1
|
Sato H, Takekawa M, Yuzawa S, Motohashi M, Matsuda S, Adachi M. Tongue squamous cell carcinoma masked by herpes simplex virus infection: A case report. Oncol Lett 2025; 29:248. [PMID: 40177136 PMCID: PMC11962576 DOI: 10.3892/ol.2025.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 04/05/2025] Open
Abstract
Herpes simplex virus (HSV) infection can potentially mask underlying malignancies, complicating clinical diagnosis and potentially delaying the detection of a serious pathology. The present study describes the case of a 37-year-old man with a 20-year smoking history that presented with a tongue ulcer masked by HSV infection, who underwent comprehensive diagnostic investigations. Initial histopathological examination revealed characteristic HSV infection features, including multinucleation and intercellular bridge destruction. Despite symptomatic improvement of the viral infection, persistent leukoplakia and erythroplakia warranted further investigation. Sequential biopsies and clinical monitoring led to a partial glossectomy. Final pathology confirmed squamous cell carcinoma of the tongue with negative tumor margins. The present case emphasizes the critical importance of thorough evaluation of persistent oral lesions, especially in high-risk patients, as viral infections can complicate the diagnosis of underlying malignancies. Furthermore, it highlights the need for continued surveillance when clinical suspicion remains high, even after initial benign findings.
Collapse
Affiliation(s)
- Hideaki Sato
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Masanori Takekawa
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
| | - Sayaka Yuzawa
- Department of Diagnostic Pathology, Asahikawa Medical University Hospital, Asahikawa, Hokkaido 078-8510, Japan
| | - Masayuki Motohashi
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Department of Oral and Maxillofacial Surgery, Asahikawa City Hospital, Asahikawa, Hokkaido 070-8610, Japan
| | - Shinya Matsuda
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Department of Oral and Maxillofacial Surgery, Asahikawa City Hospital, Asahikawa, Hokkaido 070-8610, Japan
| | - Makoto Adachi
- Department of Oral and Maxillofacial Surgery, Asahikawa Medical University, Asahikawa, Hokkaido 078-8510, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya Tokushukai General Hospital, Kasugai, Aichi 487-0016, Japan
| |
Collapse
|
2
|
Fernandes Q, Folorunsho OG. Unveiling the nexus: The tumor microenvironment as a strategic frontier in viral cancers. Cytokine 2025; 185:156827. [PMID: 39647395 DOI: 10.1016/j.cyto.2024.156827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Viral infections are a significant factor in the etiology of various cancers, with the tumor microenvironment (TME) playing a crucial role in disease progression. This review delves into the complex interactions between viruses and the TME, highlighting how these interactions shape the course of viral cancers. We explore the distinct roles of immune cells, including T-cells, B-cells, macrophages, and dendritic cells, within the TME and their influence on cancer progression. The review also examines how viral oncoproteins manipulate the TME to promote immune evasion and tumor survival. Unraveling these mechanisms highlights the emerging paradigm of targeting the TME as a novel approach to cancer treatment. Our analysis provides insights into the dynamic interplay between viruses and the TME, offering a roadmap for innovative treatments that leverage the unique characteristics of viral cancers.
Collapse
Affiliation(s)
- Queenie Fernandes
- College of Medicine, QU Health, Qatar University, Doha 2713, Qatar; Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, PO. Box 3050, Doha, Qatar.
| | - Oginni Gbenga Folorunsho
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska cesta 5000, Nova Gorica, Slovenia
| |
Collapse
|
3
|
Mannam G, Miller JW, Johnson JS, Gullapalli K, Fazili A, Spiess PE, Chahoud J. HPV and Penile Cancer: Epidemiology, Risk Factors, and Clinical Insights. Pathogens 2024; 13:809. [PMID: 39339000 PMCID: PMC11434800 DOI: 10.3390/pathogens13090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Penile cancer (PC) is a rare malignancy predominantly of squamous cell origin. Approximately 40% of penile tumors are associated with human papillomavirus (HPV) infection. Diagnosing PC remains challenging due to its rarity and variety of clinical presentations. Furthermore, the impact of HPV on the tumor immune microenvironment complicates clinical management, although recent advancements in immune checkpoint inhibitors (ICIs) have shown some efficacy in treating HPV-associated PC. Ongoing research efforts aim to develop oncologic treatments that target HPV-induced cellular modifications. Additionally, novel therapeutic vaccines and adoptive T-cell therapies targeting HPV oncoproteins represent emerging treatment modalities. Our review highlights the complex interplay between HPV and penile carcinogenesis, emphasizing its epidemiology, etiology, clinicopathological characteristics, and potential therapeutic implications.
Collapse
Affiliation(s)
- Gowtam Mannam
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (G.M.); (J.W.M.)
| | - Justin W. Miller
- USF Health Morsani College of Medicine, Tampa, FL 33602, USA; (G.M.); (J.W.M.)
| | - Jeffrey S. Johnson
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Keerthi Gullapalli
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Adnan Fazili
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Philippe E. Spiess
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| | - Jad Chahoud
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.S.J.); (K.G.); (A.F.); (P.E.S.)
| |
Collapse
|
4
|
Krsek A, Baticic L, Braut T, Sotosek V. The Next Chapter in Cancer Diagnostics: Advances in HPV-Positive Head and Neck Cancer. Biomolecules 2024; 14:925. [PMID: 39199313 PMCID: PMC11352962 DOI: 10.3390/biom14080925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is an increasingly prevalent pathology worldwide, especially in developed countries. For diagnosing HPV in HNSCC, the combination of p16 immunohistochemistry (IHC) and polymerase chain reaction (PCR) offers high sensitivity and specificity, with p16 IHC being a reliable initial screen and PCR confirming HPV presence. Advanced techniques like next-generation sequencing (NGS) and RNA-based assays provide detailed insights but are primarily used in research settings. Regardless of HPV status, standard oncological treatments currently include surgery, radiation, and/or chemotherapy. This conventional approach does not account for the typically better prognosis of HPV-positive HNSCC patients, leading to increased chemo/radiation-induced secondary morbidities and reduced quality of life. Therefore, it is crucial to identify and detect HPV positivity and other molecular characteristics of HNSCC to personalize treatment strategies. This comprehensive review aims to summarize current knowledge on various HPV detection techniques and evaluate their advantages and disadvantages, with a focus on developing methodologies to identify new biomarkers in HPV-positive HNSCC. The review discusses direct and indirect HPV examination in tumor tissue, DNA- and RNA-based detection techniques, protein-based markers, liquid biopsy potentials, immune-related markers, epigenetic markers, novel biomarkers, and emerging technologies, providing an overall insight into the current state of knowledge.
Collapse
Affiliation(s)
- Antea Krsek
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| | - Lara Baticic
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Tamara Braut
- Department of Otorhinolaryngology and Head and Neck Surgery, Clinical Hospital Centre Rijeka, 51000 Rijeka, Croatia;
| | - Vlatka Sotosek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
5
|
Bos J, Groen-van Schooten TS, Brugman CP, Jamaludin FS, van Laarhoven HWM, Derks S. The tumor immune composition of mismatch repair deficient and Epstein-Barr virus-positive gastric cancer: A systematic review. Cancer Treat Rev 2024; 127:102737. [PMID: 38669788 DOI: 10.1016/j.ctrv.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Gastric cancer (GC), known for its unfavorable prognosis, has been classified in four distinct molecular subtypes. These subtypes not only exhibit differences in their genome and transcriptome but also in the composition of their tumor immune microenvironment. The microsatellite instable (MSI) and Epstein-Barr virus (EBV) positive GC subtypes show clear clinical benefits from immune checkpoint blockade, likely due to a neoantigen-driven and virus-driven antitumor immune response and high expression of immune checkpoint molecule PD-L1. However, even within these subtypes response to checkpoint inhibition is variable, which is potentially related to heterogeneity in the tumor immune microenvironment (TIME) and expression of co-inhibitory molecules. We conducted a systematic review to outline the current knowledge about the immunological features on the TIME of MSI and EBV + GCs. METHODS A systematic search was performed in PubMed, EMBASE and Cochrane Library. All articles from the year 1990 and onwards addressing immune features of gastric adenocarcinoma were reviewed and included based on predefined in- and exclusion criteria. RESULTS In total 5962 records were screened, of which 139 were included that reported immunological data on molecular GC subtypes. MSI and EBV + GCs were reported to have a more inflamed TIME compared to non-MSI and EBV- GC subtypes. Compared to microsatellite stable (MSS) tumors, MSI tumors were characterized by higher numbers of CD8 + and FoxP3 + T cells, and tumor infiltrating pro- and anti-inflammatory macrophages. HLA-deficiency was most common in MSI tumors compared to other molecular GC subtypes and associated with lower T and B cell infiltrates compared to HLA-proficient tumors. EBV + was associated with a high number of CD8 + T cells, Tregs, NK cells and macrophages. Expression of PD-L1, CTLA-4, Granzyme A and B, Perforin and interferon-gamma was enriched in EBV + tumors. Overall, MSI tumors harbored a more heterogeneous TIME in terms of immune cell composition and immune checkpoints compared to the EBV + tumors. DISCUSSION AND CONCLUSION MSI and EBV + GCs are highly Handbook for Conducting a Literature-Based Health Assessment Using OHAT Approach for Systematic Review and Evidence Integration.; 2019pro-inflammatory immune cell populations. Although studies on the direct comparison of EBV + and MSI tumors are limited, EBV + tumors show less intra-subgroup heterogeneity compared to MSI tumors. More studies are needed to identify how Intra-subgroup heterogeneity impacts response to immunotherapy efficacy.
