1
|
Ka H, Naghinejad M, Amirfiroozy A, Shamsir MS, Parvizpour S, Razmara J. A random forest-based predictive model for classifying BRCA1 missense variants: a novel approach for evaluating the missense mutations effect. J Hum Genet 2025:10.1038/s10038-025-01341-1. [PMID: 40251429 DOI: 10.1038/s10038-025-01341-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/31/2024] [Accepted: 04/03/2025] [Indexed: 04/20/2025]
Abstract
The right classification of variants is the key to pre-symptomatic detection of disease and conducting preventive actions. Since BRCA1 has a high incidence and penetrance in breast and ovarian cancers, a high-performance predictive tool can be employed to classify the clinical significance of its variants. Several tools have previously been developed for this purpose which poorly classify the significance in specific cases. The proposed tools commonly assign a score without providing any interpretation behind it. To reach an accurate predictive tool with interpretation abilities, in this study, we propose BRCA1-Forest which works based on random forest as a well-known machine learning technique for making interpretable decisions with high specificity and sensitivity in variants classification. The method involves narrowing down available options until reaching the final decision. To this end, a set of BRCA1 benign and pathogenic missense variants was collected first, and then, the dataset was prepared based on the effect of each variant on the protein sequence. The dataset was enriched by adding physicochemical changes and the conservation score of the amino acid position as pathogenicity criteria. The proposed model was trained based on the dataset to classify the clinical significance of variants. The performance of BRCA1-Forest was compared to four state-of-the-art methods, SIFT, PolyPhen2, CADD, and DANN, in terms of different evaluation metrics including precision, recall, false positive rate (FPR), the area under the receiver operator curve (AUC ROC), the area under the precision-recall curve (AUC-PR), and Mathew correlation coefficient (MCC). The results reveal that the proposed model outperforms the abovementioned tools in all metrics except for recall. The software of BRCA1-Forest is available at https://github.com/HamedKAAC/BRCA1Forest .
Collapse
Affiliation(s)
- Hamed Ka
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran
| | - Maryam Naghinejad
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Akbar Amirfiroozy
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematics, Statistics, and Computer Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
2
|
Lecinski S, Howard JAL, MacDonald C, Leake MC. iPAR: a new reporter for eukaryotic cytoplasmic protein aggregation. BMC METHODS 2025; 2:5. [PMID: 40176779 PMCID: PMC11958454 DOI: 10.1186/s44330-025-00023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025]
Abstract
Background Cells employ myriad regulatory mechanisms to maintain protein homeostasis, termed proteostasis, to ensure correct cellular function. Dysregulation of proteostasis, which is often induced by physiological stress and ageing, often results in protein aggregation in cells. These aggregated structures can perturb normal physiological function, compromising cell integrity and viability, a prime example being early onset of several neurodegenerative diseases. Understanding aggregate dynamics in vivo is therefore of strong interest for biomedicine and pharmacology. However, factors involved in formation, distribution and clearance of intracellular aggregates are not fully understood. Methods Here, we report an improved methodology for production of fluorescent aggregates in model budding yeast which can be detected, tracked and quantified using fluorescence microscopy in live cells. This new openly-available technology, iPAR (inducible Protein Aggregation Reporter), involves monomeric fluorescent protein reporters fused to a ∆ssCPY* aggregation biomarker, with expression controlled under the copper-regulated CUP1 promoter. Results Monomeric tags overcome challenges associated with non-physiological reporter aggregation, whilst CUP1 provides more precise control of protein production. We show that iPAR and the associated bioimaging methodology enables quantitative study of cytoplasmic aggregate kinetics and inheritance features in vivo. We demonstrate that iPAR can be used with traditional epifluorescence and confocal microscopy as well as single-molecule precise Slimfield millisecond microscopy. Our results indicate that cytoplasmic aggregates are mobile and contain a broad range of number of iPAR molecules, from tens to several hundred per aggregate, whose mean value increases with extracellular hyperosmotic stress. Discussion Time lapse imaging shows that although larger iPAR aggregates associate with nuclear and vacuolar compartments, we show directly, for the first time, that these proteotoxic accumulations are not inherited by daughter cells, unlike nuclei and vacuoles. If suitably adapted, iPAR offers new potential for studying diseases relating to protein oligomerization processes in other model cellular systems. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-025-00023-w.
Collapse
Affiliation(s)
- Sarah Lecinski
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
| | - Jamieson A. L. Howard
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
| | - Chris MacDonald
- Department of Biology, University of York, York, YO10 5DD UK
- York Biomedical Research Institute, University of York, York, YO10 5DD UK
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
- Department of Biology, University of York, York, YO10 5DD UK
- York Biomedical Research Institute, University of York, York, YO10 5DD UK
| |
Collapse
|
3
|
Fernandes RS, Gangopadhyay A, Dey N. Shedding Light on Protein Aggregates by Bisindolyl-Based Fluorogenic Probes: Unveiling Mechanistic Pathways and Real-Time Tracking of Protein Aggregation. Biomacromolecules 2025; 26:1461-1475. [PMID: 39912322 DOI: 10.1021/acs.biomac.4c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Herein, we synthesized a pair of oxidized bisindolyl derivatives with anthracene (probe 1) and pyrene (probe 2) fluorophores for selective protein aggregate detection, crucial in disorders like Alzheimer's disease. Probe 1 exhibited a significant "turn-on" response (∼12-fold) and concomitant red shift (∼21 nm) with lysozyme aggregates, while showing ∼3-fold fluorescence enhancement with insulin aggregates, indicating high selectivity for aggregated proteins. Probe 2 showed similar responses but with less preference, as compared to probe 1. Furthermore, the thiazole orange (TO) assay confirmed the ability of probe 1 to detect protein fibrils and monitor aggregation kinetics (with distinct responses at different phases of aggregation). Molecular docking calculations demonstrated efficient binding of probes to aggregated proteins, stabilized primarily by hydrophobic interactions (π-π stacking). Additionally, density functional theory (DFT)-based global reactivity descriptors were computed to assess the reactivity and preferential docking sites. This work underscores the potential for novel therapeutic strategies targeting protein aggregates and early diagnosis of protein disorders.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| | - Aditi Gangopadhyay
- Department of Chemical Technology, University of Calcutta, Kolkata 700009, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
4
|
Malik A, Khan JM, Sen P, Alamri A, Karan R, Emerson I A. Coomassie Brilliant Blue Induces Coiled-Coil Aggregation in Lysozyme at pH 7.4 by Hydrophobic and Electrostatic Forces. ACS OMEGA 2025; 10:1829-1838. [PMID: 39829483 PMCID: PMC11740825 DOI: 10.1021/acsomega.4c10216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Several neurodegenerative diseases are associated with the deposition of amyloid fibrils. Although these diseases are irreversible, knowing the aggregation mechanism is useful in developing drugs that can arrest or decrease the aggregation rate. In this study, we are interested in investigating the effect of Coomassie brilliant blue (CBB G-250) on the aggregation of hen egg white lysozyme (HEWL) at pH 7.4. Various biophysical techniques have been used, such as turbidity, Rayleigh light scattering (RLS) kinetics, far-UV circular dichroism (CD), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) imaging. The turbidity data indicated that CBB (≥0.1 mM) induces aggregation in HEWL at pH 7.4. The aggregation kinetics caused by CBB are quick without a lag phase and are dependent on the CBB concentration. The far-UV CD data revealed that the CBB-induced aggregated samples had lost their CD signals without exhibiting a shift in the spectrum position. Sodium chloride and ammonium sulfate show little effect on the CBB-induced aggregates, but alcohol such as methanol, ethanol, and 2-propanol could reverse the aggregation. Overall, this study aims to better understand the mechanism underlying CBB-induced aggregation and keep in mind that CBB employed in laboratories can alter the protein structure. We report the aggregation of a natural protein due to coiled-coil formation induced by a dye at physiological pH and temperature conditions. This finding has high value because several dyes are used for diagnostic and therapeutic purposes, and coiled-coil formation is closely related to infection mechanisms and nanoparticle-based drug deliveries.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Javed Masood Khan
- Department
of Food Science and Nutrition, College of
Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Priyankar Sen
- Centre
for Bioseparation Technology, VIT University, Vellore 632014, India
| | - Abdulaziz Alamri
- Department
of Biochemistry, College of Science, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Rohit Karan
- Bioinformatics
Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India
| | - Arnold Emerson I
- Bioinformatics
Programming Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT, Vellore 632014, India
| |
Collapse
|
5
|
Kamalaldinezabadi SS, Watzlawik JO, Rosenberry TL, Paravastu AK, Stagg SM. Aggregation dynamics of a 150 kDa Aβ42 oligomer: Insights from cryo electron microscopy and multimodal analysis. Comput Struct Biotechnol J 2024; 23:4205-4213. [PMID: 39650331 PMCID: PMC11621449 DOI: 10.1016/j.csbj.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 12/11/2024] Open
Abstract
Protein misfolding is a widespread phenomenon that can result in the formation of protein aggregates, which are markers of various disease states, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) peptides are key players in the disease's progression, particularly the 40- and 42- residue variants, Aβ40 and Aβ42. These peptides aggregate to form amyloid plaques and contribute to neuronal toxicity. Recent research has shifted attention from solely Aβ fibrils to also include Aβ protofibrils and oligomers as potentially critical pathogenic agents. Particularly, oligomers demonstrate more significant toxicity compared to other Aβ specie. Hence, there is an increased interest in studying the correlation between toxicity and their structure and aggregation pathway. The present study investigates the aggregation of a 150 kDa Aβ42 oligomer that does not lead to fibril formation. Using negative stain transmission electron microscopy (TEM), size exclusion chromatography (SEC), dynamic light scattering (DLS), and cryo-electron microscopy (cryo-EM), we demonstrate that 150 kDa Aβ42 oligomers form higher-order string-like assemblies over time. These strings are unique from the classical Aβ fibrils. The significance of our work lies in elucidating molecular behavior of a novel non-fibrillar form of Aβ42 aggregate.
