1
|
Śliwka P, Moreno DS, Korzeniowski P, Milcarz A, Kuczkowski M, Kolenda R, Kozioł S, Narajczyk M, Roesler U, Tomaszewska-Hetman L, Kuźmińska-Bajor M. Avian pathogenic Escherichia coli-targeting phages for biofilm biocontrol in the poultry industry. Vet Microbiol 2025; 301:110363. [PMID: 39793452 DOI: 10.1016/j.vetmic.2024.110363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/23/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025]
Abstract
Avian pathogenic Escherichia coli (APEC) is a principal etiologic agent of avian colibacillosis, responsible for significant economic losses in the poultry industry due to high mortality and disease treatment with antibiotics. APEC and its ability to form biofilms on food and processing surfaces contributes to its persistence within farms. Bacteriophages are promising antibacterial agents for combating APEC. This study focused on characterization of the newly isolated phages UPWr_E1, UPWr_E2, and UPWr_E4 as well as the UPWr_E124 phage cocktail containing these three phages. Methods included efficiency of plating assay, transmission electron microscopy, and characterization of their resistance to different pH values and temperatures. Moreover, phage genomes were sequenced, annotated and analyzed, and were compared with previously sequenced E. coli phages. All three phages are virulent and devoid of undesirable genes for therapy. Phage UPWr_E1 belongs to the genus Krischvirus within the order Straboviridae and both UPWr_E2 and UPWr_E4 belong to the genus Tequatrovirus within the subfamily Tevenvirinae, sharing over 95 % nucleotide identity between them. For their use on poultry farms, UPWr_E phages and the UPWr_E124 phage cocktail were tested for their anti-biofilm activity on two E. coli strains - 158B (APEC) and the strong biofilm producer NCTC 17848 - on two abiotic surfaces: a 96-well microplate, a stainless steel surface, and one biotic surface, represented by lettuce leaves. The reduction of biofilm formed by both strains in the 96-well microplate, on the stainless steel and lettuce leaf surface for bacteriophage treatment was very efficient, reducing biofilms by ranges of 50.2-83.6, 58.2-88.4 and 53-99.4 %, respectively. Therefore, we conclude that UPWr_E phages and the UPWr_E124 phage cocktail are promising candidates for APEC biocontrol.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - David Sáez Moreno
- CEB-Centre of Biological Engineering, University of Minho, Braga 4710-057, Portugal
| | - Paweł Korzeniowski
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - Agata Milcarz
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Poland; Quadram Institute, Norwich Research Park, Norwich, UK
| | - Sylwia Kozioł
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | | | - Uwe Roesler
- Institute of Animal Hygiene and Environmental Health, Veterinary Centre for Resistance Research-TZR, School of Veterinary Medicine, Freie Universität Berlin, Berlin 14163, Germany
| | - Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland
| | - Marta Kuźmińska-Bajor
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, Poland.
| |
Collapse
|
2
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2025; 51:44-83. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
3
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
4
|
Tavşanoğlu ÜN, Koraltan İ, Basaran Kankılıç G, Çırak T, Ertürk Ş, Ürker O, Güçlü P, Ünlü H, Çağan AS, Deniz Yağcıoğlu K, Akyürek Z. Assessing microplastic pollution in a river basin: A multidisciplinary study on circularity, sustainability, and socio-economic impacts. ENVIRONMENTAL RESEARCH 2024; 262:119819. [PMID: 39173820 DOI: 10.1016/j.envres.2024.119819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Plastic pollution has emerged as a significant environmental challenge worldwide, posing serious threats to ecosystems and human health. This study seeks to explore the interplay among circularity, sustainability, and the release of microplastics within the freshwater ecosystems situated along the western Black Sea coast- Düzce, Türkiye. Employing a multidisciplinary approach that integrates environmental science, economics, and policy analysis, the research examines the current state of plastic pollution in the region, considering diverse land uses and socio-economic lifestyles. Conducted over four different seasons, the current study identifies the prevailing types of microplastics in the region. Fibers dominate, comprising 86.7% in each season, followed by film and fragments at 7.7% and 7.0%, respectively. Notably, polyethylene (PE) and polypropylene (PP) emerges as the primary polymer types. The distribution of polymer types varies across different land uses within the region, emphasizing the influential role of land use in shaping the abundance polymer composition. The comprehensive assessment of pollution, as reflected in the overall pollution load index (PLI) of the Melen River indicating a concerning level of pollution (PLI>1). Finally, the study unveiled the relationship between socio-economic activities as well as the seasonal precipitation patterns, and microplastic contamination in the region. This underscored the importance of site-specific mitigation measures on reducing the amount of microplastics. Lastly, incorporating sustainable practices within the circular economy framework fosters a harmonious balance between economic development and environmental protection in Türkiye.