Collapse
Affiliation(s)
- J Bos
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - T S Groen-van Schooten
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - C P Brugman
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
| | - F S Jamaludin
- Amsterdam UMC Location University of Amsterdam, Medical Library AMC, Meibergdreef 9, Amsterdam, the Netherlands
| | - H W M van Laarhoven
- Amsterdam UMC Location University of Amsterdam, Department of Medical Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - S Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands; Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Medical Oncology, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Seňavová J, Rajmonová A, Heřman V, Jura F, Veľasová A, Hamová I, Tkachenko A, Kupcová K, Havránek O. Immune Checkpoints and Their Inhibition in T-Cell Lymphomas. Folia Biol (Praha) 2024; 70:123-151. [PMID: 39644109 DOI: 10.14712/fb2024070030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
T-cell lymphomas (TCLs) are a rare and heterogeneous subgroup of non-Hodgkin lymphomas (NHLs), forming only 10 % of all NHL cases in Western countries. Resulting from their low incidence and heterogeneity, the current treatment outcome is generally unfavorable, with limited availability of novel therapeutic approaches. Therefore, the recent success of immune checkpoint inhibitors (ICIs) in cancer treatment motivated their clinical investigation in TCLs as well. Multiple studies showed promising results; however, cases of TCL hyperprogression following ICI treatment and secondary T-cell-derived malignancies associated with ICI treatment of other cancer types were also reported. In our review, we first briefly summarize classification of T-cell-derived malignancies, general anti-tumor immune response, immune evasion, and immune checkpoint signaling. Next, we provide an overview of immune checkpoint molecule deregulation in TCLs, summarize available studies of ICIs in TCLs, and review the above-mentioned safety concerns associa-ted with ICI treatment and T-cell-derived malignancies. Despite initial promising results, further studies are necessary to define the most suitable clinical applications and ICI therapeutic combinations with other novel treatment approaches within TCL treatment. ICIs, and their combinations, might hopefully bring the long awaited improvement for the treatment of T-cell-derived malignancies.
Collapse
Affiliation(s)
- Jana Seňavová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anežka Rajmonová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Václav Heřman
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filip Jura
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adriana Veľasová
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Hamová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristýna Kupcová
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
7
|
Brennan K, Espín-Pérez A, Chang S, Bedi N, Saumyaa S, Shin JH, Plevritis SK, Gevaert O, Sunwoo JB, Gentles AJ. Loss of p53-DREAM-mediated repression of cell cycle genes as a driver of lymph node metastasis in head and neck cancer. Genome Med 2023; 15:98. [PMID: 37978395 PMCID: PMC10656821 DOI: 10.1186/s13073-023-01236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The prognosis for patients with head and neck cancer (HNC) is poor and has improved little in recent decades, partially due to lack of therapeutic options. To identify effective therapeutic targets, we sought to identify molecular pathways that drive metastasis and HNC progression, through large-scale systematic analyses of transcriptomic data. METHODS We performed meta-analysis across 29 gene expression studies including 2074 primary HNC biopsies to identify genes and transcriptional pathways associated with survival and lymph node metastasis (LNM). To understand the biological roles of these genes in HNC, we identified their associated cancer pathways, as well as the cell types that express them within HNC tumor microenvironments, by integrating single-cell RNA-seq and bulk RNA-seq from sorted cell populations. RESULTS Patient survival-associated genes were heterogenous and included drivers of diverse tumor biological processes: these included tumor-intrinsic processes such as epithelial dedifferentiation and epithelial to mesenchymal transition, as well as tumor microenvironmental factors such as T cell-mediated immunity and cancer-associated fibroblast activity. Unexpectedly, LNM-associated genes were almost universally associated with epithelial dedifferentiation within malignant cells. Genes negatively associated with LNM consisted of regulators of squamous epithelial differentiation that are expressed within well-differentiated malignant cells, while those positively associated with LNM represented cell cycle regulators that are normally repressed by the p53-DREAM pathway. These pro-LNM genes are overexpressed in proliferating malignant cells of TP53 mutated and HPV + ve HNCs and are strongly associated with stemness, suggesting that they represent markers of pre-metastatic cancer stem-like cells. LNM-associated genes are deregulated in high-grade oral precancerous lesions, and deregulated further in primary HNCs with advancing tumor grade and deregulated further still in lymph node metastases. CONCLUSIONS In HNC, patient survival is affected by multiple biological processes and is strongly influenced by the tumor immune and stromal microenvironments. In contrast, LNM appears to be driven primarily by malignant cell plasticity, characterized by epithelial dedifferentiation coupled with EMT-independent proliferation and stemness. Our findings postulate that LNM is initially caused by loss of p53-DREAM-mediated repression of cell cycle genes during early tumorigenesis.
Collapse
Affiliation(s)
- Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Almudena Espín-Pérez
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Serena Chang
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Nikita Bedi
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Saumyaa Saumyaa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - June Ho Shin
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - John B Sunwoo
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, USA
| | - Andrew J Gentles
- Stanford Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA.
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Marcozzi S, Bigossi G, Giuliani ME, Lai G, Giacconi R, Piacenza F, Malavolta M. Spreading Senescent Cells' Burden and Emerging Therapeutic Targets for Frailty. Cells 2023; 12:2287. [PMID: 37759509 PMCID: PMC10528263 DOI: 10.3390/cells12182287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.
Collapse
Affiliation(s)
- Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
- Scientific Direction, IRCCS INRCA, 60124 Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121 Ancona, Italy; (S.M.); (G.B.); (M.E.G.); (R.G.); (F.P.)
| |
Collapse
|
9
|
Trishna S, Lavon A, Shteinfer-Kuzmine A, Dafa-Berger A, Shoshan-Barmatz V. Overexpression of the mitochondrial anti-viral signaling protein, MAVS, in cancers is associated with cell survival and inflammation. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:713-732. [PMID: 37662967 PMCID: PMC10468804 DOI: 10.1016/j.omtn.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/11/2023] [Indexed: 09/05/2023]
Abstract
Mitochondrial anti-viral signaling protein (MAVS) plays an important role in host defense against viral infection via coordinating the activation of NF-κB and interferon regulatory factors. The mitochondrial-bound form of MAVS is essential for its anti-viral innate immunity. Recently, tumor cells were proposed to mimic a viral infection by activating RNA-sensing pattern recognition receptors. Here, we demonstrate that MAVS is overexpressed in a panel of viral non-infected cancer cell lines and patient-derived tumors, including lung, liver, bladder, and cervical cancers, and we studied its role in cancer. Silencing MAVS expression reduced cell proliferation and the expression and nuclear translocation of proteins associated with transcriptional regulation, inflammation, and immunity. MAVS depletion reduced expression of the inflammasome components and inhibited its activation/assembly. Moreover, MAVS directly interacts with the mitochondrial protein VDAC1, decreasing its conductance, and we identified the VDAC1 binding site in MAVS. Our findings suggest that MAVS depletion, by reducing cancer cell proliferation and inflammation, represents a new target for cancer therapy.
