1
|
Chen Y, Chen M, Li X, Xu X, Yin SF, Qiu R. CO 2 Fixation into Useful Aromatic Carboxylic Acids via C (sp 2)-X Bonds Functionalization. Top Curr Chem (Cham) 2025; 383:11. [PMID: 40029504 DOI: 10.1007/s41061-025-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/16/2025] [Indexed: 03/05/2025]
Abstract
Carbon dioxide (CO2) is an abundant and readily available carbon source. Its transformation into high-added-value chemicals is a beneficial strategy, which mitigates greenhouse gas emissions and provides new raw material sources for the chemical industry. Among these chemicals, the aromatic carboxylic acids and derivatives have broad applications in medicine, pesticides, and materials science. Therefore, the carboxylation of C(sp2)-X (X = metal, halide, H, O, or S) bonds with CO2 to efficiently construct aromatic carboxylic acids and their derivatives is a synthetic strategy of significance. This review highlights the recent progress in constructing carboxylic acids and derivatives through the carboxylation of C(sp2)-X bonds with CO2 including literature published from 2000 to December 2024.
Collapse
Affiliation(s)
- Youwen Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100825, People's Republic of China
- School of Information and Mechanical Engineering, Hunan International Economics University, Changsha, China
| | - Meihua Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100825, People's Republic of China
| | - Xinyu Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100825, People's Republic of China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100825, People's Republic of China.
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100825, People's Republic of China.
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Renhua Qiu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 4100825, People's Republic of China.
| |
Collapse
|
2
|
Yan Q, Nan J, Cao R, Zhu L, Liu S, Liang C, Zhang C. Substrate-Controlled Divergent Reductive Cyclization of 2-Arylanilines Using CO 2 as a Switching Reagent. Org Lett 2025; 27:510-516. [PMID: 39791237 DOI: 10.1021/acs.orglett.4c04538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Capturing CO2 is highly valued in the field of organic synthesis, especially underdeveloped dual-CO2 conversion. In this study, we detail a novel reductive cyclization of 2-indolylanilines with dual CO2 as a difunctional reagent in the presence of PMHS [poly(methylhydrosiloxane)], delivering methyl-substituted quinoxalines. Furthermore, another chemoselective cyclization with 2-pyrrolylanilines is also realized by converting mono-CO2. Mechanistic investigations shed light upon the fact that this substrate-controlled divergence mainly depends on the formation of N-diacylative intermediates.
Collapse
Affiliation(s)
- Qiang Yan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiang Nan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Rui Cao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lanxin Zhu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shilei Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chengyuan Liang
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an 710021, China
| | - Chen Zhang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Hu C, Wang L, Yang X, Fu Y, Du Z. Construction of Six-Membered Lactam and Lactone Structures via Ligand-Free Pd-Catalyzed C-H Activation/[5 + 1] Cyclization Carbonylation. Org Lett 2024; 26:7783-7788. [PMID: 39248614 DOI: 10.1021/acs.orglett.4c02274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
An approach for the ligand-free Pd-catalyzed C-H activation/[5 + 1] cyclization carbonylation by employing readily available ClCF2COONa as a carbonyl source via difluorocarbene transfer and hydrolysis has been developed. The current protocol enables us to obtain a series of carbonylation cyclization product benzopyranone and phenanthridinone derivatives in up to 91% yield with excellent functional group compatibility. This protocol has the advantages of mild reaction conditions, wide applicable substrates, and simple and safe operation and provides a new method for the synthesis of complex lactam and lactone compounds.
Collapse
Affiliation(s)
- Chengxian Hu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Lu Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Xue Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China
| |
Collapse
|
4
|
Li W, Wu R, Ruan H, Xiao B, Gao X, Jiang H, Chen K, Sun TY, Zhu S. Axial Ligand Enables Synthesis of Allenylsilane through Dirhodium(II) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409332. [PMID: 38887822 DOI: 10.1002/anie.202409332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Described herein is a dirhodium(II)-catalyzed silylation of propargyl esters with hydrosilanes, using tertiary amines as axial ligands. By adopting this strategy, a range of versatile and useful allenylsilanes can be achieved with good yields. This reaction not only represents a SN2'-type silylation of the propargyl derivatives bearing a terminal alkyne moiety to synthesize allenylsilanes from simple hydrosilanes, but also represents a new application of dirhodium(II) complexes in catalytic transformation of carbon-carbon triple bond. The highly functionalized allenylsilanes that are produced can be transformed into a series of synthetically useful organic molecules. In this reaction, an intriguing ON-OFF effect of the amine ligand was observed. The reaction almost did not occur (OFF) without addition of Lewis base amine ligand. However, the reaction took place smoothly (ON) after addition of only catalytic amount of amine ligand. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that the reactivity can be delicately improved by the use of tertiary amine. The fine-tuning effect of the tertiary amine is crucial in the formation of the Rh-Si species via a concerted metalation deprotonation (CMD) mechanism and facilitating β-oxygen elimination.