Collapse
Affiliation(s)
| | - Jens O. Watzlawik
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Terrone L. Rosenberry
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anant K. Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Nayak M, Das RP, Kumbhare LB, Singh BG, Iwaoka M, Kunwar A. Diseleno-albumin, a native bio-inspired drug free therapeutic protein induces apoptosis in lung cancer cells through mitochondrial oxidation. Int J Biol Macromol 2024; 279:135141. [PMID: 39208899 DOI: 10.1016/j.ijbiomac.2024.135141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Macromolecular therapeutic is the emerging concept in the fields of drug delivery and drug discovery. The present study reports the design and development of a serum albumin based macromolecular chemotherapeutic by conjugating bovine serum albumin (BSA) with 3,3'-diselenodipropionic acid (DSePA), a pharmacologically active organo-diselenide (R-Se-Se-R). The reaction conditions were optimised to achieve the controlled conjugation of BSA with DSePA without causing any significant alteration in its physico-chemical properties or secondary structure and crosslinking. The chemical characterisation of the reaction product through various spectroscopic techniques viz., FT-IR, Raman, XPS, AAS and MALDI-TOF-MS, established the conjugation of about ∼5 DSePA molecules per BSA molecule. The DSePA conjugated BSA (Se-Se-BSA) showed considerable stability in aqueous and lyophilized forms. The cytotoxicity studies by involving cell lines of cancerous and non-cancerous origins indicated that Se-Se-BSA selectively inhibited the proliferation of cancerous cells. The cellular uptake studies by physically labelling Se-Se-BSA with curcumin and following its intracellular fluorescence confirmed that uptake efficiency of Se-Se-BSA was almost similar to that of native BSA. Finally, studies on the mechanism of action of Se-Se-BSA in the A549 (lung adenocarcinoma) cells revealed that it induced mitochondrial ROS generation followed by mitochondrial dysfunction, activation of caspases and apoptosis. Together, these results demonstrate a bio-inspired approach of exploring diselenide (-Se-Se-) grafted serum albumin as the potential drug free therapeutic for anticancer application.
Collapse
Affiliation(s)
- Minati Nayak
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Ram Pada Das
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Liladhar B Kumbhare
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Beena G Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Michio Iwaoka
- Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka-shi, Kanagawa 259-1292, Japan
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Ingavat N, Dzulkiflie N, Liew JM, Wang X, Leong E, Loh HP, Ng SK, Yang Y, Zhang W. Investigation on environmental factors contributing to bispecific antibody stability and the reversal of self-associated aggregates. BIORESOUR BIOPROCESS 2024; 11:82. [PMID: 39177850 PMCID: PMC11343937 DOI: 10.1186/s40643-024-00796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Bispecific antibodies (bsAbs) hold promises for enhanced therapeutic potential surpassing that of their parental monoclonal antibodies. However, bsAbs pose great challenges in their manufacturing, and one of the common reasons is their susceptibility to aggregation. Building on previous studies demonstrating the functionality and potential manufacturability of Fab-scFv format bsAb, this investigation delved into the impact of environmental factors-such as pH, buffer types, ionic strength, protein concentrations, and temperatures-on its stability and the reversal of its self-associated aggregates. Mildly acidic, low-salt conditions were found optimal, ensuring bsAb stability for 30 days even at elevated temperature of 40 °C. Furthermore, these conditions facilitated the reversal of its self-associated aggregates to monomers during the initial 7-day incubation period. Our findings underscore the robustness and resilience of Fab-scFv format bsAb, further confirming its potential manufacturability despite its current absence as commercial products.
Collapse
Affiliation(s)
- Nattha Ingavat
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nuruljannah Dzulkiflie
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jia Min Liew
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xinhui Wang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Eunice Leong
- Animal Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Han Ping Loh
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Say Kong Ng
- Animal Cell Bioprocessing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
8
|
Kamelnia R, Ahmadi-Hamedani M, Darroudi M, Kamelnia E. Improving the stability of insulin through effective chemical modifications: A Comprehensive review. Int J Pharm 2024; 661:124399. [PMID: 38944170 DOI: 10.1016/j.ijpharm.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Insulin, an essential peptide hormone, conjointly regulates blood glucose levels by its receptor and it is used as vital drug to treat diabetes. This therapeutic hormone may undergo different chemical modifications during industrial processes, pharmaceutical formulation, and through its endogenous storage in the pancreatic β-cells. Insulin is highly sensitive to environmental stresses and readily undergoes structural changes, being also able to unfold and aggregate in physiological conditions. Even; small changes altering the structural integrity of insulin may have significant impacts on its biological efficacy to its physiological and pharmacological activities. Insulin analogs have been engineered to achieve modified properties, such as improved stability, solubility, and pharmacokinetics, while preserving the molecular pharmacology of insulin. The casually or purposively strategies of chemical modifications of insulin occurred to improve its therapeutic and pharmaceutical properties. Knowing the effects of chemical modification, formation of aggregates, and nanoparticles on protein can be a new look at the production of protein analogues drugs and its application in living system. The project focused on effects of chemical modifications and nanoparticles on the structure, stability, aggregation and their results in effective drug delivery system, biological activity, and pharmacological properties of insulin. The future challenge in biotechnology and pharmacokinetic arises from the complexity of biopharmaceuticals, which are often molecular structures that require formulation and delivery strategies to ensure their efficacy and safety.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Kamelnia
- Department of biology, Faculty of sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
9
|
Kamalaldinezabadi SS, Watzlawik JO, Rosenberry TL, Paravastu AK, Stagg SM. Aggregation Dynamics of a 150 kDa Aβ42 Oligomer: Insights from Cryo Electron Microscopy and Multimodal Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605873. [PMID: 39131288 PMCID: PMC11312520 DOI: 10.1101/2024.07.30.605873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Protein misfolding is a widespread phenomenon that can result in the formation of protein aggregates, which are markers of various disease states, including Alzheimer's disease (AD). In AD, amyloid beta (Aβ) peptides, particularly Aβ40 and Aβ42, are key players in the disease's progression, as they aggregate to form amyloid plaques and contribute to neuronal toxicity. Recent research has shifted attention from solely Aβ fibrils to also include Aβ protofibrils and oligomers as potentially critical pathogenic agents. Particularly, oligomers demonstrate greater toxicity compared to other Aβ specie. Hence, there is an increased interest in studying the correlation between toxicity and their structure and aggregation pathway. The present study investigates the aggregation of a 150 kDa Aβ42 oligomer that does not lead to fibril formation over time. Using negative stain transmission electron microscopy (TEM), size exclusion chromatography (SEC), dynamic light scattering (DLS), and cryo-electron microscopy (cryo-EM), we demonstrate that 150 kDa Aβ42 oligomers form higher-order string-like assemblies over time. The strings are unique from the classical Aβ fibril structures. The significance of our work lies in elucidating molecular behavior of a novel non-fibrillar form of Aβ42 aggregate.