Collapse
Affiliation(s)
- Sweta Trishna
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Avia Lavon
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Avis Dafa-Berger
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, University of the Negev, Beer Sheva 84105, Israel
- National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
10
|
Liu ZY, Khoo D, Hartel G, Punyadeera C, Vasani S. Post-treatment 18F-fludeoxyglocuse-positron emission tomography in human papillomavirus-associated oropharyngeal cancer. Head Neck 2023; 45:2000-2008. [PMID: 37306045 DOI: 10.1002/hed.27426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/02/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Human papillomavirus association has changed the landscape of treatment for oropharyngeal squamous cell carcinoma; it remains to be seen whether current post-treatment surveillance schedules are effective. OBJECTIVE Evaluate whether post-treatment surveillance of oropharyngeal cancer through FDG-PET imaging is modified by human papillomavirus association. METHODS A prospective cohort analysis of retrospective data was conducted for patients undergoing treatment of oropharyngeal cancer between 2016 and 2018. This study was conducted at a single large tertiary referral center in Brisbane, Australia. RESULTS Two-hundred and twenty-four patients were recruited for the purposes of the study, 193 (86%) with HPV-associated disease. In this cohort FDG-PET had a sensitivity of 48.3%, specificity of 72.6%, positive predictive value of 23.7%, and negative predictive value of 88.8% in detecting disease recurrence. CONCLUSIONS FDG-PET in HPV-associated oropharyngeal cancer has significantly lower positive predictive value when compared to non-HPV-associated oropharyngeal cancer. Caution should be used when interpreting positive post-treatment FDG-PET.
Collapse
Affiliation(s)
- Zhen Yu Liu
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Griffith Institute for Drug Discover and Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia
| | - Denver Khoo
- Department of Medical Imaging, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Gunter Hartel
- Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Chamindie Punyadeera
- Griffith Institute for Drug Discover and Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia
| | - Sarju Vasani
- Department of Otolaryngology, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
- Griffith Institute for Drug Discover and Menzies Health Institute Queensland, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
11
|
Liu A, Hammond R, Chan K, Chukwuenweniwe C, Johnson R, Khair D, Duck E, Olubodun O, Barwick K, Banya W, Stirrup J, Donnelly PD, Kaski JC, Coates ARM. Comparison of Lymphocyte-CRP Ratio to Conventional Inflammatory Markers for Predicting Clinical Outcomes in COVID-19. J Pers Med 2023; 13:909. [PMID: 37373898 DOI: 10.3390/jpm13060909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Background: In COVID-19 patients, lymphocyte-CRP ratio (LCR) is a promising biomarker for predicting adverse clinical outcomes. How well LCR performs compared to conventional inflammatory markers for prognosticating COVID-19 patients remains unclear, which hinders the clinical translation of this novel biomarker. Methods: In a cohort of COVID-19 inpatients, we characterised the clinical applicability of LCR by comparing its prognostic value against conventional inflammatory markers for predicting inpatient mortality and a composite of mortality, invasive/non-invasive ventilation and intensive care unit admissions. Results: Of the 413 COVID-19 patients, 100 (24%) patients suffered inpatient mortality. On Receiver Operating Characteristics analysis, LCR performed similarly to CRP for predicting mortality (AUC 0.74 vs. 0.71, p = 0.049) and the composite endpoint (AUC 0.76 vs. 0.76, p = 0.812). LCR outperformed lymphocyte counts (AUC 0.74 vs. 0.66, p = 0.002), platelet counts (AUC 0.74 vs. 0.61, p = 0.003) and white cell counts (AUC 0.74 vs. 0.54, p < 0.001) for predicting mortality. On Kaplan-Meier analysis, patients with a low LCR (below a 58 cut-off) had worse inpatient survival than patients with other LCR values (p < 0.001). Conclusion: LCR appears comparable to CRP, but outperformed other inflammatory markers, for prognosticating COVID-19 patients. Further studies are required to improve the diagnostic value of LCR to facilitate clinical translation.
Collapse
Affiliation(s)
- Alexander Liu
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Robert Hammond
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Kenneth Chan
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | | | | | - Duaa Khair
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Eleanor Duck
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | | | | | | | - James Stirrup
- Royal Berkshire NHS Foundation Trust, Reading RG1 5AN, UK
| | - Peter D Donnelly
- School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George's University of London, London SW17 0QT, UK
| | - Anthony R M Coates
- Institute of Infection and Immunity, St George's University of London, London SW17 0QT, UK
| |
Collapse
|
12
|
Hepatitis E Virus Seroprevalence Indicated a Significantly Increased Risk Selectively in Patients with Gastric Cancer among 17 Common Malignancies. J Clin Med 2023; 12:jcm12020437. [PMID: 36675366 PMCID: PMC9861101 DOI: 10.3390/jcm12020437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Background: The impact of hepatitis E virus (HEV) infection on cancer development has been poorly investigated. This study aimed to explore the relationship between HEV seroprevalence and cancer risks and to identify high cancer risk subgroups in HEV-exposed populations. Methods: HEV seroprevalence status was determined in cancer and non-cancer subjects. Logistic regression and sensitivity analyses were used to assess the relationship between HEV antibody seropositivity and cancer risk for 17 cancer types. Additionally, interaction analyses were applied to interpret the association of HEV seroprevalence and other cancer risk factors. Results: Of the enrolled 4948 cancer and 4948 non-cancer subjects, cancer subjects had a higher anti-HEV seropositivity than non-cancer subjects (46.36% vs. 32.50%, p < 0.01). However, this divergency varied in degrees across different cancer types. Additionally, HEV seroprevalence was associated with cancer risk in young males (OR: 1.64, 95% CI: 1.19−2.27, p < 0.01). Remarkably, a significant association between HEV seroprevalence and cancer risk was observed only in gastric cancer patients (OR: 1.82, 95% CI: 1.07−3.09, p = 0.03). Conclusions: HEV seroprevalence was associated with cancer risk selectively in gastric cancer patients and young males, suggesting that cancer screening, particularly gastric cancer, should be regularly performed in young males with a history of HEV exposure.
Collapse
|
13
|
He Z, Yue C, Chen X, Li X, Zhang L, Tan S, Yi X, Luo G, Zhou Y. Integrative Analysis Identified CD38 As a Key Node That Correlates Highly with Immunophenotype, Chemoradiotherapy Resistance, And Prognosis of Head and Neck Cancer. J Cancer 2023; 14:72-87. [PMID: 36605482 PMCID: PMC9809333 DOI: 10.7150/jca.59730] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/21/2021] [Indexed: 01/04/2023] Open
Abstract
Head and neck cancer (HNC) is mainly treated by surgery, radiotherapy, and adjuvant chemotherapy; however, the prognosis of some patients with HNC is poor because of radiotherapy and chemotherapy resistance. In recent years, anti‑PD‑1 monoclonal antibodies have shown certain efficacy, and a change of the tumor immune microenvironment is the main reason for the failure of HNC immunotherapy. The present study aimed to identify and verify that CD38, which is closely related to the prognosis of HNC, is a potential biological marker of radiotherapy and chemotherapy resistance and PD-L1 immunotherapy resistance via a comprehensive bioinformatic analysis in The Cancer Genome Atlas and Gene Expression Omnibus databases. According to the UALCAN database, the transcript level of CD38 in HNC was analyzed using cluster analysis, and the expression of CD38 mRNA in HNC was detected using the Oncomine database. The characteristics of CD38-related oncogenes were identified by gene cluster enrichment analysis in LinkedOmics. The R2 and SEER databases were used to further evaluate the prognostic significance of the CD38 gene in HNC using receiver operating characteristic curve analysis of Kaplan-Meier (KM) survival and the clinical characteristics of the subjects. The protein-protein interaction network of the top 50 genes showing significant positive correlations with CD38 in HNC was analyzed using STRING. Finally, we used a nasopharyngeal carcinoma (NPC) cell line to verify the biological function. The results showed that the levels of CD38 mRNA expression in patients with HNC were significantly higher than those in healthy controls. The levels of CD38 mRNA expression in patients with HNC of different ages, sexes, and races were significantly higher than those in the healthy controls. CD38 is an independent prognostic factor for HNC, and high expression of CD38 indicates poor prognosis. CD38 expression correlated positively with the markers of many kinds of immune cells, and correlated significantly with the expression of PD-L1. We found that the high expression of CD38 suggested a poor prognosis in the subgroup of tumors treated with chemotherapeutic drugs in the G1/S phase. We used HNC cell lines to verify that the high expression of CD38 promoted the proliferation of NPC cells and produced radiotherapy tolerance. Through comprehensive bioinformatics analysis, we suggested that CD38 is a key gene involved in radiotherapy, chemotherapy, and immune drug resistance in HNC. This study provides a reliable biomarker to predict the prognosis of patients with HNC and a reference for clinical comprehensive treatment of HNC. Individualization combined with CD38 monoclonal antibodies might provide a promising treatment strategy for this fatal disease, and this comprehensive treatment might reduce the damage to normal tissue and improve the prognosis and quality of life of patients with HNC.