Collapse
Affiliation(s)
- Ülkü Nihan Tavşanoğlu
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye.
| | - İdris Koraltan
- Institute of Natural and Applied Sciences, Akdeniz University, Dumlupınar Avenue, 07258, Antalya, Türkiye
| | | | - Tamer Çırak
- Alternative Energy Sources Technology Program, Aksaray University, Bahçesaray, 68100, Aksaray, Türkiye
| | - Şeyma Ertürk
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye
| | - Okan Ürker
- Department of Environmental Health, Çankırı Karatekin University, Taşmescit Street, 18200, Çankırı, Türkiye
| | - Pembe Güçlü
- Department of Business Administration, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Hülya Ünlü
- Department of Economics, Uluyazı Campus, 18100, Çankırı, Türkiye
| | - Ali Serhan Çağan
- Department of Biology, Çankırı Karatekin University, Uluyazı Campus, 18100, Çankırı, Türkiye; Wildlife Programme, Kastamonu University, Mehmet Yetkin Street, 37800, Araç, Kastamonu, Türkiye
| | - Kıymet Deniz Yağcıoğlu
- Department of Geology Engineering, Ankara University, Dögol Street, 0600, Ankara, Türkiye
| | - Zuhal Akyürek
- Department of Geodetic and Geographic Information Technologies, Middle East Technical University, Üniversiteliler Street, 06800, Ankara, Türkiye; Department of Civil Engineering, Üniversiteliler Street, 06800, Ankara, Türkiye Ankara, Türkiye
| |
Collapse
|
5
|
Khan A, Joshi HM. Combating chlorine-resistant marine Klebsiella pneumoniae biofilms with chlorine-tolerant bacteriophages. CHEMOSPHERE 2024; 368:143782. [PMID: 39571947 DOI: 10.1016/j.chemosphere.2024.143782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Biofilm formation presents a significant challenge in health care, food industries, water distribution systems, etc. In addition to their inherent resistance to various stresses and biocides, emerging resistance against widely used biocides like chlorine is a growing concern. The strong link between chlorine resistance and the development of antibiotic resistance among microbes further exacerbates this issue. Therefore, it is highly desirable to devise a method to mitigate the problems associated with biofilms formed by Chlorine Resistant Bacteria (CRB). In this study, a highly chlorine resistant, biofilm-forming Klebsiella pneumoniae was isolated from the cooling water system of a nuclear power plant employing continuous chlorination for biofilm control. Interestingly, K. pneumoniae was found to enhance biofilm formation under the influence of increasing concentrations of chlorine, highlighting the limitations of chlorination-based biofilm control measures. As a remedial measure, chlorine resistant bacteriophages specific to K. pneumoniae were successfully isolated from the same water sample. These bacteriophages effectively inhibited planktonic growth biofilm formation and removed preformed biofilms. Whole-genome sequencing of two of the promising bacteriophages confirmed their identity as novel bacteriophages specific to K. pneumoniae. The absence of any antibiotic-resistant gene, virulent factor(s), or gene associated with the lysogenic life cycle further supports their suitability for environmental applications. This study provides valuable insights into the prevalence of chlorine resistant, pathogenic bacteria in cooling water distribution systems. It also highlights the promising application of bacteriophages to mitigate chlorine resistant bacteria and their biofilms.
