C.V.)
| | - Carlo Cifani
- Pharmacology Unit, School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (M.V.M.D.B.); (E.M.D.B.); (L.B.); (C.C.)
| |
Collapse
|
39
|
Liang C, Zhou XH, Jiao YH, Guo MJ, Meng L, Gong PM, Lyu LZ, Niu HY, Wu YF, Chen SW, Han X, Zhang LW. Ligilactobacillus Salivarius LCK11 Prevents Obesity by Promoting PYY Secretion to Inhibit Appetite and Regulating Gut Microbiota in C57BL/6J Mice. Mol Nutr Food Res 2021; 65:e2100136. [PMID: 34272917 DOI: 10.1002/mnfr.202100136] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
SCOPE Obesity is a common disease worldwide and there is an urgent need for strategies to preventing obesity. METHODS AND RESULTS The anti-obesity effect and mechanism of Ligilactobacillus salivarius LCK11 (LCK11) is studied using a C57BL/6J male mouse model in which obesity is induced by a high-fat diet (HFD). Results show that LCK11 can prevent HFD-induced obesity, reflected as inhibited body weight gain, abdominal and liver fat accumulation and dyslipidemia. Analysis of its mechanism shows that on the one hand, LCK11 can inhibit food intake through significantly improving the transcriptional and translational levels of peptide YY (PYY) in the rectum, in addition to the eventual serum PYY level; this is attributed to the activation of the toll-like receptor 2/nuclear factor-κB signaling pathway in enteroendocrine L cells by the peptidoglycan of LCK11. On the other hand, LCK11 supplementation effectively reduces the Firmicutes/Bacteroidetes ratio and shifts the overall structure of the HFD-disrupted gut microbiota toward that of mice fed on a low-fat diet; this also contributes to preventing obesity. CONCLUSION LCK11 shows the potential to be used as a novel probiotic for preventing obesity by both promoting PYY secretion to inhibit food intake and regulating gut microbiota.
Collapse
Affiliation(s)
- Cong Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | | | - Yue-Hua Jiao
- Drug safety evaluation center, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Mei-Jie Guo
- Department of Adolescent Medical Clinic, Harbin Children's Hospital, Harbin, 150010, China
| | - Li Meng
- Engineering Research Center of Agricultural Microbiology Technology, Heilongjiang University, Harbin, 150500, China
| | - Pi-Min Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Lin-Zheng Lyu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Hai-Yue Niu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Yi-Fan Wu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Shi-Wei Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Xue Han
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150010, China
| | - Lan-Wei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
40
|
|
41
|
Kim SJ, Choi SI, Jang M, Jeong YA, Kang CH, Kim GH. Combination of Limosilactobacillus fermentum MG4231 and MG4244 attenuates lipid accumulation in high-fat diet-fed obese mice. Benef Microbes 2021; 12:479-491. [PMID: 34348593 DOI: 10.3920/bm2020.0205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated the anti-obesity effect and the underlying mechanisms of action of human-derived Limosilactobacillus fermentum MG4231, MG4244, and their combination, in high-fat diet-induced obese mice. Administration of the Limosilactobacillus strains decreased body weight gain, liver and adipose tissue weight, and glucose tolerance. Serum levels of total cholesterol, low-density lipoprotein-cholesterol, and leptin were reduced, while adiponectin increased. The administration of Limosilactobacillus strains improved the histopathological features of liver tissue, such as hepatic atrophy and inflammatory penetration, and significantly reduced the content of triglyceride in the liver. Limosilactobacillus administration discovered a significant reduction in the size of the adipocytes in the epididymal tissue. Limosilactobacillus treatment significantly reduced the expression of important regulators in lipid metabolism, including peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid synthase (FAS), adipocyte-protein 2, and lipoprotein lipase in the epididymal tissue. Also, Limosilactobacillus lowered sterol regulatory element-binding protein 1-c and FAS in the liver tissue. Such changes in the expression of these regulators in both liver and epididymis tissue were caused by Limosilactobacillus upregulating phosphorylation of AMP-activated protein kinase and acetyl-CoA carboxylase. Therefore, we suggest that the use of the combination of L. fermentum MG4231 and MG4244, as probiotics could effectively inhibit adipogenesis and lipogenesis from preventing obesity.