Collapse
Affiliation(s)
- Zhengxi He
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, 410013, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Chunxue Yue
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Jinan, Shandong, 250022, China
| | - Xiuwen Chen
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xin Li
- Breast Cancer Center, Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Li Zhang
- Changsha Medical University, Changsha, Hunan, 410219, China
| | - Shan Tan
- Changsha Medical University, Changsha, Hunan, 410219, China
| | - Xia Yi
- Changsha Medical University, Changsha, Hunan, 410219, China
| | - Gengqiu Luo
- Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, Changsha, Hunan, 410008, China.,✉ Corresponding author: Professor Yanhong Zhou, NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; E-mail: . Dr Gengqiu Luo, Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, 88 Xiangya Road, Changsha, Hunan 410008, P.R. China; E-mail:
| | - Yanhong Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University Changsha, Hunan, 410013, China.,NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan, 410011, China.,✉ Corresponding author: Professor Yanhong Zhou, NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; E-mail: . Dr Gengqiu Luo, Department of Pathology, Xiangya Hospital, Basic School of Medicine, Central South University, 88 Xiangya Road, Changsha, Hunan 410008, P.R. China; E-mail:
| |
Collapse
|
14
|
Jäger J, Sprügel M, Brunner T, Uhl M, Schwab S, Vitali F, Wein A, Volbers B. Cetuximab-Induced Aseptic Meningitis in a Patient with Colorectal Cancer: A Case Report and Review of Literature. Case Rep Neurol 2022; 14:475-482. [PMID: 36644006 PMCID: PMC9834638 DOI: 10.1159/000527075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Cetuximab is a chimeric IgG1 monoclonal antibody against epidermal growth factor receptor. It is approved by the European medical agency for the treatment of RAS wild-type metastatic colorectal cancer and metastatic squamous cell cancer of the head and neck. Few cases of aseptic meningitis, primarily associated with the first administration of cetuximab in patients with squamous cell cancer, have been reported. So far, there was only 1 case in a patient with metastatic colorectal cancer. We report on a 50-year-old Caucasian patient with metastatic rectum carcinoma who suffered from headache, fever, and neck stiffness 3 h after the first administration of cetuximab (400 mg/m2). CSF examination revealed an excessive pleocytosis with a white blood cell count of 2,433/µL. He was diagnosed with cetuximab-induced aseptic meningitis since clinical symptoms and CSF pleocytosis resolved within days, and further diagnostic workup revealed no infectious cause. Cetuximab-induced aseptic meningitis is a rare and severe drug reaction with predominance in treating squamous cell cancer of the head and neck. Clinical presentation and CSF findings suggest acute meningoencephalitis. In all reported cases, the course of the disease was benign and self-limited. Empiric antimicrobial and antiviral therapy are suggested until infectious causes can be ruled out. A lower dosage of cetuximab and a premedication including antihistamines and glucocorticosteroids may lower the risk of a re-occurrence if cetuximab therapy is continued.
Collapse
Affiliation(s)
- Jakob Jäger
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maximilian Sprügel
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tamara Brunner
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Uhl
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Schwab
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Francesco Vitali
- Department of Medicine 1 − Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Axel Wein
- Department of Medicine 1 − Gastroenterology, Pneumology and Endocrinology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bastian Volbers
- Department of Neurology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany,*Bastian Volbers,
| |
Collapse
|
15
|
Peng G, Chi H, Gao X, Zhang J, Song G, Xie X, Su K, Song B, Yang J, Gu T, Li Y, Xu K, Li H, Liu Y, Tian G. Identification and validation of neurotrophic factor-related genes signature in HNSCC to predict survival and immune landscapes. Front Genet 2022; 13:1010044. [PMID: 36406133 PMCID: PMC9672384 DOI: 10.3389/fgene.2022.1010044] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/21/2022] [Indexed: 08/13/2023] Open
Abstract
Background: Head and neck squamous cell carcinoma (HNSCC) is the seventh most common type of cancer worldwide. Its highly aggressive and heterogeneous nature and complex tumor microenvironment result in variable prognosis and immunotherapeutic outcomes for patients with HNSCC. Neurotrophic factor-related genes (NFRGs) play an essential role in the development of malignancies but have rarely been studied in HNSCC. The aim of this study was to develop a reliable prognostic model based on NFRGs for assessing the prognosis and immunotherapy of HNSCC patients and to provide guidance for clinical diagnosis and treatment. Methods: Based on the TCGA-HNSC cohort in the Cancer Genome Atlas (TCGA) database, expression profiles of NFRGs were obtained from 502 HNSCC samples and 44 normal samples, and the expression and prognosis of 2601 NFRGs were analyzed. TGCA-HNSC samples were randomly divided into training and test sets (7:3). GEO database of 97 tumor samples was used as the external validation set. One-way Cox regression analysis and Lasso Cox regression analysis were used to screen for differentially expressed genes significantly associated with prognosis. Based on 18 NFRGs, lasso and multivariate Cox proportional risk regression were used to construct a prognostic risk scoring system. ssGSEA was applied to analyze the immune status of patients in high- and low-risk groups. Results: The 18 NFRGs were considered to be closely associated with HNSCC prognosis and were good predictors of HNSCC. The multifactorial analysis found that the NFRGs signature was an independent prognostic factor for HNSCC, and patients in the low-risk group had higher overall survival (OS) than those in the high-risk group. The nomogram prediction map constructed from clinical characteristics and risk scores had good prognostic power. Patients in the low-risk group had higher levels of immune infiltration and expression of immune checkpoints and were more likely to benefit from immunotherapy. Conclusion: The NFRGs risk score model can well predict the prognosis of HNSCC patients. A nomogram based on this model can help clinicians classify HNSCC patients prognostically and identify specific subgroups of patients who may have better outcomes with immunotherapy and chemotherapy, and carry out personalized treatment for HNSCC patients.
Collapse
Affiliation(s)
- Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Xinrui Gao
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Guobin Song
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Ke Su
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Binyu Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinyan Yang
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Tao Gu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yunyue Li
- Queen Mary College, Medical School of Nanchang University, Nanchang, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Han Li
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Yunfei Liu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Spirin P, Shyrokova E, Vedernikova V, Lebedev T, Prassolov V. Emetine in Combination with Chloroquine Induces Oncolytic Potential of HIV-1-Based Lentiviral Particles. Cells 2022; 11:cells11182829. [PMID: 36139404 PMCID: PMC9497060 DOI: 10.3390/cells11182829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chloroquine and Emetine are drugs used to treat human parasitic infections. In addition, it has been shown that these drugs have an antiviral effect. Both drugs were also found to cause a suppressive effect on the growth of cancer cells of different origins. Here, using the replication-deficient HIV-1-based lentiviral vector particles, we evaluated the ability of the combination of these drugs to reduce viral transduction efficiency. We showed that these drugs act synergistically to decrease cancer cell growth when added in combination with medium containing lentiviral particles. We found that the combination of these drugs with lentiviral particles decreases the viability of treated cells. Taken together, we state the oncolytic potential of the medium containing HIV-1-based particles provoked by the combination of Chloroquine and Emetine.
Collapse
Affiliation(s)
- Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Correspondence:
| | - Elena Shyrokova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Valeria Vedernikova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
17
|
Nguyen TT, Shin DH, Sohoni S, Singh SK, Rivera-Molina Y, Jiang H, Fan X, Gumin J, Lang FF, Alvarez-Breckenridge C, Godoy-Vitorino F, Zhu L, Zheng WJ, Zhai L, Ladomersky E, Lauing KL, Alonso MM, Wainwright DA, Gomez-Manzano C, Fueyo J. Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune synapse, and blockade of the immunosuppressive oncometabolic circuitry. J Immunother Cancer 2022; 10:e004935. [PMID: 35902132 PMCID: PMC9341188 DOI: 10.1136/jitc-2022-004935] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Oncolytic viruses are considered part of immunotherapy and have shown promise in preclinical experiments and clinical trials. Results from these studies have suggested that tumor microenvironment remodeling is required to achieve an effective response in solid tumors. Here, we assess the extent to which targeting specific mechanisms underlying the immunosuppressive tumor microenvironment optimizes viroimmunotherapy. METHODS We used RNA-seq analyses to analyze the transcriptome, and validated the results using Q-PCR, flow cytometry, and immunofluorescence. Viral activity was analyzed by replication assays and viral titration. Kyn and Trp metabolite levels were quantified using liquid chromatography-mass spectrometry. Aryl hydrocarbon receptor (AhR) activation was analyzed by examination of promoter activity. Therapeutic efficacy was assessed by tumor histopathology and survival in syngeneic murine models of gliomas, including Indoleamine 2,3-dioxygenase (IDO)-/- mice. Flow cytometry was used for immunophenotyping and quantification of cell populations. Immune activation was examined in co-cultures of immune and cancer cells. T-cell depletion was used to identify the role played by specific cell populations. Rechallenge experiments were performed to identify the development of anti-tumor memory. RESULTS Bulk RNA-seq analyses showed the activation of the immunosuppressive IDO-kynurenine-AhR circuitry in response to Delta-24-RGDOX infection of tumors. To overcome the effect of this pivotal pathway, we combined Delta-24-RGDOX with clinically relevant IDO inhibitors. The combination therapy increased the frequency of CD8+ T cells and decreased the rate of myeloid-derived suppressor cell and immunosupressive Treg tumor populations in animal models of solid tumors. Functional studies demonstrated that IDO-blockade-dependent activation of immune cells against tumor antigens could be reversed by the oncometabolite kynurenine. The concurrent targeting of the effectors and suppressors of the tumor immune landscape significantly prolonged the survival in animal models of orthotopic gliomas. CONCLUSIONS Our data identified for the first time the in vivo role of IDO-dependent immunosuppressive pathways in the resistance of solid tumors to oncolytic adenoviruses. Specifically, the IDO-Kyn-AhR activity was responsible for the resurface of local immunosuppression and resistance to therapy, which was ablated through IDO inhibition. Our data indicate that combined molecular and immune therapy may improve outcomes in human gliomas and other cancers treated with virotherapy.
