1
|
Wu J, Xu S, Li Z, Cong B, Yang Z, Yang Z, Gao W, Liu S, Yu Z, Xu S, Li N, Hou J, Wang G, Cao X, Liu S. SARS-CoV-2 enhances complement-mediated endothelial injury via the suppression of membrane complement regulatory proteins. Emerg Microbes Infect 2025; 14:2467781. [PMID: 39945674 PMCID: PMC11873982 DOI: 10.1080/22221751.2025.2467781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
Complement hyperactivation and thrombotic microangiopathy are closely associated with severe COVID-19. Endothelial dysfunction is a key mechanism underlying thrombotic microangiopathy. To address the relationship between endothelial injury, complement activation and thrombotic microangiopathy of severe COVID-19, we wonder whether, and if so, what and how SARS-CoV-2 factors make endothelial cells (ECs) sensitive to complement-mediated cytotoxicity. We revealed that multiple SARS-CoV-2 proteins enhanced complement-mediated cytotoxicity to ECs by inhibiting membrane complement regulatory proteins (CRPs) and enhancing the deposition of complement-recognizing component FCN1. By screening with CRISPR/Cas9-gRNA libraries, we identified that ADAMTS9, SYAP1, and HIGD1A as intrinsic regulators of CD59 on ECs, which were inhibited by the SARS-CoV-2 M, NSP16, and ORF9b proteins. IFN-γ, GM-CSF, and IFN-α upregulated CD55 and CD59, while IFN-γ antagonized the inhibition of CD59 by the three SARS-CoV-2 proteins. So, the deficiency of IFN-γ weakened the protection of ECs by CRPs against complement-mediated injury which may be enhanced during infection. Our findings illustrated the regulation of protection against complement-mediated attack on self-cells by SARS-CoV-2 infection and immune responses, providing insights into endothelial injury, thrombotic microangiopathy, and potential targets for treating severe COVID-19.
Collapse
Affiliation(s)
- Jian Wu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sanpeng Xu
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Zhiqing Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Boyi Cong
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Zongheng Yang
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhichao Yang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Wanfeng Gao
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
| | - Shuo Liu
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhou Yu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Sheng Xu
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Nan Li
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| | - Guoping Wang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, People’s Republic of China
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- Department of Immunology, Center for Immunotherapy, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shuxun Liu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Janevska M, Naessens E, Verhasselt B. Impact of SARS-CoV-2 Wuhan and Omicron Variant Proteins on Type I Interferon Response. Viruses 2025; 17:569. [PMID: 40285011 PMCID: PMC12031613 DOI: 10.3390/v17040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
SARS-CoV-2 has demonstrated a remarkable capacity for immune evasion. While initial studies focused on the Wuhan variant and adaptive immunity, later emerging strains such as Omicron exhibit mutations that may alter their immune-modulatory properties. We performed a comprehensive review of immune evasion mechanisms associated with SARS-CoV-2 viral proteins to focus on the evolutionary dynamics of immune modulation. We systematically analyzed and compared the impact of all currently known Wuhan and Omicron SARS-CoV-2 proteins on type I interferon (IFN) responses using a dual-luciferase reporter assay carrying an interferon-inducible promoter. Results revealed that Nsp1, Nsp5, Nsp14, and ORF6 are potent type I IFN inhibitors conserved across Wuhan and Omicron strains. Notably, we identified strain-specific differences, with Nsp6 and Spike proteins exhibiting enhanced IFN suppression in Omicron, whereas the Envelope protein largely retained this function. To extend these findings, we investigated selected proteins in primary human endothelial cells and also observed strain-specific differences in immune response with higher type I IFN response in cells expressing the Wuhan strain variant, suggesting that Omicron's adaptational mutations may contribute to a damped type I IFN response in the course of the pandemic's trajectory.
Collapse
Affiliation(s)
- Marija Janevska
- Department of Diagnostic Sciences, Ghent University, B9000 Ghent, Belgium;
| | - Evelien Naessens
- Department of Laboratory Medicine, Ghent University Hospital, B9000 Ghent, Belgium;
| | - Bruno Verhasselt
- Department of Diagnostic Sciences, Ghent University, B9000 Ghent, Belgium;
- Department of Laboratory Medicine, Ghent University Hospital, B9000 Ghent, Belgium;
| |
Collapse
|
3
|
Nguyen MA, Williams C, Gard AL, Connor JH. Endothelial growth media components alter SARS-CoV-2 spike-directed growth kinetics. J Virol Methods 2025; 333:115111. [PMID: 39880099 DOI: 10.1016/j.jviromet.2025.115111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Direct SARS-CoV-2 infection of endothelial cells is challenging to study in vitro. To examine whether endothelial cell culture conditions impact the ability of SARS-CoV-2 to infect cells, we evaluated the effects of commercial cell culture media composition on SARS-CoV-2 Spike-directed viral infection. In African Green Monkey kidney epithelial cells (VeroE6), we found that commercial cell culture media (EGM2) produced inhibitory effects on recombinant vesicular stomatitis virus (rVSV-SARS-CoV-2) growth that is not seen in Dulbecco's Modified Eagle Medium (DMEM). We identified Lonza's GA-1000 supplement as a potential SARS-CoV-2 inhibitor. We then compared how titrations of GA-1000 influenced rVSV-SARS-CoV-2 and SARS-CoV-2 infection. The determined IC50 of GA-1000 is observed at a 1:450 dilution, about 2-fold higher concentration than the typical cell culture concentration, against rVSV-SARS-CoV-2. In contrast, the inhibition against SARS-CoV-2 infection is modest. This work highlights the importance of cell culture medium selection for in vitro models of infections and demonstrates a method to characterize and ameliorate media formulations for infection studies.