Collapse
Affiliation(s)
| | - Jens O. Watzlawik
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Terrone L. Rosenberry
- The Departments on Neuroscience and Pharmacology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anant K. Paravastu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Scott M. Stagg
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
10
|
Li JY, Zhou CM, Jin RL, Song JH, Yang KC, Li SL, Tan BH, Li YC. The detection methods currently available for protein aggregation in neurological diseases. J Chem Neuroanat 2024; 138:102420. [PMID: 38626816 DOI: 10.1016/j.jchemneu.2024.102420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/30/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Protein aggregation is a pathological feature in various neurodegenerative diseases and is thought to play a crucial role in the onset and progression of neurological disorders. This pathological phenomenon has attracted increasing attention from researchers, but the underlying mechanism has not been fully elucidated yet. Researchers are increasingly interested in identifying chemicals or methods that can effectively detect protein aggregation or maintain protein stability to prevent aggregation formation. To date, several methods are available for detecting protein aggregates, including fluorescence correlation spectroscopy, electron microscopy, and molecular detection methods. Unfortunately, there is still a lack of methods to observe protein aggregation in situ under a microscope. This article reviews the two main aspects of protein aggregation: the mechanisms and detection methods of protein aggregation. The aim is to provide clues for the development of new methods to study this pathological phenomenon.
Collapse
Affiliation(s)
- Jing-Yi Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Cheng-Mei Zhou
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Rui-Lin Jin
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Jia-Hui Song
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China
| | - Ke-Chao Yang
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Shu-Lei Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune Health Science Center of Jilin University, Changchun city, Jilin Province 130021, PR China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
11
|
Halder B, Ghosh S, Khan T, Pal S, Das N, Sen P. Tracking heterogenous protein aggregation at nanoscale through fluorescence correlation spectroscopy. Photochem Photobiol 2024; 100:989-999. [PMID: 39032082 DOI: 10.1111/php.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Various biophysical techniques have been extensively employed to study protein aggregation due to its significance. Traditionally, these methods detect aggregation at micrometer length scales and micromolar concentrations. However, unlike in vitro, protein aggregation typically occurs at nanomolar concentrations in vivo. Here, using fluorescence correlation spectroscopy (FCS), we captured bromelain aggregation at concentrations as low as ~20 nM, surpassing the detection limit of traditional methods like thioflavin T fluorescence, scattering, and fluorescence microscopy by more than one order of magnitude. Moreover, using thioflavin T fluorescence-based FCS, we have detected larger aggregates at higher bromelain concentrations, which is undetectable in FCS otherwise. Importantly, our study reveals inherent heterogeneity in bromelain aggregation, inaccessible to ensemble-averaged techniques. The presented report may provide a platform for the characterization of premature aggregates at very low protein concentrations, which are thought to be functionally significant species in protein aggregation-induced diseases.
Collapse
Affiliation(s)
- Bisal Halder
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Shreya Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Tanmoy Khan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Subhendu Pal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
12
|
Fan Y, Gan C, Li Y, Kang L, Yi J. Fabrication of bovine serum albumin nanofibrils: Physicochemical characteristics, emulsifying and foaming activities. Int J Biol Macromol 2024; 271:132549. [PMID: 38782331 DOI: 10.1016/j.ijbiomac.2024.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bovine serum albumin nanofibrils (BSNs) were fabricated under thermal treatment (85 °C) at acidic condition (pH 2.0) and the incubation time on the structural, and physicochemical characteristics were probed. The formation and development of BSNs have been detected and confirmed by Thioflavin T (ThT) fluorescence and circular dichroism (CD) measurements. The structural alterations of bovine serum albumin (BSA) have also been investigated using intrinsic fluorescence and Congo red (CGR) UV-vis spectroscopy. Atomic force microscopy (AFM) outcomes displayed the morphologies of BSNs at varied time, with a diameter of about 3 nm and a contour length of about 200 nm at 24 h. The apparent viscosities of BSNs at three different pH were in the following order: pH 3.0 > pH 5.0 > pH 7.0. Emulsifying and foaming properties of BSA were pronouncedly enhanced through fibrillation, which was highly correlated with the interfacial properties and structural characteristics. Highest EAI 54.2 m2/g was attained at 48 h and no pronounced alterations were observed for EAI at 24 h and 48 h. Maximum value of FC was obtained at 48 h for BSA. This study will provide some useful information in understanding the formation of BSNs and broaden their application in food systems as functional food ingredients.
Collapse
Affiliation(s)
- Yuting Fan
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Chao Gan
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanmei Li
- Yining Customs Technology Center, Yining, Xinjiang 835000, China
| | - Ling Kang
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiang Yi
- Shenzhen Key Laboratory of Food Macromolecules Science and Processing, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
14
|
Tan S, Li W, Yang C, Zhan Q, Lu K, Liu J, Jin YM, Bai JS, Wang L, Li J, Li Z, Yu F, Li YY, Duan YX, Lu L, Zhang T, Wei J, Li L, Zheng YT, Jiang S, Liu S. gp120-derived amyloidogenic peptides form amyloid fibrils that increase HIV-1 infectivity. Cell Mol Immunol 2024; 21:479-494. [PMID: 38443447 PMCID: PMC11061181 DOI: 10.1038/s41423-024-01144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Apart from mediating viral entry, the function of the free HIV-1 envelope protein (gp120) has yet to be elucidated. Our group previously showed that EP2 derived from one β-strand in gp120 can form amyloid fibrils that increase HIV-1 infectivity. Importantly, gp120 contains ~30 β-strands. We examined whether gp120 might serve as a precursor protein for the proteolytic release of amyloidogenic fragments that form amyloid fibrils, thereby promoting viral infection. Peptide array scanning, enzyme degradation assays, and viral infection experiments in vitro confirmed that many β-stranded peptides derived from gp120 can indeed form amyloid fibrils that increase HIV-1 infectivity. These gp120-derived amyloidogenic peptides, or GAPs, which were confirmed to form amyloid fibrils, were termed gp120-derived enhancers of viral infection (GEVIs). GEVIs specifically capture HIV-1 virions and promote their attachment to target cells, thereby increasing HIV-1 infectivity. Different GAPs can cross-interact to form heterogeneous fibrils that retain the ability to increase HIV-1 infectivity. GEVIs even suppressed the antiviral activity of a panel of antiretroviral agents. Notably, endogenous GAPs and GEVIs were found in the lymphatic fluid, lymph nodes, and cerebrospinal fluid (CSF) of AIDS patients in vivo. Overall, gp120-derived amyloid fibrils might play a crucial role in the process of HIV-1 infectivity and thus represent novel targets for anti-HIV therapeutics.