Collapse
Affiliation(s)
- Teresa T Nguyen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Dong Ho Shin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sagar Sohoni
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay K Singh
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yisel Rivera-Molina
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Jiang
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xuejun Fan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Lisha Zhu
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, Houston, Texas, USA
| | - W Jim Zheng
- The University of Texas Health Science Center at Houston School of Biomedical Informatics, Houston, Texas, USA
| | - Lijie Zhai
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Erik Ladomersky
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kristen L Lauing
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marta M Alonso
- Pediatrics, Clínica Universidad de Navarra, Pamplona, Spain
- Program of Solid Tumors, CIMA, Pamplona, Spain
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine-Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
18
|
Tissue and circulating PD-L2: moving from health and immune-mediated diseases to head and neck oncology. Crit Rev Oncol Hematol 2022; 175:103707. [PMID: 35569724 DOI: 10.1016/j.critrevonc.2022.103707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022] Open
Abstract
Amongst the chief targets of immune-checkpoint inhibitors (ICIs), namely the Programmed cell death protein 1 (PD-1)/PD-Ligands (Ls) axis, most research has focused on PD-L1, while to date PD-L2 is still under-investigated. However, emerging data support PD-L2 relevant expression in malignancies of the head and neck area, mostly in head and neck squamous cell carcinoma (HNSCC) and salivary gland cancers (SGCs). In this context, ICIs have achieved highly heterogeneous outcomes, emphasizing an urgent need for the identification of predictive biomarkers. With the present review, we aimed at describing PD-L2 biological significance by focusing on its tissue expression, its binding to PD-1 and RGMb receptors, and its impact on physiological and anti-cancer immune response. Specifically, we reported PD-L2 expression rates and significant clinical correlates among different head and neck cancer histotypes. Finally, we described the biology of soluble PD-L2 form and its potential application as a prognostic and/or predictive circulating biomarker.
Collapse
|
19
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 272] [Impact Index Per Article: 90.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
20
|
Yu X, Xu J, Xu D, Bi X, Wang H, Lu Y, Cao M, Wang W, Xu Z, Zheng D, Chen L, Zhang X, Zheng S, Li K. Comprehensive Analysis of the Carcinogenic Process, Tumor Microenvironment, and Drug Response in HPV-Positive Cancers. Front Oncol 2022; 12:842060. [PMID: 35392231 PMCID: PMC8980807 DOI: 10.3389/fonc.2022.842060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Human papillomavirus (HPV) is a common virus, and about 5% of all cancers worldwide is caused by persistent high-risk HPV infections. Here, we reported a comprehensive analysis of the molecular features for HPV-related cancer types using TCGA (The Cancer Genome Atlas) data with HPV status. We found that the HPV-positive cancer patients had a unique oncogenic process, tumor microenvironment, and drug response compared with HPV-negative patients. In addition, HPV improved overall survival for the four cancer types, namely, cervical squamous cell carcinoma (CESC), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The stronger activity of cell-cycle pathways and lower driver gene mutation rates were observed in HPV-positive patients, which implied the different carcinogenic processes between HPV-positive and HPV-negative groups. The increased activities of immune cells and differences in metabolic pathways helped explain the heterogeneity of prognosis between the two groups. Furthermore, we constructed HPV prediction models for different cancers by the virus infection score (VIS) which was linearly correlated with HPV load and found that VIS was associated with drug response. Altogether, our study reveals that HPV-positive cancer patients have unique molecular characteristics which help the development of precision medicine in HPV-positive cancers.
Collapse
Affiliation(s)
- Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yanda Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenxiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dehua Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Liyang Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaodian Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
21
|
HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol 2022; 19:306-327. [PMID: 35105976 PMCID: PMC8805140 DOI: 10.1038/s41571-022-00603-7] [Citation(s) in RCA: 459] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV)-positive (HPV+) oropharyngeal squamous cell carcinoma (OPSCC) has one of the most rapidly increasing incidences of any cancer in high-income countries. The most recent (8th) edition of the UICC/AJCC staging system separates HPV+ OPSCC from its HPV-negative (HPV−) counterpart to account for the improved prognosis seen in the former. Indeed, owing to its improved prognosis and greater prevalence in younger individuals, numerous ongoing trials are examining the potential for treatment de-intensification as a means to improve quality of life while maintaining acceptable survival outcomes. In addition, owing to the distinct biology of HPV+ OPSCCs, targeted therapies and immunotherapies have become an area of particular interest. Importantly, OPSCC is often detected at an advanced stage owing to a lack of symptoms in the early stages; therefore, a need exists to identify and validate possible diagnostic biomarkers to aid in earlier detection. In this Review, we provide a summary of the epidemiology, molecular biology and clinical management of HPV+ OPSCC in an effort to highlight important advances in the field. Ultimately, a need exists for improved understanding of the molecular basis and clinical course of this disease to guide efforts towards early detection and precision care, and to improve patient outcomes. The incidence of human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC) is increasing rapidly in most developed countries. In this Review, the authors provide an overview of the epidemiology, molecular biology and treatment of HPV-positive OPSCC, including discussions of the role of treatment de-escalation and emerging novel therapies. The incidence of human papillomavirus-associated oropharyngeal cancer (HPV+ OPSCC) is expected to continue to rise over the coming decades until the benefits of gender-neutral prophylactic HPV vaccination begin to become manifest. The incidence of HPV+ OPSCC appears to be highest in high-income countries, although more epidemiological data are needed from low- and middle-income countries, in which HPV vaccination coverage remains low. The substantially better prognosis of patients with HPV+ OPSCC compared to those with HPV– OPSCC has been recognized in the American Joint Committee on Cancer TNM8 staging guidelines, which recommend stratification by HPV status to improve staging. The molecular biology and genomic features of HPV+ OPSCC are similar to those of other HPV-associated malignancies, with HPV oncogenes (E6 and E7) acting as key drivers of pathogenesis. Treatment de-intensification is being pursued in clinical trials, although identifying the ~15% of patients with HPV+ OPSCC who have recurrent disease, and who therefore require more intensive treatment, remains a key challenge.
Collapse
|
22
|
T cell subtype profiling measures exhaustion and predicts anti-PD-1 response. Sci Rep 2022; 12:1342. [PMID: 35079117 PMCID: PMC8789795 DOI: 10.1038/s41598-022-05474-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Anti-PD-1 therapy can provide long, durable benefit to a fraction of patients. The on-label PD-L1 test, however, does not accurately predict response. To build a better biomarker, we created a method called T Cell Subtype Profiling (TCSP) that characterizes the abundance of T cell subtypes (TCSs) in FFPE specimens using five RNA models. These TCS RNA models are created using functional methods, and robustly discriminate between naïve, activated, exhausted, effector memory, and central memory TCSs, without the reliance on non-specific, classical markers. TCSP is analytically valid and corroborates associations between TCSs and clinical outcomes. Multianalyte biomarkers based on TCS estimates predicted response to anti-PD-1 therapy in three different cancers and outperformed the indicated PD-L1 test, as well as Tumor Mutational Burden. Given the utility of TCSP, we investigated the abundance of TCSs in TCGA cancers and created a portal to enable researchers to discover other TCSP-based biomarkers.