Collapse
Affiliation(s)
- Michelle A Nguyen
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; Bioengineering Division, Charles Stark Draper Laboratory, Cambridge, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Virology, Immunology & Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Corin Williams
- Bioengineering Division, Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Ashley L Gard
- Bioengineering Division, Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - John H Connor
- Department of Pharmacology, Physiology, and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA; National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, USA; Department of Virology, Immunology & Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Kiesworo K, Agius T, Macarthur MR, Lambelet M, Lyon A, Zhang J, Turiel G, Fan Z, d’Almeida S, Uygun K, Yeh H, Déglise S, de Bock K, Mitchell SJ, Ocampo A, Allagnat F, Longchamp A. Nicotinamide mononucleotide restores impaired metabolism, endothelial cell proliferation and angiogenesis in old sedentary male mice. iScience 2025; 28:111656. [PMID: 39868046 PMCID: PMC11763620 DOI: 10.1016/j.isci.2024.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity. Aged EC harvested from the mouse skeletal muscle displayed a pro-angiogenic gene expression phenotype, along with considerable changes in metabolic genes. Metabolomics analysis and 13C glucose tracing revealed impaired ATP production and blockade in glycolysis and TCA cycle in late passage HUVECs, which occurred at nicotinamide adenine dinucleotide (NAD⁺)-dependent steps, along with NAD+ depletion. Supplementation with nicotinamide mononucleotide (NMN), a precursor of NAD⁺, enhances late-passage EC proliferation and sprouting angiogenesis from aged mice aortas. Taken together, our study illustrates the importance of NAD+-dependent metabolism in the maintenance of EC proliferation capacity with age, and the therapeutic potential of NAD precursors.
Collapse
Affiliation(s)
- Kevin Kiesworo
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael R. Macarthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Martine Lambelet
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Transplantation Centre and Transplantation Immunopathology Laboratory, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Guillermo Turiel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Zheng Fan
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah J. Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Lausanne University (UNIL), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Di Pietro P, Abate AC, Izzo C, Toni AL, Rusciano MR, Folliero V, Dell’Annunziata F, Granata G, Visco V, Motta BM, Campanile A, Vitale C, Prete V, Gatto C, Scarpati G, Poggio P, Galasso G, Pagliano P, Piazza O, Santulli G, Franci G, Carrizzo A, Vecchione C, Ciccarelli M. Plasma miR-1-3p levels predict severity in hospitalized COVID-19 patients. Br J Pharmacol 2025; 182:451-467. [PMID: 39572402 PMCID: PMC11791538 DOI: 10.1111/bph.17392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024] Open
Abstract
Background and Purpose: Accumulating evidence suggests circulating microRNAs (miRNAs) are important regulators of biological processes involved in COVID-19 complications. We sought to assess whether circulating miRNAs are associated with COVID-19 clinical phenotype and outcome. Experimental Approach: To discover signatures of circulating miRNAs associated with COVID-19 disease severity and mortality, miRNA quantification was performed on plasma samples collected at hospital admission from a cohort of 106 patients with mild or severe COVID-19. Variable importance projection scoring with partial least squared discriminant analysis and Random Forest Classifier were employed to identify key miRNAs associated with COVID-19 severity. ROC analysis was performed to detect promising miRNA able to discriminate between mild and severe COVID status. Key Results: Hsa-miR-1-3p was the most promising miRNA in differentiating COVID-19 patients who developed severe, rather than mild, disease. Hsa-miR-1-3p levels rose with increasing disease severity, and the highest levels were associated with prolonged hospital length of stay and worse survival. Longitudinal miRNA profiling demonstrated that plasma hsa-miR-1-3p expression levels were significantly increased in patients during acute infection compared with those observed 6 months after the disease onset. Specific blockade of miR-1-3p in SARS-CoV-2–infected endothelial cells decreased up-regulation of genes involved in endothelialto-mesenchymal transition, inflammation and thrombosis. Furthermore, miR-1-3p inhibition reversed the impaired angiogenic capacity induced by plasma from patients with severe COVID-19. Conclusion and Implications: Our data establish a novel role for miR-1-3p in the pathogenesis of COVID-19 infection and provide a strong rationale for its usefulness as early prognostic biomarkers of severity status and survival.
Collapse
Affiliation(s)
- Paola Di Pietro
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Angela Carmelita Abate
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Anna Laura Toni
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Maria Rosaria Rusciano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Granata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Alfonso Campanile
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Carolina Vitale
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | - Valeria Prete
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Cristina Gatto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Giuliana Scarpati
- San Giovanni di Dio e Ruggi D’Aragona University Hospital, Salerno, Italy
| | | | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Ornella Piazza
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Fleischer Institute for Diabetes and Metabolism, Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York, New York, USA
- Department of Advanced Biomedical Science, “Federico II” University, Naples, Italy
- International Translational Research and Medical Education (ITME) Consortium, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, New York, USA
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli, Italy
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, Italy
| |
Collapse
|
6
|
Schini-Kerth VB, Diouf I, Muzammel H, Said A, Auger C. Natural Products to Promote Vascular Health. Handb Exp Pharmacol 2025; 287:33-60. [PMID: 39317849 DOI: 10.1007/164_2024_721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Maintaining good vascular health is a major component in healthy ageing as it reduces the risk of cardiovascular diseases. Endothelial dysfunction, in particular, is a key mechanism in the development of major cardiovascular diseases including hypertension, atherosclerosis and diabetes. Recently, endothelial senescence has emerged as a pivotal early event in age-related endothelial dysfunction. Endothelial function is characterized by an imbalance between the endothelial formation of vasoprotective mechanisms, including the formation of nitric oxide (NO) and endothelium-dependent hyperpolarization responses, and an increased level of oxidative stress involving several pro-oxidant enzymes such as NADPH oxidases and, often also, the appearance of cyclooxygenase-derived vasoconstrictors. Pre-clinical studies have indicated that natural products, in particular several polyphenol-rich foods, can trigger activating pathways in endothelial cells promoting an increased formation of NO and endothelium-dependent hyperpolarization. In addition, some can even exert beneficial effects on endothelial senescence. Moreover, some of these products have been associated with the prevention and/or improvement of established endothelial dysfunction in several experimental models of cardiovascular diseases and in humans with cardiovascular diseases. Therefore, intake of certain natural products, such as dietary and plant-derived polyphenol-rich products, appears to be an attractive approach for a healthy vascular system in ageing.