Collapse
Affiliation(s)
- Suiyi Tan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Wenjuan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingping Zhan
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kunyu Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jun Liu
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Yong-Mei Jin
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jin-Song Bai
- Department of Infectious Disease, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Lin Wang
- Department of Pathology, The Third People's Hospital of Kunming, Kunming, 650041, China
| | - Jinqing Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhaofeng Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yue-Xun Duan
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650301, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jiaqi Wei
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Lin Li
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Shuwen Liu
- Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
15
|
Baronaitė I, Šulskis D, Kopu̅stas A, Tutkus M, Smirnovas V. Formation of Calprotectin Inhibits Amyloid Aggregation of S100A8 and S100A9 Proteins. ACS Chem Neurosci 2024; 15:1915-1925. [PMID: 38634811 PMCID: PMC11066842 DOI: 10.1021/acschemneuro.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Calcium-binding S100A8 and S100A9 proteins play a significant role in various disorders due to their pro-inflammatory functions. Substantially, they are also relevant in neurodegenerative disorders via the delivery of signals for the immune response. However, at the same time, they can aggregate and accelerate the progression of diseases. Natively, S100A8 and S100A9 exist as homo- and heterodimers, but upon aggregation, they form amyloid-like oligomers, fibrils, or amorphous aggregates. In this study, we aimed to elucidate the aggregation propensities of S100A8, S100A9, and their heterodimer calprotectin by investigating aggregation kinetics, secondary structures, and morphologies of the aggregates. For the first time, we followed the in vitro aggregation of S100A8, which formed spherical aggregates, unlike the fibrillar structures of S100A9 under the same conditions. The aggregates were sensitive to amyloid-specific ThT and ThS dyes and had a secondary structure composed of β-sheets. Similarly to S100A9, S100A8 protein was stabilized by calcium ions, resulting in aggregation inhibition. Finally, the formation of S100A8 and S100A9 heterodimers stabilized the proteins in the absence of calcium ions and prevented their aggregation.
Collapse
Affiliation(s)
- Ieva Baronaitė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Darius Šulskis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Aurimas Kopu̅stas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Marijonas Tutkus
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Department
of Molecular Compound Physics, Center for
Physical Sciences and Technology, LT- 10257 Vilnius, Lithuania
| | - Vytautas Smirnovas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
16
|
Ansari NK, Rais A, Naeem A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J 2024; 43:362-374. [PMID: 38431536 DOI: 10.1007/s10930-024-10187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Protein aggregation is related to numerous pathological conditions like Alzheimer's and Parkinson's disease. In our study, we have shown that an already existing FDA-approved drug; methotrexate (MTX) can be reprofiled on preformed α-chymotrypsinogen A (α-Cgn A) aggregates. The zymogen showed formation of aggregates upon interaction with mercuric ions, with increasing concentration of Hg2Cl2 (0-150 µM). The hike in ThT and ANS fluorescence concomitant with blue shift, bathochromic shift and the hyperchromic effect in the CR absorbance, RLS and turbidity measurements, substantiate the zymogen β-rich aggregate formation. The secondary structural alterations of α- Cgn A as analyzed by CD measurements, FTIR and Raman spectra showed the transformation of native β-barrel conformation to β-inter-molecular rich aggregates. The native α- Cgn A have about 30% α-helical content which was found to be about 3% in presence of mercuric ions suggesting the formation of aggregates. The amorphous aggregates were visualized by SEM. On incubation of Hg2Cl2 treated α- Cgn A with increasing concentration of the MTX resulted in reversing aggregates to the native-like structure. These results were supported by remarkable decrease in ThT and ANS fluorescence intensities and CR absorbance and also consistent with CD, FTIR, and Raman spectroscopy data. MTX was found to increase the α-helical content of the zymogen from 3 to 15% proposing that drug is efficient in disrupting the β-inter-molecular rich aggregates and reverting it to native like structure. The SEM images are in accordance with CD data showing the disintegration of aggregates. The most effective concentration of the drug was found to be 120 µM. Molecular docking analysis showed that MTX molecule was surrounded by the hydrophobic residues including Phe39, His40, Arg145, Tyr146, Thr151, Gly193, Ser195, and Gly216 and conventional hydrogen bonds, including Gln73 (bond length: 2.67Å), Gly142 (2.59Å), Thr144 (2.81Å), Asn150 (2.73Å), Asp153 (2.71Å), and Cys191 (2.53Å). This investigation will help to find the use of already existing drugs to cure protein misfolding-related abnormalities.
Collapse
Affiliation(s)
- Neha Kausar Ansari
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Amaan Rais
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India
| | - Aabgeena Naeem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P, 202002, India.
| |
Collapse
|
17
|
Mei KC, Thota N, Wei PS, Yi B, Bonacquisti EE, Nguyen J. Calreticulin P-domain-derived "Eat-me" peptides for enhancing liposomal uptake in dendritic cells. Int J Pharm 2024; 653:123844. [PMID: 38272193 PMCID: PMC10994729 DOI: 10.1016/j.ijpharm.2024.123844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024]
Abstract
Discovering new ligands for enhanced drug uptake and delivery has been the core interest of the drug delivery field. This study capitalizes on the natural "eat-me" signal of calreticulin (CRT), proposing a novel strategy for functionalizing liposomes to improve cellular uptake. CRT is presented on the surfaces of apoptotic cells, and it plays a crucial role in immunogenic cell death (ICD). This is because it is essential for antigen uptake via low-density lipoprotein (LDL) receptor-mediated phagocytosis. Inspired by this mechanism, we interrogated CRT's "eat-me" feature using CRT-derived peptides to functionalize liposomes. We studied liposomal formulation stability, properties, cellular uptake, toxicity, and intracellular trafficking in dendritic cells. We identified key peptide fragments of CRT, specifically from the hydrophilic P-domain, that are compatible with liposomal formulations. Contrary to the more hydrophobic N-domain peptides, the P-domain peptides induced significantly higher liposomal uptake in DC2.4 dendritic cells than cationic DOTAP and anionic DPPG liposomes without inducing toxicity. The P-domain-derived peptides led to enhanced liposomal uptake into DC2.4 dendritic cells compared to the standard DPPC liposomes. The uptake can be partially blocked by the receptor-associated protein (RAP). Upon internalization, P-domain-peptide-decorated liposomes showed higher co-localization with lysosomes compared to the standard DPPC liposomes. Our findings illuminate CRT's operational role and identify P-domain peptides as promising agents for developing biomimetic drug delivery systems that can potentially replicate CRT's "eat-me" function.
Collapse
Affiliation(s)
- Kuo-Ching Mei
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 29599, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Binghamton, NY 13790, USA.
| | - Nagasri Thota
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Binghamton, NY 13790, USA
| | - Pu-Sheng Wei
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Binghamton, NY 13790, USA
| | - Bofang Yi
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York, Binghamton, NY 13790, USA
| | - Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 29599, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 29599, USA.
| |
Collapse
|
18
|
Xiong J, Pang X, Song X, Yang L, Pang C. The coherence between PSMC6 and α-ring in the 26S proteasome is associated with Alzheimer's disease. Front Mol Neurosci 2024; 16:1330853. [PMID: 38357597 PMCID: PMC10864545 DOI: 10.3389/fnmol.2023.1330853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
Alzheimer's disease (AD) is a heterogeneous age-dependent neurodegenerative disorder. Its hallmarks involve abnormal proteostasis, which triggers proteotoxicity and induces neuronal dysfunction. The 26S proteasome is an ATP-dependent proteolytic nanomachine of the ubiquitin-proteasome system (UPS) and contributes to eliminating these abnormal proteins. This study focused on the relationship between proteasome and AD, the hub genes of proteasome, PSMC6, and 7 genes of α-ring, are selected as targets to study. The following three characteristics were observed: 1. The total number of proteasomes decreased with AD progression because the proteotoxicity damaged the expression of proteasome proteins, as evidenced by the downregulation of hub genes. 2. The existing proteasomes exhibit increased activity and efficiency to counterbalance the decline in total proteasome numbers, as evidenced by enhanced global coordination and reduced systemic disorder of proteasomal subunits as AD advances. 3. The synergy of PSMC6 and α-ring subunits is associated with AD. Synergistic downregulation of PSMC6 and α-ring subunits reflects a high probability of AD risk. Regarding the above discovery, the following hypothesis is proposed: The aggregation of pathogenic proteins intensifies with AD progression, then proteasome becomes more active and facilitates the UPS selectively targets the degradation of abnormal proteins to maintain CNS proteostasis. In this paper, bioinformatics and support vector machine learning methods are applied and combined with multivariate statistical analysis of microarray data. Additionally, the concept of entropy was used to detect the disorder of proteasome system, it was discovered that entropy is down-regulated continually with AD progression against system chaos caused by AD. Another conception of the matrix determinant was used to detect the global coordination of proteasome, it was discovered that the coordination is enhanced to maintain the efficiency of degradation. The features of entropy and determinant suggest that active proteasomes resist the attack caused by AD like defenders, on the one hand, to protect themselves (entropy reduces), and on the other hand, to fight the enemy (determinant reduces). It is noted that these are results from biocomputing and need to be supported by further biological experiments.
