1
|
Kreller T, Boccaccini AR, Jonitz-Heincke A, Detsch R. Alternating electrical fields to stimulate osteogenic cells and biomimetic calcium phosphate-coated titanium substrates-A combinatorial approach to bone regeneration. BIOMATERIALS ADVANCES 2025; 169:214191. [PMID: 39842166 DOI: 10.1016/j.bioadv.2025.214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/24/2025]
Abstract
Biophysical stimuli such as alternating electrical fields can mimic endogenous electrical potentials and currents in natural bone. This can help to improve the healing and reconstruction of bone tissue. However, little is known about the combined influence of biomaterials and alternating electric fields on bone cells. Therefore, this study aimed to investigate the impact of both, biomaterials and alternating electric fields, on osteoblast as well as osteoclast differentiation. Initially, either RAW 264.7 or MC3T3-E1 cells were seeded on Ti6Al4V substrates as a load-bearing implant material, modified with biomimetic calcium phosphate (BCP), or uncoated as a reference. The cells were stimulated towards osteoclastic and osteoblastic differentiation via respective growth factors. The effects of BCP substrate modification on cell differentiation were examined after 7 days for RAW 264.7 and after 14 days for MC3T3-E1 cells. In a further series of tests, either RAW 264.7 or MC3T3-E1 cells were seeded on BCP-modified Ti6Al4V substrates, stimulated towards differentiation using growth factors, and further electrically stimulated via alternating electric fields of different voltages and frequencies. In parallel to the first test series RAW 264.7 and MC3T3-E1 cells were stimulated for 7 and 14 days, respectively. Cell morphology was examined via scanning electron microscopy. Cell viabilities were assessed via WST-8 assay. Electrically stimulated MC3T3-E1 cell orientation was evaluated based on fluorescence microscopy images. Marker genes were examined via qPCR. While BCP increased osteoclast-specific gene expression, it had the opposite effect on osteoblast-related genes compared to respective cells seeded on uncoated Ti6Al4V substrates. ES with different parameters showed a broad cellular response due to electrocoupling. While cell viability assessments and gene expression analyses showed clear differences between ES samples and unstimulated controls, only minor cell morphology and orientation differences were observed. Furthermore, there was no clear trend towards a dominant influence of either voltage or frequency as control parameters. Further studies were initiated to investigate the underlying intracellular mechanisms targeted by ES. This work provides an introduction to the targeted control of cellular processes using defined electric fields. The optimization of voltage and frequency could provide therapeutic windows to control specific cellular functions and potentially improve bone regeneration and remodeling processes.
Collapse
Affiliation(s)
- T Kreller
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - A Jonitz-Heincke
- Research Laboratory for Biomechanics and Implant Technology, Department of Orthopedics, Rostock University Medical Center, 18057 Rostock, Germany
| | - R Detsch
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
2
|
Pilard C, Roncarati P, Ancion M, Luyckx M, Renard M, Reynders C, Lerho T, Poulain F, Bruyere D, Lebeau A, Hendrick E, Crake R, Peiffer R, Nokin MJ, Peulen O, Delvenne P, Hubert P, Herfs M. RANKL blockade inhibits cancer growth through reversing the tolerogenic profile of tumor-infiltrating (plasmacytoid) dendritic cells. J Immunother Cancer 2025; 13:e010753. [PMID: 40081943 PMCID: PMC11907081 DOI: 10.1136/jitc-2024-010753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/26/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Originally identified for its involvement in bone remodeling, accumulating data emerged in the past years indicating that receptor activator of nuclear factor κB ligand (RANKL) actually acts as a multifunctional soluble molecule that influences various physiological and pathological processes. Regarding its role in carcinogenesis, while direct effects on tumor cell behavior have been precisely characterized, the impact of the RANKL/RANK system (and its inhibition) on the intratumoral immune landscape remains unclear. METHODS After various in silico/in situ/in vitro analyses, the immunotherapeutic efficacy of RANKL blockade (alone and in combination with immune checkpoint inhibitors (anti-programmed cell death protein-1 (PD-1)) or doxorubicin/paclitaxel-based chemotherapy) was investigated using different syngeneic mouse models of triple-negative breast cancer (4T1, 67NR and E0771). Isolated from retrieved tumors, 14 immune cell (sub)populations, along with the activation status of antigen-presenting cells, were thoroughly analyzed in each condition. Finally, the impact of RANKL on the functionality of both dendritic cells (DC) and plasmacytoid dendritic cells (pDC) was determined. RESULTS A drastic tumor growth inhibition was reproductively observed following RANKL inhibition. Strikingly, this antitumor activity was not detected in immunocompromised mice, demonstrating its dependence on the adaptive immune responses and justifying the diverse enriched signatures linked to immune cell regulation/differentiation detected in RANKLhigh-expressing human neoplasms. Interestingly, neoadjuvant chemotherapy (but not PD-1 checkpoint inhibition) potentiated the anticancer effects of RANKL blockade by priming effector T cells and increasing their infiltration within the tumor microenvironment. Mechanistically, we highlighted that RANKL indirectly promotes regulatory T cell differentiation and suppressive function by inhibiting the mTOR signaling pathway on antigen-presenting cells. CONCLUSIONS Taken together, this study provides insight into the role of RANKL/RANK axis in immune tolerance, demonstrates the significant impact of RANKL-dependent impairment of T cell-DC/pDC crosstalk on tumor development and, ultimately, supports that this ligand could be an interesting actionable target for cancer immunotherapy.
Collapse
Affiliation(s)
- Charlotte Pilard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie Ancion
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Margaux Luyckx
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Renard
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Celia Reynders
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Thomas Lerho
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Florian Poulain
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Diane Bruyere
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Alizee Lebeau
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Elodie Hendrick
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Rebekah Crake
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Raphael Peiffer
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Marie-Julie Nokin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Olivier Peulen
- Metastasis Research Laboratory, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Philippe Delvenne
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
- Department of Pathology, University Hospital Center of Liege, Liege, Belgium
| | - Pascale Hubert
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Christen D, Lauinger M, Brunner M, Dengjel J, Brummer T. The mTOR pathway controls phosphorylation of BRAF at T401. Cell Commun Signal 2024; 22:428. [PMID: 39223665 PMCID: PMC11370054 DOI: 10.1186/s12964-024-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024] Open
Abstract
BRAF serves as a gatekeeper of the RAS/RAF/MEK/ERK pathway, which plays a crucial role in homeostasis. Since aberrant signalling of this axis contributes to cancer and other diseases, it is tightly regulated by crosstalk with the PI3K/AKT/mTOR pathway and ERK mediated feedback loops. For example, ERK limits BRAF signalling through phosphorylation of multiple residues. One of these, T401, is widely considered as an ERK substrate following acute pathway activation by growth factors. Here, we demonstrate that prominent T401 phosphorylation (pT401) of endogenous BRAF is already observed in the absence of acute stimulation in various cell lines of murine and human origin. Importantly, the BRAF/RAF1 inhibitor naporafenib, the MEK inhibitor trametinib and the ERK inhibitor ulixertinib failed to reduce pT401 levels in these settings, supporting an alternative ERK-independent pathway to T401 phosphorylation. In contrast, the mTOR inhibitor torin1 and the dual-specific PI3K/mTOR inhibitor dactolisib significantly suppressed pT401 levels in all investigated cell types, in both a time and concentration dependent manner. Conversely, genetic mTOR pathway activation by oncogenic RHEB (Q64L) and mTOR (S2215Y and R2505P) mutants substantially increased pT401, an effect that was reverted by dactolisib and torin1 but not by trametinib. We also show that shRNAmir mediated depletion of the mTORC1 complex subunit Raptor significantly enhanced the suppression of T401 phosphorylation by a low torin1 dose, while knockdown of the mTORC2 complex subunit Rictor was less effective. Using mass spectrometry, we provide further evidence that torin1 suppresses the phosphorylation of T401, S405 and S409 but not of other important regulatory phosphorylation sites such as S446, S729 and S750. In summary, our data identify the mTOR axis and its inhibitors of (pre)clinical relevance as novel modulators of BRAF phosphorylation at T401.
Collapse
Affiliation(s)
- Daniel Christen
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany
| | - Manuel Lauinger
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Melanie Brunner
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Chemin du Museé 10, 1700, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine, University of Freiburg, Stefan-Meier-Str. 17, 79104, Freiburg, Germany.
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Freiburg and, Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, Faculty of Medicine, University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
4
|
Yuan T, Wang Y, Wang H, Lu Q, Zhang X, Li Z, Sun S. Suppressing ERp57 diminishes osteoclast activity and ameliorates ovariectomy-induced bone loss via the intervention in calcium oscillation and the calmodulin/calcineurin/Nfatc1 pathway. Heliyon 2024; 10:e35374. [PMID: 39170388 PMCID: PMC11336591 DOI: 10.1016/j.heliyon.2024.e35374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Increased osteoclast activity constitutes the primary etiology of excessive bone erosion in postmenopausal osteoporosis. ERp57, otherwise referred to as protein disulfide isomerase A3 (PDIA3), plays a crucial role in the regulation of intracellular calcium signaling. This is documented to exert a profound impact on osteoclast differentiation and functionality. Methods To ascertain the potential role of ERp57 in disease progression, prevention, and treatment, network pharmacology and bioinformatics analyses were conducted in relation to postmenopausal osteoporosis and ERp57 inhibitor (Loc14). Then, subsequent experimental verifications were employed in vitro on osteoclast and osteoblast, and in vivo on ovariectomy (OVX) mice models. Results Multiple enrichment analyses suggested that the "calcium signaling pathway" may constitute a potential avenue for therapeutic intervention by Loc14 in the treatment of postmenopausal osteoporosis. In vitro experiments demonstrated inhibition of ERp57 could block osteoclast differentiation and function by interfering with the expression of osteoclast marker genes (Traf6, Nfatc1, and Ctsk). Further mechanisms studies based on calcium imaging, qPCR, and WB established that ERp57 inhibitor (Loc14) could obstruct calcium oscillation in osteoclast precursor cells (OPCs) by limiting the entry sources of cytosolic Ca2+ and interfering with calmodulin/calcineurin/Nfatc1 pathway. Evidence from Micro-CT scanning and double calcein labeling confirmed that the application of Loc14 in vivo could alleviate bone loss and partially reversed the osteogenic impairment caused by OVX in mice. Conclusions Our findings proved the suppressive effects of Loc14 on osteoclastogenesis via attenuating calcium oscillation and associated singling pathways, providing ERp57 as a potential therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
5
|
Jia M, Dong Z, Dong W, Yang B, He Y, Wang Y, Wang J. DDIT3 deficiency accelerates bone remodeling during bone healing by enhancing osteoblast and osteoclast differentiation through ULK1-mediated autophagy. Bone 2024; 182:117058. [PMID: 38408589 DOI: 10.1016/j.bone.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The coordination of osteoblasts and osteoclasts is essential for bone remodeling. DNA damage inducible script 3 (DDIT3) is an important regulator of bone and participates in cell differentiation, proliferation, autophagy, and apoptosis. However, its role in bone remodeling remains unexplored. Here, we found that Ddit3 knockout (Ddit3-KO) enhanced both bone formation and resorption. The increased new bone formation and woven bone resorption, i.e., enhanced bone remodeling capacity, was found to accelerate bone defect healing in Ddit3-KO mice. In vitro experiments showed that DDIT3 inhibited both osteoblast differentiation and Raw264.7 cell differentiation by regulating autophagy. Cell coculture assay showed that Ddit3-KO decreased the ratio of receptor activator of nuclear factor-κβ ligand (RANKL) to osteoprotegerin (OPG) in osteoblasts, and Ddit3-KO osteoblasts inhibited osteoclast differentiation. Meanwhile, DDIT3 knockdown (DDIT3-sh) increased receptor activator of nuclear factor-κβ (RANK) expression in Raw264.7 cells, and DDIT3-sh Raw264.7 cells promoted osteoblast differentiation, whereas, DDIT3 overexpression had the opposite effect. Mechanistically, DDIT3 promoted autophagy partly by increasing ULK1 phosphorylation at serine555 (pULK1-S555) and decreasing ULK1 phosphorylation at serine757 (pULK1-S757) in osteoblasts, thereby inhibiting osteoblast differentiation. DDIT3 inhibited autophagy partly by decreasing pULK1-S555 in Raw264.7 cells, thereby suppressing osteoclastic differentiation. Taken together, our data indicate that DDIT3 is one of the elements regulating bone remodeling and bone healing, which may become a potential target in bone defect treatment.