Collapse
Affiliation(s)
- Valérie B Schini-Kerth
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France.
| | - Ibrahima Diouf
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Hira Muzammel
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Amissi Said
- Translational Cardiovascular Medicine, UR 3074, CRBS, University of Strasbourg, Strasbourg, France
| | - Cyril Auger
- Regenerative Nanomedicine, INSERM UMR 1260, CRBS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
7
|
Richards A, Khalil AS, Friesen M, Whitfield TW, Gao X, Lungjangwa T, Kamm RD, Wan Z, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. Nat Commun 2024; 15:10754. [PMID: 39737992 DOI: 10.1038/s41467-024-54917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly SMCs, are a susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterize the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, PCs, and ECs. We observe that infected SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we show human ECs exposed to the secretome of infected SMCs produce hemostatic factors that contribute to vascular dysfunction despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
Affiliation(s)
- Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Andrew S Khalil
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Troy W Whitfield
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Xinlei Gao
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lee Gehrke
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Kuchler T, Hausinger R, Braunisch MC, Günthner R, Wicklein R, Knier B, Bleidißel N, Maier M, Ribero A, Lech M, Adorjan K, Stubbe H, Kotilar K, Heemann U, Schmaderer C. All eyes on PCS: analysis of the retinal microvasculature in patients with post-COVID syndrome-study protocol of a 1 year prospective case-control study. Eur Arch Psychiatry Clin Neurosci 2024; 274:1847-1856. [PMID: 38041762 PMCID: PMC11579198 DOI: 10.1007/s00406-023-01724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
Since widespread vaccination against COVID-19, the development of effective antiviral drugs, and the decreasing number of patients with COVID-19 in intensive care, the risk from SARS-CoV-2 infection appears less threatening. However, studies show that a significant number of patients suffer from long-term sequelae, even months after SARS-CoV-2 infection. The so-called post-COVID syndrome (PCS) often presents a diagnostic and treatment challenge for physicians. This study protocol describes the "All Eyes on PCS" study, which aims to investigate the retinal microvasculature in PCS patients and COVID-19-recovered patients to provide new insights into the pathophysiology of PCS. "All Eyes on PCS" is a prospective, case-control study with the primary objective of detecting endothelial dysfunction (ED) in patients with PCS. Therefore, we intend to recruit patients with PCS, fully SARS-CoV-2-infection-recovered (CR) participants, and SARS-CoV-2-infection-naïve (CN) participants. Baseline measurements will include: (1) patient-specific characteristics, (2) biochemistry, (3) retinal vessel analysis (RVA), (4) survey questionnaires as patient-reported outcomes measurements (PROMs), (5) optical coherence tomography (OCT), OCT angiography (OCTA), and adaptive optics (AO), (6) blood pressure recordings, (7) handgrip strength test. After 6 months, baseline measurements will be repeated in the PCS cohort, and after 1 year, a telephone query will be conducted to assess residual symptoms and treatment needs. The aim of this study is to gain insight into the pathophysiology of PCS and to provide an objective biomarker for diagnosis and treatment, while also creating a comprehensive clinical database of PCS patients.ClinicalTrials.gov Identifier: NCT05635552; Date: 2.12.2022.
Collapse
Affiliation(s)
- Timon Kuchler
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Renate Hausinger
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias C Braunisch
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Roman Günthner
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Rebecca Wicklein
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benjamin Knier
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Nathalie Bleidißel
- Department of Ophthalmology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Matthias Maier
- Department of Ophthalmology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Andrea Ribero
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
- Medizinische Klinik und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Maciej Lech
- Medizinische Klinik und Poliklinik IV, LMU University Hospital Munich, Ziemssenstraße 5, 80336, Munich, Germany
| | - Kristina Adorjan
- Department of Psychiatry and Psychotherapy, LMU University Hospital Munich, Nußbaumstraße 7, 80336, Munich, Germany
| | - Hans Stubbe
- Medizinische Klinik und Poliklinik II, LMU University Hospital Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Konstantin Kotilar
- Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428, Jülich, Germany
| | - Uwe Heemann
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
| |
Collapse
|
9
|
Garcia-Vilanova A, Allué-Guardia A, Chacon NM, Akhter A, Singh DK, Kaushal D, Restrepo BI, Schlesinger LS, Turner J, Weintraub ST, Torrelles JB. Proteomic analysis of lung responses to SARS-CoV-2 infection in aged non-human primates: clinical and research relevance. GeroScience 2024; 46:6395-6417. [PMID: 38969861 PMCID: PMC11493886 DOI: 10.1007/s11357-024-01264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
With devastating health and socioeconomic impact worldwide, much work is left to understand the Coronavirus Disease 2019 (COVID-19), with emphasis in the severely affected elderly population. Here, we present a proteomics study of lung tissue obtained from aged vs. young rhesus macaques (Macaca mulatta) and olive baboons (Papio Anubis) infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using age as a variable, we identified common proteomic profiles in the lungs of aged infected non-human primates (NHPs), including key regulators of immune function, as well as cell and tissue remodeling, and discuss the potential clinical relevance of such parameters. Further, we identified key differences in proteomic profiles between both NHP species, and compared those to what is known about SARS-CoV-2 in humans. Finally, we explored the translatability of these animal models in the context of aging and the human presentation of the COVID-19.