Collapse
Affiliation(s)
- Jing Xiong
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Xinping Pang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xianghu Song
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Lin Yang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| | - Chaoyang Pang
- College of Computer Science, Sichuan Normal University, Chengdu, China
| |
Collapse
|
19
|
Richter-Bisson ZW, Doktor A, Hedberg YS. Serum Albumin Aggregation Facilitated by Cobalt and Chromium Metal Ions. ACS APPLIED BIO MATERIALS 2023; 6:3832-3841. [PMID: 37610418 DOI: 10.1021/acsabm.3c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The interaction of serum proteins with cobalt (Co) and chromium (Cr) ions is poorly understood, but it is suspected to result in protein aggregation, which may alter the corrosion process of biomedical CoCr alloys or result in adverse health effects. Here, we study the aggregation ability and mechanism of bovine serum albumin (BSA) induced or accelerated by aqueous Co(II) and Cr(III) ions. The metal salts were selected by chemical speciation modeling, and they did not affect the pH or precipitate under simulated physiological conditions (150 mM NaCl and pH 7.3). The counterion of Cr(III) influenced the binding to BSA only at physiologically irrelevant low ionic strength. This study used a variety of spectroscopic and light scattering methods. It was determined that both metal ions and an equimolar mixture of metal ions have the potential to induce protein aggregation. Melting curves collected by circular dichroism spectroscopy indicate that Co(II) significantly reduced BSA's melting temperature when compared with Cr(III) or an equimolar mixture of Co(II) and Cr(III), both of which increased the melting temperature of BSA. The metal ions in solution preferentially interacted with BSA, resulting in the depletion of metal ions from the surrounding protein-free solution. Finally, this study suggests that the likely mechanism for Co(II)- and Cr(III)-induced BSA aggregation is salt bridging between protein molecules.
Collapse
Affiliation(s)
| | - Aleksandra Doktor
- Department of Chemistry, Western University, London, ON N6A 5B7, Canada
| | - Yolanda Susanne Hedberg
- Department of Chemistry, Western University, London, ON N6A 5B7, Canada
- Surface Science Western, Western University, London, ON N6G 0J3, Canada
- Lawson Health Research Institute, London, ON N6C2R5, Canada
| |
Collapse
|
20
|
Malik A, Al-Amri AM, Alhomida A, Khan JM. Bovine liver catalase turns into three conformational states after exposure to an anionic surfactant. Colloids Surf B Biointerfaces 2023; 229:113481. [PMID: 37536170 DOI: 10.1016/j.colsurfb.2023.113481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The mechanism by which anionic surfactants promote amyloid fibril is not well understood. Here, we investigated how sodium dodecyl sulfate (SDS), a negatively charged surfactant, affects the fibrillation of the partially unfolded random-coiled bovine liver catalase (BLC) at a pH of 2.0. We used several methods, including turbidity, RLS kinetics, intrinsic fluorescence, ThT fluorescence, far-UV CD, and TEM imaging, to evaluate the conformational changes of BLC in vitro in response to SDS treatment. BLC is a multimeric protein and well folded at physiological pH but forms a random coil structure at pH 2.0. Intrinsic fluorescence and far-UV CD data showed that below 0.1 mM SDS, random coiled BLC turned into a native-like structure. BLC incubated with an SDS concentration ranging from 0.1 to 2.0 mM led to the formation of aggregates. The ThT fluorescence intensity was enhanced in the aggregated BLC samples (0.1-2.0 mM SDS), and cross beta-sheeted structure was detected by the far UV CD measurements. BLC adopts a complete alpha-helical structure upon interacting with SDS at a more than 2.0 mM concentration at pH 2.0. Understanding the mechanism of surfactant- or lipid-induced fibrillation is important for therapeutic purposes.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, Collage of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Abdulaziz M Al-Amri
- Department of Biochemistry, Collage of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah Alhomida
- Department of Biochemistry, Collage of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Javed Masood Khan
- Department of Food and Nutrition, Facility of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
21
|
Hyperoside alleviates toxicity of β-amyloid via endoplasmic reticulum-mitochondrial calcium signal transduction cascade in APP/PS1 double transgenic Alzheimer's disease mice. Redox Biol 2023; 61:102637. [PMID: 36821955 PMCID: PMC9975698 DOI: 10.1016/j.redox.2023.102637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by a decline in cognitive function. The β-amyloid (Aβ) hypothesis suggests that Aβ peptides can spontaneously aggregate into β-fragment-containing oligomers and protofibrils, and this activation of the amyloid pathway alters Ca2+ signaling in neurons, leading to neurotoxicity and thus apoptosis of neuronal cells. In our study, a blood-brain barrier crossing flavonol glycoside hyperoside was identified with anti-Aβ aggregation, BACE inhibitory, and neuroprotective effect in cellular or APP/PSEN1 double transgenic Alzheimer's disease mice model. While our pharmacokinetic data confirmed that intranasal administration of hyperoside resulted in a higher bio-availability in mice brain, further in vivo studies revealed that it improved motor deficit, spatial memory and learning ability of APP/PSEN1 mice with reducing level of Aβ plaques and GFAP in the cortex and hippocampus. Bioinformatics, computational docking and in vitro assay results suggested that hyperoside bind to Aβ and interacted with ryanodine receptors, then regulated cellular apoptosis via endoplasmic reticulum-mitochondrial calcium (Ca2+) signaling pathway. Consistently, it was confirmed that hyperoside increased Bcl2, decreased Bax and cyto-c protein levels, and ameliorated neuronal cell death in both in vitro and in vivo model. By regulating Aβ-induced cell death via regulation on Ca2+ signaling cascade and mitochondrial membrane potential, our study suggested that hyperoside may work as a potential therapeutic agent or preventive remedy for Alzheimer's disease.
Collapse
|
22
|
Kim YS, Lee HJ, Handoko GA, Kim J, Won M, Park JH, Ahn J. High-level production of keratinocyte growth factor 2 in Escherichia coli. Protein Expr Purif 2023; 204:106229. [PMID: 36641112 DOI: 10.1016/j.pep.2022.106229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Recombinant human keratinocyte growth factor 2 (KGF-2), also known as repifermin, is used in various therapeutic applications. However, KGF-2 production has not been optimized for facilitating large-scale production. Therefore, we attempted to attain high-level production of bioactive KGF-2. KGF-2 was fused with 6HFh8 (6HFh8-KGF-2) at the tobacco etch virus protease cleavage site. The 6HFh8-KGF-2 was expressed in Escherichia coli with high expression levels of approximately 33% and 20% of soluble protein in flask culture and 5 L fermentation, respectively. 6HFh8-KGF-2 was purified via nickel affinity chromatography. To maintain a stable form of KGF-2, the conditions of the cleavage reaction were optimized based on the isoelectric point. KGF-2 was purified via ion-exchange chromatography to high purity (>99%) with an optimal purification yield (91%). Circular dichroism spectroscopy demonstrated that purified KGF-2 had a secondary structure and thermal stability similar to that of commercial KGF-2. Bioactivity assays indicated that purified KGF-2 could induce MCF-7 cell proliferation in the same manner as commercial KGF-2. These results demonstrate that bioactive KGF-2 was overexpressed in E. coli and purified to high quality. Our findings indicated that bioactive KGF-2 can be produced in large quantities in E. coli.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
23
|
Papanikolaou E, Simos YV, Spyrou K, Patila M, Alatzoglou C, Tsamis K, Vezyraki P, Stamatis H, Gournis DP, Peschos D, Dounousi E. Does Green Exfoliation of Graphene Produce More Biocompatible Structures? Pharmaceutics 2023; 15:pharmaceutics15030993. [PMID: 36986854 PMCID: PMC10051938 DOI: 10.3390/pharmaceutics15030993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Graphene has been studied thoroughly for its use in biomedical applications over the last decades. A crucial factor for a material to be used in such applications is its biocompatibility. Various factors affect the biocompatibility and toxicity of graphene structures, including lateral size, number of layers, surface functionalization, and way of production. In this work, we tested that the green production of few-layer bio-graphene (bG) enhances its biocompatibility compared to chemical-graphene (cG). When tested against three different cell lines in terms of MTT assays, both materials proved to be well-tolerated at a wide range of doses. However, high doses of cG induce long-term toxicity and have a tendency for apoptosis. Neither bG nor cG induced ROS generation or cell cycle modifications. Finally, both materials affect the expression of inflammatory proteins such as Nrf2, NF-kB and HO-1 but further research is required for a safe result. In conclusion, although there is little to choose between bG and cG, bG's sustainable way of production makes it a much more attractive and promising candidate for biomedical applications.