Collapse
Affiliation(s)
- Wendeng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hao Ruan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Xiao
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xiang Gao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Tian-Yu Sun
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
5
|
Li H, Qiao K, Jiang W, Li F, Shi L. Dehydrogenative cyclization of 2-arylbenzoic acid and 2-arylbenzamide with hydrogen evolution in a photoelectrochemical cell. Chem Commun (Camb) 2024; 60:9416-9419. [PMID: 39136152 DOI: 10.1039/d4cc02792b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This paper describes photoelectrochemical dehydrogenative cyclization of 2-arylbenzoic acid and 2-arylbenzamide in a PEC cell consisting of a mesoporous WO3 photoanode and Pt cathode. The cyclization reaction is effectively driven by this PEC system at room temperature with blue LED irradiation under external oxidant- and metal-free conditions, delivering a series of benzolactones and benzolactams in up to 95% isolated yields. Meanwhile, hydrogen is released as the only byproduct of this process.
Collapse
Affiliation(s)
- Haoran Li
- School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Kaikai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Wenfeng Jiang
- School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, People's Republic of China.
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, People's Republic of China.
| |
Collapse
|
6
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
7
|
Wang L, Wu H, Zhao Y, Li B, Wang B. Nickel-Catalyzed Lactamization Reaction of 2-Arylanilines with CO 2. Org Lett 2024; 26:3940-3944. [PMID: 38686851 DOI: 10.1021/acs.orglett.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Transition-metal-catalyzed lactamization and lactonization of C-H bonds with CO2 assisted by the chelation of amino or hydroxyl groups have been developed but limited to the use of precious metal catalysts such as palladium and rhodium. In this work, we report the nonprecious metal nickel-catalyzed lactamization reaction of 2-arylanilines with CO2 under redox-neutral conditions via C-H bond activation. The reaction displayed excellent functional group tolerance, providing various phenanthridinones with moderate to high yields.
Collapse
Affiliation(s)
- Lu Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hanxuan Wu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yucheng Zhao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
8
|
Yang L, Wu X, Lu W, Lu Y, Zhang Z. Dirhodium(II)/DPPM Catalyzed 1,2-Hydrosilylation of Conjugated Dienes with Tertiary Silanes. Org Lett 2024; 26:2287-2291. [PMID: 38456813 DOI: 10.1021/acs.orglett.4c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A simple and efficient Rh2(OAc)4/DPPM (bis(diphenylphosphanyl)methane) catalyzed regioselective 1,2-anti-Markovnikov hydrosilylation of conjugated dienes with various tertiary silanes gave homoallylic silanes in acetonitrile, which tolerate broad functional groups. Control experiments proved that no π-allyl transition metal intermediates were involved in this 1,2-anti-Markovnikov hydrosilylation. Dirhodium hydride species was observed in hydrosilylation, suggesting that a direct insertion of the terminal double bond into a Rh-H bond is involved in this reaction.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wenkui Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
9
|
Yu J, Hao X, Mu L, Shi W, She G. Photoelectrocatalytic Utilization of CO 2 : A Big Show of Si-based Photoelectrodes. Chemistry 2024; 30:e202303552. [PMID: 38158581 DOI: 10.1002/chem.202303552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
CO2 is a greenhouse gas that contributes to environmental deterioration; however, it can also be utilized as an abundant C1 resource for the production of valuable chemicals. Solar-driven photoelectrocatalytic (PEC) CO2 utilization represents an advanced technology for the resourcing of CO2 . The key to achieving PEC CO2 utilization lies in high-performance semiconductor photoelectrodes. Si-based photoelectrodes have attracted increasing attention in the field of PEC CO2 utilization due to their suitable band gap (1.1 eV), high carrier mobility, low cost, and abundance on Earth. There are two pathways to PEC CO2 utilization using Si-based photoelectrodes: direct reduction of CO2 into small molecule fuels and chemicals, and fixation of CO2 with organic substrates to generate high-value chemicals. The efficiency and product selectivity of PEC CO2 utilization depends on the structures of the photoelectrodes as well as the composition, morphology, and size of the catalysts. In recent years, significant and influential progress has been made in utilizing Si-based photoelectrodes for PEC CO2 utilization. This review summarizes the latest research achievements in Si-based PEC CO2 utilization, with a particular emphasis on the mechanistic understanding of CO2 reduction and fixation, which will inspire future developments in this field.