Collapse
Affiliation(s)
- Andreu Garcia-Vilanova
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Anna Allué-Guardia
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Nadine M Chacon
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Anwari Akhter
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Dhiraj Kumar Singh
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Deepak Kaushal
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Blanca I Restrepo
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
- University of Texas Health Science Center at Houston, School of Public Health, Brownsville Campus, Brownsville, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Larry S Schlesinger
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joanne Turner
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jordi B Torrelles
- Population Health, Host Pathogen Interactions, and Disease Prevention and Intervention Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
10
|
Richards A, Khalil A, Friesen M, Whitfield TW, Gao X, Lungjangwa T, Kamm R, Wan Z, Gehrke L, Mooney D, Jaenisch R. SARS-CoV-2 infection of human pluripotent stem cell-derived vascular cells reveals smooth muscle cells as key mediators of vascular pathology during infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.06.552160. [PMID: 37609322 PMCID: PMC10441287 DOI: 10.1101/2023.08.06.552160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly SMCs, are a susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterize the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, PCs, and ECs. We observe that infected SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we show human ECs exposed to the secretome of infected SMCs produce hemostatic factors that contribute to vascular dysfunction, despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.
Collapse
|
11
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
12
|
Silva BRDS, Sidarta-Oliveira D, Morari J, Bombassaro B, Jara CP, Simeoni CL, Parise PL, Proenca-Modena JL, Velloso LA, Velander WH, Araújo EP. Protein C Pretreatment Protects Endothelial Cells from SARS-CoV-2-Induced Activation. Viruses 2024; 16:1049. [PMID: 39066212 PMCID: PMC11281670 DOI: 10.3390/v16071049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
SARS-CoV-2 can induce vascular dysfunction and thrombotic events in patients with severe COVID-19; however, the cellular and molecular mechanisms behind these effects remain largely unknown. In this study, we used a combination of experimental and in silico approaches to investigate the role of PC in vascular and thrombotic events in COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the publicly available Gene Expression Omnibus (GEO) repository. In addition, HUVECs were treated with inactive protein C before exposure to SARS-CoV-2 infection or a severe COVID-19 serum. An RT-qPCR array containing 84 related genes was used, and the candidate genes obtained were evaluated. Activated protein C levels were measured using an ELISA kit. We identified at the single-cell level the expression of several pro-inflammatory and pro-coagulation genes in endothelial cells from the patients with COVID-19. Furthermore, we demonstrated that exposure to SARS-CoV-2 promoted transcriptional changes in HUVECs that were partly reversed by the activated protein C pretreatment. We also observed that the serum of severe COVID-19 had a significant amount of activated protein C that could protect endothelial cells from serum-induced activation. In conclusion, activated protein C protects endothelial cells from pro-inflammatory and pro-coagulant effects during exposure to the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Bruna Rafaela dos Santos Silva
- School of Nursing, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center (OCRC), Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - Davi Sidarta-Oliveira
- Laboratory of Cell Signalling, Obesity and Comorbidities Center (OCRC), Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - Joseane Morari
- Laboratory of Cell Signalling, Obesity and Comorbidities Center (OCRC), Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - Bruna Bombassaro
- School of Nursing, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
- Laboratory of Cell Signalling, Obesity and Comorbidities Center (OCRC), Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | | | - Camila Lopes Simeoni
- Laboratory of Emerging Viruses, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil; (C.L.S.); (P.L.P.); (J.L.P.-M.)
| | - Pierina Lorencini Parise
- Laboratory of Emerging Viruses, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil; (C.L.S.); (P.L.P.); (J.L.P.-M.)
| | - José Luiz Proenca-Modena
- Laboratory of Emerging Viruses, Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil; (C.L.S.); (P.L.P.); (J.L.P.-M.)
| | - Licio A. Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Center (OCRC), Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| | - William H. Velander
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE 68588, USA;
| | - Eliana P. Araújo
- School of Nursing, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas 13083-970, SP, Brazil
| |
Collapse
|
13
|
Scheim DE, Parry PI, Rabbolini DJ, Aldous C, Yagisawa M, Clancy R, Borody TJ, Hoy WE. Back to the Basics of SARS-CoV-2 Biochemistry: Microvascular Occlusive Glycan Bindings Govern Its Morbidities and Inform Therapeutic Responses. Viruses 2024; 16:647. [PMID: 38675987 PMCID: PMC11054389 DOI: 10.3390/v16040647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Consistent with the biochemistry of coronaviruses as well established over decades, SARS-CoV-2 makes its initial attachment to host cells through the binding of its spike protein (SP) to sialylated glycans (containing the monosaccharide sialic acid) on the cell surface. The virus can then slide over and enter via ACE2. SARS-CoV-2 SP attaches particularly tightly to the trillions of red blood cells (RBCs), platelets and endothelial cells in the human body, each cell very densely coated with sialic acid surface molecules but having no ACE2 or minimal ACE2. These interlaced attachments trigger the blood cell aggregation, microvascular occlusion and vascular damage that underlie the hypoxia, blood clotting and related morbidities of severe COVID-19. Notably, the two human betacoronaviruses that express a sialic acid-cleaving enzyme are benign, while the other three-SARS, SARS-CoV-2 and MERS-are virulent. RBC aggregation experimentally induced in several animal species using an injected polysaccharide caused most of the same morbidities of severe COVID-19. This glycan biochemistry is key to disentangling controversies that have arisen over the efficacy of certain generic COVID-19 treatment agents and the safety of SP-based COVID-19 vaccines. More broadly, disregard for the active physiological role of RBCs yields unreliable or erroneous reporting of pharmacokinetic parameters as routinely obtained for most drugs and other bioactive agents using detection in plasma, with whole-blood levels being up to 30-fold higher. Appreciation of the active role of RBCs can elucidate the microvascular underpinnings of other health conditions, including cardiovascular disease, and therapeutic opportunities to address them.