Collapse
|
23
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
24
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|
25
|
Ali A, Mughal H, Ahmad N, Babar Q, Saeed A, Khalid W, Raza H, Liu A. Novel therapeutic drug strategies to tackle immune-oncological challenges faced by cancer patients during COVID-19. Expert Rev Anticancer Ther 2021; 21:1371-1383. [PMID: 34643141 DOI: 10.1080/14737140.2021.1991317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the clinical treatment of cancer patients, coronavirus (SARS-CoV-2) can cause serious immune-related problems. Cancer patients, who experience immunosuppression due to the pathogenesis and severity of disease, may become more aggressive due to multiple factors such as age, comorbidities, and immunosuppression. In this pandemic era, COVID-19 causes lymphopenia, cancer cell awakening, inflammatory diseases, and a cytokine storm that worsens disease-related morbidity and prognosis. AREAS COVERED We discuss all the risk factors of COVID-19 associated with cancer patients and propose new strategies to use antiviral and anticancer drugs for therapeutic purposes. We bring new drugs, cancers and COVID-19 treatment strategies together to address the immune system challenges faced by oncologists. EXPERT OPINION The chronic inflammatory microenvironment caused by COVID-19 awakens dormant cancer cells through inflammation and autoimmune activation. Drug-related strategies to ensure that clinical treatment can reduce the susceptibility of cancer patients to COVID-19, and possible counter-measures to minimize the harm caused by the COVID-19 have been outlined. The response to the pandemic and recovery has been elaborated, which can provide information for long-term cancer treatment and speed up the optimization process.
Collapse
Affiliation(s)
- Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China.,Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | - Hafsa Mughal
- Department of Nutrition, Aziz Fatima Medical and Dental College, and Aziz Fatima Hospital, Faisalabad, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Government College University, Faisalabad, Pakistan
| | - Quratulain Babar
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Ayesha Saeed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Hasnain Raza
- Department of Social Sciences, Yangzhou University, Yangzhou, China
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
26
|
Long X, Qiu Y, Zhang Z, Wu M. Insight for Immunotherapy of HCMV Infection. Int J Biol Sci 2021; 17:2899-2911. [PMID: 34345215 PMCID: PMC8326118 DOI: 10.7150/ijbs.58127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Human cytomegalovirus (HCMV), a ubiquitous in humans, has a high prevalence rate. Young people are susceptible to HCMV infection in developing countries, while older individuals are more susceptible in developed countries. Most patients have no obvious symptoms from the primary infection. Studies have indicated that the virus has gradually adapted to the host immune system. Therefore, the control of HCMV infection requires strong immune modulation. With the recent advances in immunotherapy, its application to HCMV infections is receiving increasing attention. Here, we discuss the immune response to HCMV infection, the immune escape mechanism, and the different roles that HCMV plays in various types of immunotherapy, including vaccines, adoptive cell therapy, checkpoint blockade therapy, and targeted antibodies.
Collapse
Affiliation(s)
- Xinmiao Long
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Yi Qiu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Zuping Zhang
- Department of Pathogeny Biology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008 , Hunan, China
| |
Collapse
|
27
|
Poon DJJ, Tay LM, Ho D, Chua MLK, Chow EKH, Yeo ELL. Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett 2021; 511:56-67. [PMID: 33933554 DOI: 10.1016/j.canlet.2021.04.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022]
Abstract
Despite numerous advances in cancer radiotherapy, tumor radioresistance remain one of the major challenges limiting treatment efficacy of radiotherapy. Conventional strategies to overcome radioresistance involve understanding the underpinning molecular mechanisms, and subsequently using combinatorial treatment strategies involving radiation and targeted drug combinations against these radioresistant tumors. These strategies exploit and target the molecular fingerprint and vulnerability of the radioresistant clones to achieve improved efficacy in tumor eradication. However, conventional drug-screening approaches for the discovery of new drug combinations have been proven to be inefficient, limited and laborious. With the increasing availability of computational resources in recent years, novel approaches such as Quadratic Phenotypic Optimization Platform (QPOP), CURATE.AI and Drug Combination and Prediction and Testing (DCPT) platform have emerged to aid in drug combination discovery and the longitudinally optimized modulation of combination therapy dosing. These platforms could overcome the limitations of conventional screening approaches, thereby facilitating the discovery of more optimal drug combinations to improve the therapeutic ratio of combinatorial treatment. The use of better and more accurate models and methods with rapid turnover can thus facilitate a rapid translation in the clinic, hence, resulting in a better patient outcome. Here, we reviewed the clinical observations, molecular mechanisms and proposed treatment strategies for tumor radioresistance and discussed how novel approaches may be applied to enhance drug combination discovery, with the aim to further improve the therapeutic ratio and treatment efficacy of radiotherapy against radioresistant cancers.
Collapse
Affiliation(s)
- Dennis Jun Jie Poon
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| | - Li Min Tay
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Dean Ho
- The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore; Oncology Academic Clinical Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore; The N.1 Institute of Health (N.1), National University of Singapore, 117456, Singapore; Department of Bioengineering, National University of Singapore, 117583, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 117456, Singapore.
| | - Eugenia Li Ling Yeo
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Crescent, 169610, Singapore.
| |
Collapse
|
28
|
Yang SM, Wu M, Han FY, Sun YM, Yang JQ, Liu HX. Role of HPV status and PD-L1 expression in prognosis of laryngeal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:107-115. [PMID: 33532028 PMCID: PMC7847499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE Human papillomavirus (HPV) infection has been recognized as a cause of head and neck squamous cell carcinomas (HNSCC). Laryngeal squamous cell carcinoma (LSCC) is one of the most common pathologic types of HNSCC. Clinical trials show that there are differences in response to immunotherapy according to HPV status. It was reported that a high level of programmed cell death-ligand 1 (PD-L1) is correlated with better survival in HPV-positive head and neck cancer. In this study, we investigated the expression of PD-L1 in HPV-positive and HPV-negative LSCC to determine its prevalence and prognostic value. METHODS 52 cases of LSCC were collected from Tangshan Head and Neck Disease Pathology Research Base. PCR-reverse dot blot hybridization and RNAscope in situ hybridization were used to detect HPV status. PD-L1 expression was evaluated by immunohistochemistry and all cases were followed up for survival. SPSS24.0 was used for data entry and statistical analysis. Kaplan-Meier method and Log-rank time series analysis were used for single factor analysis. Multivariate analysis was performed using Cox proportional hazard regression model, and HR and 95% CI were calculated. RESULTS Of the 52 LSCC patients, 32.7% (17/52) were HPV-positive by RNAscope in situ hybridization, and 51.9% (27/52) of patients were positive for PD-L1 expression by immunohistochemistry. Regression analysis showed that with a median follow-up period of 69 months, smoking and late stage were associated with poor overall survival (OS), whereas HPV positivity and PD-L1 expression showed a better overall survival outcome. CONCLUSION Smoking status, tumor stage, HPV status, and PD-L1 expression in tumor cells may represent useful prognostic biomarkers in patients with LSCC.