Collapse
Affiliation(s)
- Jiacheng Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xue Hao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lixuan Mu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Wensheng Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Guangwei She
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| |
Collapse
|
10
|
Yuan PF, Yang Z, Zhang SS, Zhu CM, Yang XL, Meng QY. Deconstructive Carboxylation of Activated Alkenes with Carbon Dioxide. Angew Chem Int Ed Engl 2023:e202313030. [PMID: 38072915 DOI: 10.1002/anie.202313030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 12/22/2023]
Abstract
Carboxylation with carbon dioxide (CO2 ) represents one notable methodology to produce carboxylic acids. In contrast to carbon-heteroatom bonds, carbon-carbon bond cleavage for carboxylation with CO2 is far more challenging due to their inherent and less favorable orbital directionality for interacting with transition metals. Here we report a photocatalytic protocol for the deconstructive carboxylation of alkenes with CO2 to generate carboxylic acids in the absence of transition metals. It is emphasized that our protocol provides carboxylic acids with obviously unchanged carbon numbers when terminal alkenes were used. To show the power of this strategy, a variety of pharmaceutically relevant applications including the modular synthesis of propionate nonsteroidal anti-inflammatory drugs and the late-stage carboxylation of bioactive molecule derivatives are demonstrated.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
| | - Zhao Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Shan-Shan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Can-Ming Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, P. R. China
| | - Qing-Yuan Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 (P. R., China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Shi L, Xue X, Hong B, Li Q, Gu Z. Dirhodium(II)/Phosphine Catalyst with Chiral Environment at Bridging Site and Its Application in Enantioselective Atropisomer Synthesis. ACS CENTRAL SCIENCE 2023; 9:748-755. [PMID: 37122446 PMCID: PMC10141619 DOI: 10.1021/acscentsci.2c01207] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 05/03/2023]
Abstract
A dirhodium(II)/phosphine catalyst with a chiral environment at the bridging site was developed for the asymmetric arylation of phenanthrene-9,10-diones with arylboronic acids. In contrast to the classic chiral bridging carboxylic acid (or derivatives) ligand strategy of bimetallic dirhodium(II) catalysis, in this reaction, tuning both axial and bridging ligands realized the first Rh2(OAc)4/phosphine-catalyzed highly enantioselective carbonyl addition reaction. The kinetic analysis reveals that dirhodium(II) and arylboronic acid follow the first-order kinetics, while phenanthrene-9,10-dione is zeroth-order. These data supported the proposed catalytic cycle, where the key intermediate in the rate-determining step involved the dirhodium(II) complex and arylboronic acid. Finally, axially chiral biaryls were prepared based on a newly developed oxidative ring-opening reaction of α-hydroxyl ketones with a base and molecular oxygen, which featured a central-to-axial chirality transfer radical β-scission step.
Collapse
Affiliation(s)
- Lei Shi
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiaoping Xue
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Biqiong Hong
- College
of Materials and Chemical Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| | - Qigang Li
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei
National Research Center for Physical Sciences at the Microscale and
Department of Chemistry, University of Science
and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College
of Materials and Chemical Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
Sun GQ, Yu P, Zhang W, Zhang W, Wang Y, Liao LL, Zhang Z, Li L, Lu Z, Yu DG, Lin S. Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 2023; 615:67-72. [PMID: 36603811 PMCID: PMC10036166 DOI: 10.1038/s41586-022-05667-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.
Collapse
Affiliation(s)
- Guo-Quan Sun
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Peng Yu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Wei Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Li-Li Liao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Zhen Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Li Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China
| | - Zhipeng Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, People's Republic of China.
- Beijing National Laboratory for Molecular Sciences, Beijing, People's Republic of China.
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Li L, Fu N. Electrochemical N-heteroarene carboxylation: Reactor-dependent site selectivity. Chem 2023. [DOI: 10.1016/j.chempr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
14
|
Kemper G, Hölscher M, Leitner W. Pd(II)-catalyzed carboxylation of aromatic C─H bonds with CO 2. SCIENCE ADVANCES 2023; 9:eadf2966. [PMID: 36735781 PMCID: PMC9897662 DOI: 10.1126/sciadv.adf2966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The carboxylation of nonactivated C─H bonds provides an attractive yet hitherto largely elusive chemical process to synthesize carboxylic acids by incorporation of CO2 into the chemical value chain. Here, we report on the realization of such a reaction using simple and nonactivated arenes as starting materials. A computationally designed Pd(II) complex acts as organometallic single-component catalyst, and apart from a base, necessary for thermodynamic stabilization of the intermediates, no other additives or coreagents are required. Turnover numbers up to 102 and high regioselectivities are achieved. The potential of this catalytic reaction for "green chemistry" is demonstrated by the synthesis of veratric acid, an intermediate for pharmaceutical production, from CO2 and veratrol.