Collapse
Affiliation(s)
- Eirini Papanikolaou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Spyrou
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Michaela Patila
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Alatzoglou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Haralambos Stamatis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios P Gournis
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Materials Science and Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
| | - Evangelia Dounousi
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110 Ioannina, Greece
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
24
|
Artykulnyi OP, Siposova K, Kriechbaum M, Musatov A, Almásy L, Petrenko V. Micelle Formation in Aqueous Solutions of the Cholesterol-Based Detergent Chobimalt Studied by Small-Angle Scattering. Molecules 2023; 28:1811. [PMID: 36838799 PMCID: PMC9960369 DOI: 10.3390/molecules28041811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The structure and interaction parameters of the water-soluble cholesterol-based surfactant, Chobimalt, are investigated by small-angle neutron and X-ray scattering techniques. The obtained data are analyzed by a model-independent approach applying the inverse Fourier transformation procedure as well as considering a model fitting procedure, using a core-shell form factor and hard-sphere structure factor. The analysis reveals the formation of the polydisperse spherical or moderately elongated ellipsoidal shapes of the Chobimalt micelles with the hard sphere interaction in the studied concentration range 0.17-6.88 mM. The aggregation numbers are estimated from the micelle geometry observed by small-angle scattering and are found to be in the range of 200-300. The low pH of the solution does not have a noticeable effect on the structure of the Chobimalt micelles. The critical micelle concentrations of the synthetic surfactant Chobimalt in water and in H2O-HCl solutions were obtained according to fluorescence measurements as ~3 μM and ~2.5 μM, respectively. In-depth knowledge of the basic structural properties of the detergent micelles is necessary for further applications in bioscience and biotechnology.
Collapse
Affiliation(s)
| | - Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, 04001 Kosice, Slovakia
| | - László Almásy
- Institute of Energy Security and Environmental Safety, Centre for Energy Research, 1121 Budapest, Hungary
| | - Viktor Petrenko
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
25
|
Macauyag EA, Kajiura H, Ohashi T, Misaki R, Fujiyama K. High-level transient production of a protease-resistant mutant form of human basic fibroblast growth factor in Nicotiana benthamiana leaves. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:291-301. [PMID: 36349230 PMCID: PMC9592933 DOI: 10.5511/plantbiotechnology.22.0628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 06/16/2023]
Abstract
The human basic fibroblast growth factor (bFGF) is a protein that plays a pivotal role in cellular processes like cell proliferation and development. As a result, it has become an important component in cell culture systems, with applications in biomedical engineering, cosmetics, and research. Alternative production techniques, such as transient production in plants, are becoming a feasible option as the demand continues to grow. High-level bFGF production was achieved in this study employing an optimized Agrobacterium-mediated transient expression system, which yielded about a 3-fold increase in production over a conventional system. This yield was further doubled at about 185 µg g-1 FW using a mutant protease-resistant version that degraded/aggregated at a three-fold slower rate in leaf crude extracts. To achieve a pure product, a two-step purification technique was applied. The capacity of the pure protease-resistant bFGF (PRbFGF) to stimulate cell proliferation was tested and was found to be comparable to that of E. coli-produced bFGF in HepG2 and CHO-K1 cells. Overall, this study demonstrates a high-level transient production system of functional PRbFGF in N. benthamiana leaves as well as an efficient tag-less purification technique of leaf crude extracts.
Collapse
Affiliation(s)
- Edjohn Aaron Macauyag
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan
- Cooperative Research Station in Southeast Asia (OU: CRS), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
26
|
Xu C, Lei C, Hosseinpour S, Ivanovski S, Walsh LJ, Khademhosseini A. Nanotechnology for the management of COVID-19 during the pandemic and in the post-pandemic era. Natl Sci Rev 2022; 9:nwac124. [PMID: 36196115 PMCID: PMC9522393 DOI: 10.1093/nsr/nwac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022] Open
Abstract
Following the global COVID-19 pandemic, nanotechnology has been at the forefront of research efforts and enables the fast development of diagnostic tools, vaccines and antiviral treatment for this novel virus (SARS-CoV-2). In this review, we first summarize nanotechnology with regard to the detection of SARS-CoV-2, including nanoparticle-based techniques such as rapid antigen testing, and nanopore-based sequencing and sensing techniques. Then we investigate nanotechnology as it applies to the development of COVID-19 vaccines and anti-SARS-CoV-2 nanomaterials. We also highlight nanotechnology for the post-pandemic era, by providing tools for the battle with SARS-CoV-2 variants and for enhancing the global distribution of vaccines. Nanotechnology not only contributes to the management of the ongoing COVID-19 pandemic but also provides platforms for the prevention, rapid diagnosis, vaccines and antiviral drugs of possible future virus outbreaks.
Collapse
Affiliation(s)
- Chun Xu
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia, QLD 4072 , Australia
| | - Sepanta Hosseinpour
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland , Brisbane , Queensland 4006 , Australia
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation , Los Angeles , CA 90064 , USA
| |
Collapse
|
27
|
Stress-Induced Membraneless Organelles in Eukaryotes and Prokaryotes: Bird’s-Eye View. Int J Mol Sci 2022; 23:ijms23095010. [PMID: 35563401 PMCID: PMC9105482 DOI: 10.3390/ijms23095010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Stress is an inevitable part of life. An organism is exposed to multiple stresses and overcomes their negative consequences throughout its entire existence. A correlation was established between life expectancy and resistance to stress, suggesting a relationship between aging and the ability to respond to external adverse effects as well as quickly restore the normal regulation of biological processes. To combat stress, cells developed multiple pro-survival mechanisms, one of them is the assembly of special stress-induced membraneless organelles (MLOs). MLOs are formations that do not possess a lipid membrane but rather form as a result of the “liquid–liquid” phase separation (LLPS) of biopolymers. Stress-responsive MLOs were found in eukaryotes and prokaryotes, they form as a reaction to the acute environmental conditions and are dismantled after its termination. These compartments function to prevent damage to the genetic and protein material of the cell during stress. In this review, we discuss the characteristics of stress-induced MLO-like structures in eukaryotic and prokaryotic cells.
Collapse
|
28
|
Dual-Functional Antioxidant and Antiamyloid Cerium Oxide Nanoparticles Fabricated by Controlled Synthesis in Water-Alcohol Solutions. Biomedicines 2022; 10:biomedicines10050942. [PMID: 35625679 PMCID: PMC9138294 DOI: 10.3390/biomedicines10050942] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/17/2022] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is known to be associated with a number of degenerative diseases. A better knowledge of the interplay between oxidative stress and amyloidogenesis is crucial for the understanding of both, aging and age-related neurodegenerative diseases. Cerium dioxide nanoparticles (CeO2 NPs, nanoceria) due to their remarkable properties are perspective nanomaterials in the study of the processes accompanying oxidative-stress-related diseases, including amyloid-related pathologies. In the present work, we analyze the effects of CeO2 NPs of different sizes and Ce4+/Ce3+ ratios on the fibrillogenesis of insulin, SOD-like enzymatic activity, oxidative stress, biocompatibility, and cell metabolic activity. CeO2 NPs (marked as Ce1–Ce5) with controlled physical–chemical parameters, such as different sizes and various Ce4+/Ce3+ ratios, are synthesized by precipitation in water–alcohol solutions. All synthesized NPs are monodispersed and exhibit good stability in aqueous suspensions. ThT and ANS fluorescence assays and AFM are applied to monitor the insulin amyloid aggregation and antiamyloid aggregation activity of CeO2 NPs. The analyzed Ce1–Ce5 nanoparticles strongly inhibit the formation of insulin amyloid aggregates in vitro. The bioactivity is analyzed using SOD and MTT assays, Western blot, fluorescence microscopy, and flow cytometry. The antioxidative effects and bioactivity of nanoparticles are size- or valence-dependent. CeO2 NPs show great potential benefits for studying the interplay between oxidative stress and amyloid-related diseases, and can be used for verification of the role of oxidative stress in amyloid-related diseases.