Collapse
Affiliation(s)
- Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Wei Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Ying He
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China.
| |
Collapse
|
6
|
Safari F, Yeoh WJ, Perret-Gentil S, Klenke F, Dolder S, Hofstetter W, Krebs P. SHIP1 deficiency causes inflammation-dependent retardation in skeletal growth. Life Sci Alliance 2024; 7:e202302297. [PMID: 38388173 PMCID: PMC10883774 DOI: 10.26508/lsa.202302297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammation and skeletal homeostasis are closely intertwined. Inflammatory diseases are associated with local and systemic bone loss, and post-menopausal osteoporosis is linked to low-level chronic inflammation. Phosphoinositide-3-kinase signalling is a pivotal pathway modulating immune responses and controlling skeletal health. Mice deficient in Src homology 2-containing inositol phosphatase 1 (SHIP1), a negative regulator of the phosphoinositide-3-kinase pathway, develop systemic inflammation associated with low body weight, reduced bone mass, and changes in bone microarchitecture. To elucidate the specific role of the immune system in skeletal development, a genetic approach was used to characterise the contribution of SHIP1-controlled systemic inflammation to SHIP1-dependent osteoclastogenesis. Lymphocyte deletion entirely rescued the skeletal phenotype in Rag2 -/- /Il2rg -/- /SHIP1 -/- mice. Rag2 -/- /Il2rg -/- /SHIP1 -/- osteoclasts, however, displayed an intermediate transcriptomic signature between control and Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts while exhibiting aberrant in vitro development and functions similar to Rag2 +/+ /Il2rg +/+ /SHIP1 -/- osteoclasts. These data establish a cell-intrinsic role for SHIP1 in osteoclasts, with inflammation as the key driver of the skeletal phenotype in SHIP1-deficient mice. Our findings demonstrate the central role of the immune system in steering physiological skeletal development.
Collapse
Affiliation(s)
- Fatemeh Safari
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- AO Research Institute Davos, Davos, Switzerland
| | - Wen Jie Yeoh
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Saskia Perret-Gentil
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Frank Klenke
- Department of Orthopaedic Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Silvia Dolder
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Willy Hofstetter
- Bone & Joint Program, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Wang J, Gao Y, Yuan Y, Wang H, Wang Z, Zhang X. Th17 Cells and IL-17A in Ischemic Stroke. Mol Neurobiol 2024; 61:2411-2429. [PMID: 37884768 DOI: 10.1007/s12035-023-03723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The neurological injury and repair mechanisms after ischemic stroke are complex. The inflammatory response is present throughout stroke onset and functional recovery, in which CD4 + T helper(Th) cells play a non-negligible role. Th17 cells, differentiated from CD4 + Th cells, are regulated by various extracellular signals, transcription factors, RNA, and post-translational modifications. Th17 cells specifically produce interleukin-17A(IL-17A), which has been reported to have pro-inflammatory effects in many studies. Recently, experimental researches showed that Th17 cells and IL-17A play an important role in promoting stroke pathogenesis (atherosclerosis), inducing secondary damage after stroke, and regulating post-stroke repair. This makes Th17 and IL-17A a possible target for the treatment of stroke. In this paper, we review the mechanism of action of Th17 cells and IL-17A in ischemic stroke and the progress of research on targeted therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
8
|
Xue H, Feng Z, Yuan P, Qiao L, Lou Q, Zhao X, Ma Q, Wang S, Shen Y, Ye H, Cheng J, Wang J, Wan S, Zhang B, Shi P, Sun X. Restrained Mitf-associated autophagy by Mulberroside A ameliorates osteoclastogenesis and counteracts OVX-Induced osteoporosis in mice. Cell Death Discov 2024; 10:80. [PMID: 38360705 PMCID: PMC10869803 DOI: 10.1038/s41420-024-01847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
Bone and mineral metabolism homeostasis accounts for the maintenance of normal skeletal remodeling. However, with aging and changes in hormone levels, over-activated osteoclasts disrupt homeostasis, induce osteoporosis, and even cause osteoporotic fractures, leading to an enormous economic burden. Despite the rapid development of pharmacological therapy for osteoporosis, safer and more effective treatments remain to be explored. Here, we demonstrate that Mulberroside A (Mul-A), a natural component extracted from mulberry bark and branches, effectively suppresses osteoclastogenesis in vitro and counteracts bone loss caused by ovariectomy (OVX). The mechanism underlying this effect involves the repression of autophagic flux during osteoclastogenesis by Mul-A, which can be attributed to the restrained expression of microphthalmia-related transcription factor (Mitf) and its nuclear translocation. Importantly, Mitf overexpression partially reverses the inhibitory effects of Mul-A on autophagy and osteoclastogenesis. Moreover, applying two autophagy agonizts, rapamycin and Torin 1, attenuates the osteoclastogenic regulatory role of Mul-A. Collectively, our study demonstrates that Mul-A damages osteoclast differentiation and ameliorates osteoporosis caused by estrogen deficiency by modulation of Mitf-associated autophagy, indicating its therapeutic potential against osteoporosis.
Collapse
Affiliation(s)
- Hong Xue
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhenhua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Putao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Li Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qiliang Lou
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Qingliang Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shiyu Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Huali Ye
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiao Cheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jiying Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuanglin Wan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Boya Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Xuewu Sun
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Devine CC, Brown KC, Paton KO, Heveran CM, Martin SA. Rapamycin does not alter bone microarchitecture or material properties quality in young-adult and aged female C57BL/6 mice. JBMR Plus 2024; 8:ziae001. [PMID: 38505525 PMCID: PMC10945714 DOI: 10.1093/jbmrpl/ziae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024] Open
Abstract
Advancing age is the strongest risk factor for osteoporosis and skeletal fragility. Rapamycin is an FDA-approved immunosuppressant that inhibits the mechanistic target of rapamycin (mTOR) complex, extends lifespan, and protects against aging-related diseases in multiple species; however, the impact of rapamycin on skeletal tissue is incompletely understood. We evaluated the effects of a short-term, low-dosage, interval rapamycin treatment on bone microarchitecture and strength in young-adult (3 mo old) and aged female (20 mo old) C57BL/6 mice. Rapamycin (2 mg/kg body mass) was administered via intraperitoneal injection 1×/5 d for a duration of 8 wk; this treatment regimen has been shown to induce geroprotective effects while minimizing the side effects associated with higher rapamycin dosages and/or more frequent or prolonged delivery schedules. Aged femurs exhibited lower cancellous bone mineral density, volume, trabecular connectivity density and number, higher trabecular thickness and spacing, and lower cortical thickness compared to young-adult mice. Rapamycin had no impact on assessed microCT parameters. Flexural testing of the femur revealed that both yield strength and ultimate strength were lower in aged mice compared to young-adult mice. There were no effects of rapamycin on these or other measures of bone biomechanics. Age, but not rapamycin, altered local and global measures of bone turnover. These data demonstrate that short-term, low-dosage interval rapamycin treatment does not negatively or positively impact the skeleton of young-adult and aged mice.
Collapse
Affiliation(s)
- Connor C Devine
- Chemical and Biological Engineering Department, Montana State University, Bozeman, MT 59718, United States
| | - Kenna C Brown
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT 59718, United States
| | - Kat O Paton
- Translational Biomarkers Core Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
- Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
| | - Chelsea M Heveran
- Mechanical and Industrial Engineering Department, Montana State University, Bozeman, MT 59718, United States
| | - Stephen A Martin
- Translational Biomarkers Core Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
- Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, United States
| |
Collapse
|
10
|
Asiamah EA, Feng B, Guo R, Yaxing X, Du X, Liu X, Zhang J, Cui H, Ma J. The Contributions of the Endolysosomal Compartment and Autophagy to APOEɛ4 Allele-Mediated Increase in Alzheimer's Disease Risk. J Alzheimers Dis 2024; 97:1007-1031. [PMID: 38306054 DOI: 10.3233/jad-230658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Apolipoprotein E4 (APOE4), although yet-to-be fully understood, increases the risk and lowers the age of onset of Alzheimer's disease (AD), which is the major cause of dementia among elderly individuals. The endosome-lysosome and autophagy pathways, which are necessary for homeostasis in both neurons and glia, are dysregulated even in early AD. Nonetheless, the contributory roles of these pathways to developing AD-related pathologies in APOE4 individuals and models are unclear. Therefore, this review summarizes the dysregulations in the endosome-lysosome and autophagy pathways in APOE4 individuals and non-human models, and how these anomalies contribute to developing AD-relevant pathologies. The available literature suggests that APOE4 causes endosomal enlargement, increases endosomal acidification, impairs endosomal recycling, and downregulates exosome production. APOE4 impairs autophagy initiation and inhibits basal autophagy and autophagy flux. APOE4 promotes lysosome formation and trafficking and causes ApoE to accumulate in lysosomes. APOE4-mediated changes in the endosome, autophagosome and lysosome could promote AD-related features including Aβ accumulation, tau hyperphosphorylation, glial dysfunction, lipid dyshomeostasis, and synaptic defects. ApoE4 protein could mediate APOE4-mediated endosome-lysosome-autophagy changes. ApoE4 impairs vesicle recycling and endosome trafficking, impairs the synthesis of autophagy genes, resists being dissociated from its receptors and degradation, and forms a stable folding intermediate that could disrupt lysosome structure. Drugs such as molecular correctors that target ApoE4 molecular structure and enhance autophagy may ameliorate the endosome-lysosome-autophagy-mediated increase in AD risk in APOE4 individuals.