Collapse
Affiliation(s)
- Atif Khan
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Hiren M Joshi
- Water & Steam Chemistry Division, BARC Facilities, Kalpakkam, Tamil Nadu, India; Homi Bhabha National Institute, Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Rizkinata D, Waturangi DE, Yulandi A. Synergistic action of bacteriophage and metabolites of Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM against Enterotoxigenic Escherichia coli and Bacillus cereus and their biofilm. BMC Microbiol 2024; 24:398. [PMID: 39385119 PMCID: PMC11463113 DOI: 10.1186/s12866-024-03557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Foodborne disease and food spoilage are the prime public health issue and food security round the globe. Significant disease outbreaks mostly linked to the existence of pathogenic bacteria that extremely challenging due to the persistence of biofilm-forming. Proteins and bacterial metabolites have been shown to have good antibacterial activity and effectively removal bacterial biofilm. Recently, bacteriophage and their encoded lytic proteins such as lysin have attracted attention as potential alternative agent to control undesirable pathogens in human body infection, increasing food safety as advance preservations and medical treatment such as phage therapy. For these reasons, the efficacy of bacteriophage and their potential in combination with bacterial metabolites from Phyllosphere and Actinomycetes bacteria (Pseudomonas fluorescens JB3B and Streptomyces thermocarboxydus 18PM crude extracts) was the aim of this present study. RESULTS In this study, bacteriophage BC-VP (1.28 ± 0.29 × 1011 PFU/ml) and ETEC-phage-TG (8.9 ± 2.19 × 108 PFU/ml) isolated from artificial lake water from previous study showed potential activity to control Bacillus cereus (BC) and Enterotoxigenic Escherichia coli (ETEC) population. The combination of BC-VP with metabolite (P. fluorescens JB3B and S. thermocarboxydus 18PM) which were known from previous study had antibiofilm activities were able to inhibit (86.1%; 83.3%) and destruct (41%; 45.5%) biofilm formation of B. cereus respectively. Likewise, the synergy of bacteriophage ETEC-phage-TG with the same crude extract also showed promising activity against biofilm of ETEC with percentage of inhibition (81.9%; 76.4%) and percentage of destruction (54.1%; 44.4%). Application in various food, combination of BC-VP and bacterial metabolite extract (P. fluorescens JB3B; S. thermocarboxydus 18PM) were able to reduce Bacillus cereus population in mashed potato (99.6%; 99.4%) at cold temperature (4 °C) and (68.9%; 56.6%) at room temperature (28 °C), boiled pasta (99.5%; 99.4%) and (84.7%; 75.7%), also soymilk (96.9%; 96.7%) and (42.4%; 39.4%) respectively. Likewise, combination of ETEC-phage-TG and bacterial metabolite (P. fluorescens JB3B; S. thermocarboxydus 18PM) potentially reduced ETEC population after two different temperatures (4 °C and 28 °C) incubation in bean sprouts (TFTC; TFTC) and (47.5%; 49.1%), chicken meat (TFTC; TFTC) and (58.1%; 54%), also minced beef (99.5%; 99.4%) and (41.1%; 28%). GC-MS determination performed, oxalic acid, phenol, phenylethyl alcohol, N-hexadecanoic acid, and pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl was the most active compound in P. fluorescens JB3B. 2,4-Di-tert-butylphenol, phenyl acetic acid, N-Hexadecanoic acid, pyrolol[1,2-a]pyrazine-1,4-dione, hexadro-3-92-methylpropyl, and Bis(2-ethylhexyl) phthalate was most active compound in the S. thermocarboxydus 18PM isolates. CONCLUSIONS The combination of isolated bacteriophages and bacterial metabolite showed promising results to be used as biocontrol candidate to overcome biofilm formed by foodborne and food spoilage bacteria using their ability to produce antibiofilm compounds and lytic activity. In addition, this combination also potentially reduces the use or replace the drawbacks of common application such as antibiotic treatment.