Collapse
|
29
|
Hanczyc P, Fita P. Laser Emission of Thioflavin T Uncovers Protein Aggregation in Amyloid Nucleation Phase. ACS PHOTONICS 2021; 8:2598-2609. [PMID: 34557567 PMCID: PMC8451393 DOI: 10.1021/acsphotonics.1c00082] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 05/13/2023]
Abstract
There is currently no definitive test for early detection of neurodegeneration which is linked with protein aggregation. Finding methods capable of detecting intermediate states of protein aggregates, named oligomers, is critical for the early stage diagnosis of over 30 neurodegenerative diseases including Alzheimer's or Parkinson's. Currently, fluorescence-based imaging using Thioflavin T (ThT) dye is the gold standard for detecting protein aggregation. It is used to detect aggregation in vitro and in various tissues, including the cerebrospinal fluid (CSF), whereby the disease-related protein recombinant is seeded with the patient's fluid. The major drawback of ThT is its lack of sensitivity to oligomeric forms of protein aggregates. Here, we overcome this limitation by transferring a ThT-oligomer mixture into solid state thin films and detecting fluorescence of ThT amplified in the process of stimulated emission. By monitoring the amplified spontaneous emission (ASE) we achieved a remarkable recognition sensitivity to prefibrillar oligomeric forms of insulin and lysozyme aggregates in vitro, to Aβ42 oligomers in the human protein recombinants seeded with CSF and to Aβ42 oligomers doped into brain tissue. Seeding with Alzheimer patient's CSF containing Aβ42 and Tau aggregates revealed that only Aβ42 oligomers allowed generating ASE. Thus, we demonstrated that, in contrast to the current state-of-the-art, ASE of ThT, a commonly used histological dye, can be used to detect and differentiate amyloid oligomers and evaluate the risk levels of neurodegenerative diseases to potential patients before the clinical symptoms occur.
Collapse
|
30
|
Wang J, Anastasia A, Bains H, Giza JI, Clossey DG, Deng J, Neubert TA, Rice WJ, Lee FS, Hempstead BL, Bracken C. Zinc induced structural changes in the intrinsically disordered BDNF Met prodomain confer synaptic elimination. Metallomics 2021; 12:1208-1219. [PMID: 32744273 DOI: 10.1039/d0mt00108b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human brain derived neurotrophic factor (BDNF) encodes a protein product consisting of a C-terminal mature domain (mature BDNF) and an N-terminal prodomain, which is an intrinsically disordered protein. A common single nucleotide polymorphism in humans results in a methionine substitution for valine at position 66 of the prodomain, and is associated with memory deficits, depression and anxiety disorders. The BDNF Met66 prodomain, but not the Val66 prodomain, promotes rapid structural remodeling of hippocampal neurons' growth cones and dendritic spines by interacting directly with the SorCS2 receptor. While it has been reported that the Met66 and Val66 prodomains exhibit only modest differences in structural propensities in the apo state, here we show that Val66 and Met66 prodomains differentially bind zinc (Zn). Zn2+ binds with higher affinity and more broadly impacts residues on the Met66 prodomain compared to the Val66 prodomain as shown by NMR and ITC. Zn2+ binding to the Met66 and Val66 prodomains results in distinct conformational and macroscopic differences observed by NMR, light scattering and cryoEM. To determine if Zn2+ mediated conformational change in the Met66 prodomain is required for biological effect, we mutated His40, a Zn2+ binding site, and observed a loss of Met66 prodomain bioactivity. As the His40 site is distant from the known region of the prodomain involved in receptor binding, we suggest that Met66 prodomain bioactivity involves His40 mediated stabilization of the multimeric structure. Our results point to the necessity of a Zn2+-mediated higher order molecular assembly of the Met66 prodomain to mediate neuronal remodeling.
Collapse
Affiliation(s)
- Jing Wang
- Weill Cornell Medicine, Department of Biochemistry, New York, NY, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hasanzadeh A, Alamdaran M, Ahmadi S, Nourizadeh H, Bagherzadeh MA, Mofazzal Jahromi MA, Simon P, Karimi M, Hamblin MR. Nanotechnology against COVID-19: Immunization, diagnostic and therapeutic studies. J Control Release 2021; 336:354-374. [PMID: 34175366 PMCID: PMC8226031 DOI: 10.1016/j.jconrel.2021.06.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 01/08/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in early 2020 soon led to the global pandemic of Coronavirus Disease 2019 (COVID-19). Since then, the clinical and scientific communities have been closely collaborating to develop effective strategies for controlling the ongoing pandemic. The game-changing fields of recent years, nanotechnology and nanomedicine have the potential to not only design new approaches, but also to improve existing methods for the fight against COVID-19. Nanomaterials can be used in the development of highly efficient, reusable personal protective equipment, and antiviral nano-coatings in public settings could prevent the spread of SARS-CoV-2. Smart nanocarriers have accelerated the design of several therapeutic, prophylactic, or immune-mediated approaches against COVID-19. Some nanovaccines have even entered Phase IΙ/IIΙ clinical trials. Several rapid and cost-effective COVID-19 diagnostic techniques have also been devised based on nanobiosensors, lab-on-a-chip systems, or nanopore technology. Here, we provide an overview of the emerging role of nanotechnology in the prevention, diagnosis, and treatment of COVID-19.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoomeh Alamdaran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Aref Bagherzadeh
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mirza Ali Mofazzal Jahromi
- Department of Immunology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Perikles Simon
- Department of Sport Medicine, Disease Prevention and Rehabilitation, Faculty of Social Science, Media and Sport, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Anand BG, Prajapati KP, Purohit S, Ansari M, Panigrahi A, Kaushik B, Behera RK, Kar K. Evidence of Anti-amyloid Characteristics of Plumbagin via Inhibition of Protein Aggregation and Disassembly of Protein Fibrils. Biomacromolecules 2021; 22:3692-3703. [PMID: 34375099 DOI: 10.1021/acs.biomac.1c00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The biological consequences associated with the conversion of soluble proteins into insoluble toxic amyloids are not only limited to the onset of neurodegenerative diseases but also to the potential health risks associated with supplements of protein therapeutic agents as well. Hence, finding inhibitors against amyloid formation is important, and natural product-based anti-amyloid compounds have gained much interest because of their higher efficacy and biocompatibility. Plumbagin has been identified as a potential natural product with multiple medical benefits; however, it remains largely unclear whether plumbagin can act against amyloid formation of proteins. Here, we show that plumbagin can effectively inhibit the temperature-induced amyloid aggregation of important proteins (insulin and serum albumin). Both experimental and computational data revealed that the presence of plumbagin in protein solutions, under aggregating conditions, promotes a direct protein-plumbagin interaction, which is predominantly stabilized by stronger H-bonds and hydrophobic interactions. Plumbagin-mediated retention of the native structures of proteins appears to play a crucial role in preventing their conversion into insoluble β-sheet-rich amyloid aggregates. More importantly, the addition of plumbagin into a suspension of protein fibrils triggered their spontaneous disassembly, promoting the release of soluble proteins. The results highlight that a possible synergistic effect via both the stabilization of protein structures and the restriction of the monomer recruitment at the fibril growth sites could be important for the mechanism of plumbagin's anti-aggregation effect. These findings may inspire the development of plumbagin-based formulations to benefit both the prevention and treatment of amyloid-related health complications.