Collapse
Affiliation(s)
- S J Kim
- Department of Health Functional Materials, Duksung Women's University, 144 gil, Dobong-gu, Seoul, 01369, Republic of Korea
| | - S-I Choi
- Department of Health Functional Materials, Duksung Women's University, 144 gil, Dobong-gu, Seoul, 01369, Republic of Korea
| | - M Jang
- Department of Food and Life Science, Inje University, Gimhae, Republic of Korea
| | - Y-A Jeong
- R&D Center, MEDIOGEN Co., Ltd., Seoul, Republic of Korea
| | - C-H Kang
- R&D Center, MEDIOGEN Co., Ltd., Seoul, Republic of Korea
| | - G-H Kim
- Department of Food and Nutrition, Duksung Women's University, 33, Samyang-ro 144-gil, Dobong-gu, Seoul, 01369, Republic of Korea
| |
Collapse
|
42
|
Lactobacillus plantarum Reduces Low-Grade Inflammation and Glucose Levels in a Mouse Model of Chronic Stress and Diabetes. Infect Immun 2021; 89:e0061520. [PMID: 34001561 DOI: 10.1128/iai.00615-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aimed to examine the effects of Lactobacillus plantarum, a lactic acid bacteria strain isolated from kimchi, on the development of low-grade inflammation and type 2 diabetes mellitus (T2DM) exacerbated by chronic stress. C57BL/6 mice were fed either a high-fat diet (HFD) and randomized into an HFD group or a group that was fed an HFD and subjected to chronic cold exposure-related stress (HFDS), or mice were fed a normal diet (ND) and randomized into an ND group or a group that was fed an ND and subjected to chronic cold exposure-related stress (NDS). Lactobacillus plantarum LRCC5310 (108, 1010 CFU) and LRCC5314 (108, 1010 CFU) as well as L. gasseri BNR17 (108 CFU), as a positive control, were administered orally twice every day to all the mice for 12 weeks. The expression of Glut4 and adiponectin, main glucose transporter-related genes, was upregulated in the LRCC5310- and LRCC5314-treated groups. Levels of serum proinflammatory cytokines (tumor necrosis factor-α [TNF-α], interleukin-6 [IL-6]) and of mRNAs of proinflammatory genes (Tnf-α, Il-6, Ccl2, leptin) were elevated in HFDS mice. The expression of proinflammatory genes was downregulated in LRCC5310- and LRCC5314-treated groups; this was not the case for Tnf-α expression in HFDS mice. Levels of serum corticosterone and mRNA levels of stress-related genes (Npy, Y2r) were decreased in lactic acid bacteria (LAB)-fed groups, with only LRCC5314 downregulating Npy expression in HFDS mice. These results suggest that the LAB strains can normalize the expression of metabolic genes, inhibit inflammatory responses, and suppress stress in HFDS mice.
Collapse
|
43
|
Zhao X, Zhong X, Liu X, Wang X, Gao X. Therapeutic and Improving Function of Lactobacilli in the Prevention and Treatment of Cardiovascular-Related Diseases: A Novel Perspective From Gut Microbiota. Front Nutr 2021; 8:693412. [PMID: 34164427 PMCID: PMC8215129 DOI: 10.3389/fnut.2021.693412] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The occurrence and development of cardiovascular-related diseases are associated with structural and functional changes in gut microbiota (GM). The accumulation of beneficial gut commensals contributes to the improvement of cardiovascular-related diseases. The cardiovascular-related diseases that can be relieved by Lactobacillus supplementation, including hypercholesterolemia, atherosclerosis, myocardial infarction, heart failure, type 2 diabetes mellitus, and obesity, have expanded. As probiotics, lactobacilli occupy a substantial part of the GM and play important functional roles through various GM-derived metabolites. Lactobacilli ultimately have a beneficial impact on lipid metabolism, inflammatory factors, and oxidative stress to relieve the symptoms of cardiovascular-related diseases. However, the axis and cellular process of gut commensal Lactobacillus in improving cardiovascular-related diseases have not been fully elucidated. Additionally, Lactobacillus strains produce diverse antimicrobial peptides, which help maintain intestinal homeostasis and ameliorate cardiovascular-related diseases. These strains are a field that needs to be further investigated immediately. Thus, this review demonstrated the mechanisms and summarized the evidence of the benefit of Lactobacillus strain supplementation from animal studies and human clinical trials. We also highlighted a broad range of lactobacilli candidates with therapeutic capability by mining their metabolites. Our study provides instruction in the development of lactobacilli as a functional food to improve cardiovascular-related diseases.