Collapse
Affiliation(s)
- Ernest Amponsah Asiamah
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, PMB UCC, Cape Coast, Ghana
| | - Baofeng Feng
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Ruiyun Guo
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xu Yaxing
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xiaofeng Du
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Xin Liu
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Jinyu Zhang
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
| | - Huixian Cui
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| | - Jun Ma
- Hebei Medical University-Galway University of Ireland Stem Cell Research Center, Hebei Medical University, Hebei, China
- Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei, China
- Hebei Technology Innovation Center for Stem Cell and Regenerative Medicine, Hebei, China
| |
Collapse
|
11
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
12
|
Jo HH, Goh YS, Kim HJ, Kim DH, Kim H, Hwang J, Jung JS, Kang N, Park SE, Park KM, Lee HJ. Tacrolimus Improves Therapeutic Efficacy of Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Diabetic Retinopathy by Suppressing DRP1-Mediated Mitochondrial Fission. Antioxidants (Basel) 2023; 12:1727. [PMID: 37760030 PMCID: PMC10525315 DOI: 10.3390/antiox12091727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients. Umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are emerging as a promising new drug for degenerative disease associated with diabetes. Recent studies have shown that high glucose-increased excessive calcium levels are a major risk factor for mitochondrial reactive oxygen species (mtROS) accumulation and apoptosis. This study aimed to investigate the role of high glucose-induced NFATC1 signaling in mitochondrial oxidative stress-stimulated apoptosis and the effect of tacrolimus on the therapeutic efficacy of subconjunctival transplantation of UCB-MSCs in a DR rat model. High glucose increased mtROS and cleaved caspase-9 expression in UCB-MSCs. High glucose conditions increased O-GlcNAcylated protein expression and nuclear translocation of NFATC1. Tacrolimus pretreatment recovered high glucose-induced mtROS levels and apoptosis. In the DR rat model, subconjunctival transplantation of tacrolimus-pretreated MSCs improved retinal vessel formation, retinal function, and uveitis. In high glucose conditions, tacrolimus pretreatment reduced protein and mRNA expression levels of DRP1 and inhibited mitochondrial fission. In conclusion, we demonstrated that high glucose-induced O-GlcNAcylation activates NFATC1 signaling, which is important for DRP1-mediated mitochondrial fission and mitochondrial apoptosis. Finally, we proposed NFATC1 suppression by tacrolimus as a promising therapeutic strategy to improve the therapeutic efficacy of UCB-MSC transplantation for DR treatment.
Collapse
Affiliation(s)
- Hang Hyo Jo
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.H.J.)
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yeong Seok Goh
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hye Jih Kim
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.H.J.)
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dae Hyun Kim
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.H.J.)
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyemin Kim
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jiyi Hwang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ji Seung Jung
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Nanyoung Kang
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sang Eun Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung Mee Park
- Laboratory of Veterinary Surgery and Ophthalmology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine and Veterinary Medicine Center, Chungbuk National University, Cheongju 28644, Republic of Korea; (H.H.J.)
- Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
13
|
Yang T, Hei R, Li X, Ma T, Shen Y, Liu C, He W, Zhu L, Gu Y, Hu Y, Wei W, Shen Y. The role of NPY2R/NFATc1/DYRK1A regulatory axis in sebaceous glands for sebum synthesis. Cell Mol Biol Lett 2023; 28:60. [PMID: 37501148 PMCID: PMC10375735 DOI: 10.1186/s11658-023-00467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Sebaceous glands (SGs) synthesize and secret sebum to protect and moisturize the dermal system via the complicated endocrine modulation. Dysfunction of SG are usually implicated in a number of dermal and inflammatory diseases. However, the molecular mechanism behind the differentiation, development and proliferation of SGs is far away to fully understand. METHODS Herein, the rat volar and mammary tissues with abundant SGs from female SD rats with (post-natal day (PND)-35) and without puberty onset (PND-25) were arrested, and conducted RNA sequencing. The protein complex of Neuropeptide Y receptor Y2 (NPY2R)/NPY5R/Nuclear factor of activated T cells 1 (NFATc1) was performed by immunoprecipitation, mass spectrum and gel filtration. Genome-wide occupancy of NFATc1 was measured by chromatin immunoprecipitation sequencing. Target proteins' expression and localization was detected by western blot and immunofluorescence. RESULTS NPY2R gene was significantly up-regulated in volar and mammary SGs of PND-25. A special protein complex of NPY2R/NPY5R/NFATc1 in PND-25. NFATc1 was dephosphorylated and activated, then localized into nucleus to exert as a transcription factor in volar SGs of PND-35. NFATc1 was especially binding at enhancer regions to facilitate the distal SG and sebum related genes' transcription. Dual specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) contributed to NFATc1 phosphorylation in PND-25, and inactivated of DYRK1A resulted in NFATc1 dephosphorylation and nuclear localization in PND-35. CONCLUSIONS Our findings unmask the new role of NPY2R/NFATc1/DYRK1A in pubertal SG, and are of benefit to advanced understanding the molecular mechanism of SGs' function after puberty, and provide some theoretical basis for the treatment of acne vulgaris from the perspective of hormone regulation.
Collapse
Affiliation(s)
- Tao Yang
- Department of Medical Cosmetology, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Renyi Hei
- Department of Otolaryngology-Head and Neck Surgery, General Hospital of Shenyang Military Area Command, Shenyang, 110016, Liaoning, China
| | - Xiaosong Li
- Department of Anorectal Surgery, Suzhou Ninth People's Hospital, Suzhou, 215200, Jiangsu, China
| | - Tianhua Ma
- Graduate School of Soochow University, Suzhou, 215031, Jiangsu, China
| | - Yifen Shen
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Chao Liu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Wen He
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Lin Zhu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Yongchun Gu
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Wenbin Wei
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, No. 639 Zhizaoju Road, Huangpu District, Shanghai, 200013, China.
| | - Yihang Shen
- Central Laboratory, Suzhou Ninth People's Hospital, 2666, Ludang Road, Suzhou, 215200, Jiangsu, China.
| |
Collapse
|
14
|
Feng C, Liu Y, Zhang BY, Zhang H, Shan FY, Li TQ, Zhao ZN, Wang XX, Zhang XY. Rapamycin Inhibits Osteoclastogenesis and Prevents LPS-Induced Alveolar Bone Loss by Oxidative Stress Suppression. ACS OMEGA 2023; 8:20739-20754. [PMID: 37323396 PMCID: PMC10268267 DOI: 10.1021/acsomega.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Periodontitis is a progressive inflammatory skeletal disease characterized by periodontal tissue destruction, alveolar bone resorption, and tooth loss. Chronic inflammatory response and excessive osteoclastogenesis play essential roles in periodontitis progression. Unfortunately, the pathogenesis that contributes to periodontitis remains unclear. As a specific inhibitor of the mTOR (mammalian/mechanistic target of rapamycin) signaling pathway and the most common autophagy activator, rapamycin plays a vital role in regulating various cellular processes. The present study investigated the effects of rapamycin on osteoclast (OC) formation in vitro and its effects on the rat periodontitis model. The results showed that rapamycin inhibited OC formation in a dose-dependent manner by up-regulating the Nrf2/GCLC signaling pathway, thus suppressing the intracellular redox status, as measured by 2',7'-dichlorofluorescein diacetate and MitoSOX. In addition, rather than simply increasing the autophagosome formation, rapamycin increased the autophagy flux during OC formation. Importantly, the anti-oxidative effect of rapamycin was regulated by an increase in autophagy flux, which could be attenuated by blocking autophagy with bafilomycin A1. In line with the in vitro results, rapamycin treatment attenuated alveolar bone resorption in rats with lipopolysaccharide-induced periodontitis in a dose-dependent manner, as assessed by micro-computed tomography, hematoxylin-eosin staining, and tartrate-resistant acid phosphatase staining. Besides, high-dose rapamycin treatment could reduce the serum levels of proinflammatory factors and oxidative stress in periodontitis rats. In conclusion, this study expanded our understanding of rapamycin's role in OC formation and protection from inflammatory bone diseases.
Collapse
Affiliation(s)
- Chong Feng
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yan Liu
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
- Lanzhou
University, Lanzhou 730000, China
| | - Bao-Yi Zhang
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hao Zhang
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Fa-Yu Shan
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Tian-Qi Li
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhi-Ning Zhao
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
| | - Xin-Xing Wang
- Tianjin
Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Xiang-Yu Zhang
- School
and Hospital of Stomatology, Tianjin Medical
University, Tianjin 300070, China
| |
Collapse
|
15
|
Wang S, Wang J, Wang S, Tao R, Yi J, Chen M, Zhao Z. mTOR Signaling Pathway in Bone Diseases Associated with Hyperglycemia. Int J Mol Sci 2023; 24:ijms24119198. [PMID: 37298150 DOI: 10.3390/ijms24119198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/12/2023] Open
Abstract
The interplay between bone and glucose metabolism has highlighted hyperglycemia as a potential risk factor for bone diseases. With the increasing prevalence of diabetes mellitus worldwide and its subsequent socioeconomic burden, there is a pressing need to develop a better understanding of the molecular mechanisms involved in hyperglycemia-mediated bone metabolism. The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that senses extracellular and intracellular signals to regulate numerous biological processes, including cell growth, proliferation, and differentiation. As mounting evidence suggests the involvement of mTOR in diabetic bone disease, we provide a comprehensive review of its effects on bone diseases associated with hyperglycemia. This review summarizes key findings from basic and clinical studies regarding mTOR's roles in regulating bone formation, bone resorption, inflammatory responses, and bone vascularity in hyperglycemia. It also provides valuable insights into future research directions aimed at developing mTOR-targeted therapies for combating diabetic bone diseases.
Collapse
Affiliation(s)
- Shuangcheng Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shuangwen Wang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ran Tao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Miao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Wang J, Xu C, Zhang J, Bao Y, Tang Y, Lv X, Ma B, Wu X, Mao G. RhoA promotes osteoclastogenesis and regulates bone remodeling through mTOR-NFATc1 signaling. Mol Med 2023; 29:49. [PMID: 37020186 PMCID: PMC10077675 DOI: 10.1186/s10020-023-00638-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/19/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND The cytoskeletal architecture of osteoclasts (OCs) and bone resorption activity must be appropriately controlled for proper bone remodeling, which is associated with osteoporosis. The RhoA protein of GTPase plays a regulatory role in cytoskeletal components and contributes to osteoclast adhesion, podosome positioning, and differentiation. Although osteoclast investigations have traditionally been performed by in vitro analysis, however, the results have been inconsistent, and the significance of RhoA in bone physiology and pathology is still unknown. METHODS We generated RhoA knockout mice by specifically deleting RhoA in the osteoclast lineage to understand more about RhoA's involvement in bone remodeling. The function of RhoA in osteoclast differentiation and bone resorption and the mechanisms were assessed using bone marrow macrophages (BMMs) in vitro. The ovariectomized (OVX) mouse model was adopted to examine the pathological effect of RhoA in bone loss. RESULTS Conditional deletion of RhoA in the osteoclast lineage causes a severe osteopetrosis phenotype, which is attributable to a bone resorption suppression. Further mechanistic studies suggest that RhoA deficiency suppresses Akt-mTOR-NFATc1 signaling during osteoclast differentiation. Additionally, RhoA activation is consistently related to the significant enhancement the osteoclast activity, which culminates in the development of an osteoporotic bone phenotype. Furthermore, in mice, the absence of RhoA in osteoclast precursors prevented occurring OVX-induced bone loss. CONCLUSION RhoA promoted osteoclast development via the Akt-mTOR-NFATc1 signaling pathway, resulting a osteoporosis phenotype, and that manipulating RhoA activity might be a therapeutic strategy for osteoporotic bone loss.
Collapse
Affiliation(s)
- Jirong Wang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China.