Collapse
Affiliation(s)
- David E. Scheim
- US Public Health Service, Commissioned Corps, Inactive Reserve, Blacksburg, VA 24060, USA
| | - Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia;
- Department of Psychiatry, Flinders University, Bedford Park, SA 5042, Australia
| | - David J. Rabbolini
- Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW 2064, Australia
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Morimasa Yagisawa
- Satoshi Omura Memorial Research Institute, Kitasato University, Tokyo 108-8641, Japan
- Louis Pasteur Center for Medical Research, Kyoto 606-8225, Japan
| | - Robert Clancy
- Emeritus Professor, School of Medicine and Public Health, University of Newcastle, Newcastle, NE1 7RU, Australia
| | | | - Wendy E. Hoy
- Emeritus Professor of Medicine, University of Queensland, Herston, QLD 4029, Australia
| |
Collapse
|
14
|
Sun YK, Wang C, Lin PQ, Hu L, Ye J, Gao ZG, Lin R, Li HM, Shu Q, Huang LS, Tan LH. Severe pediatric COVID-19: a review from the clinical and immunopathophysiological perspectives. World J Pediatr 2024; 20:307-324. [PMID: 38321331 PMCID: PMC11052880 DOI: 10.1007/s12519-023-00790-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.
Collapse
Affiliation(s)
- Yi-Kan Sun
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310030, China
| | - Can Wang
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Pei-Quan Lin
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Lei Hu
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jing Ye
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zhi-Gang Gao
- Department of General Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ru Lin
- Department of Cardiopulmonary and Extracorporeal Life Support, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hao-Min Li
- Clinical Data Center, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qiang Shu
- Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Li-Su Huang
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
- Department of Infectious Diseases, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Lin-Hua Tan
- Surgical Intensive Care Unit, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
15
|
Lui KO, Ma Z, Dimmeler S. SARS-CoV-2 induced vascular endothelial dysfunction: direct or indirect effects? Cardiovasc Res 2024; 120:34-43. [PMID: 38159046 DOI: 10.1093/cvr/cvad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/18/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024] Open
Abstract
Clinical evidence reveals that manifestations of endothelial dysfunction are widely observed in COVID-19 and long-COVID patients. However, whether these detrimental effects are caused by direct infection of the endothelium or are indirectly mediated by systemic inflammation has been a matter of debate. It has been well acknowledged that endothelial cells (ECs) of the cardiovascular system ubiquitously express the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), yet accumulating evidence suggests that it is more predominantly expressed by pericytes and vascular smooth muscle cells of the mammalian blood vessel. Besides, replicative infection of ECs by SARS-CoV-2 has yet to be demonstrated both in vitro and in vivo. In this study, we review latest research on endothelial ACE2 expression in different vascular beds, and the heterogeneity in various EC subsets with differential ACE2 expression in response to SARS-CoV-2. We also discuss ACE2-independent alternative mechanisms underlying endothelial activation in COVID-19, and the clinical manifestations of SARS-CoV-2-induced endothelial dysfunction. Altogether, understanding ACE2-dependent and ACE2-independent mechanisms driving SARS-CoV-2-induced vascular dysfunction would shed light on strategies of more effective therapies targeting cardiovascular complications associated with COVID-19.
Collapse
Affiliation(s)
- Kathy O Lui
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Zhangjing Ma
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, 30-32 Ngan Shing Street, Sha Tin, New Territories, 999077 Hong Kong, China
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, and Faculty of Biological Sciences, Goethe University Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
16
|
Vieceli Dalla Sega F, Fortini F, Licastro D, Monego SD, Degasperi M, Ascierto A, Marracino L, Severi P, D'Accolti M, Soffritti I, Brambilla M, Camera M, Tremoli E, Contoli M, Spadaro S, Campo G, Ferrari R, Caselli E, Rizzo P. Serum from COVID-19 patients promotes endothelial cell dysfunction through protease-activated receptor 2. Inflamm Res 2024; 73:117-130. [PMID: 38117300 DOI: 10.1007/s00011-023-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Endothelial dysfunction plays a central role in the pathophysiology of COVID-19 and is closely linked to the severity and mortality of the disease. The inflammatory response to SARS-CoV-2 infection can alter the capacity of the endothelium to regulate vascular tone, immune responses, and the balance between anti-thrombotic and pro-thrombotic properties. However, the specific endothelial pathways altered during COVID-19 still need to be fully understood. OBJECTIVE In this study, we sought to identify molecular changes in endothelial cells induced by circulating factors characteristic of COVID-19. METHODS AND RESULTS To this aim, we cultured endothelial cells with sera from patients with COVID-19 or non-COVID-19 pneumonia. Through transcriptomic analysis, we were able to identify a distinctive endothelial phenotype that is induced by sera from COVID-19 patients. We confirmed and expanded this observation in vitro by showing that COVID-19 serum alters functional properties of endothelial cells leading to increased apoptosis, loss of barrier integrity, and hypercoagulability. Furthermore, we demonstrated that these endothelial dysfunctions are mediated by protease-activated receptor 2 (PAR-2), as predicted by transcriptome network analysis validated by in vitro functional assays. CONCLUSION Our findings provide the rationale for further studies to evaluate whether targeting PAR-2 may be a clinically effective strategy to counteract endothelial dysfunction in COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | - Alessia Ascierto
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Luisa Marracino
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Maria D'Accolti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Irene Soffritti
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | | | - Marina Camera
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Marco Contoli
- Respiratory Section, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Savino Spadaro
- Intensive Care Unit, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Cardiology Unit, Azienda Ospedaliero-Universitaria di Ferrara, University of Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisabetta Caselli
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, and LTTA, Section of Microbiology, University of Ferrara, Ferrara, Italy
| | - Paola Rizzo
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
- Department of Translational Medicine and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Jones EAV. Mechanism of COVID-19-Induced Cardiac Damage from Patient, In Vitro and Animal Studies. Curr Heart Fail Rep 2023; 20:451-460. [PMID: 37526812 PMCID: PMC10589152 DOI: 10.1007/s11897-023-00618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE OF REVIEW Though patient studies have been important for understanding the disease, research done in animals and cell culture complement our knowledge from patient data and provide insight into the mechanism of the disease. Understanding how COVID causes damage to the heart is essential to understanding possible long-term consequences. RECENT FINDINGS COVID-19 is primarily a disease that attacks the lungs; however, it is known to have important consequences in many other tissues including the heart. Though myocarditis does occur in some patients, for most cases of cardiac damage, the injury arises from scarring either due to myocardial infarction or micro-infarction. The main focus is on how COVID affects blood flow through the coronaries. We review how endothelial activation leads to a hypercoagulative state in COVID-19. We also emphasize the effects that the cytokine storm can directly have on the regulation of coronary blood flow. Since the main two cell types that can be infected in the heart are pericytes and cardiomyocytes, we further describe the known effects on pericyte function and how that can further lead to microinfarcts within the heart. Though many of these effects are systemic, this review focuses on the consequences on cardiac tissue of this dysregulation and the role that it has in the formation of myocardial scarring.