Collapse
Affiliation(s)
- Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
44
|
Rahman MS, Kang I, Lee Y, Habib MA, Choi BJ, Kang JS, Park DS, Kim YS. Bifidobacterium longum subsp. infantis YB0411 Inhibits Adipogenesis in 3T3-L1 Pre-adipocytes and Reduces High-Fat-Diet-Induced Obesity in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6032-6042. [PMID: 34008977 DOI: 10.1021/acs.jafc.1c01440] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although the health benefits of probiotics have been widely known for decades, there has still been limited use of probiotic bacteria in anti-obesity therapy. Herein, we demonstrated the role of Bifidobacterium longum subsp. infantis YB0411 (YB, which was selected by an in vitro adipogenesis assay) in adipogenic differentiation in 3T3-L1 pre-adipocytes. We observed that YB-treatment effectively reduced triglyceride accumulation and the expression of CCAAT/enhancer-binding protein α, β, and δ (C/EBPα, C/EBPβ, and C/EBPδ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (aP2), and acetyl-CoA carboxylase (ACC). YB-treatment also reduced the levels of core autophagic markers (p62 and LC3B) in 3T3-L1 pre-adipocytes. Small-interfering-RNA-mediated knockdown and competitive-chemical-inhibition assays showed that AMP-activated protein kinase (AMPK) commenced the anti-adipogenic effect of YB. In addition, YB supplement markedly reduced body weight and fat accretion in mice with high-fat-diet-induced obesity. Our findings suggest that YB may be used as a potential probiotic candidate to ameliorate obesity.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Inseok Kang
- College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Youri Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Md Ahasun Habib
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| | - Byeong Jo Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Republic of Korea
| | - Doo-Sang Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Yong-Sik Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
- College of Medicine, Soonchunhyang University, Cheonan, Chung-nam 31151, Republic of Korea
| |
Collapse
|
45
|
Nychyk O, Barton W, Rudolf AM, Boscaini S, Walsh A, Bastiaanssen TFS, Giblin L, Cormican P, Chen L, Piotrowicz Y, Derous D, Fanning Á, Yin X, Grant J, Melgar S, Brennan L, Mitchell SE, Cryan JF, Wang J, Cotter PD, Speakman JR, Nilaweera KN. Protein quality and quantity influence the effect of dietary fat on weight gain and tissue partitioning via host-microbiota changes. Cell Rep 2021; 35:109093. [PMID: 33979605 DOI: 10.1016/j.celrep.2021.109093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
We investigated how protein quantity (10%-30%) and quality (casein and whey) interact with dietary fat (20%-55%) to affect metabolic health in adult mice. Although dietary fat was the main driver of body weight gain and individual tissue weight, high (30%) casein intake accentuated and high whey intake reduced the negative metabolic aspects of high fat. Jejunum and liver transcriptomics revealed increased intestinal permeability, low-grade inflammation, altered lipid metabolism, and liver dysfunction in casein-fed but not whey-fed animals. These differential effects were accompanied by altered gut size and microbial functions related to amino acid degradation and lipid metabolism. Fecal microbiota transfer confirmed that the casein microbiota increases and the whey microbiota impedes weight gain. These data show that the effects of dietary fat on weight gain and tissue partitioning are further influenced by the quantity and quality of the associated protein, primarily via effects on the microbiota.
Collapse
Affiliation(s)
- Oleksandr Nychyk
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Wiley Barton
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Agata M Rudolf
- Key State Laboratory for Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Serena Boscaini
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland
| | - Aaron Walsh
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Thomaz F S Bastiaanssen
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Linda Giblin
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland
| | - Paul Cormican
- Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, County Meath, Ireland
| | - Liang Chen
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yolanda Piotrowicz
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Davina Derous
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - Áine Fanning
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Xiaofei Yin
- School of Agriculture and Food Science, Institute of Food and Health and Conway Institute, University College Dublin, Dublin, Ireland
| | - Jim Grant
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Silvia Melgar
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Lorraine Brennan
- VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland; School of Agriculture and Food Science, Institute of Food and Health and Conway Institute, University College Dublin, Dublin, Ireland
| | - Sharon E Mitchell
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork T12 YT20, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - Jun Wang
- CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Paul D Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland; APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland
| | - John R Speakman
- Key State Laboratory for Molecular Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK; CAS Center of Excellence in Animal Evolution and Genetics, Kunming Institute of Zoology, Kunming, China; Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Kanishka N Nilaweera
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, County Cork P61 C996, Ireland; VistaMilk Research Centre, Teagasc, Moorepark, Fermoy, County Cork P61 C996, Ireland.