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ying Tang
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Xiaoling Lv
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Bo Ma
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, 1229 Gudun Road, Hangzhou, 310030, China.
| |
Collapse
|
17
|
Strontium Ranelate Inhibits Osteoclastogenesis through NF-κB-Pathway-Dependent Autophagy. Bioengineering (Basel) 2023; 10:bioengineering10030365. [PMID: 36978756 PMCID: PMC10045081 DOI: 10.3390/bioengineering10030365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Strontium ranelate (SR) is a pharmaceutical agent used for the prevention and treatment of osteoporosis and fragility fracture. However, little attention has been paid to the effect of SR on alveolar bone remodeling during orthodontic tooth movement and its underlying mechanism. Here, we investigated the influence of SR on orthodontic tooth movement and tooth resorption in Sprague–Dawley rats and the relationship between the nuclear factor–kappa B (NF-κB) pathway, autophagy, and osteoclastogenesis after the administration of SR in vitro and in vivo. In this study, it was found that SR reduced the expression of autophagy-related proteins at the pressure side of the first molars during orthodontic tooth movement. Similarly, the expression of these autophagy-related proteins and the size and number of autophagosomes were downregulated by SR in vitro. The results also showed that SR reduced the number of osteoclasts and suppressed orthodontic tooth movement and root resorption in rats, which could be partially restored using rapamycin, an autophagy inducer. Autophagy was attenuated after pre-osteoclasts were treated with Bay 11-7082, an NF-κB pathway inhibitor, while SR reduced the expression of the proteins central to the NF-κB pathway. Collectively, this study revealed that SR might suppress osteoclastogenesis through NF-κB-pathway-dependent autophagy, resulting in the inhibition of orthodontic tooth movement and root resorption in rats, which might offer a new insight into the treatment of malocclusion and bone metabolic diseases.
Collapse
|
18
|
Yang X, Kuang Z, Yang X, Hu X, Luo P, Lai Q, Zhang B, Zhang X, Wei Y. Facile synthesis of curcumin-containing poly(amidoamine) dendrimers as pH-responsive delivery system for osteoporosis treatment. Colloids Surf B Biointerfaces 2023; 222:113029. [PMID: 36436402 DOI: 10.1016/j.colsurfb.2022.113029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Osteoporosis is an age-related metabolic disease of bone, resulting in bone pain and even bone fragility and brittle fracture. Inhibiting overactive osteoclasts while promoting osteoblast activity is an ideal way to treat osteoporosis. Previous studies have demonstrated that natural compounds, such as curcumin (Cur) have dual roles both in promoting bone formation and inhibiting bone resorption, making them promising candidates for osteoporosis treatment. However, their poor water solubility, high dosage of curative effect and significant toxicity to other organs have largely limited their clinical translations. In this study, a novel method was reported to conjugate Cur and poly(amidoamine) dendrimers (PAD) using hexachlorocyclotriphosphazene (HCCP) as the linkage through a one-pot reaction, forming stable and uniform Cur loaded nanospheres (HCCP-Cur-PAD, HCP NPs). Owing to the hydrophilicity of PAD and hydrophobicity of Cur, HCP NPs can self-assemble into nanoparticles with particle size of 138.8 ± 78.7 nm and display excellent water dispersity. The loading capacity of Cur can reach 27.2% and it can be released from HCP NPs with pH-responsiveness. In vitro experimental results demonstrated that the HCP NPs entered lysosomes by endocytosis and proved dual anti-osteoporosis effects of inhibiting osteoclasts and promoting osteoblasts.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Zhihui Kuang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China
| | - Xinmin Yang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China
| | - Xin Hu
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Peng Luo
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China; Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China
| | - Qi Lai
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China
| | - Bin Zhang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, No. 17 Yong Wai Zheng Street, Nanchang, Jiangxi 330006, PR China.
| | - Xiaoyong Zhang
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031, PR China.
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
19
|
Yu JJ, Goncharova EA. mTOR Signaling Network in Cell Biology and Human Disease. Int J Mol Sci 2022; 23:ijms232416142. [PMID: 36555783 PMCID: PMC9787689 DOI: 10.3390/ijms232416142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates multiple processes, including gene transcription, protein synthesis, ribosome biogenesis, autophagy, cell metabolism, and cell growth [...].
Collapse
Affiliation(s)
- Jane J. Yu
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Lung Center, School of Medicine, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: 530-752-9405
| |
Collapse
|
20
|
Abstract
Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.
Collapse
Affiliation(s)
| | | | - Steve Stegen
- Corresponding author at: Clinical and Experimental Endocrinology, KU Leuven, O&N1bis, Herestraat 49 box 902, 3000 Leuven, Belgium.
| |
Collapse
|
21
|
Calcium complexes of oxicams: new dimensions in rheumatoid arthritis treatment. Future Med Chem 2022; 14:1771-1788. [PMID: 36519430 DOI: 10.4155/fmc-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various metals have been complexed with drugs to improve their cellular impact. Inflammatory diseases like rheumatoid arthritis (RA) are characterized by unbalanced production of proinflammatory cytokines (PICs) and prostaglandins with decreased levels of vitamin D and calcium. The inflammation can be suppressed through targeting the formation of PICs or related enzymes by various treatment strategies that involve the use of corticosteroids, disease-modifying antirheumatic drugs and NSAIDs. We present a detailed review on the impact of calcium complexes of oxicams as an advanced treatment strategy for RA. The calcium complexes demonstrate promising capabilities to cure the disease, improve the strength of bones and suppress PICs in RA.
Collapse
|
22
|
A Review of Signaling Transduction Mechanisms in Osteoclastogenesis Regulation by Autophagy, Inflammation, and Immunity. Int J Mol Sci 2022; 23:ijms23179846. [PMID: 36077242 PMCID: PMC9456406 DOI: 10.3390/ijms23179846] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoclastogenesis is an ongoing rigorous course that includes osteoclast precursors fusion and bone resorption executed by degradative enzymes. Osteoclastogenesis is controlled by endogenous signaling and/or regulators or affected by exogenous conditions and can also be controlled both internally and externally. More evidence indicates that autophagy, inflammation, and immunity are closely related to osteoclastogenesis and involve multiple intracellular organelles (e.g., lysosomes and autophagosomes) and certain inflammatory or immunological factors. Based on the literature on osteoclastogenesis induced by different regulatory aspects, emerging basic cross-studies have reported the emerging disquisitive orientation for osteoclast differentiation and function. In this review, we summarize the partial potential therapeutic targets for osteoclast differentiation and function, including the signaling pathways and various cellular processes.
Collapse
|
23
|
Bae S, Oh B, Tsai J, Park PSU, Greenblatt MB, Giannopoulou EG, Park-Min KH. The crosstalk between MYC and mTORC1 during osteoclastogenesis. Front Cell Dev Biol 2022; 10:920683. [PMID: 36060812 PMCID: PMC9437285 DOI: 10.3389/fcell.2022.920683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Osteoclasts are bone-resorbing cells that undergo extensive changes in morphology throughout their differentiation. Altered osteoclast differentiation and activity lead to changes in pathological bone resorption. The mammalian target of rapamycin (mTOR) is a kinase, and aberrant mTOR complex 1 (mTORC1) signaling is associated with altered bone homeostasis. The activation of mTORC1 is biphasically regulated during osteoclastogenesis; however, the mechanism behind mTORC1-mediated regulation of osteoclastogenesis and bone resorption is incompletely understood. Here, we found that MYC coordinates the dynamic regulation of mTORC1 activation during osteoclastogenesis. MYC-deficiency blocked the early activation of mTORC1 and also reversed the decreased activity of mTORC1 at the late stage of osteoclastogenesis. The suppression of mTORC1 activity by rapamycin in mature osteoclasts enhances bone resorption activity despite the indispensable role of high mTORC1 activation in osteoclast formation in both mouse and human cells. Mechanistically, MYC induces Growth arrest and DNA damage-inducible protein (GADD34) expression and suppresses mTORC1 activity at the late phase of osteoclastogenesis. Taken together, our findings identify a MYC-GADD34 axis as an upstream regulator of dynamic mTORC1 activation in osteoclastogenesis and highlight the interplay between MYC and mTORC1 pathways in determining osteoclast activity.
Collapse
Affiliation(s)
- Seyeon Bae
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Brian Oh
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | - Jefferson Tsai
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | - Peter Sang Uk Park
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
| | | | - Eugenia G. Giannopoulou
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY, United States
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| |
Collapse
|
24
|
Bernardor J, Alioli C, Meaux MN, Peyruchaud O, Machuca-Gayet I, Bacchetta J. Peripheral Blood Mononuclear Cells (PBMCs) to Dissect the Underlying Mechanisms of Bone Disease in Chronic Kidney Disease and Rare Renal Diseases. Curr Osteoporos Rep 2021; 19:553-562. [PMID: 34773213 DOI: 10.1007/s11914-021-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW To describe the methods that can be used to obtain functional and mature osteoclasts from peripheral blood mononuclear cells (PBMCs) and report the data obtained with this model in two peculiar diseases, namely pediatric chronic kidney disease-associated mineral and bone disorders (CKD-MBD) and nephropathic cystinosis. To discuss future research possibilities in the field. RECENT FINDINGS Bone tissue undergoes continuous remodeling throughout life to maintain bone architecture; it involves two processes: bone formation and bone resorption with the coordinated activity of osteoblasts, osteoclasts, and osteocytes. Animal models fail to fully explain human bone pathophysiology during chronic kidney disease, mainly due to interspecies differences. The development of in vitro models has permitted to mimic human bone-related diseases as an alternative to in vivo models. Since 1997, osteoclasts have been generated in cell cultures, notably when culturing PBMCs with specific growth factors and cytokines (i.e., M-CSF and RANK-L), without the need for osteoblasts or stromal cells. These models may improve the global understanding of bone pathophysiology. They can be been used not only to evaluate the direct effects of cytokines, hormones, cells, or drugs on bone remodeling during CKD-MBD, but also in peculiar genetic renal diseases inducing specific bone impairment.
Collapse
Affiliation(s)
- Julie Bernardor
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France.
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
- Centre de Référence des Maladies Rénales Rares, Filières Maladies Rares ORKID et ERK-Net, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France.
- Faculté de Médecine, Université de Nice Côte d'Azur, Nice, France.
- Unité d'hémodialyse pédiatrique, Archet 2, CHU de Nice, 06202, Nice, France.
| | - Candide Alioli
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Marie-Noelle Meaux
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Irma Machuca-Gayet
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
| | - Justine Bacchetta
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon1, Lyon, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Filière Maladies Rares OSCAR, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Centre de Référence des Maladies Rénales Rares, Filières Maladies Rares ORKID et ERK-Net, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
25
|
Augmenting MNK1/2 activation by c-FMS proteolysis promotes osteoclastogenesis and arthritic bone erosion. Bone Res 2021; 9:45. [PMID: 34671034 PMCID: PMC8528869 DOI: 10.1038/s41413-021-00162-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). However, the role of M-CSF in arthritic bone erosion is not completely understood. Here, we show that M-CSF can promote osteoclastogenesis by triggering the proteolysis of c-FMS, a receptor for M-CSF, leading to the generation of FMS intracellular domain (FICD) fragments. Increased levels of FICD fragments positively regulated osteoclastogenesis but had no effect on inflammatory responses. Moreover, myeloid cell-specific FICD expression in mice resulted in significantly increased osteoclast-mediated bone resorption in an inflammatory arthritis model. The FICD formed a complex with DAP5, and the FICD/DAP5 axis promoted osteoclast differentiation by activating the MNK1/2/EIF4E pathway and enhancing NFATc1 protein expression. Moreover, targeting the MNK1/2 pathway diminished arthritic bone erosion. These results identified a novel role of c-FMS proteolysis in osteoclastogenesis and the pathogenesis of arthritic bone erosion.