Collapse
Affiliation(s)
- Gregor Kemper
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Zhao Z, Liu Y, Wang S, Tang S, Ma D, Zhu Z, Guo C, Qiu Y. Site-Selective Electrochemical C-H Carboxylation of Arenes with CO 2. Angew Chem Int Ed Engl 2023; 62:e202214710. [PMID: 36382417 DOI: 10.1002/anie.202214710] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 11/18/2022]
Abstract
Herein, a direct, metal-free, and site-selective electrochemical C-H carboxylation of arenes by reductive activation using CO2 as the economic and abundant carboxylic source was reported. The electrocarboxylation was carried out in an operationally simple manner with high chemo- and regioselectivity, setting the stage for the challenging site-selective C-H carboxylation of unactivated (hetero)arenes. The robust nature of the electrochemical strategy was reflected by a broad scope of substrates with excellent atom economy and unique selectivity. Notably, the direct and selective C-H carboxylation of various challenging arenes worked well in this approach, including electron-deficient naphthalenes, pyridines, simple phenyl derivatives, and substituted quinolines. The method benefits from being externally catalyst-free, metal-free and base-free, which makes it extremely attractive for potential applications.
Collapse
Affiliation(s)
- Zhiwei Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yin Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Siyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shunyao Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Dengke Ma
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Chengcheng Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
16
|
Yang Z, Liu C, Lei J, Zhou Y, Gao X, Li Y. Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins. Chem Commun (Camb) 2022; 58:13483-13486. [PMID: 36383089 DOI: 10.1039/d2cc05899e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward approach to synthesise isocoumarins via Rh(III)-catalyzed C-H/C-C bond activation/annulation cascade of enaminones and iodonium ylides has been explored. The established protocol is characterized by an exceedingly simple reaction system, high regioselectivity and good functional group tolerance. Moreover, this strategy may provide a new route to cleavage of the C(sp2)-C(O) bond of unstrained ketones.
Collapse
Affiliation(s)
- Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yi Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Xiaohui Gao
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yaqian Li
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
17
|
Zhang J, Lu B, Ge Z, Wang L, Wang X. Selective Construction of All-Carbon Quaternary Centers via Relay Catalysis of Indole C–H Functionalization/Allylic Alkylation. Org Lett 2022; 24:8423-8428. [DOI: 10.1021/acs.orglett.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinyu Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhaoliang Ge
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Le Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
18
|
Shigeno M, Tohara I, Sasaki K, Nozawa-Kumada K, Kondo Y. Combined Brønsted Base-Promoted CO 2 Fixation into Benzylic C-H Bonds of Alkylarenes. Org Lett 2022; 24:4825-4830. [PMID: 35763616 DOI: 10.1021/acs.orglett.2c01986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in developing methods for direct CO2 fixation into readily available unfunctionalized C-H bonds in organic substances has recently surged. In contrast to the well-studied carboxylations of alkynyl C(sp)-H and aromatic C(sp2)-H bonds, carboxylation of benzylic C(sp3)-H bonds to produce 2-arylacetic acids is limited to photoirradiation reactions and continues to be a challenging issue because of the low chemical reactivity. We herein describe that a combined Brønsted base (i.e., LiO-t-Bu/CsF and LiOCEt3/CsF) achieves benzylic carboxylation of electron-deficient, -neutral, and -rich alkylarenes and enables various functionalities, including fragile ones such as bromide, alkene, alkyne, and carbonyl moieties. Dicarboxylation at the benzylic position is also established. Cs-alkoxide generated in situ acts as a reactive base, as demonstrated in experiments with independently prepared CsO-t-Bu and by 133Cs nuclear magnetic resonance studies.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Itsuki Tohara
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Keita Sasaki
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| |
Collapse
|
19
|
Yang Y, Lu B, Xu G, Wang X. Overcoming O-H Insertion to Para-Selective C-H Functionalization of Free Phenols: Rh(II)/Xantphos Catalyzed Geminal Difunctionalization of Diazo Compounds. ACS CENTRAL SCIENCE 2022; 8:581-589. [PMID: 35647279 PMCID: PMC9136979 DOI: 10.1021/acscentsci.2c00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/04/2023]
Abstract
Para-selective C-H functionalization of free phenols by metal carbenoids is rather challenging due to the generally more favorable competing O-H insertion. Herein, with the use of the combination of Rh(II) and a Xantphos ligand as the catalyst, a novel multicomponent reaction of free phenols, diazoesters, and allylic carbonates was successfully developed, affording a wide variety of phenol derivatives, bearing an all-carbon quaternary center and a synthetically useful allylic unit. This reaction is likely to occur through a tandem process of carbene-induced para-selective C-H functionalization, followed by Rh(II)/Xantphos-catalyzed allylation. The distinctive reactivity of para-selective C-H rather than O-H insertion for the carbenoid intermediate, combined with features of excellent functional group compatibility, high atom and step economy, and ease in further diversification of the products, might render this protocol highly attractive in facile functionalization of unprotected phenols.