Collapse
Affiliation(s)
- Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, Herestraat 49, Bus 911, 3000, KU, Leuven, Belgium.
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, Netherlands.
| |
Collapse
|
18
|
Shimamoto Y, Sasaki H, Kasuno K, Watanabe Y, Sakashita S, Nishikawa S, Nishimori K, Morita S, Nishikawa Y, Kobayashi M, Fukushima S, Enomoto S, Takahashi N, Hamano T, Sakamaki I, Iwasaki H, Iwano M. Posterior reversible encephalopathy syndrome (PRES) associated with SARS-CoV-2 infection in a patient under maintenance haemodialysis: a case report. BMC Nephrol 2023; 24:286. [PMID: 37773103 PMCID: PMC10542676 DOI: 10.1186/s12882-023-03319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Endothelial dysfunction is common in patients undergoing chronic haemodialysis, and is a major cause of posterior reversible encephalopathy syndrome (PRES). Recently, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to cause endothelial dysfunction by infecting vascular endothelial cells. Several cases of neurological complications in patients without kidney dysfunction, and only a few cases in patients with chronic kidney disease, have been reported in the literature. However, no previous report has yet described PRES associated with SARS-CoV-2 infection among patients undergoing maintenance dialysis. CASE PRESENTATION A 54-year-old woman undergoing maintenance haemodialysis was admitted to our hospital for status epilepticus. She had developed end-stage kidney disease (ESKD) secondary to diabetic nephropathy. Seven days prior to admission, she had developed fever and was diagnosed with COVID-19. Subsequently her blood pressure increased from 160/90 mmHg to 190/100 mmHg. On admission, she presented with severe hypertension (> 220/150 mmHg), unconsciousness, and epilepticus. CT tomography revealed no signs of brain haemorrhage. Cranio-spinal fluid (CSF) examination revealed no signs of encephalitis, and CSF polymerase chain reaction (PCR) for SARS-CoV-2 was negative. MRI findings revealed focal T2/FLAIR hyperintensity in the bilateral parietooccipital regions, leading to the diagnosis of PRES. Deep sedation and strict blood pressure control resulted in a rapid improvement of her symptoms, and she was discharged without sequelae. CONCLUSIONS We report the first case of PRES associated with SARS-CoV-2 infection in a patient undergoing maintenance haemodialysis. Patients undergoing maintenance haemodialysis are at high risk of PRES because of several risk factors. SARS-CoV-2 infection causes direct invasion of endothelial cells by binding to angiotensin-converting enzyme 2 (ACE2), initiating cytokine release, and hypercoagulation, leading to vascular endothelial cell injury and increased vascular leakage. In the present case, SARS-CoV-2 infection possibly be associated with the development of PRES.
Collapse
Affiliation(s)
- Yuki Shimamoto
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Hirohito Sasaki
- Division of Neurology, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kenji Kasuno
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan.
| | - Yuki Watanabe
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Sayumi Sakashita
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Sayu Morita
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Sachiko Fukushima
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Soichi Enomoto
- Division of Neurology, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Naoki Takahashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| | - Tadanori Hamano
- Division of Neurology, Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Ippei Sakamaki
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hiromichi Iwasaki
- Division of Infection Control and Prevention, University of Fukui Hospital, Fukui, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuokashimoaizuki Eiheiji-cho Yoshida-gun, Fukui, Japan
| |
Collapse
|
19
|
Borek I, Birnhuber A, Voelkel NF, Marsh LM, Kwapiszewska G. The vascular perspective on acute and chronic lung disease. J Clin Invest 2023; 133:e170502. [PMID: 37581311 PMCID: PMC10425217 DOI: 10.1172/jci170502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Norbert F. Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Lung Center (DZL), Cardiopulmonary Institute, Giessen, Germany
| |
Collapse
|
20
|
Ball EE, Weiss CM, Liu H, Jackson K, Keel MK, Miller CJ, Van Rompay KKA, Coffey LL, Pesavento PA. Severe Acute Respiratory Syndrome Coronavirus 2 Vasculopathy in a Syrian Golden Hamster Model. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:690-701. [PMID: 36906263 PMCID: PMC9998130 DOI: 10.1016/j.ajpath.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 03/11/2023]
Abstract
Clinical evidence of vascular dysfunction and hypercoagulability as well as pulmonary vascular damage and microthrombosis are frequently reported in severe cases of human coronavirus disease 2019 (COVID-19). Syrian golden hamsters recapitulate histopathologic pulmonary vascular lesions reported in patients with COVID-19. Herein, special staining techniques and transmission electron microscopy further define vascular pathologies in a Syrian golden hamster model of human COVID-19. The results show that regions of active pulmonary inflammation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are characterized by ultrastructural evidence of endothelial damage with platelet marginalization and both perivascular and subendothelial macrophage infiltration. SARS-CoV-2 antigen/RNA was not detectable within affected blood vessels. Taken together, these findings suggest that the prominent microscopic vascular lesions in SARS-CoV-2-inoculated hamsters likely occur due to endothelial damage followed by platelet and macrophage infiltration.