Collapse
Affiliation(s)
- Bibin G Anand
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash P Prajapati
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sampreeta Purohit
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ayoushna Panigrahi
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bharti Kaushik
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajendra Kumar Behera
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, Room 310, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
33
|
Kumar V, Sinha N, Thakur AK. Necessity of regulatory guidelines for the development of amyloid based biomaterials. Biomater Sci 2021; 9:4410-4422. [PMID: 34018497 DOI: 10.1039/d1bm00059d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloid diseases are caused due to protein homeostasis failure where incorrectly folded proteins/peptides form cross-β-sheet rich amyloid fibrillar structures. Besides proteins/peptides, small metabolite assemblies also exhibit amyloid-like features. These structures are linked to several human and animal diseases. In addition, non-toxic amyloids with diverse physiological roles are characterized as a new functional class. This finding, along with the unique properties of amyloid like stability and mechanical strength, led to a surge in the development of amyloid-based biomaterials. However, the usage of these materials by humans and animals may pose a health risk such as the development of amyloid diseases and toxicity. This is possible because amyloid-based biomaterials and their fragments may assist seeding and cross-seeding mechanisms of amyloid formation in the body. This review summarizes the potential uses of amyloids as biomaterials, the concerns regarding their usage, and a prescribed workflow to initiate a regulatory approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nabodita Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| |
Collapse
|
34
|
La Manna S, Florio D, Di Natale C, Napolitano F, Malfitano AM, Netti PA, De Benedictis I, Marasco D. Conformational consequences of NPM1 rare mutations: An aggregation perspective in Acute Myeloid Leukemia. Bioorg Chem 2021; 113:104997. [PMID: 34044346 DOI: 10.1016/j.bioorg.2021.104997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Often proteins association is a physiological process used by cells to regulate their growth and to adapt to different stress conditions, including mutations. In the case of a subtype of Acute Myeloid Leukemia (AML), mutations of nucleophosmin 1 (NPM1) protein cause its aberrant cytoplasmatic mislocalization (NPMc+). We recently pointed out an amyloidogenic propensity of protein regions including the most common mutations of NPMc+ located in the C-terminal domain (CTD): they were able to form, in vitro, amyloid cytotoxic aggregates with fibrillar morphology. Herein, we analyzed the conformational characteristics of several peptides including rare AML mutations of NPMc+. By means of different spectroscopic, microscopic and cellular assays we evaluated the importance of amino acid composition, among rare AML mutations, to determine amyloidogenic propensity. This study could add a piece of knowledge to the structural consequences of mutations in cytoplasmatic NPM1c+.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | - Fabiana Napolitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples "Federico II", 80131 Naples, Italy
| | - Paolo A Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), Department of Ingegneria Chimica dei Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 8012 Naples, Italy
| | | | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134 Naples, Italy.
| |
Collapse
|
35
|
Structure and function of naturally evolved de novo proteins. Curr Opin Struct Biol 2021; 68:175-183. [PMID: 33567396 DOI: 10.1016/j.sbi.2020.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/05/2023]
Abstract
Comparative evolutionary genomics has revealed that novel protein coding genes can emerge randomly from non-coding DNA. While most of the myriad of transcripts which continuously emerge vanish rapidly, some attain regulatory regions, become translated and survive. More surprisingly, sequence properties of de novo proteins are almost indistinguishable from randomly obtained sequences, yet de novo proteins may gain functions and integrate into eukaryotic cellular networks quite easily. We here discuss current knowledge on de novo proteins, their structures, functions and evolution. Since the existence of de novo proteins seems at odds with decade-long attempts to construct proteins with novel structures and functions from scratch, we suggest that a better understanding of de novo protein evolution may fuel new strategies for protein design.
Collapse
|
36
|
Guliyeva AJ, Gasymov OK. ANS fluorescence: Potential to discriminate hydrophobic sites of proteins in solid states. Biochem Biophys Rep 2020; 24:100843. [PMID: 33204856 PMCID: PMC7649441 DOI: 10.1016/j.bbrep.2020.100843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/18/2022] Open
Abstract
In the current study, ANS fluorescence was established as a powerful tool to study proteins in solid-state. Silk fibroin from Bombyx mori cocoons was used as a paradigm protein. ANS incorporated into the films of silk fibroin exhibits fluorescence with two-lifetime components that can be assigned to the patches and/or cavities with distinct hydrophobicities. Decay associated spectra (DAS) of ANS fluorescence from both sites could be fit to the single log-normal component indicating their homogeneity. ANS binding sites in the protein film are specific and could be saturated by ANS titration. ANS located in the binding site that exhibits the long-lifetime fluorescence is not accessible to the water molecules and its DAS stays homogeneously broadened upon hydration of the protein film. In contrast, ANS from the sites demonstrating the short-lifetime fluorescence is accessible to water molecules. In the hydrated films, solvent-induced fluctuations produce an ensemble of binding sites with similar characters. Therefore, upon hydration, the short-lifetime DAS becomes significantly red-shifted and inhomogeneously broadened. The similar spectral features have previously been observed for ANS complexed with globular proteins in solution. The data reveal the origin of the short-lifetime fluorescence component of ANS bound to the globular proteins in aqueous solution. Findings from this study indicate that ANS is applicable to characterize dehydrated as well as hydrated protein aggregates, amyloids relevant to amyloid diseases, such as Alzheimer's, Parkinson, and prion diseases. ANS has the potential to characterize proteins in solid states. ANS fluorescence in protein films reveals the hydrophobic sites with distinct properties. Short lifetime DAS of ANS in hydrated protein films is similar to that of ANS-protein complexes in solution. ANS is applicable to characterize protein aggregates relevant to the Alzheimer's, Parkinson, and prion diseases.
Collapse
|
37
|
Eichberger J, Schulz D, Pscheidl K, Fiedler M, Reichert TE, Bauer RJ, Ettl T. PD-L1 Influences Cell Spreading, Migration and Invasion in Head and Neck Cancer Cells. Int J Mol Sci 2020; 21:ijms21218089. [PMID: 33138288 PMCID: PMC7663567 DOI: 10.3390/ijms21218089] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
The programmed cell death protein-1 (PD-1)/programmed cell death ligand-1 (PD-L1) axis blockade has been implemented in advanced-stage tumor therapy for various entities, including head and neck squamous cell carcinoma (HNSCC). Despite a promising tumor response in a subgroup of HNSCC patients, the majority suffer from disease progression. PD-L1 is known to influence several intrinsic mechanisms in cancer cells, such as proliferation, apoptosis, migration and invasion. Here, we modulated PD-L1 expression in three HNSCC cell lines with differential intrinsic PD-L1 expression. In addition to an alteration in the epithelial-to-mesenchymal transition (EMT) marker expression, we observed PD-L1-dependent cell spreading, migration and invasion in a spheroid spreading assay on four different coatings (poly-L-lysine, collagen type I, fibronectin and Matrigel®) and a chemotactic transwell migration/invasion assay. Furthermore, the overexpression of PD-L1 led to increased gene expression and small interfering ribonucleic acid (siRNA) knockdown and decreased gene expression of Rho-GTPases and related proteins in a RT2 Profiler™ PCR Array. Rac1 and Rho-GTPase pulldown assays revealed a change in the activation state concordantly with PD-L1 expression. In summary, our results suggest a major role for PD-L1 in favoring cell motility, including cell spreading, migration and invasion. This is presumably caused by altered N-cadherin expression and changes in the activation states of small Rho-GTPases Rho and Rac1.
Collapse
Affiliation(s)
- Jonas Eichberger
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
| | - Daniela Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
| | - Kristian Pscheidl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
| | - Mathias Fiedler
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
| | - Torsten Eugen Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
| | - Richard Josef Bauer
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
- Department of Oral and Maxillofacial Surgery and Center for Medical Biotechnology, University Hospital Regensburg, 9305 Regensburg, Germany
- Correspondence:
| | - Tobias Ettl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 9305 Regensburg, Germany; (J.E.); (D.S.); (K.P.); (M.F.); (T.E.R.); (T.E.)
| |
Collapse
|