Collapse
Affiliation(s)
- Su-Mei Yang
- Department of Pneumology, Tangshan People’s HospitalTangshan, P. R. China
| | - Meng Wu
- Department of Pathology, Division of Basic Medicine, Tangshan Vocational and Technical CollegeTangshan, P. R. China
| | - Feng-Yan Han
- Department of Pathology, Tangshan Union HospitalTangshan, P. R. China
| | - Yu-Man Sun
- Department of Pathology, Tangshan Union HospitalTangshan, P. R. China
| | - Jun-Quan Yang
- Department of Radio-chemotherapy Oncology, Tangshan People’s HospitalTangshan, P. R. China
| | - Hong-Xia Liu
- Department of Pathology, Tangshan Union HospitalTangshan, P. R. China
| |
Collapse
|
29
|
Zhang R, Li T, Wang W, Gan W, Lv S, Zeng Z, Hou Y, Yan Z, Yang M. Indoleamine 2, 3-Dioxygenase 1 and CD8 Expression Profiling Revealed an Immunological Subtype of Colon Cancer With a Poor Prognosis. Front Oncol 2020; 10:594098. [PMID: 33425745 PMCID: PMC7793995 DOI: 10.3389/fonc.2020.594098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The Immunoscore method, based on the distribution of the quantification of cytotoxic and memory T cells, provides an indicator of tumor recurrence for colon cancer. However, recent evidence has suggested that immune checkpoint expression represents a surrogate measure of tumor-infiltrating T cell exhaustion, and therefore may serve as a more accurate prognostic biomarker for colon cancer. Indoleamine 2, 3-dioxygenase 1 (IDO1), a potent immunosuppressive molecule, has been strongly associated with T-cell infiltration, but it lacks universal prognostic significance among all of the cancer subtypes. Our aim was to elucidate the prognostic significance of the combination of IDO1 and CD8A expression in colon cancer. METHODS Gene expression and clinical survival data were analyzed using The Cancer Genome Atlas (TCGA) data set and validated using NCBI Gene Expression Omnibus (NCBI-GEO) cohort. Hierarchical clustering, functional enrichment analyses, and immune infiltration analysis were applied to evaluate the distinctive immune statuses in colon cancer risk subgroups stratified by IDO1 and CD8A expression. Moreover, Multivariate Cox regression analysis and Receiver Operating Characteristic (ROC) analyses were conducted to determine the prognostic value of IDO1/CD8A stratification. The IDO1/CD8A classifier may be suitable for use in the prediction of cancer development. It was validated via an in vivo murine model. RESULTS The stratification analysis demonstrated that the colon cancer subtype with the CD8AhighIDO1high* tumor resulted in the worst survival despite high levels of CD8 infiltrates. Its poor prognosis was associated with high levels of immune response, checkpoint genes, and Th1/IFN-γ gene signatures, regardless of CMS classification. Moreover, the IDO1/CD8A stratification was identified as an independent prognostic factor of overall survival (OS) and a useful predictive biomarker in colon cancer. In vivo data revealed the CD8AhighIDO1high group showed strong correlations with late-stage metastasis of colon carcinoma cells and upregulation of immune checkpoints. CONCLUSIONS The findings indicate that the proposed IDO1/CD8A stratification has exact and independent prognostic implications beyond CD8 T cell alone and CMS classification. As a result, it may represent a promising tool for risk stratification in colon cancer and improve the development of immunotherapies for patients with colon cancer in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Liu X, Chen J, Lu W, Zeng Z, Li J, Jiang X, Gao Y, Gong Y, Wu Q, Xie C. Systematic Profiling of Immune Risk Model to Predict Survival and Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Front Genet 2020; 11:576566. [PMID: 33193693 PMCID: PMC7596453 DOI: 10.3389/fgene.2020.576566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Head and neck squamous carcinoma (HNSCC), characterized by immunosuppression, is a group of highly heterogeneous cancers. Although immunotherapy exerts a promising influence on HNSCC, the response rate remains low and varies in assorted primary sites. Immunological mechanisms underlying HNSCC pathogenesis and treatment response are not fully understood. This study aimed to develop a differentially expressed genes (DEGs)-based risk model to predict immunotherapy efficacy and stratify prognosis of HNSCC patients. MATERIALS AND METHODS The expression profiles of HNSCC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The tumor microenvironment and immune response were estimated by cell type identification via estimating relative subset of known RNA transcripts (CIBERSORT) and immunophenoscore (IPS). The differential expression pattern based on human papillomavirus status was identified. A DEGs-based prognostic risk model was developed and validated. All statistical analyses were performed with R software (version 3.6.3). RESULTS By using the TCGA database, we identified DKK1, HBEGF, RNASE7, TNFRSF12A, INHBA, and IPIK3R3 as DEGs that were associated with patients' overall survival (OS). Patients were stratified into the high- and low-risk subgroups according to a DEGs-based prognostic risk model. Significant difference in OS was found between the high- and low-risk patients (1.64 vs. 2.18 years, P = 0.0017). In multivariate Cox analysis, the risk model was an independent prognostic factor for OS (hazard radio = 1.06, 95% confidence interval [1.02-1.10], P = 0.004). More CD8+ T cells and regulatory T cells were observed in the low-risk group and associated with a favorable prognosis. The IPS analysis suggested that the low-risk patients possessed a higher IPS score and a higher immunoreactivity phenotype, which were correlated with better immunotherapy response. CONCLUSION Collectively, we established a reliable DEGs-based risk model with potential prognostic value and capacity to predict the immunophenotype of HNSCC patients.
Collapse
Affiliation(s)
- Xingyu Liu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiarui Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Lu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihang Zeng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiali Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Samec M, Liskova A, Koklesova L, Samuel SM, Murin R, Zubor P, Bujnak J, Kwon TK, Büsselberg D, Prosecky R, Caprnda M, Rodrigo L, Ciccocioppo R, Kruzliak P, Kubatka P. The role of plant-derived natural substances as immunomodulatory agents in carcinogenesis. J Cancer Res Clin Oncol 2020; 146:3137-3154. [PMID: 33063131 DOI: 10.1007/s00432-020-03424-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
The role of immune system in carcinogenesis represents fundamental events associated with cancer eradication; however, tumor evolution is connected with various mechanisms of tumor evasion and progression of cancer. Based on recent evidence, phytochemicals are directly associated with immunomodulation of the innate and adaptive immunity via different mechanisms of action including stimulation and amplification of immune cells, humoral compartments, and associated molecules. This comprehensive study focuses on immunomodulating potential of phytochemicals (mixture in plants or separately such as individual phytochemical) and their impact on regulation of immune response during cancer development, immune tolerance, and immune escape. Clinical application of phytochemicals as modulators of host immunity against cancer may represent perspective approach in anticancer therapy.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Radovan Murin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Pavol Zubor
- Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, Michalovce, Slovakia
| | - Taeg Kyu Kwon
- Department of Immunology and School of Medicine, Keimyung University, Dalseo-Gu, Daegu, Korea
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Robert Prosecky
- 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Luis Rodrigo
- Faculty of Medicine, University of Oviedo, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Peter Kruzliak
- 2nd Department of Surgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekarska 53, 656 91, Brno, Czech Republic.
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601, Martin, Slovakia.
| |
Collapse
|
32
|
Hang Y, Aburidi M, Husain B, Hickman AR, Poehlman WL, Feltus FA. Exploration into biomarker potential of region-specific brain gene co-expression networks. Sci Rep 2020; 10:17089. [PMID: 33051491 PMCID: PMC7553962 DOI: 10.1038/s41598-020-73611-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/04/2020] [Indexed: 11/08/2022] Open
Abstract
The human brain is a complex organ that consists of several regions each with a unique gene expression pattern. Our intent in this study was to construct a gene co-expression network (GCN) for the normal brain using RNA expression profiles from the Genotype-Tissue Expression (GTEx) project. The brain GCN contains gene correlation relationships that are broadly present in the brain or specific to thirteen brain regions, which we later combined into six overarching brain mini-GCNs based on the brain's structure. Using the expression profiles of brain region-specific GCN edges, we determined how well the brain region samples could be discriminated from each other, visually with t-SNE plots or quantitatively with the Gene Oracle deep learning classifier. Next, we tested these gene sets on their relevance to human tumors of brain and non-brain origin. Interestingly, we found that genes in the six brain mini-GCNs showed markedly higher mutation rates in tumors relative to matched sets of random genes. Further, we found that cortex genes subdivided Head and Neck Squamous Cell Carcinoma (HNSC) tumors and Pheochromocytoma and Paraganglioma (PCPG) tumors into distinct groups. The brain GCN and mini-GCNs are useful resources for the classification of brain regions and identification of biomarker genes for brain related phenotypes.
Collapse
Affiliation(s)
- Yuqing Hang
- Department of Genetics and Biochemistry, Clemson University, Clemson, 29634, USA
| | - Mohammed Aburidi
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, 29634, USA
| | - Benafsh Husain
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, 29634, USA
| | - Allison R Hickman
- Department of Genetics and Biochemistry, Clemson University, Clemson, 29634, USA
| | - William L Poehlman
- Department of Genetics and Biochemistry, Clemson University, Clemson, 29634, USA
| | - F Alex Feltus
- Department of Genetics and Biochemistry, Clemson University, Clemson, 29634, USA.
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, 29634, USA.
- Center for Human Genetics, Clemson University, Clemson, 29634, USA.
| |
Collapse
|
33
|
Solinas C, Aiello M, Rozali E, Lambertini M, Willard-Gallo K, Migliori E. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Transl Oncol 2020; 13:100811. [PMID: 32622310 PMCID: PMC7332529 DOI: 10.1016/j.tranon.2020.100811] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death-ligand 2 (PD-L2) is one of the two ligands of the programmed cell death-1 (PD-1) receptor, an inhibitory protein mainly expressed on activated immune cells that is targeted in the clinic, with successful and remarkable results. The PD-1/PD-Ls axis was shown to be one of the most relevant immunosuppressive pathways in the immune microenvironment, and blocking this interaction gave rise to an impressive clinical benefit in a broad variety of solid and hematological malignancies. Although PD-L2 has been historically considered a minor ligand, it binds to PD-1 with a two- to six-fold higher affinity as compared to PD-L1. PD-L2 can be expressed by immune, stromal, or tumor cells. The aims of this narrative review are to summarize PD-L2 biology in the physiological responses of the immune system and its role, expression, and clinical significance in cancer.