Collapse
Affiliation(s)
- Erin E Ball
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; US Army Veterinary Corps, Washington, District of Columbia
| | - Christopher M Weiss
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Hongwei Liu
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Kenneth Jackson
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - M Kevin Keel
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| | - Christopher J Miller
- California National Primate Center, University of California, Davis, California; Center for Immunology and Infectious Diseases, University of California, Davis, California
| | - Koen K A Van Rompay
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California; California National Primate Center, University of California, Davis, California
| | - Lark L Coffey
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California.
| | - Patricia A Pesavento
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, California
| |
Collapse
|
21
|
Pesti A, Danics K, Glasz T, Várkonyi T, Barbai T, Reszegi A, Kovalszky I, Vályi-Nagy I, Dobi D, Lotz G, Schaff Z, Kiss A. Liver alterations and detection of SARS-CoV-2 RNA and proteins in COVID-19 autopsies. GeroScience 2023; 45:1015-1031. [PMID: 36527584 PMCID: PMC9759055 DOI: 10.1007/s11357-022-00700-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/20/2022] [Indexed: 12/23/2022] Open
Abstract
The most severe alterations in Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) infection are seen in the lung. However, other organs also are affected. Here, we report histopathologic findings in the liver and detection of viral proteins and RNA in COVID-19 autopsies performed at the Semmelweis University (Budapest, Hungary). Between March 2020 through March 2022, 150 autopsies on patients who died of COVID-19 were analyzed. Cause-of-death categories were formed based on the association with SARS-CoV-2 as strong, contributive, or weak. Samples for histopathologic study were obtained from all organs, fixed in formalin, and embedded in paraffin (FFPE). Immunohistochemical study (IHC) to detect SARS-CoV-2 spike protein and nucleocapsid protein (NP), CD31, claudin-5, factor VIII, macrosialin (CD68), and cytokeratin 7, with reverse transcriptase polymerase chain reaction (RT-PCR), and in situ hybridization (ISH, RNAscope®) for SARS-CoV-2 RNA were conducted using FFPE samples of livers taken from 20 autopsies performed ≤ 2 days postmortem. All glass slides were scanned; the digital images were evaluated by semiquantitative scoring and scores were analyzed statistically. Steatosis, single-cell and focal/zonal hepatocyte necrosis, portal fibrosis, and chronic inflammation were found in varying percentages. Sinusoidal ectasia, endothelial cell disruption, and fibrin-filled sinusoids were seen in all cases; these were assessed semiquantitatively for severity (SEF scored). SEF scores did not correlate with cause-of-death categories (p = 0.92) or with severity of lung alterations (p = 0.96). SARS-CoV-2 RNA was detected in 13/20 cases by PCR and in 9/20 by ISH, with IHC demonstration of spike protein in 4/20 cases and NP in 15/20. Viral RNA and proteins were located in endothelial and Kupffer cells, and in portal macrophages, but not in hepatocytes and cholangiocytes. In conclusion, endothelial damage (SEF scores) was the most common alteration in the liver and was a characteristic, but not specific alteration in COVID-19, suggesting an important role in the pathogenesis of COVID-19-associated liver disease. Detection of SARS-CoV-2 RNA and viral proteins in liver non-parenchymal cells suggests that while the most extended primary viral cytotoxic effect occurs in the lung, viral components are present in other organs too, as in the liver. The necrosis/apoptosis and endothelial damage associated with viral infection in COVID-19 suggest that those patients who survive more severe COVID-19 may face prolonged liver repair and accordingly should be followed regularly in the post-COVID period.
Collapse
Affiliation(s)
- Adrián Pesti
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztina Danics
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Glasz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tibor Várkonyi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Barbai
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Andrea Reszegi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Ilona Kovalszky
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - István Vályi-Nagy
- Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Deján Dobi
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Lotz
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsa Schaff
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.
| | - András Kiss
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
22
|
Maruhashi T, Higashi Y. Current topic of vascular function in hypertension. Hypertens Res 2023; 46:630-637. [PMID: 36604472 PMCID: PMC9813887 DOI: 10.1038/s41440-022-01147-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
Vascular function assessment is useful for the evaluation of atherosclerosis severity, which may provide additional information for cardiovascular risk stratification. In addition, vascular function assessment is helpful for a better understanding of pathophysiological associations between vascular dysfunction and cardiometabolic disorders. In 2020 and 2021, although coronavirus disease 2019 (COVID-19) was still a worldwide challenge for health care systems, many excellent articles regarding vascular function were published in Hypertension Research and other major cardiovascular and hypertension journals. In this review, we summarize new findings on vascular function and discuss the association between vascular function and COVID-19, the importance of lifestyle modifications for the maintenance of vascular function, and the usefulness of vascular function tests for cardiovascular risk assessment. We hope this review will be helpful for the management of cardiovascular risk factors, including hypertension and cardiovascular diseases, in clinical practice.