Collapse
Affiliation(s)
- Yang Yang
- Henan
Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Lu
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guiqing Xu
- Henan
Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- (G.X.)
| | - Xiaoming Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
- (X.W.)
| |
Collapse
|
20
|
Zhang M, Yang L, Zhou C, Fu L, Li G. Visible‐Light‐Induced Arylcarboxylation of Enamides with CO2 and Aryl Iodides to Synthesize α‐Amino Acids. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Meng Zhang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Lei Yang
- Fujian Institute of Research on the Struture of Matter Key Laboratory of Coal to Ethylene Glycol and Its Related Technology CHINA
| | - Chunlin Zhou
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Key Laboratory of Coal to Ethylene Glycol and Its Related Technology CHINA
| | - Lei Fu
- Fujian Normal University College of Life Science CHINA
| | - Gang Li
- Shanghai Jiao Tong University Frontiers Science Center for Transformative Molecules 800 Dongchuan RD.Minhang District 200240 Shanghai CHINA
| |
Collapse
|
21
|
Muralidhar B, Victoria GG, Kumar KS, Sabbsani RR. Copper‐mediated relay strategy using chlorination/oxidation: An effective synthesis of functionalized coumarin derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Baitinti Muralidhar
- Vellore Institute of Technology: VIT University school of advanced sciences INDIA
| | | | | | | |
Collapse
|
22
|
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
23
|
Paddlewheel dirhodium(II) complexes with N-heterocyclic carbene or phosphine ligand: New reactivity and selectivity. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Liu D, Xu Z, Liu M, Fu Y. Mechanistic insights into the rhodium-catalyzed aryl C–H carboxylation. Org Chem Front 2022. [DOI: 10.1039/d1qo01560e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We have conducted an in-depth theoretical exploration of the details for direct C–H bond activation and lactonization of 2-arylphenols.
Collapse
Affiliation(s)
- DeGuang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - ZheYuan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - MingQiang Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Li F, Lu B, Liu Y, Wang X. Dirhodium/Xantphos-Catalyzed Tandem C—H Functionalization/Allylic Alkylation: Direct Access to 3-Acyl-3-allyl Oxindole Derivatives from N-Aryl- α-diazo- β-keto Amides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Kumar S, Nunewar S, Kanchupalli V. Rh(III)‐Catalyzed Cross‐Coupling/Annulation of Two Carbene Precursors: Construction of Dihydrobenzo[
c
]chromen‐6‐one Scaffolds and Application in the Total Synthesis of Cannabinol. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500 037 Telangana India
| |
Collapse
|
27
|
Pei C, Zong J, Li B, Wang B. Ni‐Catalyzed Direct Carboxylation of Aryl C−H Bonds in Benzamides with CO
2. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry Nankai University Tianjin 300071 People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 People's Republic of China
| |
Collapse
|
28
|
Yamazaki K, Rej S, Ano Y, Chatani N. An Unusual Perpendicular Metallacycle Intermediate is the Origin of Branch Selectivity in the Rh(II)-Catalyzed C–H Alkylation of Aryl Sulfonamides with Vinylsilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita 565-0871, Osaka, Japan
| |
Collapse
|
29
|
Saito T, Caner J, Toriumi N, Iwasawa N. Rhodium‐Catalyzed
meta
‐Selective C−H Carboxylation Reaction of 1,1‐Diarylethylenes via Hydrorhodation‐Rhodium Migration. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Takanobu Saito
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Joaquim Caner
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Naoyuki Toriumi
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of Chemistry Tokyo Institute of Technology, O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
30
|
Saito T, Caner J, Toriumi N, Iwasawa N. Rhodium-Catalyzed meta-Selective C-H Carboxylation Reaction of 1,1-Diarylethylenes via Hydrorhodation-Rhodium Migration. Angew Chem Int Ed Engl 2021; 60:23349-23356. [PMID: 34402148 DOI: 10.1002/anie.202109470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/10/2022]
Abstract
A meta-selective C-H carboxylation reaction of 1,1-diarylethylene derivatives with CO2 by using a rhodium catalyst with NaOi Pr as a stoichiometric reductant has been achieved. Together with hydrogenation of the ethylene moiety, a carboxyl group was introduced to the meta-position of the aryl ring with high selectivity over the ortho-positions. Experimental and computational mechanistic studies indicate that this carboxylation reaction proceeds via hydrorhodation on the ethylene moiety, followed by 1,4-rhodium migration and successive 1,2-rhodium migration on the aryl ring. The use of a bulky phosphine ligand seems to be the key to this unusual aryl-to-aryl 1,2-rhodium shift.