| |
Collapse
|
46
|
Comparison of Cell-Free Extracts from Three Newly Identified Lactobacillus plantarum Strains on the Inhibitory Effect of Adipogenic Differentiation and Insulin Resistance in 3T3-L1 Adipocytes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6676502. [PMID: 33954196 PMCID: PMC8064791 DOI: 10.1155/2021/6676502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Obesity and associated metabolic disorders, including cardiovascular disease and diabetes, are rapidly becoming serious global health problems. It has been reported that Lactobacillus plantarum (L. plantarum) extracts have the beneficial activities of antiobesity and antidiabetes, although few studies have compared the beneficial effects among various L. plantarum extracts. In this study, three new L. plantarum (named LP, LS, and L14) strains were identified, and the antiobesogenic and diabetic effects of their extracts were investigated and compared using 3T3-L1 cells in vitro. Lipid accumulation in maturing 3T3-L1 cells was significantly decreased by the addition of LS and L14 extracts. The mRNA expression levels of Pparγ, C/ebpα, Fabp4, Fas, and Dgat1 were significantly decreased by the addition of LP, LS, and L14 extracts. Interestingly, the protein expression levels of PPARγ, C/EBPα, FABP4, and FAS were downregulated in mature 3T3-L1 cells with the addition of the L14 extract. Moreover, the LS and L14 extract treatments stimulated glucose uptake in maturing adipocytes. The L14 extract treatments exhibited a significant reduction in TNF-α protein expression, which is a key factor of insulin resistance in adipocytes. Of the three extracts, L14 extract markedly reduced adipogenic differentiation and insulin resistance in vitro, suggesting that the L14 extract may be used as a therapeutic agent for obesity-associated metabolic disorders.
Collapse
|
47
|
Patel F, Parwani K, Patel D, Mandal P. Metformin and Probiotics Interplay in Amelioration of Ethanol-Induced Oxidative Stress and Inflammatory Response in an In Vitro and In Vivo Model of Hepatic Injury. Mediators Inflamm 2021; 2021:6636152. [PMID: 33953643 PMCID: PMC8064785 DOI: 10.1155/2021/6636152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 02/07/2023] Open
Abstract
Alcohol-induced liver injury implicates inflammation and oxidative stress as important mediators. Despite rigorous research, there is still no Food and Drug Administration (FDA) approved therapies for any stage of alcoholic liver disease (ALD). Interestingly, metformin (Met) and several probiotic strains possess the potential of inhibiting alcoholic liver injury. Therefore, we investigated the effectiveness of combination therapy using a mixture of eight strains of lactic acid-producing bacteria, commercialized as Visbiome® (V) and Met in preventing the ethanol-induced hepatic injury using in vitro and in vivo models. Human HepG2 cells and male Wistar rats were exposed to ethanol and simultaneously treated with probiotic V or Met alone as well as in combination. Endoplasmic reticulum (ER) stress markers, inflammatory markers, lipid metabolism, reactive oxygen species (ROS) production, and oxidative stress were evaluated, using qRT-PCR, Oil red O staining, fluorimetry, and HPLC. In vitro, probiotic V and Met in combination prevented ethanol-induced cellular injury, ER stress, oxidative stress, and regulated lipid metabolism as well as inflammatory response in HepG2 cells. Probiotic V and Met also promoted macrophage polarization towards the M2 phenotype in ethanol-exposed RAW 264.7 macrophage cells. In vivo, combined administration of probiotic V and Met ameliorated the histopathological changes, inflammatory response, hepatic markers (liver enzymes), and lipid metabolism induced by ethanol. It also improved the antioxidant markers (HO-1 and Nrf-2), as seen by their protein levels in both HepG2 cells as well as liver tissue using ELISA. Hence, probiotic V may act, in addition to the Met, as an effective preventive treatment against ethanol-induced hepatic injury.