Collapse
|
26
|
Xu S, Li S, Liu X, Tan K, Zhang J, Li K, Bai X, Zhang Y. Rictor Is a Novel Regulator of TRAF6/TRAF3 in Osteoclasts. J Bone Miner Res 2021; 36:2053-2064. [PMID: 34155681 DOI: 10.1002/jbmr.4398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
Tumor necrosis factor receptor-associated factors (TRAFs) are crucial for receptor activator of nuclear factor-κB (RANK) activation in osteoclasts. However, the upstream mechanisms of TRAF members in the osteoclastic lineage remain largely unknown. Here, we demonstrated that Rictor, a key component of mechanistic target of rapamycin complex 2 (mTORC2), was crucial for TRAF6/TRAF3 expression in osteoclasts. Our ex vivo and in vivo studies showed that Rictor ablation from the osteoclastic lineage reduced osteoclast numbers and increased bone mass in mice. Mechanistically, we found that Rictor ablation restricted osteoclast formation, which disrupted TRAF6 stability and caused autophagy block in a manner distinct from mTORC1, resulting in reduced TRAF3 degradation. Boosting TRAF6 expression or knockdown of TRAF3 levels in Rictor-deficient cells could both overcome the defect. Moreover, Rictor could interact with TRAF6 upon RANK ligand (RANKL) stimulation and loss of Rictor impaired TRAF6 stability and promoted its ubiquitinated degradation. These findings established an innovative link between Rictor, TRAF protein levels, and autophagic block. More importantly, mTOR complexes in the osteoclastic lineage are likely switches for coordinating TRAF6 and TRAF3 protein levels, and Rictor may function as an essential upstream regulator of TRAF6/TRAF3 that is partially independent of mTORC1 activity. Inhibitors targeting Rictor may therefore be valuable for preventing or treating osteoclast-related diseases. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Song Xu
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China.,Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Kang Tan
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Jiahuan Zhang
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Kai Li
- Academy of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
28
|
Martin SA, Riordan RT, Wang R, Yu Z, Aguirre-Burk AM, Wong CP, Olson DA, Branscum AJ, Turner RT, Iwaniec UT, Perez VI. Rapamycin impairs bone accrual in young adult mice independent of Nrf2. Exp Gerontol 2021; 154:111516. [PMID: 34389472 DOI: 10.1016/j.exger.2021.111516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022]
Abstract
Advanced age is the strongest risk factor for osteoporosis. The immunomodulator drug rapamycin extends lifespan in numerous experimental model organisms and is being investigated as a potential therapeutic to slow human aging, but little is known about the effects of rapamycin on bone. We evaluated the impact of rapamycin treatment on bone mass, architecture, and indices of bone turnover in healthy adult (16-20 weeks old at treatment initiation) female wild-type (ICR) and Nrf2-/- mice, a mouse model of oxidative damage and aging-related disease vulnerability. Rapamycin (4 mg/kg bodyweight) was administered by intraperitoneal injection every other day for 12 weeks. Mice treated with rapamycin exhibited lower femur bone mineral content, bone mineral density, and bone volume compared to vehicle-treated mice. In midshaft femur diaphysis (cortical bone), rapamycin-treated mice had lower cortical volume and thickness, and in the distal femur metaphysis (cancellous bone), rapamycin-treated mice had higher trabecular spacing and lower connectivity density. Mice treated with rapamycin exhibited lower bone volume, bone volume fraction, and trabecular thickness in the 5th lumbar vertebra. Rapamycin-treated mice had lower levels of bone formation in the distal femur metaphysis compared to vehicle-treated mice which occurred co-incidentally with increased serum CTX-1, a marker of global bone resorption. Rapamycin had no impact on tibia inflammatory cytokine gene expression, and we found no independent effects of Nrf2 knockout on bone, nor did we find any interactions between genotype and treatment. These data show that rapamycin may have a negative impact on the skeleton of adult mice that should not be overlooked in the clinical context of its usage as a therapy to retard aging and reduce the incidence of age-related pathologies.
Collapse
Affiliation(s)
- Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, USA.
| | - Ruben T Riordan
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Allan M Aguirre-Burk
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Viviana I Perez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
29
|
Liu C, He Y, Xu X, He B. Phospholipase Cγ Signaling in Bone Marrow Stem Cell and Relevant Natural Compounds Therapy. Curr Stem Cell Res Ther 2021; 15:579-587. [PMID: 31702518 DOI: 10.2174/1574888x14666191107103755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/18/2019] [Accepted: 08/08/2019] [Indexed: 01/07/2023]
Abstract
Excessive bone resorption has been recognized play a major role in the development of bone-related diseases such as osteoporosis, rheumatoid arthritis, Paget's disease of bone, and cancer. Phospholipase Cγ (PLCγ) family members PLCγ1 and PLCγ2 are critical regulators of signaling pathways downstream of growth factor receptors, integrins, and immune complexes and play a crucial role in osteoclast. Ca2+ signaling has been recognized as an essential pathway to the differentiation of osteoclasts. With growing attention and research about natural occurring compounds, the therapeutic use of natural active plant-derived products has been widely recognized in recent years. In this review, we summarized the recent research on PLCγ signaling in bone marrow stem cells and the use of several natural compounds that were proven to inhibit RANKL-mediated osteoclastogenesis via modulating PLCγ signaling pathways.
Collapse
Affiliation(s)
- Chang Liu
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China.,Shaanxi University of Chinese Medicine, Xian Yang, China
| | - Yuan He
- Department of Orthopedics, Fifth Hospital of Xi’an, Xi’an, China
| | - Xiaobing Xu
- Department of Neurosurgery, Shunde Hospital of Southern Medical University, Fo Shan, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital Affiliated to Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Kaur H, Moreau R. mTORC1 silencing during intestinal epithelial Caco-2 cell differentiation is mediated by the activation of the AMPK/TSC2 pathway. Biochem Biophys Res Commun 2021; 545:183-188. [PMID: 33561653 DOI: 10.1016/j.bbrc.2021.01.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/20/2021] [Indexed: 12/22/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) signaling is the prototypical pathway regulating protein synthesis and cell proliferation. The level of mTORC1 activity is high in intestinal stem cells located at the base of the crypts and thought to gradually decrease as transit-amplifying cells migrate out of the crypts and differentiate into enterocytes, goblet cells or enteroendocrine cells along the epithelium. The unknown mechanism responsible for the silencing of intestinal epithelium mTORC1 during cell differentiation was investigated in Caco-2 cells, which spontaneously differentiate into enterocytes in standard growth medium. The results show that TSC2, an upstream negative regulator of mTORC1 was central to mTORC1 silencing in differentiated Caco-2 cells. AMPK-mediated activation of TSC2 (Ser1387) and repression of Raptor (Ser792), an essential component of mTORC1, were stimulated in differentiated Caco-2 cells. ERK1/2-mediated repression of TSC2 (Ser664) seen in undifferentiated Caco-2 cells was lifted in differentiated cells. IRS-1-mediated activation of AKT (Thr308) phosphorylation was stimulated in differentiated Caco-2 cells and may be involved in cross-pathway repression of ERK1/2. Additionally, PRAS40 (Thr246) phosphorylation was decreased in differentiated Caco-2 cells compared to undifferentiated cells allowing dephosphorylated PRAS40 to displace Raptor thereby repressing mTORC1 kinase activity.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
31
|
Chou H, Grant MP, Bolt AM, Guilbert C, Plourde D, Mwale F, Mann KK. Tungsten Increases Sex-Specific Osteoclast Differentiation in Murine Bone. Toxicol Sci 2021; 179:135-146. [PMID: 33146397 PMCID: PMC7797767 DOI: 10.1093/toxsci/kfaa165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tungsten is a naturally occurring metal that is increasingly used in industry and medical devices, and is labeled as an emerging environmental contaminant. Like many metals, tungsten accumulates in bone. Our previous data indicate that tungsten decreases differentiation of osteoblasts, bone-forming cells. Herein, we explored the impact of tungsten on osteoclast differentiation, which function in bone resorption. We observed significantly elevated osteoclast numbers in the trabecular bone of femurs following oral exposure to tungsten in male, but not female mice. In order to explore the mechanism(s) by which tungsten increases osteoclast number, we utilized in vitro murine primary and cell line pre-osteoclast models. Although tungsten did not alter the adhesion of osteoclasts to the extracellular matrix protein, vitronectin, we did observe that tungsten enhanced RANKL-induced differentiation into tartrate-resistant acid phosphatase (TRAP)-positive mononucleated osteoclasts. Importantly, tungsten alone had no effect on differentiation or on the number of multinucleated TRAP-positive osteoclasts. Enhanced RANKL-induced differentiation correlated with increased gene expression of differentiated osteoclast markers Nfatc1, Acp5, and Ctsk. Although tungsten did not alter the RANK surface receptor expression, it did modulate its downstream signaling. Co-exposure of tungsten and RANKL resulted in sustained positive p38 signaling. These findings demonstrate that tungsten enhances sex-specific osteoclast differentiation, and together with previous findings of decreased osteoblastogenesis, implicate tungsten as a modulator of bone homeostasis.
Collapse
Affiliation(s)
- Hsiang Chou
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Michael P Grant
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Alicia M Bolt
- College of Pharmacy, Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque 87131, New Mexico
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Dany Plourde
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
| | - Fackson Mwale
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Department of Experimental Surgery, McGill University, Montreal, Quebec H3G 1A4, Canada
| | - Koren K Mann
- Division of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec H4A 3T2, Canada
| |
Collapse
|
32
|
Cho E, Chen Z, Ding M, Seong J, Lee S, Min SH, Choi DK, Lee TH. PMSA prevents osteoclastogenesis and estrogen-dependent bone loss in mice. Bone 2021; 142:115707. [PMID: 33141068 DOI: 10.1016/j.bone.2020.115707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 01/07/2023]
Abstract
Excessive bone resorption mediated by mature osteoclasts can cause osteoporosis, leading to fragility fractures. Therefore, an effective therapeutic strategy for anti-osteoporosis drugs is the reduction of osteoclast activity. In this study, the osteoclast inhibitory activity of a novel compound, N-phenyl-methylsulfonamido-acetamide (PMSA), was examined. PMSA treatment inhibited receptor activator of nuclear factor kappa B ligand (RNAKL)-induced osteoclast differentiation in bone marrow-derived macrophage cells (BMMs). We investigated two PMSAs, N-2-(3-acetylphenyl)-N-2-(methylsulfonyl)-N-1-[2-(phenylthio)phenyl] glycinamide (PMSA-3-Ac), and N-2-(5-chloro-2-methoxyphenyl)-N-2-(methylsulfonyl)-N-1-[2-(phenylthio)phenyl]glycinamide (PMSA-5-Cl), to determine their effects on osteoclast differentiation. PMSAs inhibited the signaling pathways at the early stage. PMSA-3-Ac inhibited tumor necrosis factor receptor-associated factor 6 (TRAF6) expression, whereas PMSA-5-Cl suppressed the mitogen-activated protein kinase (MAPK) signaling pathways. However, both PMSAs inhibited the master transcription factor, nuclear factor of activated T cell cytoplasmic-1 (NFATc1), by blocking nuclear localization. An in vivo study of PMSAs was performed in an ovariectomized (OVX) mouse model, and PMSA-5-Cl prevented bone loss in OVX mice. Therefore, our results suggested that PMSAs, specifically PMSA-5-Cl, may serve as a potential therapeutic agent for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Zhihao Chen
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Republic of Korea
| | - Mina Ding
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Republic of Korea
| | - Jihyoun Seong
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Sang Hyun Min
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Republic of Korea.
| | - Dong Kyu Choi
- New Drug Development Center, DGMIF, 80 Chumbok-ro, Dong-gu, Daegu 41061, Republic of Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Republic of Korea.