Collapse
Affiliation(s)
- Takanobu Saito
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Joaquim Caner
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Naoyuki Toriumi
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan
| |
Collapse
|
31
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
32
|
Lu W, Zhu X, Yang L, Wu X, Xie X, Zhang Z. Distinct Catalytic Performance of Dirhodium(II) Complexes with ortho-Metalated DPPP in Dehydrosilylation of Styrene Derivatives with Alkoxysilanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenkui Lu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liqun Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaoyu Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaomin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaoguo Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
33
|
Hao L, Auni A, Ding G, Li X, Xu H, Li T, Zhang Q. Selective hydroxylation of aryl iodides to produce phenols under mild conditions using a supported copper catalyst. RSC Adv 2021; 11:25348-25353. [PMID: 35478897 PMCID: PMC9036948 DOI: 10.1039/d1ra04112f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Owing to the high activity and low-cost, copper-based catalysts are promising candidates for transforming aromatic halides to yield phenols. In this work, we report the selective hydroxylation of aromatic iodides to produce phenols using an atomically dispersed copper catalyst (Cu-ZnO-ZrO2) under mild reaction conditions. The reactions were conducted without the use of additional organic ligands, and the protection of an inert atmosphere environment is not required. The catalyst can be easily prepared, scalable, and is very efficient for a wide range of substrates. The catalytic reactions can be carried out with only 1.24 mol% Cu loading, which shows great potential in mass production.
Collapse
Affiliation(s)
- Leiduan Hao
- Department of Chemistry, Washington State University Pullman Washington 99164 USA
| | - Anika Auni
- Department of Chemistry, Washington State University Pullman Washington 99164 USA
| | - Guodong Ding
- Department of Chemistry, Washington State University Pullman Washington 99164 USA
| | - Xiaoyu Li
- Materials Science and Engineering Program, Washington State University Pullman Washington 99164 USA
| | - Haiping Xu
- Department of Chemistry and Biochemistry, Northern Illinois University DeKalb IL 60115 USA
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University DeKalb IL 60115 USA
- X-ray Science Division, Argonne National Laboratory Argonne IL 60439 USA
| | - Qiang Zhang
- Department of Chemistry, Washington State University Pullman Washington 99164 USA
- Materials Science and Engineering Program, Washington State University Pullman Washington 99164 USA
| |
Collapse
|
34
|
Luo L, Chen XP, Li ZF, Zhou Y, Xiao YC, Chen FE. Palladium(II)-catalyzed aerobic oxidative O-H/C-H isocyanide insertion: facile access to pyrrolo[2,1- c][1,4]benzoxazine derivatives. Org Biomol Chem 2021; 19:4364-4368. [PMID: 33908987 DOI: 10.1039/d1ob00393c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Palladium-catalyzed aerobic oxidative cyclizations of substituted 2-(1H-pyrrol-1-yl)phenols with isocyanides via an O-H/C-H insertion cascade have been developed. This strategy provides facile access to pyrrolo[2,1-c][1,4]benzoxazine derivatives in good to excellent yields under an O2 atmosphere. The notable features of this protocol include its mild reaction conditions, atom-economy, and broad functional group tolerance.
Collapse
Affiliation(s)
- Liangliang Luo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiao-Pan Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Zhao-Feng Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Yuan Zhou
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - You-Cai Xiao
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Fen-Er Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China. and Engineering Center of Catalysis and synthesis for Chiral Molecules, Department of chemistry, Fudan University, Shanghai, 200433, China. rfchen@ fudan.edu.cn
| |
Collapse
|
35
|
Liu C. Theoretical research on the direct carboxylation of benzene with CO
2
catalyzed by different carbene‐CuOH compounds. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cong Liu
- Research and Development Center ShanDong GuoBang Pharmaceutical Co., Ltd. Weifang Shandong China
| |
Collapse
|
36
|
Choi JH, Do Kim H, Kang JY, Jeong T, Ghosh P, Kim IS. Ruthenium(
II
)‐Catalyzed CH/NH Carbonylative Cyclization of
2‐Aryl
Quinazolinones with Isocyanates as
CO
Surrogates. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Ho Choi
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hak Do Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Ju Young Kang
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
37
|
El-Sawy ER, Abdelwahab AB, Kirsch G. Synthetic Routes to Coumarin(Benzopyrone)-Fused Five-Membered Aromatic Heterocycles Built on the α-Pyrone Moiety. Part 1: Five-Membered Aromatic Rings with One Heteroatom. Molecules 2021; 26:483. [PMID: 33477568 PMCID: PMC7831143 DOI: 10.3390/molecules26020483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/27/2022] Open
Abstract
This review gives an up-to-date overview of the different ways (routes) to the synthesis of coumarin (benzopyrone)-fused, five-membered aromatic heterocycles with one heteroatom, built on the pyrone moiety. Covering 1966 to 2020.