Collapse
Affiliation(s)
- Cinzia Solinas
- Azienda USL Valle d'Aosta, Regional Hospital of Valle d'Aosta, Aosta, Italy
| | - Marco Aiello
- Medical Oncology Unit, A.O.U. Policlinico San Marco, Catania, Italy
| | - Esdy Rozali
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | - Matteo Lambertini
- IRCCS Ospedale Policlinico San Martino and University of Genova, Genova, Italy
| | | | - Edoardo Migliori
- Columbia University Medical Center, Columbia Center for Translational Immunology, New York, NY, USA.
| |
Collapse
|
34
|
Neuwelt A, Al-Juhaishi T, Davila E, Haverkos B. Enhancing antitumor immunity through checkpoint blockade as a therapeutic strategy in T-cell lymphomas. Blood Adv 2020; 4:4256-4266. [PMID: 32898250 PMCID: PMC7479955 DOI: 10.1182/bloodadvances.2020001966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
The majority of historical therapies for managing T-cell lymphomas (TCLs) have consisted of T-cell-depleting strategies. Unfortunately, these forms of therapies can hamper the ability to mount effective antitumor immune responses. Recently, the use of checkpoint inhibitors has revolutionized the therapy of solid and hematologic malignancies. The development of immunotherapies for the management of TCL has lagged behind other malignancies given 2 central reasons: (1) the competing balance of depleting malignant T cells while simultaneously enhancing an antitumor T-cell response and (2) concern for tumor hyperprogression by blocking inhibitory signals on the surface of the malignant T cell, thereby leading to further proliferation of the malignant cells. These challenges were highlighted with the discovery that programmed cell death protein 1 (PD-1) functions paradoxically as a haploinsufficient tumor suppressor in preclinical TCL models. In contrast, some preclinical and clinical evidence suggests that PD-1/programmed death ligand 1 may become an important therapeutic tool in the management of patients with TCL. Improved understanding of the immune landscape of TCL is necessary in order to identify subsets of patients most likely to benefit from checkpoint-inhibitor therapy. With increased preclinical research focus on the tumor microenvironment, substantial strides are being made in understanding how to harness the power of the immune system to treat TCLs. In this review, designed to be a "call to action," we discuss the challenges and opportunities of using immune-modulating therapies, with a focus on checkpoint inhibitors, for the treatment of patients with TCL.
Collapse
Affiliation(s)
- Alexander Neuwelt
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | - Taha Al-Juhaishi
- Division of Hematology and Oncology, Richmond Veterans Affairs Medical Center, Richmond, VA
- Division of Hematology and Oncology, Virginia Commonwealth University, Richmond, VA; and
| | | | | |
Collapse
|
35
|
Immunophenotypes Based on the Tumor Immune Microenvironment Allow for Unsupervised Penile Cancer Patient Stratification. Cancers (Basel) 2020; 12:cancers12071796. [PMID: 32635549 PMCID: PMC7407624 DOI: 10.3390/cancers12071796] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The tumor immune microenvironment (TIME) plays an important role in penile squamous cell carcinoma (peSCC) pathogenesis. Here, the immunophenotype of the TIME in peSCC was determined by integrating the expression patterns of immune checkpoints (programmed cell death-1 (PD-1)/programmed cell death ligand-1 (PD-L1), cytotoxic T lymphocyte antigen 4 (CTLA-4), and Siglec-15) and the components of tumor-infiltrating lymphocytes, including CD8+ or Granzyme B+ T cells, FOXP3+ regulatory T cells, and CD68+ or CD206+ macrophages, in 178 patients. A high density of Granzyme B, FOXP3, CD68, CD206, PD-1, and CTLA-4 was associated with better disease-specific survival (DSS). The patients with diffuse PD-L1 tumor cell expression had worse prognoses than those with marginal or negative PD-L1 expression. Four immunophenotypes were identified by unsupervised clustering analysis, based on certain immune markers, which were associated with DSS and lymph node metastasis (LNM) in peSCC. There was no significant relationship between the immunophenotypes and high-risk human papillomavirus (hrHPV) infection. However, the hrHPV–positive peSCC exhibited a higher density of stromal Granzyme B and intratumoral PD-1 than the hrHPV–negative tumors (p = 0.049 and 0.002, respectively). In conclusion, the immunophenotypes of peSCC were of great value in predicting LNM and prognosis, and may provide support for clinical stratification management and immunotherapy intervention.
Collapse
|
36
|
Miliotis CN, Slack FJ. Multi-layered control of PD-L1 expression in Epstein-Barr virus-associated gastric cancer. ACTA ACUST UNITED AC 2020; 6. [PMID: 34212113 PMCID: PMC8244904 DOI: 10.20517/2394-4722.2020.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide. In approximately 10% of GC cases, cancer cells show ubiquitous and monoclonal Epstein-Barr virus (EBV) infection. A significant feature of EBV-associated GC (EBVaGC) is high lymphocytic infiltration and high expression of immune checkpoint proteins, including programmed death-ligand 1 (PD-L1). This highlights EBVaGC as a strong candidate for immune checkpoint blockade therapy. Indeed, several recent studies have shown that EBV positivity in GC correlates with positive response to programmed cell death protein 1 (PD-1)/PD-L1 blockade therapy. Understanding the mechanisms that control PD-L1 expression in EBVaGC can indicate new predictive biomarkers for immunotherapy, as well as therapeutic targets for combination therapy. Various mechanisms have been implicated in PD-L1 expression regulation, including structural variations, post-transcriptional control, oncogenic activation of intrinsic signaling pathways, and increased sensitivity to extrinsic signals. This review provides the most recent updates on the multilayered control of PD-L1 expression in EBVaGC.
Collapse
Affiliation(s)
- Christos N Miliotis
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Frank J Slack
- HMS Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
37
|
Özcan-Wahlbrink M, Schifflers C, Riemer AB. Enhanced Radiation Sensitivity of Human Papillomavirus-Driven Head and Neck Cancer: Focus on Immunological Aspects. Front Immunol 2019; 10:2831. [PMID: 31849993 PMCID: PMC6901628 DOI: 10.3389/fimmu.2019.02831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC), emerging in the mucosa of the upper aerodigestive tract, are associated with either the classical risk factors, tobacco and alcohol consumption, or with infections with high-risk types of the human papillomavirus (HPV). Depending on the involvement of HPV, HNSCC follow different pathways of carcinogenesis and show distinct clinical presentations regarding survival, prognosis and treatment response. For instance, HPV-driven HNSCC exhibit an enhanced radiation response compared to their typically radioresistant HPV-negative counterparts. Although radiosensitivity of HNSCC has been studied by many research groups, the major causes for the difference in radiation responses between HPV-driven and HPV-negative HNSCC are still an open question. In this mini review, we discuss the reported cellular and immunological factors involved in the enhanced radiation response in HPV-driven HNSCC, focusing on the vital role of the immune response in the outcome of HNSCC radiotherapy.
Collapse
Affiliation(s)
- Mine Özcan-Wahlbrink
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| | - Christoph Schifflers
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany.,Cell Biology Research Unit (URBC)-Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Angelika B Riemer
- Immunotherapy and Immunoprevention, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Vaccine Design, German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
38
|
Hooiveld-Noeken J, Fehrmann R, de Vries E, Jalving M. Driving innovation for rare skin cancers: utilizing common tumours and machine learning to predict immune checkpoint inhibitor response. IMMUNO-ONCOLOGY TECHNOLOGY 2019; 4:1-7. [PMID: 35755000 PMCID: PMC9216707 DOI: 10.1016/j.iotech.2019.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Metastatic Merkel cell carcinoma (MCC) and cutaneous squamous cell carcinoma (cSCC) are rare and both show impressive responses to immune checkpoint inhibitor treatment. However, at least 40% of patients do not respond to these expensive and potentially toxic drugs. Development of predictive biomarkers of response and rational, effective combination treatment strategies in these rare, often frail patient populations is challenging. This review discusses the pathophysiology and treatment of MCC and cSCC, with a particular focus on potential biomarkers of response to immunotherapy, and discusses how transfer learning using big data collected from patients with common tumours can be used in combination with deep phenotyping of rare tumours to develop predictive biomarkers and elucidate novel treatment targets. Metastatic Merkel cell carcinoma and cutaneous squamous cell carcinoma are rare tumours. Immunotherapy gives impressive responses but most patients do not survive long term. Small patient numbers prevent extensive biomarker research in clinical trials. Pooled data from common and rare tumours can be used to train neural networks. In rare cancers, neural networks can help identify biomarkers and novel treatment targets.
Collapse
|