Collapse
Affiliation(s)
- Farhin Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Kirti Parwani
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Dhara Patel
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| | - Palash Mandal
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, 388421 Anand, Gujarat, India
| |
Collapse
|
48
|
Antibiotic Followed by a Potential Probiotic Increases Brown Adipose Tissue, Reduces Biometric Measurements, and Changes Intestinal Microbiota Phyla in Obesity. Probiotics Antimicrob Proteins 2021; 13:1621-1631. [PMID: 33818711 DOI: 10.1007/s12602-021-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
The development of adjuvant therapies for obesity treatment is justified by the high prevalence of this disease worldwide, and the relationship between obesity and intestinal microbiota is a promising target for obesity treatment. Therefore, this study aimed at investigating the adjuvant treatment of obesity through the use of potential probiotics and antibiotics, either separately or sequentially. In the first phase of the experiment, animals had diet-induced obesity with consumption of a high saturated fat diet and a fructose solution. After this period, there was a reduction in caloric supply, that is the conventional treatment of obesity, and the animals were divided into 5 experimental groups: control group (G1), obese group (G2), potential probiotic group (G3), antibiotic group (G4), and antibiotic followed by potential probiotic group (G5). The adjuvant treatments lasted 4 weeks and were administered daily, via gavage: Animals in G1 and G2 received distilled water, the G3 obtained Lactobacillus gasseri LG-G12, and the G4 received ceftriaxone. The G5 received ceftriaxone for 2 weeks, followed by the offer of Lactobacillus gasseri LG-G12 for another 2 weeks. Parameters related to obesity, such as biometric measurements, food consumption, biochemical tests, histological assessments, short-chain fatty acids concentration, and composition of the intestinal microbiota, were analyzed. The treatment with caloric restriction and sequential supply of antibiotics and potential probiotics was able to reduce biometric measures, increase brown adipose tissue, and alter the intestinal microbiota phyla, standing out as a promising treatment for obesity.
Collapse
|
49
|
Zhang Y, Yan T, Xu C, Yang H, Zhang T, Liu Y. Probiotics Can Further Reduce Waist Circumference in Adults with Morbid Obesity after Bariatric Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5542626. [PMID: 33859706 PMCID: PMC8032506 DOI: 10.1155/2021/5542626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/09/2023]
Abstract
Whether probiotics could be used as an adjunct to bariatric surgery is controversial. This meta-analysis aimed to evaluate the effects of probiotics on body weight, body mass index (BMI), percentage of the excess weight loss (%EWL), waist circumference (WC), and C-reactive protein (CRP) in adults with obesity after bariatric surgery (BS). PUBMED, EMBASE, and the Cochrane Central Registry of Controlled Trials were searched from the earliest record to March 2020. All randomized controlled trials (RCTs) on the effects of probiotics in adults with obesity after bariatric surgery were analyzed according to the eligibility criteria. Four RCTs, including 172 participants, were analyzed. There was a statistically significant difference in probiotics in the reduction of waist circumference at 12 months after bariatric surgery. However, probiotics were not effective in weight, BMI, %EWL, WC, and CRP both within 3 months and at 12 months postoperation. Probiotics aid adults with morbid obesity in achieving further waist circumference improvement after BS, with no significant effect on weight, BMI, %EWL, and CRP. More quality clinical studies are needed to confirm the efficacy and safety of probiotics, and address a number of practical issues before the routine clinical use of probiotics in adults with obesity undergoing BS.
Collapse
Affiliation(s)
- Yu Zhang
- The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Tong Yan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Chenxin Xu
- The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Huawu Yang
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Tongtong Zhang
- Medical Research Center, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
50
|
Abdulrahman AO, Alzubaidi MY, Nadeem MS, Khan JA, Rather IA, Khan MI. Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet. Int J Food Sci Nutr 2021; 72:923-934. [PMID: 33618593 DOI: 10.1080/09637486.2021.1886255] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Obesity is a global health concern associated with the dysbiosis of intestinal microbial composition. In this study, we investigated the potentials of urolithin A (Uro-A) and urolithin B (Uro-B), two gut microbiota-derived metabolites of ellagitannins, in reducing body weight gain through the modulation of the gut microbiota. We established a high-fat diet (HFD)-induced obesity model in rats that were later administered with either 2.5 mg/kg of Uro-A or Uro-B. Serum biochemical parameters were quantified, and changes in the composition of the gut microbial community were analysed using 16S rDNA gene sequencing. Our results showed that the urolithins significantly decreased the body weight in HFD-fed rats and restored serum lipid profile. The taxonomic analysis showed that both Uro-A and Uro-modulated gut microbes related to body weight, dysfunctional lipid metabolism and inflammation. Overall, our results suggest that Uro-A and Uro-B possess anti-obesity properties, which may be related to the modulation of the gut microbial composition.
Collapse
Affiliation(s)
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jalaluddin Awlia Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Irfan A Rather
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|