Collapse
Affiliation(s)
- Tatsuya Maruhashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | - Yukihito Higashi
- Department of Regenerative Medicine, Division of Radiation Medical Science, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.,Division of Regeneration and Medicine, Medical Center for Translational and Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
23
|
Beneficial Effects of L-Arginine in Patients Hospitalized for COVID-19: New Insights from a Randomized Clinical Trial. Pharmacol Res 2023; 191:106702. [PMID: 36804278 PMCID: PMC9928676 DOI: 10.1016/j.phrs.2023.106702] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
We have recently demonstrated in a double-blind randomized trial the beneficial effects of L-Arginine in patients hospitalized for COVID-19. We hypothesize that one of the mechanisms underlying the favorable effects of L-Arginine is its action on inflammatory cytokines. To verify our hypothesis, we measured longitudinal plasma levels of pro-inflammatory and anti-inflammatory cytokines implied in the pathophysiology of COVID-19 in patients randomized to receive oral L-Arginine or placebo. The study was successfully completed by 169 patients. Patients in the L-Arginine arm had a reduced respiratory support evaluated at 10 and 20 days; moreover, the time to hospital discharge was significantly shorter in the L-Arginine group. The assessment of circulating cytokines revealed that L-Arginine significantly reduced the circulating levels of pro-inflammatory IL-2, IL-6, and IFN-γ and increased the levels of the anti-inflammatory IL-10. Taken together, these findings indicate that adding L-Arginine to standard therapy in COVID-19 patients markedly reduces the need of respiratory support and the duration of in-hospital stay; moreover, L-Arginine significantly regulates circulating levels of pro-inflammatory and anti-inflammatory cytokines.
Collapse
|
24
|
Bugatti A, Filippini F, Messali S, Giovanetti M, Ravelli C, Zani A, Ciccozzi M, Caruso A, Caccuri F. The D405N Mutation in the Spike Protein of SARS-CoV-2 Omicron BA.5 Inhibits Spike/Integrins Interaction and Viral Infection of Human Lung Microvascular Endothelial Cells. Viruses 2023; 15:332. [PMID: 36851546 PMCID: PMC9962894 DOI: 10.3390/v15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvβ3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Giovanetti
- Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Cosetta Ravelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
25
|
Baranova A, Cao H, Teng S, Zhang F. A phenome-wide investigation of risk factors for severe COVID-19. J Med Virol 2023; 95:e28264. [PMID: 36316288 PMCID: PMC9874597 DOI: 10.1002/jmv.28264] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/14/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022]
Abstract
With the continued spread of COVID-19 globally, it is crucial to identify the potential risk or protective factors associated with COVID-19. Here, we performed genetic correlation analysis and Mendelian randomization analysis to examine genetic relationships between COVID-19 hospitalization and 405 health conditions and lifestyle factors in 456 422 participants from the UK Biobank. The genetic correlation analysis revealed 134 positive and 65 negative correlations, including those with intakes of a variety of dietary components. The MR analysis indicates that a set of body fat-related traits, maternal smoking around birth, basal metabolic rate, lymphocyte count, peripheral enthesopathies and allied syndromes, blood clots in the leg, and arthropathy are causal risk factors for severe COVID-19, while higher education attainment, physical activity, asthma, and never smoking status protect against the illness. Our findings have implications for risk stratification in patients with COVID-19 and the prevention of its severe outcomes.
Collapse
Affiliation(s)
- Ancha Baranova
- School of Systems Biology, George Mason University, Manassas, Virginia, USA.,Research Centre for Medical Genetics, Moscow, Russia
| | - Hongbao Cao
- School of Systems Biology, George Mason University, Manassas, Virginia, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, District of Columbia, USA
| | - Fuquan Zhang
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Garmendia JV, García AH, De Sanctis CV, Hajdúch M, De Sanctis JB. Autoimmunity and Immunodeficiency in Severe SARS-CoV-2 Infection and Prolonged COVID-19. Curr Issues Mol Biol 2022; 45:33-50. [PMID: 36661489 PMCID: PMC9857622 DOI: 10.3390/cimb45010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 causes the complex and heterogeneous illness known as COVID-19. The disease primarily affects the respiratory system but can quickly become systemic, harming multiple organs and leading to long-lasting sequelae in some patients. Most infected individuals are asymptomatic or present mild symptoms. Antibodies, complement, and immune cells can efficiently eliminate the virus. However, 20% of individuals develop severe respiratory illness and multiple organ failure. Virus replication has been described in several organs in patients who died from COVID-19, suggesting a compromised immune response. Immunodeficiency and autoimmunity are responsible for this impairment and facilitate viral escape. Mutations in IFN signal transduction and T cell activation are responsible for the inadequate response in young individuals. Autoantibodies are accountable for secondary immunodeficiency in patients with severe infection or prolonged COVID-19. Antibodies against cytokines (interferons α, γ and ω, IL1β, IL6, IL10, IL-17, IL21), chemokines, complement, nuclear proteins and DNA, anticardiolipin, and several extracellular proteins have been reported. The type and titer of autoantibodies depend on age and gender. Organ-specific autoantibodies have been described in prolonged COVID-19. Their role in the disease is under study. Autoimmunity and immunodeficiency should be screened as risk factors for severe or prolonged COVID-19.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alexis Hipólito García
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Caracas 1040, Venezuela
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
- Czech Institute of Advanced Technology in Research [Catrin], Palacky University, 779 00 Olomouc, Czech Republic
- Correspondence:
| |
Collapse
|
27
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
28
|
Razzaque MS, Jaser SKK, Prado RCR, Freeberg KA, Ludwig KR, Craighead DH, Rossman MJ, Bhagat A, Bock JM, Wiggins CC, Senefeld JW, Wedig IJ, Elmer SJ, Kamm K. Commentaries on Viewpoint: COVID-19 controls causing a kerfuffle. J Appl Physiol (1985) 2022; 133:1222-1225. [PMID: 36342809 PMCID: PMC9665955 DOI: 10.1152/japplphysiol.00536.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania, United States
| | | | | | - Kaitlin A. Freeberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Katelyn R. Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Daniel H. Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Matthew J. Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Anumeha Bhagat
- Department of Physiology, Government Medical College and Hospital, Chandigarh, India
| | - Joshua M. Bock
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Isaac J. Wedig
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| | - Kelly Kamm
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan, United States
| |
Collapse
|