Collapse
Affiliation(s)
- Denny Rizkinata
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| | - Diana Elizabeth Waturangi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia.
| | - Adi Yulandi
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Raya Cisauk- Lapan No. 10, Sampora, Cisauk, Tangerang, Banten, 15345, Indonesia
| |
Collapse
|
7
|
Wan Q, Zhang H, Bao H, Zhu S, Wu L, Wang R, Zhou Y. Efficacy of a lytic bacteriophage vB_EcoM_SQ17 against Enterohemorrhagic Escherichia coli O157:H7 and Enterotoxigenic E. coli biofilms on cucumber. Microb Pathog 2024; 194:106832. [PMID: 39089511 DOI: 10.1016/j.micpath.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) and Enterotoxigenic E. coli (ETEC) have been found to readily develop biofilms on cucumber (Cucumis sativus L.), presenting a significant risk to the safety of ready-to-eat vegetables. This study aimed to assess the effectiveness of the lytic bacteriophage vB_EcoM_SQ17 (SQ17) against EHEC O157:H7 and ETEC biofilms on cucumber. Here, we evaluated the efficacy of phage SQ17 on the formation and reduction of biofilms formed by EHEC O157:H7 and ETEC strains on various surfaces, including polystyrene, poly-d-lysine precoated films, and fresh-cut cucumber, at different temperatures. Phage SQ17 significantly inhibited ETEC biofilm formation, reducing the number of adhered cells by 0.15 log CFU/mL at 37 °C. Treatment with phage SQ17 also significantly decreased the number of adhered cells in established biofilms via SEM observation. Moreover, phage SQ17 effectively reduced the biomass of EHEC O157:H7 and ETEC biofilms by over 54.8 % at 37 °C after 24 h of incubation. Following phage treatment, the viability of adhered EHEC O157:H7 cells decreased by 1.37 log CFU/piece and 0.46 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. Similarly, the viability of ETEC cells decreased by 1.07 log CFU/piece and 0.61 log CFU/piece in biofilms on cucumber at 4 °C and 25 °C, respectively. These findings suggest that phage SQ17 shows promise as a potential strategy for eradicating pathogenic E. coli biofilms on cucumber.
Collapse
Affiliation(s)
- Qiyang Wan
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hongduo Bao
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shujiao Zhu
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Liting Wu
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yan Zhou
- Institute of Food Safety and Nutrition, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
8
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
9
|
Kim J, Wang J, Ahn J. Combined antimicrobial effect of phage-derived endolysin and depolymerase against biofilm-forming Salmonella Typhimurium. BIOFOULING 2023; 39:763-774. [PMID: 37795651 DOI: 10.1080/08927014.2023.2265817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
This study was designed to evaluate the antimicrobial activity of phage-derived endolysin (LysPB32) and depolymerase (DpolP22) against planktonic and biofilm cells of Salmonella Typhimurium (STKCCM). Compared to the control, the numbers of STKCCM were reduced by 4.3 and 5.9 log, respectively, at LysPB32 and LysPB32 + DpolP22 in the presence of polymyxin B (PMB) after 48-h incubation at 37 °C. LysPB32 + DpolP22 decreased the relative fitness (0.8) and the cross-resistance of STKCCM to chloramphenicol (CHL), cephalothin (CEP), ciprofloxacin (CIP), and tetracycline (TET) in the presence of PMB. The MICtrt/MICcon ratios of CHL, CEP, CIP, PMB, and TET were between 0.25 and 0.50 for LysPB32 + DpolP22 in the presence of PMB. These results suggest that the application of phage-encoded enzymes with antibiotics can be a promising approach for controlling biofilm formation on medical and food-processing equipment. This is noteworthy in that the application of LysPB32 + DpolP22 could increase antibiotic susceptibility and decrease cross-resistance to other antibiotics.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|