| |
Collapse
|
33
|
Tong X, Chen M, Song R, Zhao H, Bian J, Gu J, Liu Z. Overexpression of c-Fos reverses osteoprotegerin-mediated suppression of osteoclastogenesis by increasing the Beclin1-induced autophagy. J Cell Mol Med 2021; 25:937-945. [PMID: 33277741 PMCID: PMC7812271 DOI: 10.1111/jcmm.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 11/22/2020] [Indexed: 11/28/2022] Open
Abstract
Osteoclastogenesis requires the involvement of transcription factors and degrading enzymes, and is regulated by upstream and downstream signalling. However, c-Fos how regulates osteoclastogenesis through autophagy remain unclear. This study aimed to explore the role of c-Fos during osteoprotegerin (OPG)-mediated suppression of osteoclastogenesis. We found that the number of osteoclasts and the expression of c-Fos, MMP-9, CAⅡ, Src and p62 were decreased after treated with OPG, including attenuation the PI3K/Akt and the TAK1/S6 signalling pathways, but the expression of Beclin1 and LC3Ⅱ were increased. Knockdown of Beclin1 could reverse the expression of c-Fos and MMP-9 by activating the PI3K/Akt signalling pathway, but inhibiting the autophagy and the TAK1/S6 signalling pathway. In addition, inhibition of autophagy using the PI3K inhibitor LY294002 did not rescues OPG-mediated suppression of osteoclastogenesis, but caused reduction of the expression of c-Fos and CAⅡ by attenuating the autophagy, as well as the PI3K/Akt and the TAK1/S6 signalling pathways. Furthermore, continuous activation of c-Fos could reverse OPG-mediated suppression of osteoclastogenesis by activating the autophagy and the PI3K/Akt and the TAK1/S6 signalling pathways. Thus, overexpression of c-Fos could reverse OPG-mediated suppression of osteoclastogenesis via activation of Beclin1-induced autophagy, indicating c-Fos might serve as a new candidate for bone-related basic studies.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology DevelopmentJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
- Jiangsu Key Laboratory of ZoonosisYangzhouChina
- Center of Excellence for Vector‐Borne DiseasesDepartment of Diagnostic Medicine/PathobiologyCollege of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Miaomiao Chen
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Ruilong Song
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Hongyan Zhao
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
| | - Jianchun Bian
- Institutes of Agricultural Science and Technology DevelopmentJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
- Jiangsu Key Laboratory of ZoonosisYangzhouChina
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology DevelopmentJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
- Jiangsu Key Laboratory of ZoonosisYangzhouChina
| | - Zongping Liu
- Institutes of Agricultural Science and Technology DevelopmentJoint International Research Laboratory of Agriculture and Agri‐Product Safety of the Ministry of Education of ChinaYangzhou UniversityYangzhouChina
- College of Veterinary MedicineYangzhou UniversityYangzhouChina
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhouChina
- Jiangsu Key Laboratory of ZoonosisYangzhouChina
| |
Collapse
|
34
|
Finely-Tuned Calcium Oscillations in Osteoclast Differentiation and Bone Resorption. Int J Mol Sci 2020; 22:ijms22010180. [PMID: 33375370 PMCID: PMC7794828 DOI: 10.3390/ijms22010180] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
Calcium (Ca2+) plays an important role in regulating the differentiation and function of osteoclasts. Calcium oscillations (Ca oscillations) are well-known phenomena in receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclastogenesis and bone resorption via calcineurin. Many modifiers are involved in the fine-tuning of Ca oscillations in osteoclasts. In addition to macrophage colony-stimulating factors (M-CSF; CSF-1) and RANKL, costimulatory signaling by immunoreceptor tyrosine-based activation motif-harboring adaptors is important for Ca oscillation generation and osteoclast differentiation. DNAX-activating protein of 12 kD is always necessary for osteoclastogenesis. In contrast, Fc receptor gamma (FcRγ) works as a key controller of osteoclastogenesis especially in inflammatory situation. FcRγ has a cofactor in fine-tuning of Ca oscillations. Some calcium channels and transporters are also necessary for Ca oscillations. Transient receptor potential (TRP) channels are well-known environmental sensors, and TRP vanilloid channels play an important role in osteoclastogenesis. Lysosomes, mitochondria, and endoplasmic reticulum (ER) are typical organelles for intracellular Ca2+ storage. Ryanodine receptor, inositol trisphosphate receptor, and sarco/endoplasmic reticulum Ca2+ ATPase on the ER modulate Ca oscillations. Research on Ca oscillations in osteoclasts has still many problems. Surprisingly, there is no objective definition of Ca oscillations. Causality between Ca oscillations and osteoclast differentiation and/or function remains to be examined.
Collapse
|
35
|
Karkache IY, Damodaran JR, Molstad DHH, Bradley EW. Serine/threonine phosphatases in osteoclastogenesis and bone resorption. Gene 2020; 771:145362. [PMID: 33338510 DOI: 10.1016/j.gene.2020.145362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Maintenance of optimal bone mass is controlled through the concerted functions of several cell types, including bone resorbing osteoclasts. Osteoclasts function to remove calcified tissue during developmental bone modeling, and degrade bone at sites of damage during bone remodeling. Changes to bone homeostasis can arise with alterations in osteoclastogenesis and/or catabolic activity that are not offset by anabolic activity; thus, factors that regulate osteoclastogenesis and bone resorption are of interest to further our understanding of basic bone biology, and as potential targets for therapeutic intervention. Several key cytokines, including RANKL and M-CSF, as well as co-stimulatory factors elicit kinase signaling cascades that promote osteoclastogenesis. These kinase cascades are offset by the action of protein phosphatases, including members of the serine/threonine phosphatase family. Here we review the functions of serine/threonine phosphatases and their control of osteoclast differentiation and function, while highlighting deficiencies in our understanding of this understudied class of proteins within the field.
Collapse
Affiliation(s)
- Ismael Y Karkache
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Jeyaram R Damodaran
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - David H H Molstad
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States
| | - Elizabeth W Bradley
- Department of Orthopedic Surgery, University of Minnesota, Minneapolis, MN 55455, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
36
|
Lin S, Zhao XL, Wang Z. TANK-binding kinase 1 mediates osteoclast differentiation by regulating NF-κB, MAPK and Akt signaling pathways. Immunol Cell Biol 2020; 99:223-233. [PMID: 32896936 DOI: 10.1111/imcb.12401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 09/06/2020] [Indexed: 12/16/2022]
Abstract
TANK-binding kinase 1 (TBK1) belongs to the noncanonical IκB kinase (IKK) family. The ubiquitously expressed protein is well known to play a pivotal role in innate immune response and inflammation. Although excessive inflammatory activities have been shown to affect osteoclast (OC) differentiation and function, direct relevance of TBK1 in bone turnover is not known. In this work, we specifically altered the TBK1 protein level by knocking down or overexpressing it without affecting its homologous protein IKKε expression, and demonstrated the effect of TBK1 on OC differentiation in bone marrow macrophages (BMMs) and RAW264.7 cells upon induction by receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). TBK1 knockdown was found to markedly inhibit the OC differentiation and function, while TBK1 overexpression enhanced OC formation. Downregulation of TBK1 greatly suppressed RANKL-induced gene expression of Mmp9, Atp6v0d2, Acp5, Ctsk andNfatc1 involved in the regulation of OC formation and function in both BMM and RAW264.7 cells. Mechanistic studies indicated that TBK1 affected the NF-κB signaling pathway as well as mitogen-activated protein kinases (MAPKs) and protein kinase B (Akt) activation during OC differentiation. Moreover, the protein level of TNF receptor-associated factor 6 (TRAF6) was increased, and the interaction of TRAF6 with TBK1 was potentiated, by RANKL. Collectively, we provide direct evidence showing that TBK1 effectively mediates OC differentiation and function by regulating NF-κB, MAPKs and Akt signals. A TBK1-targeted therapeutic strategy may be useful for the treatment of bone-related disorders.
Collapse
Affiliation(s)
- Shuai Lin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Li Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
Yao D, Huang L, Ke J, Zhang M, Xiao Q, Zhu X. Bone metabolism regulation: Implications for the treatment of bone diseases. Biomed Pharmacother 2020; 129:110494. [PMID: 32887023 DOI: 10.1016/j.biopha.2020.110494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Bone cells in the human body are continuously engaged in cellular metabolism, including the interaction between bone cells, the interaction between the erythropoietic cells of the bone marrow and stromal cells, for the remodeling and reconstruction of bone. Osteoclasts and osteoblasts play an important role in bone metabolism. Diseases occur when bone metabolism is abnormal, but little is known about the signaling pathways that affect bone metabolism. The study of these signaling pathways will help us to use the relevant techniques to intervene, so as to improve the condition. The study of these signaling pathways will help us to use the relevant techniques to intervene, so as to improve the condition. I believe they will shine in the diagnosis and treatment of future clinical bone diseases.
Collapse
Affiliation(s)
- Danqi Yao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Lianfang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| | - Jianhao Ke
- College of Agriculture, South China Agricultural University, Guangzhou 510046, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Shandong University, Zibo 255000, China.
| | - Qin Xiao
- Department of Blood Transfusion, Peking University Shenzhen Hospital, Shenzhen 518036, China.
| | - Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, Guangdong, 524023, China.
| |
Collapse
|
38
|
Tong X, Gu J, Chen M, Wang T, Zou H, Song R, Zhao H, Bian J, Liu Z. p53 positively regulates osteoprotegerin-mediated inhibition of osteoclastogenesis by downregulating TSC2-induced autophagy in vitro. Differentiation 2020; 114:58-66. [PMID: 32771207 DOI: 10.1016/j.diff.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
Abstract
Osteoclasts are terminally multinucleated cells that are regulated by nuclear factor-activated T cells c1 (NFATc1), and are responsible for bone resorption while the tartrate resistant acid phosphatase (TRAP) enzymes releases into bone resorption lacunae. Furthermore, tumor suppressor p53 is a negative regulator during osteoclastogenesis. Osteoprotegerin (OPG) inhibits osteoclastogenesis and bone resorption by activating autophagy, however, whether p53 is involved in OPG-mediated inhibition of osteoclastogenesis remains unclear. In the current study, OPG could enhance the expression of p53 and tuberin sclerosis complex 2 (TSC2). Moreover, the expression of p53 is regulated by autophagy during OPG-mediated inhibition of osteoclastogenesis. Inhibition of p53 by treated with pifithrin-α (PFTα) causing augments of osteoclastogenesis and bone resorption, also reversed OPG-mediated inhibition of osteoclastogenesis by reducing the expression of TSC2. In addition, knockdown of TSC2 using siRNA could rescue OPG-mediated inhibition of osteoclastogenesis by reducing autophagy, which is manifested by the decrease of the expression of Beclin1 and the phosphorylation of mammalian target of rapamycin (mTOR) and ribosomal protein S6 kinase beta 1 (S6K1, also known as p70S6K). Collectively, p53 plays a critical role during OPG-mediated inhibition of osteoclastogenesis via regulating the TSC2-induced autophagy in vitro.