Collapse
Affiliation(s)
- Eslam Reda El-Sawy
- National Research Centre, Chemistry of Natural Compounds Department, Dokki-Cairo 12622, Egypt;
| | | | - Gilbert Kirsch
- Laboratoire Lorrain de Chimie Moléculaire (L.2.C.M.), Université de Lorraine, 57050 Metz, France
| |
Collapse
|
38
|
Zhang T, Li S, Zhou C, Wang X, Zhang M, Gao Z, Li G. Site-Selective C—H Iodination of Phenol Derivatives Using Aryl Iodide as Iodinating Reagent. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Shigeno M, Kondo Y, Sasaki K, Hanasaka K, Tohara I, Nozawa-Kumada K. Combined Brønsted-Base-Mediated Direct C-H Carboxylation of Heteroarenes with CO2. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Voit G, Jenthra S, Hölscher M, Weyhermüller T, Leitner W. Reversible Insertion of Carbon Dioxide at Phosphine Sulfonamido PdII–Aryl Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gregor Voit
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Sangeth Jenthra
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Markus Hölscher
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| |
Collapse
|
41
|
Zeng R, Chen L, Yan Q. CO 2 -Folded Single-Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angew Chem Int Ed Engl 2020; 59:18418-18422. [PMID: 32691516 DOI: 10.1002/anie.202006842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Emulating the function of natural carboxylases to convert CO2 under atmospheric condition is a great challenge. Herein we report a class of CO2 -folded single-chain nanoparticles (SCNPs) that can function as recyclable, function-intensified carboxylase mimics. Lewis pair polymers containing bulky Lewis acidic and basic groups as the precursor, can bind CO2 to drive an intramolecular folding into SCNPs, in which CO2 as the folded nodes can form gas-bridged bonds. Such bridging linkages highly activate CO2 , which endows the SCNPs with extraordinary catalytic ability that can not only catalyze CO2 -insertion of C(sp3 )-H for imitating the natural enzyme's function, it can also act on non-natural carboxylation pathways for C(sp2 and sp)-H substrates. The nanocatalysts are of highly catalytic efficiency and recyclability, and can work at room temperature and near ambient CO2 condition, inspiring a new approach to sustainable C1 utilization.
Collapse
Affiliation(s)
- Rongjin Zeng
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Liang Chen
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
42
|
Zeng R, Chen L, Yan Q. CO
2
‐Folded Single‐Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rongjin Zeng
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Liang Chen
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| | - Qiang Yan
- State Key Lab of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200433 China
| |
Collapse
|
43
|
Abstract
C-H carboxylation is an attractive transformation for both streamlining synthesis and valorizing CO2. The high bond strength and very low acidity of most C-H bonds, as well as the low reactivity of CO2, present fundamental challenges for this chemistry. Conventional methods for carboxylation of electron-rich heteroarenes require very strong organic bases to effect C-H deprotonation. Here we show that alkali carbonates (M2CO3) dispersed in mesoporous TiO2 supports (M2CO3/TiO2) effect CO3 2--promoted C-H carboxylation of thiophene- and indole-based heteroarenes in gas-solid reactions at 200-320 °C. M2CO3/TiO2 materials are strong bases in this temperature regime, which enables deprotonation of very weakly acidic bonds in these substrates to generate reactive carbanions. In addition, we show that M2CO3/TiO2 enables C3 carboxylation of indole substrates via an apparent electrophilic aromatic substitution mechanism. No carboxylations take place when M2CO3/TiO2 is replaced with un-supported M2CO3, demonstrating the critical role of carbonate dispersion and disruption of the M2CO3 lattice. After carboxylation, treatment of the support-bound carboxylate products with dimethyl carbonate affords isolable esters and the M2CO3/TiO2 material can be regenerated upon heating under vacuum. Our results provide the basis for a closed cycle for the esterification of heteroarenes with CO2 and dimethyl carbonate.