Collapse
Affiliation(s)
- Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, 66502, Kansas, USA; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China
| | - Miaomiao Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, PR China; Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, PR China.
| |
Collapse
|
39
|
Huang Y, Li Q, Feng Z, Zheng L. STIM1 controls calcineurin/Akt/mTOR/NFATC2-mediated osteoclastogenesis induced by RANKL/M-CSF. Exp Ther Med 2020; 20:736-747. [PMID: 32742319 PMCID: PMC7388407 DOI: 10.3892/etm.2020.8774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is the stable calcium channel influx in most cells. It consists of the cytoplasmic ion channel ORAI and endoplasmic reticulum receptor stromal interaction molecule 1 (STIM1). Abolition of SOCE function due to ORAI1 and STIM1 gene defects may cause non-perspiration, ectoderm dysplasia and skeletal malformations with severe combined immunodeficiency (CID). Calcineurin/mammalian target of rapamycin (mTOR)/nuclear factor of activated T cells 2 (NFATC2) is an important signalling cascade for osteoclast development. Calcineurin is activated by Ca2+ via SOCE during osteoclastogenesis, which is induced by receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). However, the underlying mechanism has remained to be fully elucidated, which was therefore the aim of the present study. In the current study, flow cytometry was used to examine the effect of a number of STIM1 mutations on proliferation, differentiation, and expression of osteolysis-associated proteins in Bone marrow-derived mononuclear macrophages (BMDM). The calcineurin/AKT/mTOR/NFATC2 signaling cascade activation were also assessed. BMDMs were obtained from three patients with STIM1 mutations (p.E136X, p.R429C and p.R304W). These mutations, which exhibited abolished (p.E136X, p.R429C) or constitutively activated (p.R304W) SOCE, failed to respond to RANKL/M-CSF-mediated induction of normal osteoclastogenesis. In addition, activation of the calcineurin/Akt/mTOR/NFATC2 signalling cascade induced by RANKL/M-CSF was abnormal in the BMDMs with STIM1 mutants compared with that in BMDMs from healthy subjects. In addition, overexpression of wild-type STIM1 restored SOCE in p.R429C- and p.E136X-mutant BMDMs, but not in p.R304W-mutant BMDMs. Of note, calcineurin, cyclosporin A, mTOR inhibitor rapamycin and NFATC2-specific small interfering RNA restored the function of SOCE in p.R304W-mutant BMDMs. The present study suggests a role for SOCE in calcineurin/Akt/mTOR/NFATC2-mediated osteoclast proliferation, differentiation and function.
Collapse
Affiliation(s)
- Yanjiao Huang
- Department of Pathological Anatomy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Qiang Li
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zunyong Feng
- Department of Forensic Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lanrong Zheng
- Department of Pathological Anatomy, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
40
|
Machuca-Gayet I, Quinaux T, Bertholet-Thomas A, Gaillard S, Claramunt-Taberner D, Acquaviva-Bourdain C, Bacchetta J. Bone Disease in Nephropathic Cystinosis: Beyond Renal Osteodystrophy. Int J Mol Sci 2020; 21:ijms21093109. [PMID: 32354056 PMCID: PMC7246679 DOI: 10.3390/ijms21093109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Patients with chronic kidney disease (CKD) display significant mineral and bone disorders (CKD-MBD) that induce significant cardiovascular, growth and bone comorbidities. Nephropathic cystinosis is an inherited metabolic disorder caused by the lysosomal accumulation of cystine due to mutations in the CTNS gene encoding cystinosin, and leads to end-stage renal disease within the second decade. The cornerstone of management relies on cysteamine therapy to decrease lysosomal cystine accumulation in target organs. However, despite cysteamine therapy, patients display severe bone symptoms, and the concept of “cystinosis metabolic bone disease” is currently emerging. Even though its exact pathophysiology remains unclear, at least five distinct but complementary entities can explain bone impairment in addition to CKD-MBD: long-term consequences of renal Fanconi syndrome, malnutrition and copper deficiency, hormonal disturbances, myopathy, and intrinsic/iatrogenic bone defects. Direct effects of both CTNS mutation and cysteamine on osteoblasts and osteoclasts are described. Thus, the main objective of this manuscript is not only to provide a clinical update on bone disease in cystinosis, but also to summarize the current experimental evidence demonstrating a functional impairment of bone cells in this disease and to discuss new working hypotheses that deserve future research in the field.
Collapse
Affiliation(s)
- Irma Machuca-Gayet
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
| | - Thomas Quinaux
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, 69500 Bron, France;
| | - Aurélia Bertholet-Thomas
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, 69500 Bron, France;
| | - Ségolène Gaillard
- INSERM CIC 1407, CNRS UMR 5558 and Service de Pharmacotoxicologie Clinique, Hospices Civils de Lyon, 69500 Bron, France;
| | - Débora Claramunt-Taberner
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
| | | | - Justine Bacchetta
- Pathophysiology, Diagnosis and Treatment of Bone Diseases, INSERM UMR 1033, 69008 Lyon, France; (I.M.-G.); (T.Q.); (D.C.-T.)
- Centre de Référence des Maladies Rénales Rares, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Hôpital Femme Mère Enfant, 69500 Bron, France;
- Faculté de Médecine Lyon Est, Université de Lyon, 69008 Lyon, France
- Correspondence: ; Tel.: +33-4-27-85-61-30
| |
Collapse
|
41
|
Brunner JS, Vulliard L, Hofmann M, Kieler M, Lercher A, Vogel A, Russier M, Brüggenthies JB, Kerndl M, Saferding V, Niederreiter B, Junza A, Frauenstein A, Scholtysek C, Mikami Y, Klavins K, Krönke G, Bergthaler A, O'Shea JJ, Weichhart T, Meissner F, Smolen JS, Cheng P, Yanes O, Menche J, Murray PJ, Sharif O, Blüml S, Schabbauer G. Environmental arginine controls multinuclear giant cell metabolism and formation. Nat Commun 2020; 11:431. [PMID: 31969567 PMCID: PMC6976629 DOI: 10.1038/s41467-020-14285-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/16/2019] [Indexed: 12/29/2022] Open
Abstract
Multinucleated giant cells (MGCs) are implicated in many diseases including schistosomiasis, sarcoidosis and arthritis. MGC generation is energy intensive to enforce membrane fusion and cytoplasmic expansion. Using receptor activator of nuclear factor kappa-Β ligand (RANKL) induced osteoclastogenesis to model MGC formation, here we report RANKL cellular programming requires extracellular arginine. Systemic arginine restriction improves outcome in multiple murine arthritis models and its removal induces preosteoclast metabolic quiescence, associated with impaired tricarboxylic acid (TCA) cycle function and metabolite induction. Effects of arginine deprivation on osteoclastogenesis are independent of mTORC1 activity or global transcriptional and translational inhibition. Arginine scarcity also dampens generation of IL-4 induced MGCs. Strikingly, in extracellular arginine absence, both cell types display flexibility as their formation can be restored with select arginine precursors. These data establish how environmental amino acids control the metabolic fate of polykaryons and suggest metabolic ways to manipulate MGC-associated pathologies and bone remodelling.
Collapse
Affiliation(s)
- Julia S Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Loan Vulliard
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Melanie Hofmann
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Markus Kieler
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Alexander Lercher
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Andrea Vogel
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Marion Russier
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Martina Kerndl
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Victoria Saferding
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Birgit Niederreiter
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Alexandra Junza
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, 43204, Tarragona, Spain
| | | | - Carina Scholtysek
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Yohei Mikami
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, MD, Bethesda, MD, 20892, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kristaps Klavins
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Gerhard Krönke
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Andreas Bergthaler
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, NIAMS, National Institutes of Health, Bethesda, MD, Bethesda, MD, 20892, USA
| | - Thomas Weichhart
- Center of Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090, Vienna, Austria
| | - Felix Meissner
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria
| | - Paul Cheng
- Bio Cancer Treatment International Ltd., 999077, Hong Kong, China
| | - Oscar Yanes
- CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, 43204, Tarragona, Spain
| | - Jörg Menche
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Peter J Murray
- Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Omar Sharif
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria
| | - Stephan Blüml
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria.
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090, Vienna, Austria.
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090, Vienna, Austria.
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090, Vienna, Austria.
| |
Collapse
|
42
|
Shati AA. Doxorubicin-induces NFAT/Fas/FasL cardiac apoptosis in rats through activation of calcineurin and P38 MAPK and inhibition of mTOR signalling pathways. Clin Exp Pharmacol Physiol 2020; 47:660-676. [PMID: 31811646 DOI: 10.1111/1440-1681.13225] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023]
Abstract
This study investigated the role of NFAT/Fas/FasL axis in cardiomyocyte apoptosis following doxorubicin (DOX) treatment in rats and evaluated the involvement and regulation of all NFAT members in cardiac apoptosis. Forty adult male Wistar rats were divided equally into control or DOX-treated groups (15 mg/kg over 2 weeks). Cardiomyocytes were cultured and pre-incubated with various inhibitors and activators (10 μmol/L) prior to DOX exposure (1 μmol/L). In the left ventricles and cultured cells, DOX increased cytoplasmic protein levels of cytochrome C, Bax and increased the activities of caspase-8, caspase3, ERK1/2, JNK, and P38 mitogen-activated protein kinases (MAPKs), reducing levels of Bcl-2 and the activity of mTOR, and inducing cell death. In addition, DOX enhanced mRNA and protein levels of Fas and FasL. Furthermore, the nuclear and cytoplasmic levels of NFAT1 and nuclear accumulation of NFAT2-4were increased with DOX treatment. The inhibition of calcineurin with FK506 significantly inhibited the nuclear levels of NFAT2 and NFAT4 and the inhibition of P38 MAPK with SB203580 inhibited the nuclear and cytoplasmic accumulation of NFAT1. However, the activation of mTOR by IGF-1 significantly lowered NFAT3. In conclusion, NFAT/Fas/FasL-induced cell death in cardiac myocytes of DOX-treated rats is regulated, at least, by the activation of calcineurin and P38 MAPK and inhibition of mTOR.
Collapse
Affiliation(s)
- Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
43
|
Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, Li J. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol 2019; 10:2952. [PMID: 31921197 PMCID: PMC6933613 DOI: 10.3389/fimmu.2019.02952] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/02/2019] [Indexed: 01/02/2023] Open
Abstract
We previously reported that astrocyte-derived proinflammatory cytokine interleukin (IL)-17A could aggravate neuronal ischemic injuries and strength autophagy both in oxygen-glucose deprivation (OGD)/reoxygenation (R)-treated neurons and peri-infarct region of mice with middle cerebral artery occlusion (MCAO)/reperfusion (R)-simulated ischemic stroke. In this study, the role and molecular mechanism of IL-17A in autophagy were further explored under ischemic condition. We found that exogenous addition of rmIL-17A remarkably (P < 0.001) decreased cell viability, which companying with the increases of LC3 II accumulation (P < 0.05 or 0.01) and Beclin 1 levels (P < 0.05 or 0.001), and reduction of p62 levels (P < 0.01 or 0.001) in OGD/R-treated cortical neurons (n = 6). The levels of P-mTOR (Ser 2448) (P < 0.001) and P-S6 (Ser 240/244) (P < 0.01) significantly decreased without the involvement of Akt, ERK1/2 and AMPK in cortical neurons under rmIL-17A and OGD/R treatments (n = 6). Interestingly, the co-IP analysis exhibited that PP2B and mTOR could be reciprocally immunoprecipitated; and the addition of rmIL-17A increased their interactions, PP2B activities (P < 0.001), P-Src (P < 0.001), and P-PLCγ1 (P < 0.01) levels in OGD/R-treated neurons (n = 6 or 5). The PP2B inhibitor Cyclosporin A blocked the induction of excessive autophagy (P < 0.05 or <0.001) and increased cell viability (P < 0.001) after OGD/R and rmIL-17A treatments (n = 6). In addition, the ICV injection of IL-17A neutralizing mAb could attenuate autophagy levels (P < 0.01 or 0.001, n = 6) and improve neurological functions (P < 0.01 or 0.001, n = 10) of mice after 1 h MCAO/R 24 h or 7 d. These results suggested that IL-17A-mediated excessive autophagy aggravates neuronal ischemic injuries via Src-PP2B-mTOR pathway, and IL-17A neutralization may provide a potential therapeutic effect for ischemic stroke.
Collapse
Affiliation(s)
- Ting Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Qingqing Dai
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Cui Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| | - Shujuan Li
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, School of Basic Medical Science, Capital Medical University, Beijing, China
| |
Collapse
|
44
|
El Mohtadi F, d’Arcy R, Burke J, Rios De La Rosa JM, Gennari A, Marotta R, Francini N, Donno R, Tirelli N. “Tandem” Nanomedicine Approach against Osteoclastogenesis: Polysulfide Micelles Synergically Scavenge ROS and Release Rapamycin. Biomacromolecules 2019; 21:305-318. [DOI: 10.1021/acs.biomac.9b01348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Farah El Mohtadi
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Richard d’Arcy
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Jason Burke
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Julio M. Rios De La Rosa
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Arianna Gennari
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nora Francini
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Nicola Tirelli
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
45
|
Malik N, Dunn KM, Cassels J, Hay J, Estell C, Sansom OJ, Michie AM. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Sci Rep 2019; 9:16917. [PMID: 31729420 PMCID: PMC6858379 DOI: 10.1038/s41598-019-53141-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that mediates phosphoinositide-3-kinase (PI3K)/AKT signalling. This pathway is involved in a plethora of cellular functions including protein and lipid synthesis, cell migration, cell proliferation and apoptosis. In this study, we proposed to delineate the role of mTORC1 in haemopoietic lineage commitment using knock out (KO) mouse and cell line models. Mx1-cre and Vav-cre expression systems were used to specifically target Raptorfl/fl (mTORC1), either in all tissues upon poly(I:C) inoculation, or specifically in haemopoietic stem cells, respectively. Assessment of the role of mTORC1 during the early stages of development in Vav-cre+Raptorfl/fl mice, revealed that these mice do not survive post birth due to aberrations in erythropoiesis resulting from an arrest in development at the megakaryocyte-erythrocyte progenitor stage. Furthermore, Raptor-deficient mice exhibited a block in B cell lineage commitment. The essential role of Raptor (mTORC1) in erythrocyte and B lineage commitment was confirmed in adult Mx1-cre+Raptorfl/fl mice upon cre-recombinase induction. These studies were supported by results showing that the expression of key lineage commitment regulators, GATA1, GATA2 and PAX5 were dysregulated in the absence of mTORC1-mediated signals. The regulatory role of mTOR during erythropoiesis was confirmed in vitro by demonstrating a reduction of K562 cell differentiation towards RBCs in the presence of established mTOR inhibitors. While mTORC1 plays a fundamental role in promoting RBC development, we showed that mTORC2 has an opposing role, as Rictor-deficient progenitor cells exhibited an elevation in RBC colony formation ex vivo. Collectively, our data demonstrate a critical role played by mTORC1 in regulating the haemopoietic cell lineage commitment.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen M Dunn
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer Cassels
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christopher Estell
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
46
|
Park-Min KH. Metabolic reprogramming in osteoclasts. Semin Immunopathol 2019; 41:565-572. [PMID: 31552471 DOI: 10.1007/s00281-019-00757-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022]
Abstract
Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of the bone. Defects in osteoclasts thus result in unbalanced bone remodeling, leading to numerous pathological conditions such as osteoporosis, bone metastasis, and inflammatory bone erosion. Metabolism is any process a cell utilizes to meet its energetic demand for biological functions. Along with signaling pathways and osteoclast-specific gene expression programs, osteoclast differentiation activates metabolic programs. The energy generated from metabolic reprogramming in osteoclasts not only supports the phenotypic changes from mononuclear precursor cells to multinuclear osteoclasts, but also facilitates bone resorption, a major function of terminally differentiated, mature osteoclasts. While oxidative phosphorylation is studied as a major metabolic pathway that fulfills the energy demands of osteoclasts, all metabolic pathways are closely interconnected. Therefore, it remains important to understand the various aspects of osteoclast metabolism, including the roles and effects of glycolysis, glutaminolysis, fatty acid synthesis, and fatty acid oxidation. Targeting the pathways associated with metabolic reprogramming has shown beneficial effects on pathological conditions. As a result, it is clear that a deeper understanding of metabolic regulation in osteoclasts will offer broader translational potential for the treatment of human bone disorders.
Collapse
Affiliation(s)
- Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, 535 East 70th Street, New York, NY, 10021, USA. .,Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA. .,BCMB Allied Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, 10021, USA.
| |
Collapse
|
47
|
Cho E, Chen Z, Lee J, Lee S, Lee TH. PSTP-3,5-Me Inhibits Osteoclast Differentiation and Bone Resorption. Molecules 2019; 24:molecules24183346. [PMID: 31540026 PMCID: PMC6767254 DOI: 10.3390/molecules24183346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/08/2023] Open
Abstract
Osteogenesis is an orchestrated process regulated by osteoclastogenesis and osteoblastogenesis. Excessive osteoclastogenesis causes bone diseases, such as osteoporosis. Although a few drugs are effective in osteoporosis treatment, these drugs lead to side effects, including cellulitis, flatulence, and hypocalcemia. In this study, we reported a 2-(N-Phenylmethylsulfonamido)-N-(2-(phenylthio)phenyl)propanamide (PSTP) compound, PSTP-3,5-Me, as a potential therapeutic agent for osteoporosis. Mouse bone marrow-derived macrophages (BMMs) were differentiated into osteoclasts by receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) in the presence of PSTP-3,5-Me. PSTP-3,5-Me inhibited osteoclast differentiation by reduced tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and suppressed the expression of osteoclast marker genes, such as cathepsin K (Ctsk) and TRAP (Acp5). We investigated signaling pathways mediated by RANKL and its receptor, RANK, and found that PSTP-3,5-Me inhibits nucleus translocation of nuclear factor of activated T cell cytoplasmic-1 (NFATc1). Moreover, PSTP-3,5-Me inhibited F-actin ring formation and mineral resorption. Overall, our data suggests that PSTP-3,5-Me attenuates osteoclast differentiation by blocking the activation of NFATc1.
Collapse
Affiliation(s)
- Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| | - Zhihao Chen
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Korea.
| | - Jinkyung Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju 61186, Korea.
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju 61186, Korea.
| |
Collapse
|
48
|
Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3β pathway via upregulating miR-23a. Int Immunopharmacol 2019; 74:105703. [DOI: 10.1016/j.intimp.2019.105703] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 01/24/2023]
|
49
|
Cuesta R, Gritsenko MA, Petyuk VA, Shukla AK, Tsai CF, Liu T, McDermott JE, Holz MK. Phosphoproteome Analysis Reveals Estrogen-ER Pathway as a Modulator of mTOR Activity Via DEPTOR. Mol Cell Proteomics 2019; 18:1607-1618. [PMID: 31189691 PMCID: PMC6683011 DOI: 10.1074/mcp.ra119.001506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
ER-positive breast tumors represent ∼70% of all breast cancer cases. Although their treatment with endocrine therapies is effective in the adjuvant or recurrent settings, the development of resistance compromises their effectiveness. The binding of estrogen to ERα, a transcription factor, triggers the regulation of the target genes (genomic pathway). Additionally, a cytoplasmic fraction of estrogen-bound ERα activates oncogenic signaling pathways such as PI3K/AKT/mTOR (nongenomic pathway). The upregulation of the estrogenic and the PI3K/AKT/mTOR signaling pathways are frequently associated with a poor outcome. To better characterize the connection between these two pathways, we performed a phosphoproteome analysis of ER-positive MCF7 breast cancer cells treated with estrogen or estrogen and the mTORC1 inhibitor rapamycin. Many proteins were identified as estrogen-regulated mTORC1 targets and among them, DEPTOR was selected for further characterization. DEPTOR binds to mTOR and inhibits the kinase activity of both mTOR complexes mTORC1 and mTORC2, but mitogen-activated mTOR promotes phosphorylation-mediated DEPTOR degradation. Although estrogen enhances the phosphorylation of DEPTOR by mTORC1, DEPTOR levels increase in estrogen-stimulated cells. We demonstrated that DEPTOR accumulation is the result of estrogen-ERα-mediated transcriptional upregulation of DEPTOR expression. Consequently, the elevated levels of DEPTOR partially counterbalance the estrogen-induced activation of mTORC1 and mTORC2. These results underscore the critical role of estrogen-ERα as a modulator of the PI3K/AKT/mTOR signaling pathway in ER-positive breast cancer cells. Additionally, these studies provide evidence supporting the use of dual PI3K/mTOR or dual mTORC1/2 inhibitors in combination with endocrine therapies as a first-line treatment option for the patients with ER-positive advanced breast cancer.
Collapse
Affiliation(s)
- Rafael Cuesta
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla NY 10595
| | - Marina A Gritsenko
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Anil K Shukla
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Chia-Feng Tsai
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Tao Liu
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland WA 99352
| | - Jason E McDermott
- ¶Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland WA 99352
| | - Marina K Holz
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla NY 10595; ‖Albert Einstein Cancer Center, Bronx NY 10461.
| |
Collapse
|
50
|
Ozaki K, Yamada T, Horie T, Ishizaki A, Hiraiwa M, Iezaki T, Park G, Fukasawa K, Kamada H, Tokumura K, Motono M, Kaneda K, Ogawa K, Ochi H, Sato S, Kobayashi Y, Shi YB, Taylor PM, Hinoi E. The L-type amino acid transporter LAT1 inhibits osteoclastogenesis and maintains bone homeostasis through the mTORC1 pathway. Sci Signal 2019; 12:12/589/eaaw3921. [PMID: 31289211 DOI: 10.1126/scisignal.aaw3921] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
L-type amino acid transporter 1 (LAT1), which is encoded by solute carrier transporter 7a5 (Slc7a5), plays a crucial role in amino acid sensing and signaling in specific cell types, contributing to the pathogenesis of cancer and neurological disorders. Amino acid substrates of LAT1 have a beneficial effect on bone health directly and indirectly, suggesting a potential role for LAT1 in bone homeostasis. Here, we identified LAT1 in osteoclasts as important for bone homeostasis. Slc7a5 expression was substantially reduced in osteoclasts in a mouse model of ovariectomy-induced osteoporosis. The osteoclast-specific deletion of Slc7a5 in mice led to osteoclast activation and bone loss in vivo, and Slc7a5 deficiency increased osteoclastogenesis in vitro. Loss of Slc7a5 impaired activation of the mechanistic target of rapamycin complex 1 (mTORC1) pathway in osteoclasts, whereas genetic activation of mTORC1 corrected the enhanced osteoclastogenesis and bone loss in Slc7a5-deficient mice. Last, Slc7a5 deficiency increased the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1) and the nuclear accumulation of NFATc1, a master regulator of osteoclast function, possibly through the canonical nuclear factor κB pathway and the Akt-glycogen synthase kinase 3β signaling axis, respectively. These findings suggest that the LAT1-mTORC1 axis plays a pivotal role in bone resorption and bone homeostasis by modulating NFATc1 in osteoclasts, thereby providing a molecular connection between amino acid intake and skeletal integrity.
Collapse
Affiliation(s)
- Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Atsushi Ishizaki
- Laboratory of Clinical Analytical Sciences, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.,Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuya Tokumura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Mei Motono
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan
| | - Kazuma Ogawa
- Laboratory of Clinical Analytical Sciences, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.,Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Ochi
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Graduate School, Tokyo 113-8510, Japan
| | - Shingo Sato
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, Graduate School, Tokyo 113-8510, Japan
| | - Yasuhiro Kobayashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peter M Taylor
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|