Collapse
Affiliation(s)
- Tyler M Porter
- Department of Chemistry, Stanford University Stanford California 94305 USA
| | - Matthew W Kanan
- Department of Chemistry, Stanford University Stanford California 94305 USA
| |
Collapse
|
44
|
Synthesis of a triethylene glycol-capped benzo[1,2-c:4,5-c']bis[2]benzopyran-5,12-dione: A highly soluble dilactone-bridged p-terphenyl with a crankshaft architecture. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Wang D, Ma Z, Wang N, Li C, Wang T, Liang Y, Zhang Z. Synthesis of 7-hydroxy-6H-naphtho[2,3-c]coumarin via a TsOH-mediated tandem reaction. Chem Commun (Camb) 2020; 56:10369-10372. [PMID: 32766650 DOI: 10.1039/d0cc04452k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A concise and efficient method for the synthesis of 7-hydroxy-6H-naphtho[2,3-c]coumarin using available 1-(2-hydroxyphenyl)-2-phenylethanone and Meldrum's acid has been developed. This transformation involved a tandem aldol reaction/lactonization/Friedel-Crafts reaction to form a lactone ring and a benzene ring. It showed high atom economy with water and acetone as the byproducts. Mechanism studies demonstrated two roles of Meldrum's acid: (i) as the reagent for the tandem reaction, and (ii) as the catalyst for the Friedel-Crafts reaction. Moreover, the hydroxyl group of 7-hydroxy-6H-naphtho[2,3-c]coumarin was further functionalized efficiently by arylethynyl, aryl, and cyano groups to furnish D-π-A compounds with excellent fluorescence emissions (ΦF = 0.14-0.78).
Collapse
Affiliation(s)
- Ding Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Börjesson M, Janssen-Müller D, Sahoo B, Duan Y, Wang X, Martin R. Remote sp2 C–H Carboxylation via Catalytic 1,4-Ni Migration with CO2. J Am Chem Soc 2020; 142:16234-16239. [DOI: 10.1021/jacs.0c08810] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Marino Börjesson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Daniel Janssen-Müller
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Basudev Sahoo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Xueqiang Wang
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
47
|
Pei C, Zong J, Han S, Li B, Wang B. Ni-Catalyzed Direct Carboxylation of an Unactivated C-H Bond with CO 2. Org Lett 2020; 22:6897-6902. [PMID: 32812433 DOI: 10.1021/acs.orglett.0c02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transition-metal-catalyzed direct carboxylation of an unactivated C-H bond is rarely reported, and no example of catalysis using abundant and cheap nickel has been reported. In this work, the first Ni-catalyzed direct carboxylation of an unactivated C-H bond under an atmospheric pressure of CO2 is reported. This method affords moderate to high carboxylation yields of various methyl carboxylates under mild conditions. Preliminary mechanistic studies reveal that a Ni(0)-Ni(II)-Ni(I) catalytic cycle may be involved in this reaction.
Collapse
Affiliation(s)
- Chunzhe Pei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jiarui Zong
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shanglin Han
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
48
|
Lee HK, Koh CS, Lo WS, Liu Y, Phang IY, Sim HY, Lee YH, Phan-Quang GC, Han X, Tsung CK, Ling XY. Applying a Nanoparticle@MOF Interface To Activate an Unconventional Regioselectivity of an Inert Reaction at Ambient Conditions. J Am Chem Soc 2020; 142:11521-11527. [PMID: 32508093 DOI: 10.1021/jacs.0c04144] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Here we design an interface between a metal nanoparticle (NP) and a metal-organic framework (MOF) to activate an inert CO2 carboxylation reaction and in situ monitor its unconventional regioselectivity at the molecular level. Using a Kolbe-Schmitt reaction as model, our strategy exploits the NP@MOF interface to create a pseudo high-pressure CO2 microenvironment over the phenolic substrate to drive its direct C-H carboxylation at ambient conditions. Conversely, Kolbe-Schmitt reactions usually demand high reaction temperature (>125 °C) and pressure (>80 atm). Notably, we observe an unprecedented CO2 meta-carboxylation of an arene that was previously deemed impossible in traditional Kolbe-Schmitt reactions. While the phenolic substrate in this study is fixed at the NP@MOF interface to facilitate spectroscopic investigations, free reactants could be activated the same way by the local pressurized CO2 microenvironment. These valuable insights create enormous opportunities in diverse applications including synthetic chemistry, gas valorization, and greenhouse gas remediation.
Collapse
Affiliation(s)
- Hiang Kwee Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Charlynn Sher Koh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yejing Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - In Yee Phang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Howard Yi Sim
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Yih Hong Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Gia Chuong Phan-Quang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xuemei Han
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xing Yi Ling
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
49
|
Saitou T, Jin Y, Isobe K, Suga T, Takaya J, Iwasawa N. Rh‐Catalyzed Direct Carboxylation of Alkenyl C−H Bonds of Alkenylpyrazoles. Chem Asian J 2020; 15:1941-1944. [DOI: 10.1002/asia.202000476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Takanobu Saitou
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Yushu Jin
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Kotaro Isobe
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Takuya Suga
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Jun Takaya
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of ChemistryTokyo Institute of Technology 2-12-1, O-Okayama Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
50
|
Wang H, Gao Y, Zhou C, Li G. Visible-Light-Driven Reductive Carboarylation of Styrenes with CO2 and Aryl Halides. J Am Chem Soc 2020; 142:8122-8129. [DOI: 10.1021/jacs.0c03144] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hao Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
| | - Chunlin Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian College, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|